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Abstract Nutrition science finds itself at a major cross-

road. On the one hand we can continue the current path,

which has resulted in some substantial advances, but also

many conflicting messages which impair the trust of the

general population, especially those who are motivated to

improve their health through diet. The other road is

uncharted and is being built over the many exciting new

developments in life sciences. This new era of nutrition

recognizes the complex relation between the health of the

individual, its genome, and the life-long dietary exposure,

and has lead to the realisation that nutrition is essentially a

gene–environment interaction science. This review on the

relation between genotype, diet and health is the first of a

series dealing with the major challenges in molecular

nutrition, analyzing the foundations of nutrition research.

With the unravelling of the human genome and the linking

of its variability to a multitude of phenotypes from

‘‘healthy’’ to an enormously complex range of predisposi-

tions, the dietary modulation of these propensities has

become an area of active research. Classical genetic

approaches applied so far in medical genetics have steered

away from incorporating dietary effects in their models and

paradoxically, most genetic studies analyzing diet-associ-

ated phenotypes and diseases simply ignore diet. Yet, a

modest but increasing number of studies are accounting for

diet as a modulator of genetic associations. These range

from observational cohorts to intervention studies with

prospectively selected genotypes. New statistical and
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Faculté de Médecine, IPHM-IFR 125,

13385 Marseille, France

e-mail: denis.lairon@univmed.fr

J. Hesketh � G. Lietz

Human Nutrition Research Centre and Institute for Cell and

Molecular Biosciences, Newcastle University,

Framlington Place, Newcastle-upon-Tyne Ne1 4HH, UK

e-mail: j.e.hesketh@newcastle.ac.uk

G. Lietz

e-mail: georg.lietz@newcastle.ac.uk

M. Gibney

Centre for Food and Health, University College Dublin,

Dublin, Ireland

e-mail: mike.gibney@ucd.ie

B. van Ommen

Department of BioSciences, TNO-Quality of Life,

Delft, The Netherlands

e-mail: ben.vanommen@tno.nl

123

Genes Nutr (2008) 3:41–49

DOI 10.1007/s12263-008-0086-1

http://www.nugo.org


bioinformatics approaches are becoming available to aid in

design and evaluation of these studies. This review dis-

cusses the various approaches used and provides concrete

recommendations for future research.

Keywords Nutrigenetics � Nutrigenomics � Genotype �
Candidate gene

Introduction: the nutrition and health equation

For over 20 years the public health burden of diet-depen-

dent diseases resulting from poor quality diets, excess

caloric intake and sedentary lifestyles, has been the main

driver for nutritional research. Rapid developments in the

life sciences, especially genetics, have created significant

opportunities for nutritional science. However the ability to

fully exploit these, particularly in the absence of significant

funding, has proved challenging. Despite many major

advances, the public’s perception is one of conflicting and

confusing nutrition and health messages, which may be

further worsened by unsubstantiated health claims for

functional foods and supplements (e.g. [29, 30]), and of

premature claims for personalised health [31, 33]. Against

this background of a complex and rapidly growing, but still

immature science base, many nutrition scientists feel

unable to meet expectations for clear, evidence-based

dietary recommendations for health promotion that the

healthcare, functional foods and supplement providers, as

well as the public, clearly require.

As well as research into the role of nutrition in disease

prevention [21], there is an increasing focus on the role of

nutrition in the optimisation of health at all life stages, and

the related need for tools to properly quantify health in

order to substantiate the beneficial impacts of dietary

change. Nutritional status induces subtle changes in body

function that are more difficult to detect than, for example,

response to drug treatment. These small differences are,

however, extremely important in determining risk of

chronic disease in the longer term. Consequently, sub-

stantial effort has gone into characterising diet–health

relationships through the development of circulating and

other functional biomarkers. In order to capture the subtle

biological effects that occur as a consequence of diet,

investigators have expanded cohort sizes and attempted to

control the homogeneity of study volunteers (and therefore

normal genetic heterogeneity) through selection according

to a range of specified healthy phenotypes. This introduces

bias into the findings, with the result that outcomes from

controlled intervention studies may not reflect the full

range of phenotypic variability arising from diet–gene

interactions that exist within, and between, populations.

