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Human milk oligosaccharides (HMO) and prebiotic oligosaccharides are proposed

to confer several health benefits to the infant. They shape the microbiota, have

anti-inflammatory properties, and support epithelial barrier functioning. However, in order

to select the best oligosaccharides for inclusion in infant formulas, there is a need to

increase our understanding of the specific effects of HMO and prebiotics on the host

immune system. Therefore, we investigated the effects of the HMO sialyllactose (SL), and

galactooligosaccharides (GOS) on epithelial barrier functioning, microbiota composition,

and SCFA production. The effect of GOS and SL on epithelial barrier functioning and

microbiota composition was investigated using in vitro models. Epithelial barrier function

was investigated by transcriptome analysis of fully polarized Caco-2 cells exposed for

6 h to SL or GOS. In addition, epithelial cell growth, alkaline phosphatase production,

and re-epithelization was studied. Further, we investigated the effect of SL and GOS

on microbiota composition and SCFA production using in vitro fecal batch cultures.

Transcriptome analysis showed that SL and GOS both induced pathways that regulate

cell cycle control. This gene-expression profile translated to a phenotype of halted

proliferation and included the induction of alkaline phosphatase activity, a marker of

epithelial cell differentiation. SL and GOS also promoted re-epithelialization in an in vitro

epithelial wound repair assay. SL and GOS did show distinct modulation of microbiota

composition, promoting the outgrowth of Bacteroides and bifidobacteria, respectively,

which resulted in distinct changes in SCFA production profiles. Our results show that

SL and GOS can both modulate epithelial barrier function by inducing differentiation and

epithelial wound repair, but differentially promote the growth of specific genera in the

microbiota, which is associated with differential changes in SCFA profiles.
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INTRODUCTION

Microbial colonization directly after birth and breastfeeding are
crucial events that determine health in neonatal and adult life
(1, 2). Breast milk is a unique mixture of immunoregulatory
proteins, antimicrobial peptides, micronutrients, milk fat
globular membrane, miRNA containing extracellular vesicles,
and human milk oligosaccharides (HMO) (3, 4). It has been
widely recognized that breast milk confers health benefits to
the infant by shaping the microbiota, preventing infections
and promoting cognitive abilities (5). Breast milk serves as the
golden standard for infant nutrition and exclusive breastfeeding
for the first 6 months in life is advocated by the WHO (6).
Nevertheless, more than half of the infants is not exclusively
breast-fed during the first 6 months of life worldwide (5) and is
thus dependent on infant nutrition. At present, infant formulas
are commonly supplemented with prebiotic oligosaccharides like
galactooligosaccharides (GOS), fructooligosaccharides (lcFOS),
or polydextrose, or a mixture of these. Among these polymeric
glycans, GOS is the most widely used prebiotic oligosaccharide
in infant nutrition.

Contrary to other mammals, human breast milk contains
a very high amount and a structurally diverse set of
oligosaccharides that even exceeds the protein content of
breast milk (7–9). HMO consist of a lactose backbone that
can be elongated into polymeric glycan structures that can
contain fucose or sialic acid moieties. The simple trisaccharides
3′-sialyllactose (3′SL) and 6′-sialyllactose (6′SL) are among the
most abundant sialylated HMO, with estimated concentrations
in mature breast milk ranging between 170–500µg/ml 6′SL and
76–300µg/ml for 3′SL (10). Compared to human milk, mature
bovine milk contains low levels of 3′SL (30–119µg/ml) and 6′SL
(17–88µg/ml) (10).

Exogenous sialic acids have been suggested to be essential
for brain development in early life (11). Additionally, sialylated
oligosaccharides may, although mostly investigated in vitro and

animal models, exert other health effect via neutralization of

pathogens, fermentation into anti-inflammatory metabolites,
direct immunomodulation, and improved epithelial barrier

functioning (10). HMO and prebiotics are metabolized by the
microbiota in the colon and upon their colonic fermentation,
sialylated oligosaccharides may function as an essential
exogenous source of sialic acid. Animal models have shown that
endogenous production of sialic acid in the liver is low during
the first weeks of life (12), suggesting that microbial production
of sialic acid in neonates could be relevant, and emphasizing
the importance of proper colonic microbial colonization
and fermentation.

It has been suggested that growth factors in human milk
are important for epithelial barrier functioning. For instance,
breast milk contains epidermal growth factors that promote
the proliferation and differentiation of epithelial cells, thereby
promoting gut maturation (13, 14). Improving gut maturation
by means of nutrition in early life may be particularly relevant in
the first weeks of life, for premature infants and infants suffering
from intestinal infections or inflammatory bowel conditions
(15, 16). Furthermore, nutrition may play a role in maintaining

barrier function later in infancy during adverse episodes, e.g.,
when the epithelial layer is challenged by inflammation due to
infection or physical damage.

The neonatal microbiota is shaped by colonization of bacteria
from the mother during vaginal delivery and is further shaped
by breastfeeding (17). As reviewed by Mueller et al. (19),
introduction of infant formula instead of breastfeeding results
in microbial changes. Breastfed children show a lower microbial
diversity, decreased abundance of Clostridiales and Bacteroidetes
members (18), a lower prevalence of C. difficile and E. coli and
increased prevalence of bifidobacteria (17, 19, 20) and lactobacilli
(17, 21). The capacity of bifidobacteria to digest HMO has been
appreciated since the 1950s, which is the most likely explanation
of the expansion of this bacterial group in breastfed infants.

