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Abstract Genomics-based technologies produce large

amounts of data. To interpret the results and identify the

most important variates related to phenotypes of interest,

various multivariate regression and variate selection meth-

ods are used. Although inspected for statistical perfor-

mance, the relevance of multivariate models in interpreting

biological data sets often remains elusive. We compare

various multivariate regression and variate selection meth-

ods applied to a nutrigenomics data set in terms of perfor-

mance, utility and biological interpretability. The studied

data set comprised hepatic transcriptome (10,072 predictor

variates) and plasma protein concentrations [2 dependent

variates: Leptin (LEP) and Tissue inhibitor of metallopro-

teinase 1 (TIMP-1)] collected during a high-fat diet study in

ApoE3Leiden mice. The multivariate regression methods

used were: partial least squares ‘‘PLS’’; a genetic algorithm-

based multiple linear regression, ‘‘GA-MLR’’; two least-

angle shrinkage methods, ‘‘LASSO’’ and ‘‘ELASTIC NET’’;

and a variant of PLS that uses covariance-based variate

selection, ‘‘CovProc.’’ Two methods of ranking the genes

for Gene Set Enrichment Analysis (GSEA) were also

investigated: either by their correlation with the protein

data or by the stability of the PLS regression coefficients.

The regression methods performed similarly, with CovProc

and GA performing the best and worst, respectively

(R-squared values based on ‘‘double cross-validation’’

predictions of 0.762 and 0.451 for LEP; and 0.701 and

0.482 for TIMP-1). CovProc, LASSO and ELASTIC NET

all produced parsimonious regression models and consis-

tently identified small subsets of variates, with high com-

monality between the methods. Comparison of the gene

ranking approaches found a high degree of agreement, with

PLS-based ranking finding fewer significant gene sets. We

recommend the use of CovProc for variate selection, in

tandem with univariate methods, and the use of correlation-

based ranking for GSEA-like pathway analysis methods.
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Introduction

In many life science studies, large data sets are gener-

ated from metabolomics, proteomics and transcriptomics

experiments. Measurement of numerous relevant metabo-

lites, proteins and genes in a single experiment allows an

almost unbiased investigation into the important potential

Henri S. Tapp and Marijana Radonjic contributed equally to this

work.

Electronic supplementary material The online version of this
article (doi:10.1007/s12263-012-0288-4) contains supplementary
material, which is available to authorized users.

H. S. Tapp � E. Kate Kemsley

Institute of Food Research, Norwich Research Park,

Colney Lane, Norwich NR4 7UA, UK

M. Radonjic (&)

TNO, Microbiology and Systems Biology, P.O. Box 360,

3700 AJ Zeist, The Netherlands

e-mail: marijana.radonjic@tno.nl

M. Radonjic � U. Thissen

Nutrigenomics Consortium, Top Institute Food and Nutrition,

P.O. Box 557, 6700 AN Wageningen, The Netherlands

Present Address:
U. Thissen

Keygene N.V., P.O. Box 216, 6700 AE Wageningen,

The Netherlands

123

Genes Nutr (2012) 7:387–397

DOI 10.1007/s12263-012-0288-4

http://dx.doi.org/10.1007/s12263-012-0288-4


biomarkers or crucial pathways associated with the original

study goal. Interpreting the results, however, requires

dedicated techniques that can select or rank variates from

large amounts of data. Usually, statistical models are

generated that describe the relationship between the

genomics data and some feature of interest (e.g., a phe-

notype). The models are then further analyzed to identify

the most important variates.

Many variate selection methods are described in the

literature. These can differ in their implementation details

or in their fundamental statistical principles (Guyon and

Elisseeff 2003; Guyon et al. 2006). An ideal variate

selection method has principles and parameters that are

well-suited to the particular study goal and/or to the data

characteristics, although it is not always straightforward to

make these choices in advance. Furthermore, even though

the statistical principles of a method may be understood, its

utility from a biological perspective is often less obvious.

This paper describes the performance of a number of

variate selection or ranking techniques, from both a sta-

tistical and biological perspective. Representative of quite

dissimilar approaches, the statistical methods used are:

• Partial least squares (PLS) regression (Martens and

Naes 1989)—a latent vector (LV) approach;

• Genetic algorithm (GA) (Mitchelle 1998)—a global

optimization approach, combined with multiple linear

regression (MLR);

• LASSO (Tibshirani 1996) and ELASTIC NET (Zou

and Hastie 2005)—least-angle shrinkage approaches;

• Covariance procedure (CovProc)—a PLS variant that

uses variate selection based on covariance (Reinikainen

and Höskuldsson 2003).

In broad terms, these all involve multivariate regression

modeling of some kind and the estimation of a few ‘‘meta

parameters’’ to summarize the model complexity. We have

additionally made comparisons with univariate regression

models built from individual genes and the reference pro-

tein data.

