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Obesity, type 2 diabetes, and other metabolic disorders have a large impact on global

health, especially in Western countries. An important hallmark of metabolic disorders

is chronic low-grade inflammation. A key player in chronic low-grade inflammation is

dysmetabolism, which is defined as the inability to keep homeostasis resulting in loss

of lipid control, oxidative stress, inflammation, and insulin resistance. Although often

not yet detectable in the circulation, chronic low-grade inflammation can be present

in one or multiple organs. The response to a metabolic challenge containing lipids

may magnify dysfunctionalities at the tissue level, causing an overflow of inflammatory

markers into the circulation and hence allow detection of early low-grade inflammation.

Here, we summarize the evidence of successful application of metabolic challenge

tests in type 2 diabetes, metabolic syndrome, obesity, and unhealthy aging. We also

review how metabolic challenge tests have been successfully applied to evaluate

nutritional intervention effects, including an “anti-inflammatory” mixture, dark chocolate,

whole grain wheat and overfeeding. Additionally, we elaborate on future strategies

to (re)gain inflammatory flexibility. Through epigenetic and metabolic regulation, the

inflammatory response may be trained by regular mild and metabolic triggers, which can

be understood from the perspective of trained immunity, hormesis and pro-resolution.

New strategies to optimize dynamics of inflammation may become available.

Keywords: chronic low-grade inflammation, lifestyle, metabolism, phenotypic flexibility, resilience, nutrition

INTRODUCTION

Obesity, type 2 diabetes, and other metabolic disorders have a large impact on the health of
society in Western and developing countries. These disorders not only increase the risk of
cardiovascular disease; they also represent a common preventable cause of cancer (1, 2). Currently,
about 15% of the world population suffers from obesity, 5–10% has type 2 diabetes, and these
numbers are increasing (3, 4). An important hallmark of metabolic disorders is chronic low-grade
inflammation, marked by histological changes of tissues and a phenotypic shift in immune cell
types (5–7). Eventually, such tissues release pro-inflammatory cytokines, acute phase proteins,
pro-inflammatory lipids, and other biological inflammatory mediators into the circulation,
converting tissue-based low-grade inflammation into a systemic inflammatory condition (5, 8, 9).
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To be able to quantify low-grade inflammation without
biopsies before it progresses to a systemic disease, one of
the current challenges is to identify systemic biomarkers that
reflect local tissue inflammation caused by metabolic dysfunction
(8, 9). As a solution, dynamic time-resolved metabolic responses
to metabolic challenge tests (e.g., the oral glucose challenge
test (OGTT) or mixed meal test), have been used to evaluate
inflammation in conditions of metabolic dysfunction (10).

While current anti-inflammation therapies often focus on
inflammation only, new possibilities may exist for the creation
of interventions in the interaction between metabolism and
inflammation dynamics. Increased anti-inflammatory nutritional
intake [as defined by an anti-inflammatory diet potential, see
(2)], for example, is associated with a decreased risk in overall
mortality, cardiovascular disease, and cancer (2). Inflammation is
seen as a pathological state resulting frommany disease processes
that occur late in pathogenesis and normally is targeted at a late
stage in disease pathogenesis. To intercept this process before
irreversible changes occur, a refocus is needed onto the early
stages of low-grade inflammation. Since metabolism and the
innate immune system are closely connected [for review, see
(5, 7)], interception could focus on metabolism as well as on
inflammation dynamics to restore disbalances.

In this review, we give a short introduction to the role of
chronic low-grade inflammation inmetabolic disorders. Next, we
describe the state-of-the-art of metabolic challenge tests for the
diagnosis of chronic low-grade inflammation, and the evaluation
of nutritional interventions to reverse it. Additionally, we give
a future perspective on innovative strategies that focus on the
training of inflammatory dynamics to prevent or reverse chronic
low-grade inflammation in metabolic disorders.

LOW-GRADE INFLAMMATION AND
METABOLIC CONTROL

Inflammation is a central part of the immune system as an
attempt to heal the body after injury, defend itself against
foreign invaders, and to repair damaged tissue. Healthy
inflammation prevents wounds from persisting and infections
from becoming lethal.

Inflammation may manifest in an acute, high-grade as
well as in a chronic low-grade manner (Table 1). Acute
inflammation is short-term and the effects subside after a few
days once the damage/infection/irritation has been repaired
or removed and mainly involves cells of the innate immune
system. In contrast, chronic low-grade inflammation is long-
term, and can constitute a damaging process with a mild
sustained induction of inflammation. As a response to such
an induction (e.g., metabolic stressor), tissue-resident cells
and resident/patrolling leukocytes become activated, resulting
in the secretion of pro-inflammatory mediators which leads
to the recruitment/infiltration of pro-inflammatory leukocytes
(11). Under healthy conditions, local immune cells such as

Abbreviations: OGTT, oral glucose tolerance test; MetS, metabolic syndrome;

AIDM, anti-inflammatory dietary mixture; LPS, lipopolysaccharide; PBMC,

peripheral blood mononuclear cell.

macrophages and regulatory T cells produce anti-inflammatory
cytokines that resolve inflammation and re-establish homeostasis
(12, 13). However, without (or with insufficient) activation
of anti-inflammatory or inflammation-resolving mediators, this
results in the amplification of inflammation by autocrine and
paracrine signals resulting in an imbalance of the immune
regulatory network (14–16) (Figures 1A, 2).