The best described and most abundant group of microbial-
derived metabolites are short-chain fatty acids (SCFA). SCFA
such as acetate, propionate, and butyrate are produced in the
colon and reach high concentrations (20–100mM) locally and
much lower levels systemically (in the µM range) (22). The
increase in bifidobacteria was correlated with an increase in
fecal lactate and acetate concentrations and lower pH (23).
SCFA are shown to exert direct anti-inflammatory effects on
colonocytes and restore epithelial barrier functioning, which
results in suppression of colitis in animal models (24, 25).
Additionally, SCFA may exert systemic responses via inducing
epigenetic changes and directly modulating gene transcription
in immune cells. For instance acetate was shown to enhance
regulatory T cell functioning by epigenetic modification of the
FOXP3 gene (26). This study by Thorburn et al. (26) and
comparable studies in other mouse models show that the diet
can, via microbial-derived SCFA, alleviate respiratory diseases
(26–28). Although largely unexplored, fermentation of HMO,
or prebiotics in the colon may thereby serve as an important
carbohydrate source that may impact the physiology and health
of the infant (29–31).

To introduce part of the functionality of HMO into infant
nutrition, prebiotic oligosaccharides like GOS have been added
to infant formulas to support the outgrowth of bifidobacteria.
Prebiotics have no detrimental effect on growth of the infant
and may reduce the pH and increase the softness of the stool,
increase stool frequency, and increase the fecal Bifidobacterium
and Lactobacillus counts (32–36). Fecal SCFA levels of neonates
fed infant formula supplemented with a 9:1 GOS:FOS mixture
are more similar to breast-fed neonates compared to infants
that are bottle-fed without prebiotic supplementation (37).
Sialyllactose (SL) can be extracted from bovine milk, which could
be of interest for early life nutrition (38). However, a better
mechanistic understanding of individual HMO and currently
used prebiotics is required. SL and GOS may shape microbiota
composition and epithelial barrier functioning, since they are
only partly metabolized in the GI tract (39, 40). The aim of
our study was therefore to investigate the effects of SL and
GOS on epithelial barrier function (i.e., re-epithelialization,
proliferation, and differentiation of Caco-2 cells; supported by
underlying mechanisms using transcriptomics), and their effects
on microbiota composition and subsequent SCFA production.
To this aim, we applied multiple in vitro models using

Frontiers in Immunology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 94

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Perdijk et al. Oligosaccharides Support Microbiota and Barrier Functioning

human epithelial cell lines and adult and infant fecal batch
culture experiments.

MATERIALS AND METHODS

Sialyllactose and Galactooligosaccharides
SL (FrieslandCampina) was isolated from bovine milk and used
for gene-expression profiling on Caco-2 cells and batch culture
experiments. The phenotypic effect of SL and GOS on Caco-2
and Ca9-22 cells was confirmed using mixtures of chemically
synthesized 3′SL (OS04397, Carbosynth) and 6′SL (OS04398,
Carbosynth). Moreover, concentrations as found in cow’s milk
(25µg/ml 3′SL + 75µg/ml 6′SL), human milk (125µg/ml 3′SL
+ 375µg/ml 6′SL) or human colostrum (750µg/ml 3′SL +

2,250µg/ml 6′SL) were included (10). Higher concentrations
(5 and 10 mg/ml) of equal amounts of 3′SL and 6′SL were
also included in all cellular assays using Caco-2 cells as they
match the concentration used for transcriptome profiling. The
concentration of GOS (FrieslandCampina) was matched to the
total concentration of SL.

Cell Culturing
Ca9-22 (JCRB0625) gingival epithelial cells and Caco-2 cells
(HTB-37) colon epithelial cell lines were purchased from the
National Institute of Biomedical Innovation JCRB Cell Bank
(Osaka, JP) and ATCC (Manassas, USA), respectively. Both
cell lines were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) containing Glutamax (Gibco, Invitrogen, Paisley,
UK) and 10% fetal calf serum (FCS), 100 U/ml penicillin
and 100µg/ml streptomycin (Sigma-Aldrich, MO, USA). The
cell lines were cultured at 37◦C in a humidified atmosphere
containing 5% CO2 and passaged every second day. Experiments
were performed using cell-passage numbers 9–20 and 12–41 for
Ca9-22 and Caco-2, respectively.

Caco-2 Stimulation and RNA Extraction for
Microarray Analysis
One million cells were seeded and polarized for 2 weeks
in each well of a 6-wells Transwell system for microarray
analysis. The polarized cell layer was incubated with 10 mg/ml
sialyllactose isolated from bovine milk (FrieslandCampina) or
GOS (FrieslandCampina). Medium was refreshed every second
day. All treatments and controls were performed in triplicate.
Medium was aspirated from the inserts and TRIzol was added
to lyse the cells. RNA was extracted by first adding 200 µl of
chloroform to 1ml of the thawed cell lysate. Next, samples were
vortexed for 15 s, incubated for 2–3min at room temperature and
centrifuged for 15min at 11,904 g at 4◦C. The upper aqueous
phase was transferred to a new tube and 500 µl isopropanol
was mixed with the sample and incubated for 5–10min at
room temperature to precipitate the RNA. The samples were
then centrifuged for 10min at 11.904 g at 4◦C. Supernatants
were discarded and the pellet was washed with 1ml 75%
ethanol and centrifuged for 10min at 4◦C. The supernatant
was discarded and the pellet was dried for 5min. 100 µl
MQ was added and RNA was further purified using RNeasy

Mini Kit, according to the manufacturer’s recommendations (ref
74106, Qiagen).