Recognition that an individuals nutrition-related health

condition is a complex function of their genome and life-

long dietary exposure (Fig. 1), has lead to the realisation

that nutrition is essentially a gene–environment interaction

science. This review is the first of a series dealing with the

major challenges in molecular nutrition, which touches the

foundations of nutrition research. Six major topics will be

reviewed: (1) genetic variation; (2) health status quantifi-

cation; (3) food intake and nutritional status quantification;

(4) nutritional systems biology; (5) comparative nutrige-

nomics and (6) technological challenges (Table 1).

This review deals with the relationship between genet-

ics, nutrition and health. We present a number of key

concepts as well as specific recommendations for future

research.

Genetic variation and nutrition

Sequencing of the human genome in 2001 [57] revealed

not only fewer human genes than expected (latest estimates

in the region of 22,000 [6]), but also significant genetic

heterogeneity within human populations. Approximately

3.4 million single nucleotide polymorphisms (SNPs)

(dbSNP [11]) have been detected to date. These data have

lead to revised thinking concerning the genetic basis for the

evolutionary dominance of, and variation within, the

human species, as well as how this information might best

be exploited to benefit human health. There has been

increasing recognition that the complexity of human biol-

ogy is embedded in the way the genome is expressed and

translated into protein and function. It is through this

complexity, rather than the absolute number of human

genes that gene–environment interactions and genetic

polymorphisms determine individual variation in suscep-

tibility to disease and variable responses to drugs,

toxicants, physical activity and diet. The pharmaceutical

industry has been quick to exploit the possibility of new

drug development and personalised pharmacy based on

genotypic response to drugs (pharmacogenomics), although

the output from this investment is still in the early phases

and the benefits actively debated [32, 61].

genomeexposurestatushealth
now

conception

×= ∫

Fig. 1 Although it is widely accepted that the health status is a result

of the interaction of our environment (of which diet is a major part)

and our genome, it remains a challenge to quantify the three

components of the above equation. This series of reviews addressed

each of the components, together with new research strategies that aid

in unravelling this equation
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Nutrition researchers also recognised the potential offered

by genetics and genomic-related tools in their field.

Numerous articles have speculated on how the ability to

identify an individual’s susceptibility to diet-related diseases

at an early stage, coupled with diet and lifestyle information

focused on known diet–genotype–disease interactions, could

increase understanding of the relationship between diet and

human health [1, 17, 35, 37, 43, 46–48, 50, 52]. Genotyping

of individuals participating in dietary intervention studies

was rapidly incorporated into study protocols [7, 24, 42, 50,

55] as well as into many of the large ongoing cohort studies

which are investigating potential diet–health relationships

through observational associations [48, 58].

The concept of targeted nutritional advice, whereby

dietary advice is tailored to specific subgroups, possibly

based on specific genotypes, has captured the imagination

of those working in both therapeutic and public health

nutrition [59]. Opportunities were heralded for the food

industry in functional foods and products tailored to spe-

cific genotypes [21] which could fit alongside the

development of appropriate business models. The popula-

tion-based ‘‘one diet fits all’’ approach to public health

began to be questioned [10] but the potential ethical, legal

and social impact of individualised nutrition [2, 20] also

attracted criticism [31]. Alongside this growing interest,

many findings from the early intervention and association

studies began to demonstrate the full complexity of this

gene–environment interaction science and the extensive

research, and research funding, which would be needed to

resolve the underlying science. Early in these

developments it became clear that there is no such thing as

a ‘‘one gene needs one diet’’ translation.

More than five years on from early predictions, a

number of key studies have been published providing

evidence of genetic heterogeneity in response to diet. A

limitation of this body of literature is the conflicting nature

of the reported findings, which demonstrate ambiguous

effects of genotype and diet on well established risk

markers for age-related diseases. In fact this parallels the

similar lack of consistency of findings for the major gene–

disease association studies [8]; such differences arise pre-

cisely because of gene–environment interactions resulting

from variable life time exposures (diet, physical activity,

smoking, etc.) that exist between the different study pop-

ulations. A ‘‘catch 22’’ situation.