The mechanistic basis for the interaction between metabolic
and inflammatory systems is referred to as metaflammation
[for review, see (5, 7)]. From an evolutionary perspective, the
interaction between immune and metabolic pathways is highly
conserved from invertebrates tomammals (5). The fat body of the
fruit fly functions to sense and store nutrients, as well as to defend
against pathogenic invaders (19). Throughout evolution, the fat
body has developed into distinguishable metabolic and immune
organs that exist in mammals, amongst which are adipose
tissue and liver. Signaling pathways [e.g., NLRP3 inflammasome
(18, 20), JNK-NFkB pathway (5)], however, are conserved
within these tissues, so with either inflammation or metabolic
dysfunction, the same pathways become activated (5). These
mechanisms are ubiquitously present in all metabolic tissues and
take part in the progression from a healthy to a metabolically
compromised state (Figures 1B, 3). Nevertheless, tissue-specific
characteristics of chronic low-grade inflammation also exist,
which are described in more detail below (Figure 1B) (18).

Adipose tissue inflammation is characterized by hypoxia and
mechanical stress following hypertrophy—and possibly also
hyperplasia of fat tissue (26–29)—that causes adipocytes to
change into a pro-inflammatory secretory profile of cytokines
and adipokines (e.g., higher TNF-α and leptin, lower adiponectin,
and resistin) (27). Furthermore, the metabolic balance within
adipocytes shifts from glycolysis toward lipolysis, which leads
to increased free fatty acid levels in the system that stimulate
the cellular metaflammatory pathways (11, 28). Intestinal
inflammation is associated with dysbiosis, i.e., the impaired
ability of the microbiome-intestinal system to adapt to alterations
(30). The breakdown of the human-microbiome partnership
is able to negatively change the epithelial barrier function, as
well as the production of specific metabolites and immune
function (31, 32). Due to reduced barrier and adaptive and innate
immune function, the translocation of bacterial endotoxins and
dietary products from the gut into the systemic circulation
is possible and can expand low-grade inflammation into
other organs (33). The liver is exposed to these gut-derived
products, which can lead to liver inflammation in metabolic
syndrome (MetS) (34). Moreover, metabolic stressors (e.g.,
saturated fatty acids, glucose) activate hepatocytes to release
alarmins (IL-33, HMGB1), extracellular vesicles that contain
inflammatory effector proteins and microRNAs, hepatokines
(fetuin-A, selenoprotein P), and other stress molecules such as
ATP, ceramides and nitric oxide (18, 34–36). These stressors
all activate a local inflammatory response via e.g., Kupffer
cells (34). Investigations toward the initiation of skeletal
muscle inflammation are ongoing, however, it appears that
inflammation is mainly manifested in intermyocellular and
perimuscular adipose tissue. Free fatty acids and inflammatory
molecules from perimuscular adipose tissue and other tissues
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TABLE 1 | Features of acute and chronic low-grade inflammation [adapted from Calder et al. (9)].

Acute inflammation Chronic low-grade inflammation

Onset Immediate Delayed

Duration A few days Unlimited

Location Typically local Systemic, insulin dependent tissue

Trigger Pathogens, injured tissue Metabolic disturbance; some chronic infections

Inducer PAMP and DAMP Metabolic DAMP

Major cells involved Neutrophils and other granulocytes, monocytes, macrophages;

T cells later

Monocytes, macrophages, T cells, B cells, adipocytes

Primary mediators Vasoactive amines, eicosanoids; chemokines and cytokines later Cytokines, chemokines, adipokines, eicosanoids, reactive oxygen

species, hydrolytic enzymes

Outcomes Resolution, abscess formation, chronic inflammation No overt pathology, tissue (vascular) damage, increased insulin

resistance, intracellular lipid accumulation

Associated pathologies Colitis, peritonitis, systemic inflammatory response syndrome (SIRS) Dyslipidemia, atherogenesis, diabetes mellitus type 2, systemic arterial

hypertension

DAMP, damage-associated molecular patterns; PAMP, pathogen-associated molecular patterns.

FIGURE 1 | (A) Generalized model of sequential steps involved in the inflammatory response in metabolic tissues resulting in chronic low-grade inflammation or return

to a healthy homeostatic condition [inspired by Villeneuve et al. (17)] and (B) Manifestation of chronic low-grade inflammation in the different metabolic tissues

[Reprinted with permission from Ralston et al. (18)].

stimulate myocyte inflammation and dysregulated myocyte
metabolism (20, 37, 38). The release of cytokines and myokines,
in turn, contributes to insulin resistance and low-grade
inflammation (37).

Given that such local tissue inflammation precedes the
systemic manifestation of disease, it is a challenge to identify
systemic biomarkers that represent local tissue inflammation
related to metabolic dysfunction.

DYSFUNCTIONAL LIPID CONTROL
MECHANISMS AS THE BASIS OF
LOW-GRADE INFLAMMATION

Lipid control is a key player in local tissue inflammation.
There is a tight connection between metabolic and
inflammatory pathways; they overlap and use the same
master regulators (5, 7). This may explain that metabolic

overload requires adjustment of regulators of lipid
metabolism that inherently also affects inflammatory
processes (39, 40).