The methods were applied to quantitative protein mea-

surements and microarray gene expression data obtained

from a nutrigenomics case study described in Radonjic

et al. (2009). Nutrigenomics investigates molecular rela-

tionships between dietary components and genes, proteins

and/or metabolites on a large scale. It addresses the ques-

tion of how nutrition influences gene transcription, protein

expression and/or metabolism, with the aim of under-

standing how dietary factors can affect an individual’s

health on a systems level (Müller and Kersten 2003; Afman

and Müller 2006; Baccini et al. 2008; Kaput et al. 2010;

Evelo et al. 2011). The data used in the present work

originate from a large-scale nutritional intervention survey

performed in Apolipoprotein E3-Leiden (ApoE3Leiden)

transgenic mice (Radonjic et al. 2009). The study examined

the time-resolved development of high-fat-induced obesity

and related pathologies and used microarrays to obtain

genome-wide hepatic gene expression data. These have

been used as the predictors in the variate selection meth-

ods. We have focused on this single data set to allow a

detailed evaluation of the biological relevance of the genes

and gene sets selected by the statistical approaches used in

this study. Two dependent variates have been considered:

plasma concentrations of the proteins Leptin (LEP) and

Tissue inhibitor of metalloproteinase 1 (TIMP-1). They

were chosen for their relevance to obesity development and

inflammation-related tissue remodeling upon high-fat

feeding, respectively.

Materials and methods

Study design, tissue collection and analysis

A detailed description of the study characteristics including

study design, sample preparation, RNA isolation and

quality control is described by Radonjic et al. (2009). This

section only describes the parts that are relevant for

understanding the present work.

The study involved a longitudinal comparison of hepatic

gene expression between animals fed a control diet and

those fed diets high in either animal or vegetable fat. The

mRNA expression levels were determined using NuGO

Affymetrix Mouse GeneChip arrays (NuGO_Mm1a

520177) and hepatic RNA material from groups of animals

from each diet immolated at eight time points (0 days

(chow fed), 1 day, 3 days, 1, 2, 4, 8, 12 and 16 weeks)

during a 16-week trial. In total, 116 microarray samples

were taken for further analysis, comprising 3–6 biological

replicates per diet, per time-point. After applying data

preprocessing pipeline, hepatic gene expression values

were obtained for 15,105 genes with unique identifiers and

73 Affymetrix controls. From a total of 15,178 features,

10,072 were selected based upon the following two criteria:

first, for at least one of the diet-time categories, there were

two or more absolute expression values greater than a

threshold value of 5 units. Second, the maximum-to-min-

imum expression ratio was[1.5, equivalent to a difference

of 0.585 in log2 transformed data. Such expression data set

has been used as the predictors in the variate selection

methods.

In the same high-fat feeding study, plasma concentra-

tions of multiple inflammatory proteins and chemokines

were measured with multiplex technologies (Rodent Map

v.2.0, Rules Based Medicine, USA). In total, protein data

were available for 115 animals. Two proteins (LEP and

TIMP-1) were considered as dependant variables for
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assessing the performance of the variate selection methods

evaluated in the current study.

In total, 88 ApoE3Leiden liver and plasma samples were

selected from the original study, on the basis of animal-

matching data availability for both hepatic transcriptomics

and protein measurements for assessing the performance of

variate selection methods in the current study. The size of

the gene expression matrix analyzed in this study was,

therefore, of dimensions [88 9 10,072]. The matching 88

animals included 31 mice fed chow diet, 33 mice fed

animal fat diet and 24 mice fed plant fat diet.

Regression analysis

Multivariate modeling and univariate correlation analysis

were performed using Matlab (Mathworks Inc.). The

Matlab modeling routines are available on request. The

transcriptomics data were log2 transformed before analy-

sis, which is a standard step prior to statistical analysis

(Van den Berg 2006). All the regression methods used unit

variance scaling. Models were assessed by cross-validation

using 10 blocks. Single cross-validation (SCV) was used to

determine the final model’s meta-parameters, and double

cross-validation (DCV) (Smit et al. 2007; Stone 1974)

was used to assess predictive performance and model

consistency.

Partial Least Squares (PLS) Partial least squares is a

well-known supervised multivariate latent vector modeling

technique (Boulesteix and Strimmer 2007; Martens and

Naes 1989). It is not a variate selection method. The

number of PLS factors that minimized a modified form of

the Amemiya Prediction Criterion, APC, (Norušis and

SPSS Inc 1990) was considered to be the optimal meta-

parameter: APC(a) = [(n ? a)/(n - a)][1 - (rscv)2], where

n is the number of observations, a is the number of PLS

factors used in the model, and rscv is the Pearson correla-

tion between the actual values and single cross-validated

predictions. The stability of the regression coefficient was

calculated by dividing the final SCV coefficients by a

jackknife estimate of their standard error, calculated from

both DCV and SCV results, as described by Faber (2002).

This was used as a basis for ranking the genes for use in

conjunction with Gene Set Enrichment Analysis (see

below).

Genetic Algorithm (GA) Genetic algorithm in combi-

nation with multiple linear regression (MLR) was imple-

mented according to Kemsley et al. (2007) and McLeod

et al. (2009). The GA is a global optimization variate

selection method that builds MLR models based on the best

subset of variates. The closest analogue to a meta-param-

eter is the number of variates used in the final model. GA

regression was implemented using an in-house scheme

developed at the Institute of Food Research. The GA is a

global optimization variate selection method that builds

multiple linear regression models based on small subsets of

variates. The GA aims to optimize both the model size

(number of variates) as well as identifying the best subset.

The minimum model size considered was 2 variates, and

the maximum size was 69 and 78 for double cross-vali-

dation, DCV, and single cross-validation, SCV, respec-

tively. Population sizes of 340 and 308 models were used

for the DCV and SCV, respectively. The model fitness

criterion used was the mean squared residuals based on

block cross-validation. The cross-validation partitions were

permuted after each generation. The most successful (fit-

test) model automatically passed to the next generation. All

models in the current population could potentially act as

parents although the breading probability was weighted

toward the fitter models. The algorithm halts if either of

two criteria is met: 30 generations without a change in the

fittest model, or if a maximum of *200 generations has

passed. The size of the offspring model is chosen as a

randomly assigned number that spans the size range of the

parents, with a finite possibility of this value reducing by

one. There are three mutation mechanisms: in neighbor and

correlation-based annealing, there are finite probabilities of

one variate swapping with either an adjacent variate or with

one of its five most correlated alternatives. The third

mechanism is the possibility of replacing or including

a new variate chosen from either the list of all possible

variates or from those present in the current population.