Gene Expression Profiling
RNA quantity and quality was assessed spectrophotometrically
(Nanodrop) and with 6000 Nano chips via a Bioanalyzer 2100
device (Agilent, Santa Clara, CA, USA), respectively. RNA was
judged as being suitable for array hybridization only if samples
showed intact bands corresponding to the 18S and 28S ribosomal
RNA subunits, displayed no chromosomal peaks or RNA
degradation products, and had a RIN (RNA integrity number)
above 8.0. The Ambion WT Expression kit (Life Technologies,
cat. no. 4411974) in conjunction with the Affymetrix GeneChip
WT Terminal Labeling kit (Affymetrix, Santa Clara, CA; cat.
no. 900671) was used for the preparation of labeled cDNA from
100 ng of total RNA without rRNA reduction. Labeled samples
were hybridized on Affymetrix GeneChip Human Gene 1.1 ST
arrays that contain 30,000 coding transcripts and over 11,000
long intergenic non-coding transcripts, provided in plate format.
Hybridization, washing, and scanning of the array plates was
performed on an Affymetrix GeneTitan Instrument, according
to the manufacturer’s recommendations. Quality control of the
hybridizations to the Human Gene 1.1 ST array and primary data
analysis were performed according to strict criteria to ensure that
the array data were of the highest possible quality.

Statistical and Functional Analysis of
Microarray Data
Packages from the Bioconductor project (41) integrated in the
on-line MADMAX pipeline (42) were used for analyzing the
scanned Affymetrix arrays including quantile normalization and
expression estimates via Robust Multiarray Analysis (RMA)
and empirical Bayes approach using the Bioconductor library
affyPLM. For array annotations, we used the following software
and database versions: R-version 2.11.1, Bioconductor version
2.6; Custom CDF (remapped CDF v13, November 2010, library:
hugene11stv1hsentrezgcdf, and hugene11stv1hsentrezg.db
version 13.0.0; http://brainarray.mbni.med.umich.edu). Gene
functional annotations, gene ontology (GO) enrichment and
differential expression calculations, biological interpretation of
transcriptome datasets and pathway analysis were carried out
using Bioconductor packages and third-party software modules
and Ingenuity Pathway Analysis (IPA) (Qiagen), following the
approach described in Baarlen et al. (43). Various quality metrics,
diagnostic plots, pseudo-images and classification methods
were applied to ascertain that only arrays that passed the most
rigorous quality controls (44) were used in the subsequent
analyses using the criteria described in Baarlen et al. (43). Here,
probe sets were redefined according to Dai et al. (45) based on
the Entrez Gene database, and differentially expressed probe sets
were identified using Bioconductor’s limma package (46); limma
values were compared to a moderated T-statistic (IBMT) (47)
when differential gene expression according to limma displayed
low fold-changes and P-values were just below significance
cut-offs. P-values were corrected for multiple testing using a
false discovery rate (FDR) method (48). FDR values between
p < 10−7 and p < 10−8 were chosen so that for all comparisons,
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the number of genes included in pathway analyses were about
800 genes.

Verification of Transcriptome Results by
qPCR
One million Caco-2 cells were polarized for 2 weeks on flat
bottom plates and stimulated for 6 h with 10 mg/ml sialyllactose
(5 mg/ml 3′SL + 5 mg/ml 6′SL) for verification of the
transcriptome analysis by quantitative PCR (qPCR analysis).
Medium was aspirated and cells were lysed in RNAeasy Lysis
buffer. RNA was 1:1 diluted with 70% ethanol and homogenized
using a syringe. A RNeasy Mini Kit was used according to
the manufacturer’s recommendations to isolate RNA for qPCRs
(ref 74106, Qiagen). Cells were stored at −80◦C until further
use. Next, 1 µg of RNA was treated with 1U DNase (Qiagen,
Germany) for 15min at room temperature. DNase activity was
inhibited with 25mMEDTA (Invitrogen) followed by incubation
for 10min at 65◦C. 300 ng of random primers and 0.5mMdNTPs
were added and incubated for 10min at 65◦C followed by 5min
at 4◦C for annealing. Thereafter a mixture of 200U of Superscript
III (Invitrogen), 0.1M DTT (Invitrogen) and 40 of RNAse OUT
inhibitor in first strand buffer was incubated for 10min at 21◦C.
The reaction was performed for 50min at 50◦C using a Biometra
T3 Thermocycler (Westburg, The Netherlands). The reverse
transcriptase reaction was inactivated by incubation at 70◦C for
15min. cDNA was stored at −20◦C. A mixture containing 7 µl
SYBR Green Mix, 1 µg cDNA template and 2.1µM of forward
and reverse primers per sample was run on the Rotor Gene
Real-timer Cycler (Corbett Research, the Netherlands). Genes
were selected based on the microarray data according to the
following criteria: (1) raw expression values should exceed 20
in treatment or control and exceed 100 in the opposite part of
the comparison; (2) limma fold-changes should be as large as
possible and at least exceed (-)2 in log2-space; (3) FDR p-values
should be as low as possible; and (4) genes fulfilling these criteria
should not be exclusively involved in responding to salt exposure
or ion transport across membranes (salts might be common
contaminants of SL preparations). We reasoned that the criteria
above would enable us to select genes of which the expression was
sufficiently modulated upon exposure to SL to be measurable by
qPCR and sufficiently relevant to compare SL quality of different
batches. Primers amplifying genes that were highly modulated by
SL in the microarray (Table 1) were designed by the authors and
synthesized by BaseClear. In total, 35 reaction cycles consisting of
95◦C for 15 s, 60◦C for 30 s, and 72◦C for 45 s were run followed
by a final hold of 60◦C for 1min. Data was analyzed using
RotorGene Q series sofware (Qiagen). Relative gene-expression
was calculated using the Pfaffl method (49).

Caco-2 Cell Counts and Alkaline
Phosphatase Measurements
Caco-2 cells were seeded at a density of 200.000 cells/well in
flat bottom 24-wells plates. GOS or SL were added to the wells
for 4 days. The supernatant was collected and quantified for
secreted alkaline phosphatase by QUANTI-Blue (Invivogen, rep-
qb2) as a marker of differentiation. QUANTI-Blue powder was

TABLE 1 | List of qPCR primers for verification of commercial SL.