It is clear that, as with other applications of genetics to

human health, translation of the basic science into benefit

for individuals and population health, remains as yet

unfulfilled. In order to achieve this full potential, we will

need to better quantify the contribution of genetics in

determining variable responsiveness to diet. In order to do

this future research will need to address:

• Heritability of dietary response in humans

• Study type, design and bias

• Mechanistic basis for reported diet–genotype

interactions

• Mathematical approaches for analysis of effects due to

multiple dietary and genetic factors

• Provision of suitable databases and data-mining tools

Table 1 Challenges of molecular nutrition research

The challenges of molecular nutrition research

1 Linking genotype to healthy nutrition Genomic variation predisposes for diet related diseases and provides

opportunities for tailored prevention. Inclusion of diet in genetic

research is thus essential and strategies are discussed

2 Quantification of the nutritional phenotype Methods to quantify the healthy instead of the (pre)disease phenotype in

relation to nutrition are introduced and discussed

3 Comparative nutrigenomics The goal of model systems (yeast, c elegance, mice, ...) in comparative

nutrigenomics studies is to identify the modular architecture

controlling nutritional processes and identify the players that cause a

system to drive away from equilibrium into instabilities and to allow

the system to reach a new steady state of metabolic adaptation

4 Nutritional systems biology Can we systematically study the molecular mechanisms underlying the

metabolic adaptation at the cellular, organ and whole organism level

and take it onto the level of modeling?

5 Quantification of food intake New analytical technologies quantify the ‘‘food metabolome’’ and may

link the descriptive intake methods (like food frequency

questionnaires) to the more exact methods used in nutritional

intervention studies

6 Technology and informatics Nutrition research is now embedded in a variety of technology

revolutions. This requires nutrition research specific fine-tuning,

standardisation, annotation, databasing and (bio)informatics. An

integrated approach is presented

Genes Nutr (2008) 3:41–49 43
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Approaches

Here we present a brief summary of the four approaches

used currently to study diet–gene interactions.

Candidate gene approach for diet-related diseases and

their risk factors (e.g. diabetes, cardiovascular disease,

obesity, osteoporosis and cancer):

• Candidate genes for risk of diet related disease (heart

disease, diabetes, obesity, some cancers) may be iden-

tified by Genome Wide Association Studies (GWAS)

based on case–control analysis of affected and unaf-

fected individuals.

• Candidate genes for risk biomarkers for diet related

diseases (e.g. cholesterol and heart disease, Homeo-

static model assessment (HOMA) for type 2 diabetes)

may be identified by GWASs within large-scale

population studies in which a range of biomarkers

may be available (blood cholesterol, blood pressure,

bone density, waist circumference)

Such studies have the potential for identifying genes that

may predispose to risk of disease (or of potential risk by

virtue of biomarker measurement), but not the extent to

which diet or dietary components may have interacted with

the putative high-risk genotypes, since in most cases

dietary exposure data is not available. The literature is

riddled with conflicting outcomes [e.g. 5, 27, 34, 39, 60]

that in part reflect inadequate power but, as discussed

above, more often are the result of different environmental

exposures within mixed high- and low-risk populations.

Even when dietary data is available (and depending on the

method of dietary assessment), data may be unreliable or

unable to provide quantitative estimates for specific

nutrients of interest. In most cases other lifestyle choices,

such as smoking, exercise, alcohol intake, use of thera-

peutic and recreational drugs, exposure to pollutants, and

measures of physiological and psychological stress, are not

available and their influence on the gene–disease associ-

ations of interest, remain unquantifiable. Association

studies have been replicated in different populations by

some authors, for example by linking a common SNP in the

insulin-induced gene 2 (INSIG2) and obesity, but this

finding has not been confirmed subsequently by others [12,

23, 27]. This has been attributed to population specific

differences in environmental factors and other predisposing

genotypes. Other studies consistently showed that poly-

morphisms in the fat mass and obesity associated gene

(FTO) [18, 19, 62, 63] were associated with human obesity,

but unfortunately, food intake was not taken into account in

these studies. Thus, although these studies support the

modifying effect of environmental exposure, they also

underscore the complexity of conducting size-limited

studies using individuals selected solely on the basis of

genotypes.