Duplicate progeny is replaced with immigrants with the

same number of variates as the current best model.

Least absolute shrinkage and selection operator

(LASSO) (Tibshirani 1996) finds regression coefficients

that minimize the squared residuals while also being con-

strained such that the sum of the absolute coefficient values

is less than a given value, t, which is the meta-parameter.

The L1 constraint causes many of the regression coeffi-

cients to be set to zero, which makes LASSO a variate

selection method. No upper limit was set to the number of

variates used in candidate models and the optimum model

chosen is that which minimized the Aikake Information

Criteria, AIC (Norušis and SPSS Inc 1990).

Elastic Net is an extension to LASSO that uses an

additional L2 ‘‘ridge-regression’’ constraint, k2, which is

the second meta-parameter to be estimated (Zou and Hastie

2005). This overcomes two limitations of LASSO: (1) the

number of selected variates in the model is restricted by the

data sample size, and (2) only one variate is selected from a

group of highly correlated ones. Candidate models were

limited to a maximum of 200 variates.

Covariance procedure (CovProc) is a PLS-based variate

selection method (Reinikainen and Höskuldsson 2003).

The variates are ranked in descending order of the absolute

magnitude of the coefficients of the first vector. For
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variance scaled data, this corresponds to introducing vari-

ates based on the strength of correlation with the dependant

variate. Regression models were evaluated that used

increasing numbers of variates, introduced in five-variate

increments, based on the order of the ranked list. The

values of the two model meta-parameters (number of

variates, number of PLS factors) chosen in the final model

corresponded to the combination that resulted in the overall

minimum APC.

Biological interpretation of variate selection results

Ingenuity Pathway Analysis suite (IPA, Ingenuity� Sys-

tems. http://www.ingenuity.com, version date May 2009)

was used to analyze biological functions of the genes in the

final models of CovProc, LASSO, ELASTIC NET and GA,

by employing ‘‘Overrepresentation analysis’’ module.

Biological function overrepresentation analysis aims to

gain a mechanistic insight into the underlying biology of a

selected group of genes. It evaluates whether gene sets

associated with particular biological functions—such as

those represented by Gene Ontology (GO) annotations—

are statistically overrepresented in the identified gene

group (for example, list of differentially expressed genes or

group of genes selected by multivariate models). In this

study, Fisher’s exact test p values were used to score the

significance of biological functions among the genes in the

final models of the four appraised variate selection

approaches.

Gene Set Enrichment Analysis (GSEA, Subramanian

et al. 2005) was used to evaluate the biological relevance of

ranking the genes based on two approaches: by their

correlation r with the protein data and by the stability of the

PLS regression coefficients. The ranked gene lists were

supplied as inputs into the PreRanked scoring procedure

available within the GSEA software. In GSEA, a score is

produced, similar to the Kolmogorov–Smirnov statistic,

which summarizes the distribution of a predefined set of

genes within a prioritized list of genes. Higher scores are

given to gene sets that are distributed near the top or

bottom of the list. The likelihood of achieving a given

score is evaluated by recalculating the score after repeated

random permutations of the list order. When multiple gene

sets are evaluated, the permutation-based p values are used

to control the false discovery rate (FDR). Our analysis used

gene sets from Molecular signature database (MSigDB) C2

curated gene sets collection (http://www.broad.mit.edu/

gsea/msigdb September 2008). A gene set size filter

(min = 15, max = 500) removed 737 of the 1,687 gene

sets, leaving 950 to be used in the analysis. After collapsing

10,072 native features (gene identifiers from the gene

expression data set) into gene symbols, 9,985 genes were

recognized and used for the analysis. The number of

permutations was set to 1,000. The permutations are used to

assign p values to the GSEA scores calculated for each gene

set. This avoids assuming the scores belong to some

underlying distribution. As we evaluated 950 gene sets, the

permutation-based p values are also used to control the false

discovery rate, FDR (e.g., Benjamini and Hochberg 1995).

The significantly enriched gene sets referred to in the

‘‘Results and discussion’’ section are those that passed

Benjamini and Hochberg FDR threshold: gene sets are

considered significantly enriched at false discovery rate

(FDR) smaller than 1% (q value B 0.01).

The MSigDB service was used to find significant

(p B 0.01) overlaps between CovProc selected genes and

gene sets in the collection.

Results and discussion

Hepatic genome-wide gene expression levels and plasma

protein levels in high-fat diet fed ApoE3Leiden mice were

analyzed using five multivariate regression methods:

CovProc, LASSO, ELASTIC NET, GA and PLS (‘‘Mate-

rials and methods’’). The multivariate models were used to

prioritize genes that predict the expression of two proteins

associated with obesity phenotypes upon high-fat feeding,

namely Leptin (LEP) and Tissue inhibitor of metallopro-

teinase 1 (TIMP-1). This allows elucidation of hepatic

molecular mechanisms and the identification of biomarkers

associated with deregulated adiposity and tissue remodel-

ing, respectively, observed upon administration of high-fat

diets.