One or more of the following four impairments in lipid
control mechanisms may cause metabolic inflammation and
activation of inflammatory pathways:

- Inappropriate adjustment of lipid uptake and lipid handling
processes via the enterohepatic cycle involving the gut,
microbiota and the liver (41–43);

- Inappropriate storage of excess lipids as ectopic fat in organs
not designed for lipid storage (44, 45). In contrast to adipose
tissue depots that can respond with hyperplasia, these depots
have limited storage capacity and respond mainly in terms of
hypertrophy. For example, mesenteric adipose tissue that has
close anatomical proximity to the liver (45, 46);

- Intracellular imbalance between pro-inflammatory vs. anti-
inflammatory lipids;
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FIGURE 2 | Potential systemic biomarkers categorized following the sequential steps involved in the inflammatory cascade with chronic low-grade inflammation.

Orange boxes represent the sequential steps involved in the inflammatory response within chronic low-grade inflammation. Gray boxes represent inflammatory

biomarker classes and are categorized under the sequential inflammatory steps. White boxes present the biomarkers as positioned under the inflammatory

biomarker classes.

- Unfavorable composition of circulating lipids and high content
of fatty acids that are prone to oxidation (47). The intracellular
presentation of lipids determines accessibility and utilization
within a cell, e.g., as small or large lipid droplet, and their
role in the circulation, e.g., as part of VLDL/LDL lipoprotein
or HDL lipoprotein (47, 48). For example, it is assumed that
larger droplets are more detrimental and associated with tissue
inflammation. Indeed, large macro-vesicular lipid droplets are
often found in pathological conditions (e.g., in non-alcoholic
fatty liver disease) and are associated with inflammation and
fibrosis (47, 49).

There is a series of blood-based biomarkers that may reflect
the different steps in chronic low-grade inflammation
(Figure 2). These include well-known biomarkers, e.g.,
acute phase proteins, cytokine and chemokine levels, as
well as some more innovative biomarkers, e.g., oxylipins,
an oxidation product of essential fatty acids and related to
vascular function and inflammation associated with metabolic
function (50, 51). While some of these biomarkers (e.g.,
acute phase proteins and cytokines) are appropriate for
measuring acute inflammation, no good systemic blood-
based biomarkers exist for the identification of chronic
low-grade inflammation on an individual level (8, 9, 52, 53).
Although chronic low-grade inflammation in multiple
organs can be present, this may not yet be detectable in the
circulation (54).

MEASURING PHENOTYPIC FLEXIBILITY
FOR EARLY DETECTION OF METABOLIC
DISORDERS

Phenotypic flexibility is referred to as the ability to maintain
homeostasis by a highly energy-dependent, rapid and
orchestrated adaptation to continuous changes of the
environment, such as nutrient intake, physical exercise,
and temperature changes. Phenotypic flexibility is the opposite
of dysmetabolism, i.e., the inability to keep homeostasis, that
eventually leads to e.g., oxidative stress, insulin resistance
and dysbiosis (42, 55–59). Continued metabolic overload
may eventually lead to chronic or permanent adaptation of
the system, characterized by mitochondrial dysfunction and
low-grade inflammation.

The measurement of one’s health status via phenotypic
flexibility is possible by analyzing the dynamical responses
to a metabolic challenge test (60–62). Considering that lipid
control plays a key role in chronic low-grade inflammation,
the response to a metabolic challenge containing lipids may
magnify dysfunctionalities on the tissue level causing an overflow
of inflammatory markers into the circulation and hence allow
early detection of metabolic and inflammatory dysfunction in
an individual via dynamical response profiles (61–63) (Figure 4).
Early signs of reduced flexibility (or dysmetabolism) manifest
through processes that are regulatory and adaptive in order to
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FIGURE 3 | Obesity-induced development of tissue inflammation in various organs. As an example, the long-term inflammatory dynamics and characteristics of lean

toward obese WAT are illustrated. In lean WAT, immune cells are generally in an overall Type2 state (left black text), while in obese WAT the immune cells operate in a

Type1 state (right black text). Red text indicates increase/abundancy of the mentioned adipokine and immune cells. Green text represents a decrease in the

mentioned immune cell. M2, macrophage type 2; AAM, alternatively activated macrophages; T-reg, regulatory T-cells; Th2, T-helper type 2 cells; B-reg, regulatory

B-cells; B1α, B-cells type 1 alpha; ILC-2, innate lymphoid cells type 2; NKT, natural killer T-cells; M1, macrophage type 1; CAM, classically activated macrophages;

Th1, T-helper type 1 cells; B2, B-cells type 2; ILC-1, innate lymphoid cells type 1; NK, natural killer cells. Based on (1) (21); (2) (22); (3) (23); (4) (24); and (5) (25).

FIGURE 4 | A framework for understanding the progression of healthy homeostasis to disease. For chronic diseases, the pathological development toward a disease

state typically takes years. While the medical world has made tremendous progress toward the measurement of disease, the ability to measure the progress toward

the disease is lacking. Resilience as measure of health status provides a promising solution to this problem. In contrast to the classical symptom/biomarker approach,

challenge tests are used to measure resilience as an early biomarker of disease or (nutritional) effect. Reprinted with permission from van der Greef et al. (64).

keep core metabolic processes in balance (51) (Figure 5). An
example of an adaptive process is the production of insulin,
which is increased under insulin resistance conditions in order to
maintain the core process of glucose dynamics. The regulatory,
adaptive and core metabolic processes are closely connected,

shown by the myriad of dynamical biomarker responses to a
metabolic challenge, including incretins, satiety markers, bile
acids, amino acids, fatty acids and inflammatory markers [see
(10, 61) for review]. Inflammatory markers do respond to glucose
(65) and lipid challenge tests (66), as well as a combination
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FIGURE 5 | Conceptual representation of challenge tests may evaluate the progression toward metabolic disorder. During progression from a healthy state toward a

state of metabolic syndrome, only the early derailed processes respond differently to a challenge test in order to keep the core processes in balance. Eventually, the

balance of the core processes is also disrupted. Modified with permission from Kardinaal et al. (51).

of both (67, 68), albeit that only subtle effects were observed
for inflammatory mediators in the circulation. This is not
surprising given that inflammatory control is one of the core
metabolic processes (51). Interestingly, several oxylipins, acute
phase proteins, and vascular markers showed stronger responses
to metabolic challenge tests (51, 68), marking them as potential
early dynamical markers for metabolic stress.