It is clear therefore that the extensive genotype infor-

mation that is available to investigators studying

nutrigenetics needs to be matched with comprehensive

phenotypic and behavioural information, which in the case

of dietary information needs to go beyond the classical use

of food frequency questionnaires (FFQs). Because of the

diverse and often unreliable findings, studies including

FFQs have limited value as the basis for subsequent dietary

intervention, which might be used for evaluating genotype-

specific responses to diet.

A major disadvantage with the candidate gene studies

(and diet–gene studies), and indeed with other types of

studies detailed further in this review, is the single gene or

a single gene-single nutrient approach, which fails to

adequately categorise individuals according to genetic

heterogeneity. This problem is made worse by studies

focusing on single SNPs within a single gene. For a given

gene, most information is included not in a single SNP but

in a specific combination of genes that have evolved

simultaneously over time (haplotypes). This haplotype

approach is likely to be more successful [36] but analyses

and further definition of relevant haplotypes are needed to

identify beneficial or deleterious DNA regions, which are

associated with functional disease susceptibilities. Hap-

Map (http://www.genome.gov/) is the first step toward

establishing a complete human haplotype map but infor-

mation is limited, and the definition and use of individual

haplotypes in population studies still uncertain [3]. It must

be remembered that assignment of haplotypes is based on a

probabilistic approach using algorithms, rather than func-

tionality. Nevertheless, an example of the potential

advantages of haplotype over single SNPs has been illus-

trated by nutrigenomics studies focusing on the IL-1 gene.

Since a high degree of linkage disequilibrium exists across

the IL-1 gene region, four common haplotypes have been

identified in both Caucasian and African Americans, with

IL-1 haplotype 1 being significantly associated with

ischemic stroke, and IL-1 haplotype 2b being associated

with an increased risk of cancer [5, 34]. Interestingly, Chen

et al. observed that the effect of individual SNPs in the

promoter region on reporter gene transcription varied

according to which alleles of the other occurring SNPs

were present in the promoter construct. This indicated that

an individual SNP can either have an up- or down-regu-

latory effect depending on haplotype context, and

highlights the relevance of population haplotypes in the

design of genetic studies, particularly for those involving

gene regulatory regions.

Indeed, it might be questioned whether, by using genetic

data as the primary starting point, we are searching for

candidate genes in the right manner (i.e. from the gene to
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disease). Introduction of phenotypic characterisation which

bring greater ‘‘functional’’ relevance could be beneficial.

Nutrition can give clues of how to increase functional

relevance. Focussing on SNPs that are on functional

pathways in terms of known nutritionally-relevant metab-

olism, and on coherent metabolic pathways, may allow a

‘‘causal pathway’’ approach to the interaction of nutritional

factors and multiple genetic variations [22]. Metabolomics

may also be able to distinguish between ‘‘contingent’’ diet-

related parameters (e.g. plasma metabolites) and ‘‘struc-

tural’’ individual-linked parameters genotype, which better

characterise the impact of gene–diet interactions and lead

‘‘backwards’’ to identification of candidate genes. As an

example, this was studied using an NMR-based meta-

bolomic approach linking variation in metabolite

abundance to genetic polymorphisms in diabetic and nor-

moglycemic rat models [13].

Candidate gene approach for diet–gene interactions:

• Large population studies in which genotypic, pheno-

typic, and dietary habits are available

• Studies in which genotyping is undertaken retrospec-

tively on individuals who have participated in an

intervention study and in whom phenotypic response to

dietary changes is known.

• Dietary intervention studies where individuals are

recruited prospectively according to specific polymor-

phism in a selected gene (or set of genes)

Data from these studies are valuable because they offer

some degree of quantitation of variation in response of

phenotypic markers of risk, according to specific genetic

polymorphisms.

Population studies, for example the Framingham

cohort, provide evidence that specific polymorphisms

influence risk factors for diet-related chronic diseases [7].