Performance of five multivariate regression methods:

model performance

The results of the double cross-validation (DCV) prediction

comparison are shown in Table 1. For both proteins stud-

ied, CovProc and GA produced the best and worst

Table 1 Performance of five multivariate regression methods for the

prediction of LEP and TIMP-1: predictions using double cross-

validation

Method LEP TIMP-1

r2 SEV r2 SEV

LASSO 0.614 1.65 0.698 0.980

ELASTIC NET 0.577 1.75 0.682 0.899

CovProc 0.762 1.31 0.701 0.864

GA 0.451 2.34 0.482 1.242

PLS 0.621 1.63 0.650 0.925

Bold values indicate the best performance

r2, squared correlation between predicted and actual values; SEV, root

mean squared residuals
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predictions, respectively, CovProc only slightly exceeding

LASSO, and all the variate selection methods performing

comparably to PLS. These results can be put into context

by considering the correlation r between individual genes

and the protein data. We find that the numbers of signifi-

cantly (p(r) B 0.05/10,072) correlated genes were 208

(2.1% of all genes) and 486 (4.8%) for LEP and TIMP-1,

respectively. Single gene regression models were evaluated

using single cross-validation (SCV) to allow direct com-

parison with the results in Table 1. For LEP and TIMP-1,

respectively, 18 and 40 genes had an individual predictive

ability greater than that obtained by GA; and for TIMP-1,

one gene (Serpina3n) performed even better than CovProc.

This is perhaps a surprising finding, as the widespread use

of multivariate analysis (MVA) methods in traditional

applications involving high-dimensional data, such as

spectroscopy, is due to the improved predictive ability they

offer through the ‘‘multivariate advantage,’’ which deals

with confounding systematic variation in the predictor data.

Our findings imply that—for transcriptomic data, at least—

univariate methods should also be investigated.

Note that all the variate selection methods could

potentially have selected a single variate, and in the case of

TIMP-1, this would have led to an improved predictive

performance. That all the MVA methods instead selected

multiple variates can be interpreted as evidence of over-

fitting during the model optimization procedure.

The estimated values of the meta-parameters and SCV

performance during the 10 rounds of DCV and for the SCV

on the whole data set are provided in Online Resource 1.

Comparison of subset selection methods

from a statistical perspective

The genes selected by CovProc, LASSO, ELASTIC NET

and GA for LEP and TIMP-1 are summarized in Tables 2

and 3, respectively. Genes present in the final SCV models

are emboldened. Also shown is the number of occurrences

of each gene during the rounds of DCV and the correlation

with each protein. The annotations of these genes can be

found in Online Resource 2.

CovProc As the predictor data were unit variance

scaled, genes are introduced by CovProc based on the

magnitude of their correlation with the protein. The final

models for LEP and TIMP-1 used the first 16 and 21 most

correlated genes, respectively. Note that in both cases, all

the selected genes had positive values of r (i.e., positive

correlation). For LEP, all the genes in the SCV model were

selected at least 9 times during DCV. For TIMP-1, Orm2

was the only gene selected in the SCV model not selected

at least 9 times during DCV. Similarly, lfitm2 was the only

gene selected at least 9 times during DCV not to be

included in the SCV model. As these are only slight

differences, we can conclude that both final models were

stable.

LASSO/ELASTIC NET Tables 2 and 3 show that for

both proteins, there was considerable consistency between

these methods. Both methods used the same genes in their

SCV models. The total numbers of genes selected at least

once during DCV were also similar, as were the individual

genes: there were 21 common genes selected for LEP and

19 for TIMP-1. This can be attributed to the ELASTIC

NET models tending toward relatively small values for the

ridge parameter and, therefore, behaving similarly to

LASSO (see Online Resource 1). For both proteins, all the

genes used in the SCV model had significant values of

r. There was also agreement in the genes selected by these

methods and by CovProc. For LEP, all 8 genes were also

present in the 16 gene model selected by CovProc. For

TIMP-1, there were 5 genes common to the models by

LASSO/ELASTIC NET (9 genes) and CovProc (21 genes)

models. This agreement indicates that LASSO and

ELASTIC NET preferentially selected genes with high

absolute values of r. The four genes not present in the

TIMP-1 CovProc model were ones less frequently selected

during DCV.

GA Models selected by the GA showed the least sta-

bility—many genes were selected with a frequency, f, of

just 1. In the interests of conciseness, therefore, the results

in Tables 2 and 3 comprise genes selected in the final SCV

model ordered by the magnitude of the correlation to each

protein. For LEP, Mogat1 was the most selected during

DCV (5 occurrences). For TIMP-1, Serpina3n was selected

in 7 of the DCV models. This was the most correlated gene

and was also selected by the other variate selection meth-

ods. Of the genes present in the final SCV model, only 7

and 3 were significantly correlated with LEP and TIMP-1,

respectively. A total of 281 and 245 genes were selected at

least once during DCV for LEP and TIMP-1, respectively,

indicating a lack of consistency in the GA models. Two

possible contributing factors for this lack of consistency are

first, the large model space—10,072 variates—and thus

great potential for converging on local minima; and sec-

ond, that MLR lacks any mechanism for rejecting noise.