Primer sequence

FOXM1 FW GCCTATCCAACATCCAGTG

RV CCGCTCAGACACAGAGTT

IFIT1 FW GTGTCCAGAAATAGACTGTGA

RV CCATCCAGGCGATAGGCA

CDK1 FW TCAACTCTTCAGGATTTTCAG

RV GGATGATTCAGTGCCATTT

EDNRB FW CTTGGCTCTGGGAGACC

RV CACGGAGGCTTTCTGTAT

MARCH3 FW CTGTCGCACTCTTCACTATTTA

RV CAGACTTTGGAATGAGGAGAATC

TNFRSF9 FW GTAAACAAGGTCAAGAACTGA

RV CCATTCACAAGCACAGAC

GAPDH FW TGCACCACCAACTGCTTAGC

RV GGCATGGACTGTGGTCATGAG

reconstituted according to the manufacturer’s instructions. 60 µl
supernatant was added to 190 µl QUANTI-Blue and incubated
for 3 h at 37◦C. The optical density (OD) at 625µm was
measured using a FilerMAX F5 (Molecular Devices, Nederman,
Germany). To count the cells, trypsin was added to the cells.
The cells were spun down at 300 g for 5min and washed
twice with PBS. 150 µl Trypsin-EDTA (0.25%) (ThermoFisher,
25200) was added to detach the cell monolayer. Trypsin was
inactivated by resuspending the cells in 150 µl PBS + 4% FCS
+ 0.02% EDTA. Dead cells were stained with DRAQ7 (Abcam;
ab109202) and 50 µl of 0.975E6 beads/ml (Fluoresbrite YG
Carboxylate microspheres 10µm, 18142) were added to count
cells (Figure S2A; gating strategy). Cells were acquired on a BD
FACS Canto II (BD Biosciences) and analyzed using the FlowJo
software V10.

Scratch Assay and Automated Image
Acquisition and Segmentation
To investigate the effect of SL and GOS on re-epithelialization,
a scratch assay and analysis was performed as previously
described (50). In short, ∼35,000 cells/well were seeded in 96-
wells plates in DMEM + 10% FCS and grown overnight into
a confluent monolayer. The next day, cells were starved for
2 h by replacing the medium with DMEM without FCS. The
cellular cytoplasm was labeled with 2µM CellTrackerTM Red
CMTPX (Molecular Probes, OR, USA) and the nuclei were
stained with 2µg/ml Hoechst 33342 (Molecular Probes, OR,
USA). Longitudinal scratches (0.3 × 2mm) were introduced in
the monolayers using the HTSScratcher (Peira, Antwerpen, BE).
After washing away the cell debris, 100µl of amixture of 3′SL and
6′SL or matching concentrations of GOS, 4 ng/ml TGFα (R&D
Systems, MN, USA) or 10µM of p38 inhibitor (SB203580; Cell
Signaling Technology, MA, USA) +10µM MEK1/2 inhibitor
(U0126, Cell Signaling Technology) in DMEM without FCS
were added into the wells in a randomized manner. The BD
Pathway 855 Bioimaging System (BD Biosciences, CA, USA)
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was programmed to acquire fluorescent and bright-field images
every 20min for 5 h. Image segmentation was performed using
CellProfiler 2.1.1 and visualized in FCS Express 4 Plus (De
Novo Software, CA, USA) software. The lag time (λ in min),
repair rate (µm in cells minute−1) and the maximum number
of cells (A) within the scratch area of each well were calculated
in R by fitting the modified Gompertz equation through the
re-epithelialization measurements.

Fecal Sample Preparation and Batch
Cultures
A pooled preparation of infant or adult fecal samples was
prepared to test the prebiotic effect of SL and GOS in a batch
culture system. All participants had no known gastrointestinal
disorders and did not consume prebiotic products 3months prior
to sampling. Infant feces was collected from 13 infants from 1
to 6 months of age who did not receive solid food, antibiotics,
prebiotics or probiotics in the last month. 6 g per infants was
pooled in 300ml dilution medium containing lactose (1% w/v)
as a carbon source as a replacement for the carbohydrates (e.g.,
starch, pectin) used in adult fecal cultures (51). Adult fecal
slurry was prepared from fecal samples collected from 16 adult
volunteers. Individual fecal samples were diluted to a 10% w/v
mixture using 0.1M, pH7, reduced PBS and pooled. This fecal
slurry was homogenized for 120 s at normal speed (Seward
Stomacher 80 Biomaster), aliquoted and frozen until further use.
Culture medium was reduced overnight in an anaerobic cabinet
(10% H2, 10% CO2, 80%N2) and 10% w/v fecal slurry was added
the next day. Cultures were kept at 37◦C for 24 h. Fecal slurry was
collected at 3, 6, 9, and 24 h post-inoculation with SL or GOS.
Autoclaved anaerobic chemostat nutrient medium, according to
the preparation described in patent WO2011096809A1 (52) was
used. The chemostat vessels were equipped withmagnetic stirrers
and pH meters that were set to maintain pH between pH6.8 and
pH7 by adding 0.5MNaOH or 0.5HCl. 10 g/L of GOS or SL were
added to the vessels just before adding 10%w/v of the fecal slurry.

Detection of SCFA by HPLC
SCFA levels were measured in fecal samples from the batch
cultures using a high pressure liquid chromatography (HPLC) as
developed and described by Guerrant et al. (53).

Quantification of Bacteria Using 16S rDNA
qPCR
To assess the abundance of bacterial genera from the different
batch cultures by qPCR, fecal slurry was thawed and DNA
was isolated using DNA Stool Mini Kit (Qiagen) according to
the manufacturer’s recommendations. The differential bacterial
counts were quantified using quantitative PCR. The bacterial
count was calculated based on a dilution series of DNA that was
isolated from bacterial strains with predetermined CFU. Primers
and probes were based on 16S rDNA gene sequences retrieved
by http://greengenes.lbl.gov. Primer Express software was used
to design the primers.