However, because of the large scale of such studies,

measures of dietary exposure are weak (mainly FFQs),

thereby preventing definition of gene interactions at spe-

cific levels of dietary exposure. In such studies, most

researchers have focused on the relationships between

diet, genes, and risk markers of disease, not diet -genes

and disease outcomes, although some studies have eval-

uated the interaction with early diagnostic markers such

as carotid intima media thickness [13]. As with the can-

didate gene studies, results are varied and replication poor

[14, 24, 54, 56], but they are valuable in identifying

putative diet-genotype interactions, which could be tested

further in prospective intervention or in twin studies. For

instance, as part of the EU-funded Lipgene integrated

project, a case control study (n = 830) is prospectively

(7y) evaluating interaction between dietary fatty acids

(measured as fatty acid biomarkers), 840 SNPs and

haplotypes in 140 genes, in order to investigate genes

associated with risk of the metabolic syndrome (http://

www.ucd.ie/lipgene).

Currently, within the literature the most common type of

study are those which have evaluated diet–gene interac-

tions via retrospective genotyping of subjects in which

phenotypic responsiveness to a specific diet or nutrient, has

already been undertaken. Dietary intervention studies in

which genotyping of several genes and assessment of

phenotypic response is built into the study protocol at the

outset, can provide valuable information [38, 40, 44].

However, these studies are often too small, or may be

subject to statistical bias because of different numbers of

participants in genotypic sub-groups or are conducted

amongst high-risk individuals, which are not representative

of the genetic heterogeneity within the overall population

[41]. There are very few dietary intervention studies in

which individuals are recruited prospectively in order to

study specific diet–genotype interactions [15, 40]. How-

ever, a number of studies are expected to report in the near

future, including a prospective study of the impact of apo E

genotype on blood lipid responses to fish oil fatty acids,

which has also been designed to include equal numbers of

both genders in each genotypic sub-group [44]. Evidence

of gender-specific differences in response to diet that may

be mediated in part by gender–genotype interactions is

another factor that has recently been described in a few

publications [4, 40, 45]. Evidence from studies involving

functional proteins involved in lipid metabolism as related

to cardiovascular disease (apo E), obesity (perilipin) and

selenium metabolism (Selenoprotein P) is indicating that

the differences in response to dietary modifications asso-

ciated with specific genetic mutations may affect men and

women differently. Traditionally, dietary intervention

studies have not recruited equal numbers of both genders.

More attention should be paid to these observations, since

a better understanding and greater recognition of the

significance of specific disease-associated genetic poly-

morphisms in the context of gender is of critical public

health importance.

Twin studies

Twin cohorts offer considerable potential for studying

diet–genotype interactions and global impact of genomic

variation in response to diet despite not being used

extensively in nutrigenetics [9, 28, 49]. Studies include

quantification of specific diet–gene interactions in identi-

cal and fraternal twins [e.g. folic acid and MTHFR

polymorphisms) or global comparison of phenotypic

responses (including metabolomics [51]), for a wide

variety of risk markers in response to a specific dietary

intervention (e.g. low fat vs. high fat diets). Use of a

Genes Nutr (2008) 3:41–49 45
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haplotype approach in a twins’ diet–genotype study would

also be of value.

Functional studies

Confirmation of the mechanistic basis of nutrient–genotype

interactions in human studies is very important, but largely

unexplored. Cell studies in vitro and transgenic or knock-

out animal models are robust tools that could be used to

identify the molecular basis of diet–gene response at the

cellular and whole-body metabolic level. Indeed, in terms

of understanding multiple gene–gene interactions, cell and

animal models may be more useful for determining the

functional effects of multiple nutrient sensitive SNP

interactions; thus at least establishing proof of principle.

Application of nutritional systems biology, with a range of

omics technologies, in cell and animal functional genomic

studies may be of value in explaining the phenotypic

consequences of different genotypes. However, whatever

the level of technical sophistication deployed, it should be

kept in mind that some polymorphisms may be responsive

to dietary exposures which cannot be accurately repre-

sented in model systems.

Dealing with the data

The provision of databases and bioinformatics tools,

which will help to fulfil the aims described above, are

fundamental to future nutrition research. Candidate gene

studies (see above) use statistical approaches, and most

data published in this area to date have used standard

statistical analyses. Many statistical tools are available

[16] but greater focus on individual responsiveness will

require a more mathematical approach and the develop-

ment of suitable classification tools. Given genomic,

proteomic or metabolomic parameters, the aim of these

analyses will be to more accurately place an individual

with respect to dietary response, although which data are

used and what may be most valuable within the context

of the diet needs careful consideration. Thus, in addition

to new markers, specialised information mining proce-

dures need to be developed. A general approach might

be to search for ‘‘pertinent motifs’’ in an information

stream, which has been used successfully in many other

fields and should similarly be adopted by nutrition

research.