Evaluation of variate selection methods

from a biological perspective

To evaluate the biological relevance of the selected subsets

and prioritized lists, the following two-step strategy was

used. First, a biological function analysis was used to

assess whether a given gene list (SCV final model) or gene

ranking was biologically meaningful in terms of the sig-

nificant gene groups they represent. Second, we considered

whether these gene groups were consistent with the phys-

iological role of LEP and TIMP-1.
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Overrepresentation of biological functions for CovProc,

LASSO, ELASTIC NET and GA selected genes

The biological relevance of the genes selected by the

CovProc, LASSO/ELASTIC NET and GA was assessed

using biological function overrepresentation analysis

within the Ingenuity Pathway Analysis suite. The results

are provided in the Online Resource 3. Based on the

p value of the biological function category, CovProc per-

formed best with lowest p values of 2.43E-06 and 2.33E-

07 for LEP and TIMP-1, respectively. LASSO and

ELASTIC NET performed similarly with the lowest

p value of 5.05E-04 for LEP and 1.44E-05 for TIMP-1.

GA performed least well, with a lowest p value of 1.30E-

03 for LEP and 1.15E-03 for TIMP-1. These results are in

broad agreement with the regression-based evaluation of

these methods.

Gene Set Enrichment Analysis of r- and PLS-ranked

gene lists

GSEA of LEP found 40 (22 positively and 18 negatively)

significantly enriched gene sets using correlation r-based

ranking, and 3 (3 positively and 0 negatively) using PLS

regression vector stability ranking. For TIMP-1, GSEA

found 51 (29 positively and 22 negatively) and 33 (16

positively and 17 negatively) enriched gene sets using the

r- and PLS-ranked lists, respectively.

Investigation into the overlaps between gene sets iden-

tified by the two ranking approaches found that all (LEP) or

Table 2 The genes selected by CovProc, LASSO, ELASTIC NET and GA methods for LEP

CovProc LASSO ELASTIC NET GA

Gene f r Gene f r Gene f r Gene f r

Cfd 10 0.829 G0s2 10 0.826 G0s2 10 0.826 G0s2 2 0.826

G0s2 10 0.826 Cfd 9 0.829 Cfd 9 0.829 Mogat1 5 0.816

Mogat1 10 0.816 Mogat1 9 0.816 Mogat1 9 0.816 D630002G06Rik 2 0.669

Omd 10 0.799 Cidec 9 0.770 Cidec 8 0.770 Elovl5 0 0.604

Cidea 10 0.797 Mme 8 0.686 Mme 8 0.686 Gstz1 0 0.582

Clstn3 10 0.797 Gpr98 7 0.755 Gpr98 7 0.755 Apoa4 0 0.565

Aldh3a2 10 0.784 Scd1 7 0.740 Scd1 7 0.740 Perp 0 0.484

Cidec 10 0.770 Gstk1 5 0.755 Gstk1 5 0.755 Bloc1s1 0 0.266

Gpr98 10 0.755 Fabp2 4 0.683 Fabp2 4 0.683 2700050L05Rik 0 -0.246

Gstk1 9 0.755 D630002G06Rik 4 0.669 D630002G06Rik 4 0.669 Ubxd1 0 -0.242

Inhbe 9 0.751 Omd 3 0.799 Omd 3 0.799 Ascc3l1 0 -0.222

Tnfrsf19 9 0.744 Pgrmc2 3 0.644 3110032G18Rik 3 0.725 Eif2a 0 -0.213

Scd1 9 0.740 3110032G18Rik 2 0.725 Pgrmc2 3 0.644 Lrrc8d 0 0.212

Gpc1 9 0.733 Cidea 1 0.797 Cd36 2 0.727 Pir 0 -0.197

Cd36 9 0.727 Clstn3 1 0.797 Clstn3 1 0.797 D2hgdh 0 0.175

3110032G18Rik 9 0.725 Gpc1 1 0.733 Aldh3a2 1 0.784 9430028L06Rik 0 0.142

S3-12 4 0.705 Cd36 1 0.727 Gpc1 1 0.733 Myh9 0 -0.121

Apom 4 -0.696 EG624219 1 0.593 EG624219 1 0.593 Zbtb43 0 0.116

1110028A07Rik 3 0.702 Hectd2 1 0.567 Hectd2 1 0.567 0610037D15Rik 1 -0.102

Aqp8 3 0.699 Nnt 1 0.531 Apoa4 1 0.565 Thnsl2 0 -0.096

Gbe1 3 0.691 Abcg5 1 0.521 Nnt 1 0.531 Pitpnm2 0 -0.085

Mme 3 0.686 Apoc2 1 0.456 Abcg5 1 0.521 Nt5e 0 0.066

Sema5b 3 0.679 Aldh3a2 0 0.784 Apoc2 1 0.456 Il13ra1 0 -0.059

D630002G06Rik 3 0.669 Inhbe 0 0.751 Cidea 0 0.797 Bag2 0 -0.050

Cyp2b9 3 0.659 Tnfrsf19 0 0.744 Inhbe 0 0.751 Pik3r4 0 0.046

Fabp2 2 0.683 S3-12 0 0.705 Tnfrsf19 0 0.744 Xrcc6 0 -0.040

Vnn1 2 0.679 1110028A07Rik 0 0.702 S3-12 0 0.705 Sec61a2 0 -0.012

Cryz 2 0.677 Aqp8 0 0.699 1110028A07Rik 0 0.702 Tbcc 0 -0.006

16 37 8 22 8 23 28 281

f Number of occurrences in double cross-validation, r correlation coefficient of gene expression and LEP data. Genes present in the final single

cross-validation model are in bold. The last row gives the number of genes in the final SCV model (bold) and the number selected at least once

during DCV
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most (TIMP-1) of the gene sets identified using PLS

ranking were also identified by the r-based approach. This

was true for both positively and negatively enriched gene

sets (Fig. 1a, b). Only two positively enriched gene sets

found using PLS ranking for TIMP-1 were not also found

using the r-based approach.