With the aim to measure phenotypic flexibility by one

standardized oral challenge, a systematic literature evaluation

was previously performed to identify the optimal composition of
a metabolic challenge test (10). A challenge test that combined

glucose, proteins, and lipids in one drink was superior to those

with fewer macronutrients. The systemic responses involved
multiple local and systemic processes, including those from the
gut, adipose tissue, muscle, liver, kidney, vasculature, pancreas,
brain (10, 69). The work resulted in the standardized so-called
“PhenFlex” oral challenge test, composed of 75 g glucose, 60 g
palm olein (36.6%mono-unsaturated fatty acids, 48.8% saturated
fatty acids, 9.1% poly-unsaturated fatty acids) and 20 g protein,
enabling the comparison of phenotypic flexibility among studies
and different stages of health (10, 54, 62).

Several studies have evaluated the potential of metabolic
challenge tests for early diagnosis of chronic low-grade
inflammation in the context of metabolic diseases (Table 2).

- In type 2 diabetes, both fasting and postprandial
concentrations of inflammatory and vascular markers are
higher as compared to healthy individuals (65, 74, 75).
Furthermore, the post-prandial increase of pro-inflammatory
mediators and decrease of anti-inflammatory mediators
was stronger in type 2 diabetics (74), and it took longer for
cytokines and vascular markers to return to baseline (75).

- In MetS vs. healthy subjects acute phase proteins were
increased at fasting, while a challenge test was needed to reveal
increased responses of cytokines and vascular markers and
reduced responses of oxylipins (51).

- In obese subjects, fasting levels and challenge responses of
acute phase proteins were increased as compared to healthy
individuals (66, 72). In contrast to MetS, however, of the
cytokines only TNF-α showed an increased response to a lipid
challenge test (73). Other cytokines, vascular markers, and

oxylipins showed no difference between obese and healthy
persons (50, 66, 72, 73). Additionally, gene expression of
platelet activation and human leukocyte antigen class II was
increased, as well as the challenge test response of lymphocytes
and neutrophils (71, 72).

- Having a high percentage of bodyfat in combination with aging
leads to higher levels of pro-inflammatory cytokines, and lower
levels of anti-inflammatory cytokines (70, 76).

Altogether, the application of a challenge test provides richer
results contributing to a more comprehensive diagnosis of
chronic low-grade inflammation in type 2 diabetes, MetS,
and obesity.

MEASURING PHENOTYPIC FLEXIBILITY
TO DEMONSTRATE THE BENEFICIAL
EFFECTS OF INTERVENTIONS ON
LOW-GRADE CHRONIC INFLAMMATION

Ultimately, it is desirable to develop nutritional intervention
strategies to impact an individual’s health status toward a
healthier phenotype (59). Epidemiological studies have shown
associations of improved nutritional habits with reduced
inflammation, including a high unsaturated/saturated dietary
fat balance, low dietary carbohydrates, dietary fibers, probiotics,
vitamins, as well as flavonoids (8, 28, 52, 77–80). Other
interventions, such as dietary supplements and weight loss
can also significantly reduce levels of inflammatory markers
(79, 81–83). Several studies have identified novel biomarkers
that represent nutrient-induced modulation of inflammation
indicating an anti-inflammatory effect (9, 53, 79, 84, 85).
However, the subtle and presumably chronic effects of nutrition
limit the substantiation of positive health effects in randomized
clinical trials, regardless of the epidemiological and mechanistic
evidence (86). Here, we summarize the current findings from
applying metabolic challenge tests for evaluation of nutritional
effects focusing on dynamics of inflammation (Table 3).

- An anti-inflammatory dietary mixture (AIDM) containing
resveratrol, green tea extract, α-tocopherol, Vitamin C,
n3-poly-unsaturated fatty acids and tomato extract showed
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improvement of inflammatory resilience in a 5-week
randomized, double-blind crossover trial. Although fasting
levels of sVCAM-1 and IL-18 decreased with the intervention,
other cytokines, vascular markers, blood-clotting factors,
and immune markers were found reduced post-prandially
only (67, 79).

- Dark chocolate consumption was found having anti-
inflammatory effects in a 4-week randomized clinical trial,
which was especially visible in the reduced post-challenge
responses of cytokines, vascular markers, white blood-cells
and leukocyte-activation markers (87).

- Overfeeding of healthy males in a 4-week double-blind
crossover study led to disturbed post-challenge dynamics
of cytokine markers, white blood cells, vascular markers,
and oxylipin markers (51). Interestingly, the inflammatory
resilience phenotype of the overfed healthy males moved
toward that of males diagnosed with MetS (51).

