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Abstract
Background: Rheumatoid arthritis (RA) is a complex, chronic autoimmune disease characterized by various
inflammatory symptoms, including joint swelling, joint pain, and both structural and functional joint damage.
The most commonly used animal model for studying RA is mice with collagen-induced arthritis (CIA); the wide
use of this model is due primarily to many similarities with RA in human patients. Metabolomics is used
increasingly in biological studies for diagnosing disease and for predicting and evaluating drug interventions, as
a large number of disease-associated metabolites can be analyzed and interpreted from a biological perspective.

Aim: To profile free amino acids and their biogenic metabolites in CIA mice plasma.

Method: Ultra-high-performance liquid chromatography/tandem mass spectrometry coupled with multiple
reaction monitoring (MRM) was used for metabolomics study.

Results: Profile of 45 amine metabolites, including free amino acids and their biogenic metabolites in plasma
was obtained from CIA mice. We found that the plasma levels of 20 amine metabolites were significantly
decreased in the CIA group.

Conclusion: The results suggest that a disordered amine response is linked to RA-associated muscle wasting and
energy expenditure.
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INTRODUCTION

Rheumatoid arthritis (RA) is a highly prevalent chronic
disease, currently affecting approximately 1% of the
world’s population.1–3 Patients with RA typically have
destruction of joint cartilage and bone accompanied by
joint stiffness, hyperplasia, microvascular injury, swel-
ling and pain. The pathogenesis of RA is mainly associ-
ated with the secretion of cytokines such as interleukins
(e.g., IL-1 and IL-6), tumor necrosis factor (TNFa),
interferon gamma (IFNc), and various pro-

inflammatory mediators.4,5 Increased activity of the
nuclear factor (NF)-jB pathway, which inhibits apopto-
sis in immune cells, also plays a role in RA.6–10 A variety
of cellular immune responses are also activated and/or
dysregulated by increased cytokine levels in RA.11–14

Interestingly, nearly two-thirds of patients with RA
develop cachexia and sarcopenia, with a loss of skeletal
muscle mass, degradation of proteins and energy expen-
diture.15–18 This perturbation in catabolic processes
drives the body into a state of negative energy balance,
leading to skeletal muscle atrophy, loss of muscle
strength and reduced physical activity.18,19

Considering the complex nature of RA, animal mod-
els have been useful for studying the underlying pathol-
ogy and disease mechanisms. The most widely used
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animal model for studying chronic RA is the collagen-
induced arthritis (CIA) mouse model; in addition to
high reproducibility and easy induction, the physiologi-
cal processes and pathogenic features of CIA mice are
strikingly similar to the clinical features associated with
patients with RA.20–23 For example, increased levels of
IL-6, IL-1, and TNFa play a role in the development of
CIA.24 In addition, high correlation between muscle
wasting and the severity of clinical arthritis has also
been observed in animal models, including both mon-
keys and mice with CIA.25,26

Applying a systems biology approach using metabo-
lomics can provide a comprehensive functional readout
of the organism’s physiological status.27 Recently, van
Wietmarschen and van der Greef summarized the puta-
tive inflammatory mediators identified in RA patients
using metabolomics.28 Although some pro-inflamma-
tory mediators have been observed in CIA mice,29 the
complexity of the disease warrants a search for addi-
tional compound classes and a study of their relation-
ship with the biochemical processes underlying RA.
Free amino acids and their derivative biogenic amines
play essential roles in both energy production and pro-
tein synthesis/degradation; thus, changes in the levels
of these amine metabolites may reflect changes in the
body’s state and catabolism of proteins in RA disease.
Therefore, we used a liquid chromatography mass spec-
trometry (LC/MS)-based amine platform to measure
the levels of amine metabolites in the plasma of CIA
and control mice. We observed reduced levels of amine
metabolites in the plasma of CIA mice, possibly reflect-
ing systemic changes in this model of RA. Based on
these results, we speculate that decreased amine
metabolite levels likely reflect muscle mass loss and
protein degradation and may associate with inflamma-
tory activity.