Interestingly, many gene sets that were found positively

enriched in the LEP GSEA results were also negatively

enriched in the TIMP-1 results and vice versa (Table 4).

This is likely a consequence of the biological roles of these

two proteins. TIMP-1 and LEP are associated with

inflammation and fat metabolism, respectively, processes

perturbed during hepatic response to a high-fat challenge.

These responses are conversely timed: inflammation is

evoked during the early phase (day 1 to week 2) and

repressed during the late phase (week 4 to week 16) of the

high-fat diet response, while lipid metabolic adaptations

show an opposite temporal pattern and are repressed during

early and induced during the late phase of the high-fat

feeding time-course (Radonjic et al. 2009). Given the

Table 3 The genes selected by CovProc, LASSO, ELASTIC NET and GA methods for TIMP-1

CovProc LASSO ELASTIC NET GA

Gene f r Gene f r Gene f r Gene f r

Serpina3n 10 0.862 Serpina3n 10 0.862 Serpina3n 9 0.862 Serpina3n 7 0.862

Lcn2 10 0.839 Apcs 8 0.807 Apcs 7 0.807 Antxr2 0 0.581

Serpina10 10 0.839 Cobl 8 0.781 Cpb2 7 0.784 Keg1 0 -0.524

Saa2 10 0.828 B3galt1 8 0.780 Cobl 7 0.781 Cul1 0 0.462

Fgl1 10 0.827 Cpb2 6 0.784 B3galt1 6 0.780 Pscdbp 0 0.414

Itih4 10 0.821 Hapln4 5 0.709 Hapln4 3 0.709 Ugcgl1 0 0.401

Lbp 10 0.820 Cyb561 3 0.819 Spp1 3 0.631 LOC634731 0 0.395

Cyb561 10 0.819 Cxcl1 3 0.686 Arl6ip5 3 0.629 Ica1 0 0.367

Cpne8 10 0.813 Gm527 3 0.653 Cxcl1 2 0.686 Pilra 1 0.364

Apcs 10 0.807 2200001I15Rik 3 0.640 Gm527 2 0.653 Nudt18 0 0.338

Tnfrsf1a 10 0.805 Spp1 3 0.631 2200001I15Rik 2 0.640 Unk 1 0.329

Slc41a2 9 0.813 Arl6ip5 3 0.629 Serpina10 1 0.839 Cyp17a1 0 0.299

Itih3 9 0.790 Fgl1 2 0.827 Cyb561 1 0.819 Pdia6 0 0.296

Tmem176a 9 0.785 Acp6 2 -0.554 Tnfrsf1a 1 0.805 Rap2b 0 0.248

Stat3 9 0.784 Serpina10 1 0.839 Tmem176a 1 0.785 Pqlc2 0 0.236

Cpb2 9 0.784 Itih4 1 0.821 Mt2 1 0.784 Tlr8 0 0.196

Mt2 9 0.784 Tnfrsf1a 1 0.805 Abhd14b 1 -0.693 Tbc1d13 0 -0.176

Lrg1 9 0.783 Tmem176a 1 0.785 Polg2 1 -0.630 Cxxc5 0 -0.145

Cobl 9 0.781 Litaf 1 0.760 Edg5 1 0.585 1700006J14Rik 0 -0.145

B3galt1 9 0.780 Abhd14b 1 -0.693 Acp6 1 -0.554 NA 0 0.132

Ifitm2 9 0.776 Polg2 1 -0.630 Lcn2 0 0.839 Itfg1 0 0.131

Orm2 8 0.790 Edg5 1 0.585 Saa2 0 0.828 Fstl1 0 0.098

Zbp1 8 0.766 Lcn2 0 0.839 Fgl1 0 0.827 AI854517 0 0.081

Orm1 8 0.763 Saa2 0 0.828 Itih4 0 0.821 Ccdc79 0 -0.036

Litaf 8 0.760 Lbp 0 0.820 Lbp 0 0.820 5730410I19Rik 0 -0.029

Hp 7 0.765 Cpne8 0 0.813 Cpne8 0 0.813 Dync2li1 1 0.015

21 148 9 22 9 20 26 245

f Number of occurrences in double cross-validation, r correlation coefficient of gene with TIMP-1 data. Genes present in the final single cross-

validation model are in bold. The last row gives the number of genes in the final SCV model (bold) and the number selected at least once during

DCV

15 14 2

0175

PLS

19 3 0

0018

ba
PLSr r

LEPTIMP-1

Fig. 1 Venn diagrams comparing the numbers of significantly

enriched gene sets from GSEA using r- and PLS-based ranking for

a TIMP-1 and b LEP. The arrow direction depicts whether the

comparison concerns numbers of gene sets with positive (filled
triangle) or negative (filled inverted triangle) enrichment
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inverse temporal expression of LEP and TIMP-1 under the

experimental conditions used in this study (data not

shown), it may be expected that gene sets that are posi-

tively correlated with the expression of the one protein are

negatively correlated with the expression of the other

protein.

Relevance of biological analysis results in the context

of LEP and TIMP-1 functions

Measurements of plasma protein concentrations of Leptin

(LEP) and Tissue inhibitor of metalloproteinase 1 (TIMP-1)

were considered as two dependent variates for the

analysis in this study. These proteins were chosen due to

their relevance in addressing the following research

question: What are the processes underlying onset and

progression of metabolic disorders (such as obesity)

associated with high-fat feeding? The early hepatic effect

of high-fat feeding involves induction of inflammatory

and immune processes, while the late adaptation to

excess dietary fat results in hepatic fat accumulation and

development of hepatic steatosis (Radonjic et al. 2009).