- Wholegrain vs. refined wheat intervention in a 13-week
randomized, double-blind trial showed a beneficial effect
on the post-prandial responses of acute phase proteins and
cytokines, but not on their fasting levels (70).

Altogether, only a few studies have employed a metabolic
challenge test to evaluate the effects of nutritional
interventions on inflammatory status. They indicate that
post-challenge effects may reveal intervention effects on
the adaptive and regulatory processes that derail early
in the progression toward an unhealthy phenotype.
Future applications of metabolic challenges are envisioned
to increase insight into dynamics of inflammation
to reveal intervention effects on a state of low-grade
chronic inflammation.

STRATEGIES TO IMPROVE
INFLAMMATORY DYNAMICS

As mentioned previously, a metabolic challenge test quantifies
low-grade chronic inflammation and nutritional intervention
effects more precisely than a classical overnight fasting assay.
Ideally, an inflammatory challenge test, e.g., by providing
volunteers a low dose of bacterial liposaccharides (LPS) or
an attenuated infection such as diarrheagenic E. coli, may be
even better, but practical and ethical objections limit its use
in human studies. However, such an inflammatory challenge
test in model animals is feasible, and for example, IL1-β
injection as an inflammatory challenge test has been used
in mouse studies to study nutritional intervention effects on
inflammation. Concomitant to the human intervention study, a
6-weeks high fat intervention study using humanCRP transgenic
mice, where the AIDM was responsible for a strong decrease
of the Il-1β induced humanCRP and fibrinogen as compared
to control (Figure 6) (88). A 16-week exposure of female
ApoE3Leiden mice on a high-fat diet with AIDM resulted
in an almost complete (96%) reduction of atherosclerotic
plaques as compared to the control mice on a high-fat
diet (88).

FIGURE 6 | The effect of an “anti-inflammation dietary mixture” (AIDM) vs.

placebo quantified at fasting and after Il-1B stimulation on humanCRP (A) and

fibrinogen (B) in transgenic mice. Mice were fed the AIDM and the

inflammation markers were quantified after 6 weeks of treatment. The effects

of AIDM vs. placebo were only visible after IL1B stimulation and not at fasting,

showing the added value of applying a perturbation test to show treatment

effects on inflammation. Adapted with permission from Verschuren et al. (88).

There may also be strategies other than static nutritional
interventions focusing on optimizing inflammatory dynamics
to reverse or prevent low-grade inflammation. Training of the
immune system is a widely accepted biological phenomenon
(89–91). The intimate linkage of metabolic pathways and
immunity together with the recent progress in our understanding
of stress responses as training suggest that metabolism must
be trained too to function optimally and flexible. Biological
systems which depend on adaptation for their defense, seem
to profit from alternating exposure such as low/high dose,
intermittent fasting, glucose/fat cycling and pulse exposure (92,
93). For instance, an alternating high-fat dietary regimen reduced
systemic insulin resistance, hepatic and renal inflammation,
atherosclerosis and improved renal function (92, 94), as well as
increased protein content and mitochondrial function in skeletal
muscle (95). Although these studies were performed in mice
and rats, there is potential for translation to humans given that
the processes involved overlap across these mammalian species.
An overview of potential ingredients and strategies for training
of metaflammation is shown in Figure 7. An effective immune
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TABLE 2 | Metabolic challenge tests to diagnose chronic low-grade inflammation in metabolic disorders.

Observation Study design Biomarkers Reference

Basal and inflammatory resilience was different

between the two populations that served as

“health reference groups”

Young and lean (20–29 years, low body

fat, n = 20), and old and overweight

(50–70 years, high body fat’, n = 20) male

and female subjects

PhenFlex challenge test dynamics up to

4 h

TNF-α*,#, IL-6*,#, IL-8*,#, IL-10# (70)

No significant differences were observed in basal

inflammatory state between lean and MetS

subjects. Inflammatory resilience was reflected in

diminished cytokine and oxylipin responses.

35–65 years old lean (n = 10) and MetS

(n = 10) male subjects

High fat challenge test dynamics up to 8 h

CRP, SAA, IL-1β, IL-6#, IL-8, IL-10, IL-12p70,

IL-18#, TNF-α, IFN-γ, C3, sICAM1, sVCAM1,

adiponectin, leptin*, resistin, complement

C3#

9(S)-HODE, 13(S)-HODE, 11(S)-HETE,

12(S)-HETE, 9,10-DiHOME, 12,13-DiHOME,

19,20-DiHoPE#, 8,9-DiHETrE#,

11,12-DiHETrE#, 14,15-DiHETrE

Leukocytes, lymphocytes, neutrophils,

monocytes, eosinophils, basophils

(51)

Lower basal antigen presentation to

T-lymphocytes in obese vs. lean, decreased

inflammatory resilience reflected increased PBMC

gene expression responses to challenge

associated with platelet activation.