Intestinal Microbiota Chip
Microbiota samples from infant and adult incubations were
analyzed by microarray analysis according to Ladirat et al.
(54). The microarray contains over 400 bacterial primers for
intestinal bacteria species (e.g., Bacteroides, Bifidobacterium,
Enterobacteriaceae, Clostridia, and Lactobacillus) were selected
based on literature and sequence databases. The array includes
primers on different levels up to species level. Adult samples were
analyzed with the I-chip which was based on adult microbiota
composition, whereas the II-chip was used for analyzing the
infant samples. The II-chip was based on infant microbiota
composition and therefore partly includes different micro-
organisms as compared to the I-chip, but all experimental
protocols for working with both chips are identical (54).

Statistics
Normality was tested with a Kolomogorov-Smirnov and Shapiro-
Wilk test. A Kruskal-Wallis test with Dunnett’s t (2-sided) post-
hoc test was used to compare the GOS or SL treated cells
compared to medium control. For the statistical analysis of
alkaline phosphatase activity, a one-way ANOVA with Dunnett’s
t (2-sided) post-hoc test was used, although the sample size of
four was too small to test for normal distribution. Significant
differences were indicated by: ∗∗∗ = P < 0.001, ∗∗ = P < 0.01,
and ∗ = P < 0.05. IBM SPSS Statistics V23.0 was used for the
statistical analysis.

RESULTS

SL and GOS Modulate Cell Cycle Control
and Induce Differentiation of Epithelial
Cells
Since the majority of oligosaccharides are considered to be
digested in the large intestine, undigested prebiotics may directly
affect epithelial cells in the proximal regions of the intestinal tract.
To investigate the effect of GOS and SL on barrier functioning, a
fully polarizedmonolayer of Caco-2 cells that has the biochemical
characteristics of a small intestinal epithelial cell line (55) was
exposed for 6 h to 10 mg/ml SL or GOS. We performed a
microarray to investigate what pathways were modulated by GOS
or SL. IPA identified cellular pathways in Caco-2 cells that had
been differentially modulated by the oligosaccharides compared
to the medium control. In total, 28 pathways were significantly
modulated by SL, of which 3 were predicted to be repressed
and one to be induced (Table S1). Of the 25 other significantly
modulated pathways, the gene expression profiles did not enable
IPA to predict whether a modulated pathway was induced or
repressed. Cell cycle: G2/M damage checkpoint regulation, ATM
signaling and role of CHK proteins in cell cycle checkpoint
control were all predicted to be downregulated (Figure 1A). The
mitotic role of polo-like kinases and ERK5 were predicted to be
upregulated by SL (Figure 1A).

Next, we investigated the effect of GOS on epithelial barrier
transcriptomes. GOS induced the modulation of 63 pathways
of which 8 were predicted to be activated and 13 to be
repressed according to IPA (Table S1). Interestingly, 4 out of the
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FIGURE 1 | SL and GOS modulate cell proliferation and induce differentiation. A fully polarized epithelial layer of Caco-2 cells cultured in DMEM +10% FCS was

exposed to 10 mg/ml SL or GOS for 6 h. After 6 h the cells were lysed and RNA was isolated for microarray analysis and subsequent IPA analysis. The top five most

significantly, excluding ERK5 (p = 0.07), regulated pathways by (A) SL and (B) GOS (IPA analysis results) were shown. Next, phenotypic changes were assessed by

culturing Caco-2 cells for 4 days in the presence of different concentrations of GOS and SL (0.1–20 mg/ml), followed by (C) cell counting by flow cytometry (n = 2)

and (D) alkaline phosphatase activity determination in culture supernatants (n = 4). Data was represented as mean ± SEM.

top 5 most significantly modulated pathways by SL compared
to medium control were also significantly modulated in the
same direction by GOS (Figure 1B). Additionally, GOS was
predicted to induce estrogen-mediated S phase entry and to
modulate ATM signaling and role of CHK proteins, pathways
that participate in DNA replication checkpoints, among others.
Additionally, GOS repressed cell cycle: G2/M DNA damage
checkpoint regulation and strongly induction of mitotic roles
of polo-like kinases modulation. Taken together, IPA analysis
showed that both oligosaccharides modulate pathways involved
in cell cycle progression and mitosis (Supplementary Text

and Table S2). Since the SL (FC) used for the transcriptome
studies on Caco-2 was isolated from bovine milk and may
contain salts, we verified the transcriptome data with qPCR
using commercially available, synthesized SL (Carbosynth)
(Figure S1). To investigate whether these transcriptional effects
were also translated to a cell cycle progression and (or)
cell proliferation phenotype, we cultured Caco-2 cells for 4
days in the presence of SL or GOS in complete medium.
The number of cells and the fraction of live cells was
assessed using flow cytometry (Figure S2A). The cell number
was more than doubled and the monolayer was still non-
confluent, suggesting little contact-inhibition (Figure S2B).

Caco-2 cells grown for 4 days in the presence of high
concentrations (10 mg/ml or 20 mg/ml) of SL or GOS
showed a lower cell count (Figure 1C), which could partially
be explained by cell death (Figure S2C). Nevertheless, GOS
showed more cell death in higher concentrations (>3 mg/ml)
as compared to SL (Figure S2C). This decrease in cell counts
was accompanied by an increase in alkaline phosphatase activity
at high concentrations of GOS and SL (Figure 1D), which
suggests that SL and GOS modulate the balance between cell
proliferation and cell differentiation and may thus influence
intestinal homeostasis.