A statistically significant association between circulating

plasma parameters and these hepatic physiological pro-

cesses may be employed for the development of nonin-

vasive diagnostics of the systemic disorder caused by

high-fat feeding. To specifically target the representatives

of inflammatory and adipogenic processes, we selected

TIMP-1 and LEP plasma protein levels from the pool of

plasma parameters that were assessed in the high-fat

feeding study (Radonjic et al. 2009).

LEP is a circulating adipocytokine that regulates fat

mass in response to nutritional status. It plays an important

role in maintaining energy homeostasis and metabolic rate

and its plasma levels are affected by energy-rich nutrients

such as fatty acids, carbohydrates and proteins (Ahima and

Flier 2000; Zou and Shao 2008). In agreement with the

physiological role of LEP, the most significant functional

category identified by the analysis of genes in the CovProc

final SCV model is related to lipid metabolism (Online

Resource 3). Also with high significance (p = 4.75E-04),

was the category ‘‘carbohydrate metabolism.’’ Lipid and

carbohydrate metabolism were also represented in LASSO/

ELASTIC NET (p = 3.03E-03) and GA results

(p = 1.30E-03 to 7.77E-03). Additionally, the GA model

identified genes involved in metabolism of amino acids/

proteins. Consistent with the role of LEP, GSEA found

significant positively enriched gene sets related to amino

acid metabolism, fatty acid metabolism, energy yielding

processes such as oxidative phosphorylation and tricar-

boxylic acid (TCA) cycle, and conditions associated with

increased adiposity (Table 4). In the context of using

subset selection methods (CovProc, LASSO/ELASTIC

NET and GA) to find markers associated with a given

biological parameter, GOs2, Cfd and Mogat1 could be

considered as the top three markers associated with LEP.

They were selected by all the final models, and all have

functions associated with lipid metabolism. Specifically,

GOS2 regulates adipose lipolysis; CFD (adipsin) is involved

in systemic lipid metabolism or energy balance; and

MOGAT1 catalyzes the synthesis of precursors of physi-

ologically important lipids such as triacylglycerol and

phospholipids (Cook et al. 1987, Yen et al. 2003, Yang

et al. 2010). Regarding the crucial role of LEP in energy

homeostasis, lipid metabolism and liver pathophysiology,

the specific processes mediated by GOS2, CFD and

MOGAT1 may suggest the possible routes via which LEP

accomplishes these functions.

TIMP-1 has a role in the degradation of extracellular

matrix proteins in response to various stimuli in both

normal and pathological conditions including morphogen-

esis, tissue repair, tumorigenesis and cell death (Gaudin

et al. 2000; Guedez et al. 1996; Ray and Stetler-Stevenson

1994). Additionally, TIMP-1 is produced by lymphocytes

as an important factor in facilitating leukocyte infiltration

into inflammatory sites during inflammatory response

(Johnatty et al. 1997). In agreement with the roles of

TIMP-1, the most significant functional category identified

by the CovProc SCV final model is related to ‘‘inflamma-

tory response’’ (p = 2.33E-07) (see Online Resource 3).

The category ‘‘Hepatic System Disease’’ is also found

significant among CovProc results (1.75E-04). Similarly,

the category ‘‘inflammatory response’’ is also highly sig-

nificant among LASSO and ELASTIC NET results

(p = 1.44E-05). The GA method performed less well,

with p value of 1.72E-02 for the same category. The

significant positively enriched gene sets identified by

GSEA of TIMP-1 are associated with several pathological

states, including inflammation-related pathologies, tissue

rejection during transplantation, hepatomas, hepatitis and

disorders caused by inflammatory agents (Table 4). The

overlap of significant gene sets with Gene Ontology cate-

gories (The Gene Ontology Consortium 2000) reveals that

‘‘immune system process’’ and ‘‘inflammatory response’’

are the most relevant biological processes underlying the

above listed pathologies (p value 4.58E-9 and 2.82E-7,

respectively, for the significance of the overlap with the

most significant gene set). For TIMP-1, Serpina3n was

selected as the top-ranked associated gene in all the final

models (CovProc, LASSO/ELASTIC NET and GA) and

can, therefore, be considered as the most relevant marker.

SERPINA3N is a protease inhibitor, and deficiency of this

protein has been linked to liver disease. A direct functional

link between TIMP-1 and SERPINA3N has not been

established yet, but from their cellular roles, it is likely that

they act interdependently in degrading the extracellular
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matrix proteins during inflammatory response and/or other

conditions.

Considering the functions of LEP and TIMP-1, we may

conclude that all methods performed well in the identifi-

cation of biologically relevant genes.

In summary, CovProc was the best performing MVA

subset selection method. Similarly, for GSEA, the r-based

ranking performed better than the ranking based on the

stability of the PLS regression coefficients. In terms of

biological relevance, the choice between these two meth-

ods will depend on the research goal. While CovProc will

be more suitable for selecting a limited set of markers

associated with a given dependent parameter, GSEA using

r-based ranking may provide a more global insight into

biological processes related to this parameter.