MATERIALS AND METHODS
Induction of arthritis by co-administration of
collagen type II and lipopolysaccharide
A total of 20 male DBA/1J mice (age 6–7 weeks) were
obtained from Charles River Laboratories (Yokohama,
Japan). The animals were randomly divided into two
groups, with 10 mice in the experimental (CIA)
group and 10 mice in the control (Ctrl) group. The
protocol for inducing arthritis is well established and
has been described in detail.29–31 In brief, the mice
were given intraperitoneal (i.p.) injections containing
collagen type II (extracted from bovine nasal cartilage
and dissolved in acetic acid) and lipopolysaccharide

(extracted from Escherichia coli 011:B4 and dissolved
in phosphate-buffered saline) in order to induce
chronic polyarthritis by stimulating an autoimmune
response; control mice received i.p. injections of vehi-
cle (acetic acid and phosphate-buffered saline) only.
All animals were housed in a temperature- and light-
controlled environment with free access to standard
rodent chow and water throughout the experiments.
After repeated injections (administered on days 0, 14,
28, 42 and 56), blood samples were collected from
each animal on day 70 and stored in pre-cooled
Vacutainer tubes (BD Vacutainer, Plymouth, UK) con-
taining ethylenediaminetetraacetic acid (EDTA) as an
anticoagulant. After centrifugation, the EDTA-plasma
fractions were collected and aliquots, including indi-
vidual study samples and pooled quality control
(QC) samples, were stored at �80°C until further
analysis. During sampling, one mouse in the CIA
group died; thus, the final analysis is based on nine
CIA mice and 10 control mice.

Extraction of amine metabolites and analysis
using UPLC-MS/MS
The methods for extracting and analyzing amine
metabolites were adapted for mouse plasma samples
based on a previously described protocol.32 For each
sample, a 5-lL aliquot of plasma was used for the anal-
ysis. A mixture of internal standards containing13C15N-
labeled amine metabolites was added to each 5-lL
plasma sample. After the proteins were precipitated
using MeOH, the supernatant was transferred to a
fresh Eppendorf tube and dried under N2. The residue
was then dissolved in borate buffer (pH 9), and
6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC)
derivatization reagent (Waters, Etten-Leur, The Nether-
lands) was added. The reaction mixture was then
neutralized by the addition of formic acid (20%), and
the solution was transferred to injection vials for ultra-
high-performance LC tandem MS (UPLC-MS/MS)
analysis (injection volume: 1.0 lL) using an ACQUITY
UPLC system (Waters) equipped with an AccQ-Tag
Ultra column (2.1 mm 9 100 mm, 1.7 lm particles,
Waters) coupled to a Xevo mass spectrometer with elec-
trospray ionization source (Waters). Multiple reaction
monitoring was performed in the positive ion mode in
order to monitor the analytes. A gradient elution start-
ing with Eluent A (water containing 2% formic acid)
and ramping to Eluent B (aqueous acetonitrile contain-
ing 2% formic acid) was used as the mobile phase in
the UPLC system. The samples were analyzed in ran-
dom order.
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Data processing and statistical analysis
The integrated peak areas of the target analytes were cal-
culated using Quanlynx software (Waters) and cor-
rected using the appropriate internal standards. The
response ratio (calculated at the ratio between the target
analyte and the respective internal standard) was used
for further statistical analysis. The reproducibility and
reliability of each metabolite measurement was deter-
mined using repeated measurements of the QC pool
performed after every 10 samples. By defining the
acceptable relative standard deviation as <15%, 45
amine metabolites (from a starting list of 74) were con-
sidered high quality and were included in the final list
for further analysis. The data were log-transformed to
correct for distribution skewness and auto-scaled to
achieve uniform units.
To visualize clustering of individual samples, unsu-

pervised principal component analysis (PCA) was per-
formed using MetaboAnalyst version 3.0 (http://www.
metaboanalyst.ca).33 To measure the significance of dif-
ferences in each individual amine metabolite between
the CIA group and the Ctrl group, a two-sided unpaired
Student’s t-test was performed, assuming unequal vari-
ance; differences with a P-value <0.05 were considered
significant (H0: group means are equal). Fold change
(FC) was then calculated in order to determine the
direction (log2 of FC) and magnitude (FC ratio reflect-
ing the CIA/Ctrl ratio) of differences between two group
mean values. A positive value for the log2 of FC indi-
cates higher levels of metabolites in the CIA group,
whereas a negative value indicates lower levels of
metabolites in the CIA group. In the FC analysis, a min-
imum threshold of 1.5 was used, meaning that the ratio
of metabolites between the CIA and Ctrl groups
exceeded 1.5.