SL and GOS Induce Re-epithelialization
We thus showed that GOS and SL alter cell cycle progression
and, at higher concentrations, halt proliferation and induce
differentiation of Caco-2 cells. We therefore investigated the
effect of SL and GOS on re-epithelialization, an important phase
in wound-healing where control of epithelial cell proliferation
and differentiation is tightly controlled by intrinsic pathways.
We used a scratch assay that tracks the presence (in terms of
numbers and location) of epithelial cells in the scratch area over
time. Caco-2 cells are tightly connected to neighboring cells,
which makes this cell line unsuitable for scratch assays. We
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therefore used Ca9-22 cells (immortalized gingival-) epithelial
cells (50). We tested a mixture of SL as present in cow’s
milk (0.1 mg/ml), human breast milk (0.5 mg/ml), and human
colostrum (3 mg/ml) and the same concentrations of GOS.
Strikingly, GOS and SL induced a significant increase in
the maximum number of cells present in the scratch area
5 h after applying the oligosaccharides when compared to
medium control (Figure 2A). The repair rate, as a non-linear
measurement of cellular influx over time, also showed an
increase at the lowest dose used although not significantly
different when compared to the medium control (Figure 2B).
The positive control TGFα, stimulated a significant increase
in the repair rate (Figure 2B) whereas the maximum number
of cells present in the scratch area was not significantly
higher (Figure 2A). The negative control consisting of p38
mitogen-activated protein kinase- and MEK1/2 phosphorylation
inhibitors resulted in a significantly lower maximum number
of cells present in the scratch area and lower repair rate
(Figures 2A,B). Thus, SL and GOS in concentrations present in
cow’s milk and breast milk both stimulated re-epithelialization
of Ca9-22 in terms of a more complete closure of the scratch
area within 5 h after applying the oligosaccharide mixture
(Figure 2C).

SL and GOS Distinctly Modulate
Microbiota Composition
The microbiota plays an important role in gut homeostasis and
barrier functioning. We therefore investigated the effects of SL
and GOS onmicrobiota composition. Pooled adult or infant fecal
cultures were spiked with 10 mg/ml SL or GOS. Fecal slurry was
collected after 3, 6, 9, and 24 h formicrobiota analysis.Microbiota
analysis was first performed on genus level by performing qPCRs
using generic or specific 16S rRNA primers to detect the numbers
of total bacteria, Bifidobacterium, Bacteroides, Lactobacillus, and
Escherichia coli. The starting amount of bacteria in the fecal slurry
of the pooled adult samples (Figure 3A) was higher compared
to those of infants (Figure 3D). Nevertheless, the total bacterial
numbers in infant and adult cultures increased in the first 6 h
of the culture, independent of the inoculum (Figures 3A,D).
Notably, infants showed relatively to the low bacteria numbers
a high amount of bifidobacteria compared to adults. In infant
batch cultures, SL and GOS both induced an increase in
bifidobacteria (Figure 3F) while lactobacilli numbers were not
markedly increased compared to control (Figures S3A,D). Also
in infant batch cultures, the number of Bacteroides bacteria had
increased after spiking by GOS (Figure 3E). After spiking of fecal
batch cultures of adults by SL, the numbers of Bacteroides bacteria
had increased; this increase had not been induced by GOS
(Figure 3B). However, again in the adult fecal batch cultures,
GOS substantially promoted the outgrowth of bifidobacteria
(Figure 3C). No differences were observed in the numbers of
Clostridium and Escherichia (Figure S3).

Next, fecal slurries from time point 0 and 24 h were analyzed
at species level using an intestinal microflora chip (I/II-chip;
TNO). Of the 400 species quantified on the chip, changes
in bifidobacteria, Bacteroides and several other species were

markedly changed by the prebiotic supplements. Overall, the
chip analysis confirmed the 16S rRNA qPCR data, showing
that Bacteroides and bifidobacteria were markedly increased in
adult batch cultures in the presence of SL and GOS, respectively
(Figure 3G), and that this distinct pattern was less pronounced
in infant fecal batch cultures (Figure 3F). In adult batch cultures,
SL induced a specific increase of Faecalibacterium prausnitzii,
Ruminococcus obeum, Collinsella aerofaciens, Eubacterium halii,
and Ruminococcus productus (syn. Blautia producta, comp.
nov.) (Figure 3G). GOS increased the abundance of several
Bifidobacterium species, including B. bifidum, B. infantis, and
B. longum in adult cultures (Figure 3G). In infant cultures, SL
induced the specific outgrowth of members from the B. prevotella
group and B. thetaiotaomicron (Figure 3H). In line with the
qPCR data, this increase in abundance of Bacteroides species
(e.g., B. fragilis, B. thetaiomicron, B. ovatus) induced by SL
was also seen in infant batch cultures were supplemented with
GOS (Figure 3H). The specific outgrowth of Bifidobacterium
species by GOS was less pronounced in batch cultures from
infants compared to adults (Figure 3H). Thus, we showed
that SL and GOS distinctly modulate microbiota composition
as shown by the outgrowth of Bacteroides and bifidobacteria
species, respectively. Several of the abovementioned taxa belong
to the class of Clostridia (i.e., Rumincococcus species), well-
known producers of SCFAs, suggesting that supplementation
of SL and (or) GOS in fecal batch cultures might alter
SCFA production.