50–70 years old lean (n = 17) and obese

(n = 15) male subjects

High fat challenge test dynamics up to 4 h

Genes belonging to: human leukocyte

antigen (HLA) class II (e.g., HLA-DQA2,

HLA-DQB1, HLA-DRB5)*, platelet

activation (e.g., PF4, PPBP, ITGA2B, ITGB3,

SELP, PDE3A, CD9, GP1BA, GP6, GP9)#

(71)

No differences were observed in basal levels or

challenge induced levels of oxylipins between lean

and obese subjects

50–70 years old lean (n = 18) and obese

(n = 18) male subjects High fat challenge

test dynamics up to 4 h

12(13)-EpOME, 12,13-DiHOME, 9(10)-EpOME,

9,10-DiHOME, 9,12,13-TriHOME, 13-HODE,

13-HpODE, 13-KODE, 9-HODE, 9-HpODE,

9-KODE, PGF1a, PGD2, PGE2, PGF2a, TXB2,

11-HETE, 12-HHTrE, 14,15-DiHETrE,

11,12-DiHETrE, 8,9-DiHETrE, 5,6-DiHETrE,

12-HETE, 15-HETE, 15-KETE, 5-HETE,

9-HOTrE, TXB3, 17,18-DiHETE,

14,15-DiHETE, 12-HEPE, 15-HEPE, 5-HEPE,

19(20)-EpDPE, 19,20-DiHDPA, 17-HDoHE

(50)

Basal CRP was different between lean and obese,

but no postprandial effect observed

25–55 years old lean (n = 19) and obese

(n = 17) male subjects

High fat challenge test dynamics up to 6 h

CRP*, IL-6, endotoxin (66)

Elevated basal inflammatory state in obese vs.

lean reflected in higher acute phase protein and

lower monocyte levels, decreased inflammatory

resilience reflected in lower response of immune

cells and cellular adhesion of lymphocytes.

50–70 years old lean (n = 18) and obese

(n = 18) male subjects

High fat challenge test dynamics up to 4 h

IL-6, IL-8, CRP*, SAA*, E-selectin, P-selectin,

sICAM1, sICAM3, sVCAM1, Thrombomodulin,

vWF*

Neutrophils#, monocytes*,#, lymphocytes#

CD11aN, CD11bN, CD62LN, CD11aM,

CD11bM, CD62LM, CD11a#
L
, CD11b#

L
,

CD62LL

(72)

Elevated basal inflammatory state in

obese/diabetic vs. lean reflected in cytokine levels,

lower inflammatory resilience reflected in lower

cytokine and higher PBMC gene expression

responses to challenge

50–70 years old lean (n = 18), obese (n =

18) and obese/diabetic (n = 6)

male subjects

High fat challenge test dynamics up to 4 h

IL-1β*,a, TNF-α#

IL1b#,a, IL8, MCP1#,a, NFκB1, TNFα
aOnly significant for obese+diabetic vs. lean

and obese

(73)

Both basal and challenge induced levels of

cytokines and vascular markers discriminated

between healthy volunteers and diabetic patients

Healthy (n = 256) and diabetic (n = 274)

male and female subjects above 18 years

(mean age 46 and 48, respectively)

OGTT dynamics up to 3 h

CRP*,#, IL-6*,#, TNF-α*,#, sICAM1*,#,

sVCAM1*,#, sE-selectin*,#
(65)

The basal inflammatory state is different between

healthy and diabetic individuals, while the

inflammatory resilience is different for IL-8.

Healthy (n = 30, mean age 40.5 years)

and diabetic (n = 30, mean age 42.3) male

and female subjects

High carbohydrate, high fiber challenge

test dynamics up to 4 h

IL-8*,#, IL-18*, adiponectin* (74)

Basal inflammatory state, as well as inflammatory

resilience was different between healthy and

diabetic subjects.

Healthy (n = 20, mean age 44 years) and

diabetic (n = 20, mean age 46) male and

female subjects

High-fat challenge test dynamics up to 4 h

IL-6*,#, TNF-α*,#, sICAM1*,#, sVCAM1*,# (75)

Markers that were statistically different between healthy/lean and metabolic disorder groups are shown in bold. *marks a difference in fasting levels and # indicates a different response

to the challenge test.
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TABLE 3 | Metabolic challenge test to evaluate nutritional effects on chronic low-grade inflammation.

Observation Study design Biomarkers References

Wholegrain wheat consumption leads to lower

basal CRP and sICAM3 as compared to refined

wheat consumption, whereas increased

inflammatory resilience was observed for multiple

cytokines.

Refined wheat (n = 25) vs. wholegrain

wheat (n = 25) intervention in 45–70 years

old males and females with elevated

cholesterol (>5 mmol/L)

PhenFlex challenge test dynamics up

to 4 h

TNF-α#, IL-6#, IL-8#, IL-10#, CRP*,#, SAA#,

sICAM1, sICAM3*, sVCAM1, P-selectin,

E-selectin, Thrombomodulin

(70)

No significant differences were observed in basal

inflammatory state between lean and MetS

subjects. Inflammatory resilience was reflected in

diminished cytokine and oxylipin responses.

4 week high-fat, high-caloric diet

intervention (n = 10) in males between 35

and 65 years

High fat challenge test dynamics up to 8 h

CRP, SAA, IL-1β, IL-6, IL-8#a, IL-10, IL-12p70,

IL-18, TNF-α, IFN-γ#b, C3, sICAM1#b,

sVCAM1, adiponectin*#b, leptin*#b,

resistin*#a

9(S)-HODE, 13(S)-HODE, 11(S)-HETE#a,

12(S)-HETE#a, 9,10-DiHOME,

12,13-DiHOME, 19,20-DiHoPE*,#b,

8,9-DiHETrE, 11,12-DiHETrE, 14,15-DiHETrE

Leukocytes, lymphocytes#b, neutrophils#b,

monocytes#b, eosinophils, basophils

(51)

Fasting levels of immune cell attraction markers

were modified with 4-week dark chocolate

consumption. No difference between

flavonol-enriched and normal dark chocolate.