RESULTS
Univariate and multivariate analyses
A 2D plot of the PCA scores was generated using an
unsupervised pattern recognition method and was used
to provide a visual overview of the natural distribution
of amines detected in the plasma samples of the nine
CIA and 10 Ctrl mice (Fig. 1). PC1 and PC2 accounted
for 56.6% and 13.9% of the variation, respectively;
thus, these two principal components (i.e., PC1 and
PC2) explained a total of 70.5% of the variance. From
the 2D plot of the PCA scores, the CIA group (depicted
with triangle symbols) and the Ctrl group (depicted
with the ‘+’ symbol) were generally distributed in

distinct regions with respect to PC1, with the CIA sam-
ples clustering largely on the negative side of the plot
and the Ctrl samples clustering largely on the positive
side of the plot, thereby reflecting group differences
with respect to the composition of free amine metabo-
lites in the plasma samples.
To measure whether the differences between the two

groups were significant, we performed a Student’s t-test
for each amine metabolite. In total, 20 of the 45
detected amine metabolites differed significantly
between the two groups (P < 0.05); these 20 amine
metabolites are shown in Figure 2, and all 45 detected
amine metabolites are summarized in Table 1. Metabo-
lite changes are reported in Table 1 only when the
P-values from the Student’s test were lower than 0.1.
Table 1 also lists the false discovery rate-adjusted
P-values. FC analysis was performed to indicate the
direction of change and the magnitude of change for
the detected amine metabolites (FC of the CIA/Ctrl
ratio). The analysis revealed that 11 amine metabolites
decreased by more than one-third in the CIA group
(FCCIA/Ctrl < 0.67). The log2 value of FC indicates that
43 of the 45 amine metabolites detected (95.6%) were

Figure 1 2D plot of the principal components analysis (PCA)
scores for the amine metabolites measured in the plasma sam-
ples from collagen-induced arthritis (CIA) (M) and control (+)
mice. The plot of the PCA scores shows that the two groups
form distinct clusters along the x-axis (corresponding to PC1),
indicated by the vertical dashed line.
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lower in the CIA group (i.e., a negative log2 value of
FC), whereas the remaining two metabolites (methyl-
cysteine and O-phosphoethanolamine) were higher in
the CIA group.

DISCUSSION

RA is a chronic disease in which the immune response
is dysregulated and the levels of several cytokines and
factors are elevated, including TNFa, IL-1b, IL-6, IFNc,
and reactive oxygen species (ROS);34,35 in addition, NF-
jB activation is increased.36 Changes in metabolic fac-
tors such as arachidonic acid-derived inflammatory
mediators have also been reported in RA,37 suggesting
that a metabolomics approach may provide insight into
the biochemical processes underlying this disease.
In addition to the well-characterized inflammatory

dysregulation in RA, muscle wasting and energy expen-
diture are also common features and are linked to the
production of cytokines during the immune
response;38–40 muscle wasting and energy expenditure
can then dysregulate the protein degradation pathway,

leading to perturbed metabolic processes.15,16,19,41–43

Given the close relation between amine metabolites
and proteins, it is therefore reasonable to speculate that
changes in amine metabolites may reflect protein dys-
regulation leading to muscle wasting and energy expen-
diture. However, few studies have focused on
measuring muscle wasting in RA by measuring the
plasma levels of amine metabolites.
Studies of the biochemical processes associated with

RA revealed that activated NF-jB is linked to skeletal
muscle loss,44 and this activation has been observed in
animal models of RA.45,46 Moreover, injecting TNF and
IL-1 into healthy rats causes muscle wasting.47 Previ-
ously, we reported increased levels of inflammatory
mediators and ROS-generated oxylipins in the plasma
of CIA mice, and this was associated with the produc-
tion of cytokines and increased NF-jB activation.29

Increased ROS levels, which affect muscle signaling
pathways, have also been measured in CIA mice;48 sim-
ilar results have been reported in tumor-bearing rats.49

Given that increased cytokines, ROS and NF-jB activa-
tion robustly affect muscle metabolism, we expected to

Figure 2 Summary of the 20 amine
metabolites that differed significantly
between the collagen-induced arthritis
(CIA) and control groups (P < 0.05).
The values are presented as the response
ratio of the peak area (determined as the
ratio of the target amine metabolite to
its corresponding internal standard)
after logarithmic transformation and
auto-scaling.
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Amine Mmetabolite HMDB P-value FDR FCCIA/Ctrl Direction
of change