SL and GOS Distinctly Modulate SCFA
Production
Next, we assessed whether the microbial changes induced
by SL or GOS altered SCFA production in the fecal batch
cultures. SL and GOS both boosted the total production of
SCFA (Figures 4A,G) including the production of acetate in
adult- (Figure 4B) and infant batch cultures (Figure 4H). In
adult batch cultures, GOS (Figure 4D) and SL (Figure 4E)
induced the production of lactate and propionate, respectively.
The concentration of lactate declined after 6–9 h of batch
culturing, indicating that secondary producers may have
used lactate as a carbon source (Figures 4D,J). This decline
in lactate coincided with the increase of butyrate if growth
medium was supplemented with GOS or SL (Figures 4C,I).
These secondary producers include Eubacterium halii and
Faecalibacterium prausnitzii and Clostridium butyricum
as quantified in adult (Figure 3G) and infant (Figure 3H)
batch cultures, respectively. Butyrate was also produced
in batch cultures inoculated with SL in absence of lactate
production (Figures 4C,D). In infant fecal cultures, lactate
(Figure 4G) and propionate (Figure 4K) were produced in
the presence of SL or GOS. The concentration of formate,
acetate and total SCFA was higher in SL and GOS-containing
cultures compared to batch cultures in baseline medium
(Figures 4A,B,F,G,H,L). Thus, in line with the associated
changes in microbiota composition, SL and GOS induce a
distinct SCFA profile that is dominated by propionate and
lactate, respectively.
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FIGURE 2 | SL and GOS promote re-epithelialization, one aspect of wound healing. Longitudinal scratches were applied to a confluent layer of labeled Ca9-22

epithelial cells. The medium with cell debris was replaced by fresh medium containing mixtures of 3′SL and 6′SL as present in cow’s milk (0.1 mg/ml), human milk (0.5

mg/ml) and human colostrum (3 mg/ml) or matching concentrations of GOS or inhibitors or TGFα that were used as negative and positive controls, respectively. (A)

The total number of cells at the end of the measurement (t = 280min) and (B) the increase in cell numbers over time (i.e., repair rate) was calculated using a non-linear

model using the Gompertz equation. Data of three independent experiments (n = 7–11) was represented as mean ± SEM. (C) An image of one representative well

was shown (0.5 mg/ml SL or GOS). Significant differences compared to DMEM control were indicated by *P < 0.05; **P < 0.01 and ***P < 0.001.

DISCUSSION

Dietary fibers are widely considered to contribute to infant and

adult intestinal health, via largely unexplored biological
mechanisms that are thought to result from microbial

fermentation of fibers into SCFAs. In this paper we show

that SL and GOS both directly positively contribute to
regulation of epithelial cell proliferation and differentiation

in vitro. Transcriptome analysis of Caco-2 intestinal epithelial
cells suggested that cell cycle pathways were modulated
by SL and GOS; this could be corroborated in bioassays
where phenotypes showing less proliferation and more
differentiation were obtained. In vitro epithelial wound
healing assays showed that SL and GOS also promoted re-
epithelialization of a scratch area introduced in a confluent
epithelium monolayer, an important aspect of wound healing.
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FIGURE 3 | SL and GOS differentially modulate microbiota composition. Batch cultures of adult and infant pooled fecal samples cultured in growth medium were

supplemented with or without SL or GOS in duplo. Fecal samples were collected at the start of the batch culture and after 3, 6, 9, and 24 h. Microbiota composition

on genus level (A–F) and on species level (G,H) was determined by qPCR and chip analysis, respectively. Bacterial numbers were shown as mean ± SEM of two

independent batch cultures. Raw fluorescence data are shown for both individual runs for chip analysis.

Additionally, our data showed that SL and GOS distinctly
modulate microbiota composition, by promoting the outgrowth
of Bacteroides and bifidobacteria, respectively. These changes
in microbiota composition resulted in distinct changes in
SCFA profiles, including increased propionate and lactate
levels, respectively, and increased levels of butyrate for both SL
and GOS.

The epithelial lining along the GI tract is the physical barrier
that separates the intestinal lumen from the underlying tissue
and protects against harmful antigens. Of note, gut closure
(i.e., the state in which no macromolecules leak through the
barrier) occurs in humans, in contrast to mice, already a few
days after birth (15). Later in infancy, infection may temporarily
disrupt barrier function, so continuous barrier function support
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FIGURE 4 | SL and GOS differentially stimulate SCFA production. Batch cultures of (A–F) adults and (G–L) infants pooled fecal samples were inoculated with SL or

GOS. Fecal samples were collected at the start (0 h) and after a culture time of 3, 6, 9, and 24 h. SCFA levels were measured in the fecal samples by HPLC. SCFA

levels of two independent batch cultures were represented as mean ± SEM.

is important to appropriately protect underlying tissues from
invasion and to prevent inflammation. Nutritional intervention
to support barrier function is especially relevant in premature
infants who’s gut function is characterized by immature mucosal
and immune function and high level epithelial leakage, increasing
the risk of uncontrolled inflammatory responses and the

detrimental consequences of such response. Microbiota dysbiosis
in combination with barrier dysfunction, and unbalanced
immune responses can aggravate these detrimental consequences
(16). HMO have been shown to improve intestinal homeostasis
in vitro (56–58) and provide systemic anti-inflammatory effects
in animal models (59).
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We assessed the effect of GOS and SL on epithelial barrier
functioning using in vitro assays investigating proliferation,
differentiation and re-epithelialization. Our transcriptome
analysis showed that GOS and SL both modulated the expression
of genes involved in regulating stages of the cell cycle (e.g., cyclins
and cyclin-dependent kinases; see Supplementary Text and
Table S2). To investigate how this transcriptome profile showing
modulation of pathways regulating cell cycle control translated
into an epithelial phenotype in Caco-2 cells, we cultured the
Caco-2 cells for 4 days in the presence of HMO. Cell counts after
4 days showed that at higher concentrations (>10 mg/ml) SL
and GOS suppressed proliferation and induced differentiation,
as shown by increased activity of alkaline phosphatase (ALP),
a well-established differentiation marker for enterocytes. ALP
was shown to modulate microbiota composition and inactivate
different serotypes of LPS (60). The effects of SL that we observed
are in line with previous findings by other groups that also
reported suppressed proliferation and induced differentiation
(57, 58). Thus, SL and GOS halt proliferation and induce
production of ALP, which is a marker for intestinal homeostasis
and epithelial differentiation. Importantly we show in this study
that this effect was not restricted to SL, but was also observed
when Caco-2 cells had been incubated for 4 days with GOS.