4-week dark chocolate consumption (n =

41) by males with age 45–70 years

High fat challenge test dynamics up to 4 h

CRP, SAA, IL-1β, IL-6#, IL-8#, TNF-α*#,

sICAM1*#, sVCAM1#, E-selectin,

P-selectin#, sICAM3*#, Thrombomodulin,

vWF

Leukocytes*#, lymphocytes#, monocytes#,

neutrophils#

CD66b*
N
, CD11c*

N
, CD11bN

#, CD62LN
#,

CD11cM
#, CD11bM

#, CD62L*#
M
, CD11c#

L
,

CD11b*
L
, CD62L*

L

(87)

Inflammatory resilience was found positively

influenced by the anti-inflammatory mix

5 week intervention with anti-inflammatory

dietary mix (n = 36) of males aged

55–59 years

High fat challenge test dynamics up to 6 h

With proteomics profiling, the following markers

were significantly changed: CD40#a,

VCAM1*,#a, fibrinogen#a, EGFR#a, vWF#a,

ACE#a and ICAM1#b, Il-18*#b, TNF RII#b,

adiponectin#b, factor VII#b, CCL-22#b,

β2-microglobulin#b

(67, 79)

Markers that were statistically significantly affect by the intervention are shown in bold. *marks a difference in fasting levels, # indicates different postprandial challenge test levels,
a indicates a different challenge response and b indicates different offset levels observed due to repeated measurements.

response is characterized by a sequence of counteracting pro-
and anti-inflammatory signals that are properly orchestrated to
have adequate onset, optimal response, and decay. Each time
these mechanisms are challenged by an external trigger (e.g.,
infections, LPS, extreme physical activity, cellular oxidative stress,
inflammatory lipids, . . . ), the immune system is trained to deal
with future challenges. This implicates a memory function that
is not only observed in the adaptive immune system (which
generates memory for specific triggers), but also in the innate
immune system, generating a less specific variant of memory
referred to as “trained immunity” or “innate immune memory”
(89). There are recent indications that the innate immune cells
such as monocytes, macrophages, or natural killer cells may
be trained. Trained immune cells increase responsiveness upon
secondary stimulation by microbial pathogens by expression of
so-called pattern recognition receptors (PRRs) that recognize
so-called pathogen-associated molecular pattern (PAMPs), such
as LPS, flagellin, β-glucan, and lipoteichoic acid (LTA). Initial
stimulation with these PAMPs influence long-term production
of inflammatory mediators inducing a shift from oxidative
phosphorylation toward aerobic glycolysis (the Warburg effect)
(89, 96–98). Trained immunity (not to be confused with acute
and short-term adaptation mechanisms, such as tachyphylaxis)

seems to be a main immunological process leading to non-
specific protective effects against infections that persist for
weeks to months, however when not properly activated, trained
immunity can cause a dysbalanced immune system as in
immune paralysis in sepsis, hyperinflammation in tissues, or
atherosclerosis (99).

A molecular basis for trained immunity is believed to be an
epigenetic-metabolic interplay (89, 98). Epigenetic mechanisms
control gene expression via DNA methylation, chromatin
remodeling, and microRNA-regulated transcriptional silencing.
Cellular metabolites, such as acetyl-CoA, α-ketoglutarate, and
succinate act as a cofactor on epigenetic enzymes influencing
the functionality of epigenetic mechanisms (89, 96). Indeed,
trained immunity seems dependent on the metabolic status
of an individual. For example, mevalonate, a precursor of
the cholesterol synthesis pathway, was demonstrated to induce
trained immunity by epigenetic reprogramming and increased
mevalonate levels were associated with higher cytokine levels,
while reduction of mevalonate by statins resulted in lower
cytokine levels (100).

Although the field of “immunometabolism” has emerged
where the relationship between metabolism and trained innate
immunity are becoming more mechanistically clear (89), at
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FIGURE 7 | An overview of potential ingredients and strategies for systemic low-grade inflammation therapy to optimize dynamics of inflammation and to maintain a

flexible metabolic-inflammatory system. With impairment of flexibility, the system will develop toward metabolic disease development. This can be returned via static

nutritional strategies by optimizing nutrients and calories, as well as training strategies through inflammatory triggers, trained immunity, hormesis, pro-resolution, or an

alternating combination thereof.

this stage it is not known for certain whether this training
aspect is valid only for external inflammatory triggers (infections,
etc.) or for metabolism triggered inflammation and metabolic
health/flexibility as well. One could speculate that metabolic
triggers known to cause a mild acute inflammatory response
improve inflammation dynamics via such mechanism. It is
known that saturated fat, especially palmitate (10, 101), high-
fat meals (74), calorie-dense meals (66) and meals enriched in
fat and glucose (68) all cause an acute inflammatory trigger in
healthy individuals. On the other hand, it is also known that diets
enriched in mono-unsaturated fat result in reduced postprandial
activity of transcription factor NF-kB, protein levels of nuclear
p65 and TNF-α (77). It will be interesting to see whether well-
scheduled consumption of these type ofmeals as an inflammatory
trigger may improve long-term inflammatory status.