Methionine HMDB00696 0.001 0.017 0.533 ↓
Homocysteine HMDB00742 0.001 0.017 0.640 ↓
Threonine HMDB00167 0.001 0.017 0.628 ↓
Proline HMDB00162 0.003 0.031 0.521 ↓
Alanine HMDB00161 0.003 0.031 0.573 ↓
Cystathionine HMDB00099 0.005 0.032 0.818 ↓
Valine HMDB00883 0.005 0.032 0.650 ↓
Glycylglycine HMDB11733 0.006 0.032 0.660 ↓
Lysine HMDB00182 0.007 0.032 0.686 ↓
Serine HMDB00187 0.007 0.032 0.815 ↓
Asparagine HMDB00168 0.009 0.036 0.667 ↓
Cysteine HMDB00574 0.012 0.044 0.802 ↓
Tryptophan HMDB00929 0.015 0.051 0.789 ↓
Homocitrulline HMDB00679 0.017 0.051 0.737 ↓
Methionine
sulfoxide

HMDB02005 0.017 0.051 0.582 ↓

Isoleucine HMDB00172 0.020 0.056 0.682 ↓
Gamma-
glutamylalanine

HMDB06248 0.021 0.056 0.616 ↓

Histidine HMDB00177 0.041 0.103 0.799 ↓
Glutamine HMDB00641 0.047 0.107 0.775 ↓
Leucine HMDB00687 0.048 0.107 0.741 ↓
Citrulline HMDB00904 0.052 0.112 0.818 ↓
Saccharopine HMDB00279 0.086 0.168 0.698 ↓
Ornithine HMDB00214 0.087 0.168 0.727 ↓
2-Aminoadipic acid HMDB00510 0.093 0.168 0.732 ↓
Phenylalanine HMDB00159 0.094 0.168 0.755 ↓
Homoserine HMDB00719 0.103 0.178 0.852 -
Methylcysteine HMDB02108 0.114 0.187 1.330 -
Sarcosine HMDB00271 0.119 0.187 0.860 -
Arginine HMDB00517 0.120 0.187 0.866 -
Tyrosine HMDB00158 0.154 0.231 0.723 -
Alpha-
aminobutyric acid

HMDB00452 0.165 0.239 0.765 -

Kynurenine HMDB00684 0.270 0.379 0.861 -
Glycine HMDB00123 0.335 0.439 0.902 -
Beta-alanine HMDB00056 0.338 0.439 0.809 -
Putrescine HMDB01414 0.341 0.439 0.777 -
Norepinephrine HMDB00216 0.371 0.463 0.660 -
Glutamic acid HMDB00148 0.399 0.485 0.850 -
5-Hydroxylysine HMDB00450 0.417 0.494 0.630 -
Glutathione HMDB00125 0.497 0.573 0.841 -
4-Hydroxyproline HMDB06055 0.565 0.635 0.934 -
Aspartic acid HMDB00191 0.713 0.781 0.960 -
Serotonin HMDB00259 0.729 0.781 0.699 -
Spermidine HMDB01257 0.785 0.812 0.933 -
O-Phosphoethanolamine HMDB00224 0.794 0.812 1.015 -
Ethanolamine HMDB00149 0.963 0.963 0.858 -

CIA, collagen-induced arthritis; Ctrl, control; HMDB, Human Metabolome Database; FC, fold
change; FDR, false discovery rate. a: P-values with bold font indicate significant changes
between two groups (P < 0.05).

Table 1 Summary of the 45 amine
metabolites detected in CIA and control
mice
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identify a metabolic ‘signature’ in the plasma of CIA
mice.
Building on the previous report of increased inflam-

matory mediators and increased ROS-generated oxylip-
ins in CIA mice,29 we used a targeted amine platform to
evaluate the changes in plasma amine metabolites in
age- and gender-matched CIA mice compared with

control mice. We found that the plasma amine metabo-
lomes were clearly distinguishable between CIA mice
and control mice. Specifically, 20 amine metabolites
were significantly lower in the plasma of CIA mice.
Given that certain free amino acids such as branched-

chained amino acids are closely associated with protein
degradation, amino acids, and their biogenic amines,