Since SL and GOS modulated very basic cellular mechanisms
involved in epithelial differentiation, we questioned whether they
are also capable of promoting re-epithelialization of epithelial
cells, a process that involves tight regulation of proliferation and
differentiation of epithelial cells. In the re-epithelialization phase
of the “wound healing” process, cells migrate into the wound
area, which involves reorganization of cellular cytoskeleton and
cellular differentiation after the wound is closed (61, 62). Here,
we observed that GOS and SL in concentrations present in
cow’s milk and breast milk can directly induce closure of the
scratch area representing the wound in an in vitro model of
wound healing. A well-known signaling cascade that induces
re-epithelization is activation of the epidermal growth-factor
receptor (EGFR) by ligands such as TGFα (63, 64). Interestingly,
acidic HMO fraction and to a lesser extent, neutral HMO induced
EGFR signaling in HT-29 cells (56), and we observed a similar
boosting effect of the acidic SL and neutral GOS in our re-
epithelializationmodel. Thus, we show here that oligosaccharides
such as GOS and SL may promote epithelial barrier function and
thus contribute to intestinal homeostasis. Future studies could
investigate these effects on barrier function in early life using
animal (e.g., allergy or colitis) models.

Since the early 1980’s, research unraveled that breastfed
infants show higher fecal numbers of bifidobacteria and a lower
fecal pH compared to bottle-fed infants supplemented without
prebiotics (65, 66). This lower pH of the stool in breastfed infants
is caused by higher lactate and acetate levels (23, 67). Infant
formula supplemented with a mixture of GOS/FOS promote a
more bifidogenic microbiota composition (32–36) and a SCFA
profile more similar to breast-fed infants (37, 67). In line with
these findings, our batch cultures showed that GOS induced the
outgrowth of bifidobacteria and increased production of lactate.
Although to a lesser extent, SL also boosted the abundance of
bifidobacteria, which is in line with earlier reports showing that

different strains of bifidobacteria are capable of metabolizing
both neutral and acidic HMO (7, 68, 69).

We showed that GOS induced the production of acetate,
butyrate and lactate in fecal batch cultures of adults and, to
a lesser extent, in infants. Animal models have shown that
acetate can protect against E.coli infections in the gut (70)
and systemic diseases such as asthma (26). The concentration
of lactate declined rapidly after 9 h of the culture, indicating
utilization by other bacteria which may include secondary
butyrate producers (e.g., Eubacterium halii and F. prausnitzii)
(71). Butyrate is known to induce anti-inflammatory response
via binding G-protein coupled receptor (GPR) 109A and
downregulation of NF-κB activity (72) and was shown to
reduce diarrhea incidence by enhancing epithelial barrier
functioning in piglets (73). As reviewed by others, acetate,
butyrate and propionate also bind GPR43 and GPR41 and
induce transcriptional and epigenetic modifications that results
in anti-inflammatory effects. Hence, SCFA contribute to immune
regulation and resolution of inflammatory diseases (e.g., allergy,
and type I diabetes) (29). The degree of redundancy of the
individual SCFA in eliciting these functions remains to be
further investigated.

Multiple pathogenic bacteria and several commensal bacteria
from different phyla encode genes that may participate in
biochemical pathways that utilize sialic acid (74). Commensal
bacteria that express pathways to utilize SL are Bacteroides
members such as B. fragilis, B ovatus and B. vulgatus. Our data
shows that Bacteroides increase in abundance upon culturing
in the presence of SL. SL also increased the abundance of
Ruminococcus obeum that was shown to switch to propionate
production if fed with fucose or rhamnose (75). Propionate
has been shown to exert systemic anti-inflammatory responses
in allergic animal models for instance, suppression of allergic
inflammation (27). Recent evidence shows that purified sialylated
bovine milk oligosaccharides are mainly metabolized by B.
fragilis (76), which is in line with in vitro cultures (77). The
authors showed that sialylated oligosaccharides may be essential
for optimal growth in early life. B. fragilis was also shown to
contribute to immune homeostasis by producing polysaccharide
A, a molecule that was shown to induce differentiation of CD4+
T-cells into regulatory T cells in the gut (78).

Importantly, our results show that SL and not GOS promotes
the outgrowth of F. prausnitizii in adult batch cultures. GOS
supplementation to elderly (79) or healthy adults did also not
show a marked increase in fecal F. prausnitizii abundance (80).
The infant pooled samples did not show the presence of F.
prausnitzii at the start of the batch culture that might explain its
absence after the incubation period with the inoculum (data not
shown). Interestingly, at least some F. prausnitzii strains produce
proteins that degrade sialic acid (74). F. prausnitizii induces anti-
inflammatory responses which is shown to protect against colitis
in animal models (81) and its prevalence has been reversely
associated with the prevalence of ulcerative colitis in adults (82).
However, increased F. prausnitiziii numbers were observed in
pediatric Crohn’s disease (83).

An important limitation of this study is the utilization
of in vitro models using human epithelial cell lines and
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fecal batch cultures to study epithelial barrier functioning and
microbiota composition, respectively. We fully acknowledge that
the complex interactions between oligosaccharides, microbiota,
metabolome, and host biology must be further studied using
animal models and latest sequencing and -omics technologies.
This study may initiate such future studies and allow for specific
disease (e.g., colitis) models to be utilized.

CONCLUSIONS

In conclusion, SL and GOS directly interact with the epithelial
lining where they can support differentiation and wound
repair. In addition, these compounds may distinctly modulate
intestinal microbiota composition and activity and change the
corresponding SCFA profiles in the gut lumen. The consequences
of the effects in terms of the host health in infants and adults
remain to be determined.
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