Training aspects have also been described for a process
referred to as hormesis. Hormesis is the adaptive reaction of a
biological system to external stresses to improve its resilience
and tolerance to stronger stresses in the future (90, 102). This
involves the observations that low doses of chemicals that
plants make as a defense to ward off insects, consumed by
humans in low levels via fruit and vegetables, are associated
with health benefits. A well-known example is represented by
the phytochemical resveratrol. At low doses (2.5 and 5 mg/kg)
a reduction of myocardial infarction was seen in rats upon
14 days of consecutive administration, while at high doses (25
and 50 mg/kg), an increase was observed (103). In vitro and

ex vivo studies highlight multiple pathways for which hormesis
has been observed in case of resveratrol, including inflammatory
pathways (103, 104). Indeed, the secretion of IFN-γ, IL-2, and
IL-4 from stimulated human peripheral blood mononuclear
cells (PBMCs) demonstrated a clear bi-phasic pattern with
increasing doses of resveratrol (104). These apparently strange
findings illustrate a highly interesting principle. Relatively low
concentrations of anti-inflammatory compounds might actually
induce the inflammatory capacity by their pro-inflammatory
action, by creating alertness toward these foreign compounds.
Thus, instead of a continuous relaxation and “high-dose drug-
like” anti-inflammatory condition, these low dose (and often
intermittent concentrations) of foreign compounds create a “first
line of defense” barrier of inflammation dynamics.

Although this line of research has not yet been thoroughly
investigated, numerous anecdotal reports describe the pro- and
anti-inflammatory (= hormesis) action of natural compounds
(90). For example, livestock in Europe greatly benefitted from
inflammatory hormesis by providingmultiplemixtures of natural
compounds upon the recent ban of antibiotics (105).

These mild stresses from natural compounds induce a
memory or training by adapting mammalian physiology to
increase their capacity to deal with higher amounts of stress.
Other well-known examples of hormesis include calorie-
restriction, exercise, and glucose restriction all resulting in
longevity in model systems, suggesting that mild induction of
oxidative stress within the mitochondria causes an adaptive
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response that results in increased stress resistance and long-term
reduction of oxidative stress (106). Hormesis seems to be induced
via epigenetic regulation, which can occur not only during early
developmental stages but also through adulthood (107). From a
molecular point of view, trained immunity and hormesis may
thus be similar stimuli to the immune system. In this hormesis
context, the so-called epigenetic diet has been proposed, which
introduces bioactive compounds such as genistein, sulforaphane,
tea polyphenols, curcumin, resveratrol, vitamins, and minerals
that have been demonstrated to act through an epigenetic
mechanism resulting in restoration of immune homeostasis
thereby supporting healthy aging (108, 109).

A final aspect to consider in the promotion ofmetaflammation
is to stimulate a pro-resolution (Th2 and/or T regulatory)
response by changing the environmental hygiene by exposure
to pathogens or their products. There is evidence that
exposure to pathogens (bacteria, viruses, and helminths) is
critical to promote normal immune development, which is
reflected in the so-called (revised) hygiene hypothesis (91,
110). Parasitic helminths have been shown to modulate the
host immune system and induce responses of Th2 and
regulatory immune cells (111, 112). Since pro-inflammatory
immune responses play a key role in the development of
lifestyle-related diseases such as type 2 diabetes, helminth-
induced immunomodulation through controlled infections with
helminths or helminth-derived molecules has been investigated
and shown to be promising to improve metabolic outcomes
in mice (111–115), although at this stage there is very little
human data available. Studies indicate that helminths may
improve dynamics of inflammation, at least partly, by increasing
the number of anti-inflammatory immune cells (Th2 cells,
eosinophils, M2 macrophages, Tregs, and ILC2s) in adipose
tissue, thereby reducing inflammation and improving glucose
tolerance [reviewed by de Ruiter et al. (112)]. Besides changes
in adipose tissue, the cellular hepatic composition appeared
to be affected by helminth products (113). Furthermore,
the helminth-induced increase in ILC2, eosinophils and M2
macrophages may result in browning of white adipose tissue,
generating “beige” cells that increase energy expenditure, thereby
decreasing adiposity, which may prevent the development of
insulin resistance (111, 114, 115). Besides stimulating an anti-
inflammatory immune response, helminth infections have been
shown in an experimental setting to induce weight loss in mice
with diet-induced obesity by impairing glucose absorption (116)
or to suppress adipogenesis, thereby preventing the onset of
MetS including diabetes (111, 116). In humans, epidemiological
cross-sectional studies suggest that chronic helminth infections
may prevent development of metabolic diseases and that these

effects can be long-lasting [reviewed by de Ruiter et al. (112)].
Longitudinal studies are now required to provide information
on the causal relationship between helminths and prevention of
metabolic diseases.

CONCLUSION

In conclusion, metabolic inflammation should be quantified
as a systemic dynamic process. We have presented a state-
of-the-art overview of methods to evaluate the inflammatory
dynamics of individuals by applying metabolic challenge
tests. These dynamics can be optimized by dietary and
other interventions, i.e., by exposure to nutrients that
improve inflammatory resilience. The first nutritional
intervention studies have been published that showed that
inflammatory dynamics can be improved (see Table 3), and
we envision the next step that focusses on strategies that
(re)gain inflammatory flexibility. Literature is providing
more and more indications that the inflammatory response
may be trained by regular mild inflammatory, as well
as metabolic triggers, regulated through epigenetic and
metabolic modifications. By combining aspects of metabolic and
inflammatory triggers that introduce mild inflammation with
knowledge on trained immunity, hormesis and pro-resolution,
new strategies to optimize dynamics of inflammation may
become available.
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