Direct comparison of CovProc selected variates

with pathways prioritized by the ranking methods

To directly compare CovProc selected variates with path-

ways prioritized by the ranking methods, the 16 and 21

genes used in the final SCV CovProc models for LEP and

TIMP-1, respectively (bold in Tables 2 and 3), were

overlapped with the total C2 gene sets collection (1,892

Table 4 Enriched gene sets identified by GSEA using r-based

ranking

Gene sets

ABBUD_LIF_UP (T5) [47] md

ADIP_VS_PREADIP_DN m

AGEING_KIDNEY_SPECIFIC_UP m

BASSO_GERMINAL_CENTER_CD40_UP m

BROCKE_IL6 md

DAVIES_MGUS_MM m

IDX_TSA_DN_CLUSTER1 m

KRETZSCHMAR_IL6_DIFF md

LEE_DENA_UP (T2) [60] m

LEE_MYC_E2F1_UP m

LIAN_MYELOID_DIFF_GRANULE m

LIAN_MYELOID_DIFF_RECEPTORS md

LINDSTEDT_DEND_8H_VS_48H_UP m

NI2_MOUSE_UP (T2) [40] md

RIBAVIRIN_RSV_UP md

ROSS_CBF_MYH m

TAKEDA_NUP8_HOXA9_3D_UP m

AGEING_KIDNEY_UP mr
CARIES_PULP_HIGH_UP mrd

CARIES_PULP_UP mrd

FLECHNER_KIDNEY_TRANSPLANT_

REJECTION_UP

mrd

GALINDO_ACT_UP mr
ICHIBA_GVHD (T6) [335] mrd

LAL_KO_3MO_UP mrd

LAL_KO_6MO_UP mrd

NADLER_OBESITY_UP mrd

NEMETH_TNF_UP mr
TARTE_PC mrd

WIELAND_HEPATITIS_B_INDUCED mr
AGEING_KIDNEY_SPECIFIC_DN .4d

BETA_ALANINE_METABOLISM .4d

BUTANOATE_METABOLISM .4sd

ELECTRON_TRANSPORT_CHAIN .4d

FATTY_ACID_DEGRADATION .4
FATTY_ACID_METABOLISM (L2) [86] .4d

FLECHNER_KIDNEY_TRANSPLANT_

REJECTION_DN

.4d

HUMAN_MITODB_6_2002 .4d

IDX_TSA_UP_CLUSTER6 (L2) [166] .4d

KREBS_TCA_CYCLE .4sd

LEE_DENA_DN .4d

LYSINE_DEGRADATION .4
MITOCHONDRIA .4d

MOOTHA_VOXPHOS .4d

PROPANOATE_METABOLISM .4d

VALINE_LEUCINE_AND_ISOLEUCINE_

DEGRADATION

.4sd

Table 4 continued

Gene sets

BILE_ACID_BIOSYNTHESIS .

GLUTATHIONE_METABOLISM .d

HCC_SURVIVAL_GOOD_VS_POOR_UP .

IDX_TSA_UP_CLUSTER5 .d

TRYPTOPHAN_METABOLISM .d

WANG_MLL_CBP_VS_GMP_DN .

ADIP_VS_FIBRO_UP (L3) [35] 4
ADIP_VS_PREADIP_UP (L3) [36] 4
LEE_CIP_UP (L4) [62] 4
LEE_MYC_TGFA_DN 4
TNFALPHA_ADIP_DN (L2) [59] 4
ZMPSTE24_KO_DN (L2) [32] 4
IDX_TSA_DN_CLUSTER2 r
MYOD_NIH3T3_DN r
ROS_MOUSE_AORTA_DN r
STEMCELL_COMMON_DN r
TRANSLATION_FACTORS r
TRNA_SYNTHETASES r

Key to symbols positively (m) and negatively (.) enriched gene sets

found for TIMP-1; positively (4) and negatively (r) enriched gene

sets found for LEP; gene sets also found using PLS-based ranking for

TIMP-1(d) and LEP (s). Emboldened gene sets were also identified

from the CovProc selected variates. The size of the gene set is given

in square brackets, and the number of CovProc identified genes

present for TIMP-1 (T) or LEP (L) is shown in round brackets
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gene sets including 17,544 genes). Using a p value

threshold of 0.01, 15 gene sets were identified for LEP and

9 for TIMP-1.

Of the identified gene sets, 7 and 4 were also identified

by r-ranked GSEA and 0 and 3 identified by PLS-ranked

GSEA for LEP and TIMP-1, respectively (Table 4). This

shows that the biological interpretation of genes selected

by CovProc corresponds well with the interpretation of the

r-ranked results. All the overlapping gene sets between

r and CovProc are found among positively enriched gene

sets. This is consistent with CovProc selected genes that

were exclusively positively correlated with LEP and

TIMP-1.

Conclusions

This study has compared five methods currently used for

variate selection or ranking: PLS, GA, LASSO/ELASTIC

NET and CovProc. Based on statistical model performance

and parsimony, the GA is outperformed by the other

methods, with CovProc as the best method. From a bio-

logical perspective, it appears that all methods select

meaningful variates, either for variate subsets (CovProc,

LASSO/ELASTIC NET) or for gene rankings (correlation

and PLS coefficient stability), although CovProc somewhat

outperforms the other methods for selecting a definite list

of genes. We would also recommend that any multivariate

analysis should be used in conjunction with more tradi-

tional univariate analyses. The results of biological inter-

pretation using r-based rankings are superior to those using

ranking by PLS coefficient stability.

In conclusion, based on the biological interpretability of

the results, CovProc and correlation-ranked methods are

both highly recommended, complementary methods for

analyzing transcriptomic data. CovProc is particularly

suited to select a limited set of markers associated with a

given biological parameter, while correlation-ranked

GSEA is more appropriate for gaining global insight into

biological processes associated with that parameter.
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