Figure 3 Proposed biological interpretation of muscle wasting in rheumatoid arthritis (RA). In RA, increased levels of inflamma-
tory cytokines, reactive oxygen species (ROS), and nuclear factor (NF)-jB activation play a role in the production of inflammatory
oxylipins, which then trigger an inflammatory response in muscle cells. The inflammatory response then increases resting energy
expenditure and thermogenesis, leading to amino acid wasting and accelerating protein breakdown. Thereafter, the accelerated
protein catabolism and the subsequent reduction in amines, accompanied by the excretion of nitrogen in the urine, causes the
muscle mass loss/atrophy that manifests clinically as muscle weakness/cachexia in RA patients.
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might be used as biomarkers of muscle wasting.50 In sup-
port of this notion, decreased plasma levels of some
amine metabolites have been reported in other diseases
(e.g., chronic obstructive pulmonary disease) and have
been linked to resting energy expenditure and muscle
wasting.51 Increased excretion of nitrogen into the urine
due to muscle wasting has been reported in RA
patients,17,52 and increased levels of acyl-carnitines in the
urine of RA patients reflect muscle breakdown.53

Together, these lines of evidence suggest that muscle
wasting is a highly relevant phenomenon related to RA.
However, to date relatively few clinical studies have
examined muscle wasting in RA by measuring amine
metabolite levels. The large decrease in plasma amine
metabolite levels (e.g., histidine, valine, leucine, pheny-
lalanine and tryptophan metabolites) is consistent with a
previous study of CIA rats by Zhang et al.54 The earliest
studies of amino acids regulation in RA patients date
back to the mid-20th century,55 when researchers found
decreased levels of several amino acids but were relatively
limited with respect to the biological interpretation.
Kobayashi et al. measured a similar decrease in some
amine metabolites in the plasma of Japanese patients
with RA;56 although the authors used these results to
demonstrate a relationship between ornithine metabo-
lism and inflammation, they did not discuss the possible
biological interpretation of non-significantly changed
amine metabolites, including alanine, isoleucine, leu-
cine, lysine, serine and valine.56 In addition, other clini-
cal studies have reported inconsistent changes in the
levels of amine metabolites, and did not attribute these
changes to muscle wasting.57–61 The difference between
our CIA mouse model and RA patients with respect to
changes in amine metabolites may be due to differences
in catabolic processes between mice and humans. Alter-
natively, the relative complexity of clinical data in
patients may mask certain changes in amine metabolites,
as various confounding variables are not always taken
into consideration in clinical studies, including factors
such as age, gender, illness stage, treatment protocol and
diet. Our findings indicate that CIA mice are a valuable
tool for studying the pathological processes that underlie
RA; specifically, this model is easy to induce, and
researchers can easily control/exclude confounding fac-
tors that may affect the study results, including age, gen-
der, genetic background and drug exposure.
In summary, combining our previous oxylipin results

and our current amine metabolomics results allows us
to speculate upon the biological relationship between
muscle wasting and the inflammatory response in RA
(Fig. 3). In addition, our results indicate that muscle

wasting conditions such as cachexia can be measured
using a metabolomics approach (e.g., by measuring
amine metabolites). Lastly, our results indicate that
changes in branched-chain amino acids as well as other
amine metabolites may reflect muscle wasting status in
RA.

CONCLUSIONS

In summary, using metabolomics, we found that the
levels of amine metabolites are systematically decreased
in the plasma of CIA mice, which is consistent with
similarities between our CIA mouse model and RA
patients at the metabolomics level. This result indicates
that the muscle wasting and energy expenditure issues
(e.g., cachexia) associated with RA, and models of RA,
are highly complex.
The cachexia and sarcopenia associated with muscle

atrophy, protein breakdown and energy expenditure are
not unique to RA. For example, several other chronic
inflammatory diseases have been associated with cata-
bolic wasting, including cancer,62 human immunodefi-
ciency virus/acquired immunodeficiency syndrome),63

type 2 diabetes,64 renal failure, uremia65 and heart fail-
ure.66 We therefore hypothesize that systemic decreases
in the levels of amine metabolites may reflect muscle
mass loss and protein degradation due to inflammation.
Considering the complexity and consequences of

muscle wasting in a wide variety of chronic diseases,
using a metabolomics-based approach may provide a
clearer understanding of the biological processes
involved in these diseases.
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