Appropriate statistical analyses and models, capable of

dealing with vast arrays of data, are amongst the most

urgent areas for development in nutrition currently. A

number of innovative approaches are being developed [25,

26]. Bayesian models complement the traditional hypoth-

esis driven statistical approaches [53].

Recommendations and concluding remarks

Generation of genotype information is not a barrier for

advancement of the field of nutrigenomics. A series of high

throughput technologies are currently available, which

allow in-depth genotyping of specific regions as well as

relatively dense wide genome studies. The dilemma

remains regarding the use of single SNPs or haplotypes,

and how dense the coverage of specific regions needs to be.

Continuing emphasis on the identification of functional

mutations may remove the need for extensive haplotyping

but this approach limits the information gathered as it will

not analyse the overall interactive effects of different SNPs.

In contrast a haplotype approach is not limited by present

knowledge and it gathers more information, particularly

therefore allowing examination of interactions between

SNPs. In a functional sense the haplotype approach is

therefore more comprehensive. However, identified vari-

ants may be tagged-SNPs or variants in genes of unknown

function so it is then vital to confirm the precise functional

effects of the identified SNPs. Moreover, nutrigenetic study

design should routinely incorporate genotype selection for

gene–diet interaction studies.

Major recommendations for more consistent outcomes

in future studies:

(1) General study design issues:

• Larger sample sizes for both observational and

interventional approaches.

• Nutritional intervention studies with prospective

design for inclusion of genetically determined

sub-cohorts are needed to provide clear showcases

of beneficial dietary interventions for specific

genotypes.

• Studies examining different ethnicities and cul-

tural/social environments.

• Inclusion of both genders, ideally with equal

numbers

(2) Diet related issues:

• Better assessment of dietary intake including

development of biochemical surrogates.

• Analysis of food patterns rather than isolated

nutrients.

• More standardized and defined dietary interven-

tion protocols. The goal here will be the ability to

undertake meta analyses of gene–diet interaction

data as is presently done for genetic association

studies.

(3) Selection of genes to be studied:

• More functional pathway oriented analyses rather

than single genes.
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• Perform and repeat large scale human studies to

look at multiple gene–gene and diet–gene inter-

actions using suitable computerized tools.

• Combine single SNP/gene approach in human

interventions and functional studies to identify

new and potentially important gene variants.

(4) Statistics and bioinformatics:

• Novel statistical developments as present tech-

niques may not be appropriate for these specific

needs.

• Improved phenotypic response and food intake

quantification. This is valid for all nutrition

studies, but especially needed in nutrigenetics,

where only subtle differences in response may be

expected.

• Develop databases and tools which integrate

available information from different human stud-

ies in dietary and genetic fields.

In conclusion, a major challenge in biomedical science

is to define the contribution of dietary and genetic factors

in determining susceptibility to important multi-factorial

diseases. Nutritional science is grasping the opportunities

offered by the explosion in genetic information and is

entering a new and exciting phase in order to address this

question. We are beginning to identify functionally rele-

vant SNPs related to nutrients and to understand the needs

for analysis of gene–diet interactions. Development of the

field is hampered by small studies with limited dietary

data and a greater collaborative effort with a focus on

data sharing, will be needed. Numerous examples are now

available which suggest that there are differential effects

of diet on varying genotypes, but the complexity of the

area demands both new tools and better studies to be

applied in nutrigenetics. The first examples of dietary

effects differing according to genotype have been

described but the complexity of the multiple genetic

factors involved and the novelty of the scientific and

medical knowledge mean that the era of ‘‘personalised

nutrition’’ is still some years away. Scientific, ethical and

commercial aspects all need to be taken into account in

further introducing this area. In summary, despite major

advances in nutritional science and much demand from

industry and parts of the public health sector, scientific

and medical knowledge is too new, limited and frequently

ambiguous to allow for sound personalised nutrition

recommendations.
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mits any noncommercial use, distribution, and reproduction in any
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