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Despite scientific advances it remains difficult to predict the risk and benefit balance

of immune interventions. Since a few years, network models have been built based

on comprehensive datasets at multiple molecular/cellular levels (genes, gene products,

metabolic intermediates, macromolecules, cells) to illuminate functional and structural

relationships. Here we used a systems biology approach to identify key immune

pathways involved in immune health endpoints and rank crucial candidate biomarkers

to predict adverse and beneficial effects of nutritional immune interventions. First, a

literature search was performed to select the molecular and cellular dynamics involved

in hypersensitivity, autoimmunity and resistance to infection and cancer. Thereafter,

molecular interaction between molecules and immune health endpoints was defined

by connecting their relations by using database information. MeSH terms related

to the immune health endpoints were selected resulting in the following selection:

hypersensitivity (D006967: 184 genes), autoimmunity (D001327: 564 genes), infection

(parasitic, bacterial, fungal and viral: 357 genes), and cancer (D009369: 3173 genes).

In addition, a sequence of key processes was determined using Gene Ontology

which drives the development of immune health disturbances resulting in the following

selection: hypersensitivity (164 processes), autoimmunity (203 processes), infection (187

processes), and cancer (309 processes). Finally, an evaluation of the genes for each of

the immune health endpoints was performed, which indicated that many genes played

a role in multiple immune health endpoints, but also unique genes were observed for

each immune health endpoint. This approach helps to build a screening/prediction

tool which indicates the interaction of chemicals or food substances with immune

health endpoint-related genes and suggests candidate biomarkers to evaluate risks

and benefits. Several anti-cancer drugs and omega 3 fatty acids were evaluated

as in silico test cases. To conclude, here we provide a systems biology approach

to identify genes/molecules and their interaction with immune related disorders.
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Our examples illustrate that the prediction with our systems biology approach is

promising and can be used to find both negatively and positively correlated interactions.

This enables identification of candidate biomarkers to monitor safety and efficacy of

therapeutic immune interventions.

Keywords: biomarkers, safety assessment, systems biology, immune intervention, network databases

INTRODUCTION

The immune system plays a crucial role in maintaining health,
and hence immune disturbances play a key role in
immunodeficiency, infectious diseases, cancer, obesity associated
pathology, geriatrics, allergy, autoimmunity, mental disorders,
and toxicity in general. Advances in our understanding of
immune-related disorders has led to the development and
improvements of immunotherapy of these diseases such as
atopic diseases, autoimmunity, and tumor immunity. In atopic
diseases, non-specific [e.g., anti-IgE (1)] and allergen-specific
immunotherapies (2–4), have been used successfully for a wide
range of allergies, even though to date the allergen-specific
immunotherapies aimed at inducing permanent tolerance
in food allergies seem limited. Besides “classical” pharma,
biopharmaceuticals (e.g., type I interferons, interleukin-
2) have been used widely to restore immune disbalances
in therapy of cancer or inflammatory and autoimmune
diseases (5).

The advances in our understanding of immune-related
disorders and possible therapeutic approaches, coincide with the
awareness that the restoring of immune balances might also
induce adverse events. Effective tumor immunity requires the
induction of the same responses that underlie autoimmunity,

whereas autoimmunity is driven by dysregulation of the same
mechanisms that are involved in host defense and immune
surveillance. Therefore, as we manipulate the immune system
to treat cancer or autoimmunity, we inevitably unbalance the

vital mechanisms that regulate self-tolerance and antimicrobial
resistance (6). Also, a repeated injection of interferon (IFN)-
β which is used in cancer therapy can result in a break

in immune tolerance to self-antigens (7), and might result
in the induction of autoimmune responses, as has been
reviewed by Toomer and Chen (8). Azacitidine (Vidaza) is a
hypomethylating agent, which has been successfully used to
treat acute myeloid leukemia and myelodysplastic syndromes
(MDS) (9). However, infectious events, specifically bacterial
infections, are one of the most frequent complications during
therapy with azacytidine (10). Retuximab, a monoclonal anti-
CD20 antibody, is used to treat B-cell non-Hodgkin lymphoma,
B-cell leukemia, and rheumatoid arthritis. Its side effects include
infections and fever or even more seriously, the reactivation
of infections.

These examples illustrate the risks and benefits of

restoring the balance in immune-related disorders by
novel treatment strategies. Therefore, as the number of
immunotherapeutic options increase, better knowledge of
immune pathways is needed to improve the ability to tread

the fine line between treatment efficacy and unacceptable
adverse events. The same holds true with respect to (the
development of) approaches for the prevention of immune
(related) diseases.

Even though several starting points for immune health
interventions have been identified and are being developed into
prophylactic or therapeutic approaches, there is no regulatory
guidance about how to assess the risk and benefit balance
of such interventions. This particularly applies to the safety
assessment of (nutritional) immune interventions in early life
when young children often are considered most vulnerable.
Regulatory authorities (EFSA, JECFA) stress the necessity to
address the safety assessment of new product applications. At
the moment final safety confirmation comes from expensive and
lengthy clinical follow up studies. Therefore, there is a clear need
for a science-based approach to assess the safety and benefit of
(nutritional) immune interventions.

Recent technological advances have made it possible to collect
comprehensive datasets at multiple molecular and cellular levels
(genes, gene products, metabolic intermediates, macromolecules,
cells). Over the past years, biologists have increasingly invested
in building network models to illuminate the functional and/or
structural relationships of these components into coherent
frameworks, thereby also helping to provide insight into how
disturbances of the cellular or organismal environment lead to
changes in cell or organism behavior.

So far, most studies or research groups have collected big
data sets from several –omics-platforms to understand the
bigger picture by putting the pieces together. Despite enormous
amounts of resources spent on this approach, the number
of useful and practical biomarkers remains disappointing.
Therefore, we aimed to follow a deductive approach by first
defining which immune health effects are crucial to be monitored
in terms of efficacy/safety. This was followed by the identification
of key immune pathways involved in those immune health end
points, and subsequently the selection and ranking of those key
markers/parameters that are linked to the immune pathways.
Instead of gathering large amounts of novel–omics data, we will
start at the most important feature in the top layer of immune
health (Figure 1) and ultimately select the candidate markers at
the bottom layer that are useful for predicting/monitoring the
efficacy/safety of immune interventions.

The aim of this paper is to illustrate how a systems
biology approach can help identify key immune pathways
involved in those immune health end points and select crucial
biomarkers to monitor effects upon immune interventions.
In this paper we will focus on immune health end points
Hypersensitivity, Autoimmunity and resistance to Infection and
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FIGURE 1 | A systems biology view on Immune Health. Four interacting layers are used to demonstrate the relationships between Immune Health (top level) and

molecules/biomarkers (bottom level, mock example). The two middle layers represent the involved functional processes (key events) and biological pathways (cascade

of molecule-molecule interaction) that connect Immune Health with the related molecules and biomarkers.

Cancer and highlight the effects of immune intervention on these
end points.

MATERIALS AND METHODS

Brief Overview of Major Immune Health
End Points
An inventory of the available literature regarding different
health end points was performed using the databases Scopus
and PubMed. A well-balanced immune system is key for
overall health and well-being. The immune system maintains
homeostasis by mounting non-specific innate and specific
adaptive responses to threats of (changing) microbiological
exposure. At the same time, the immune system should have a
tolerant response to self-antigens and harmless non-self-antigens
and allergens, as an inappropriate response to such antigens
contributes to different immune health end points. For example,
an inappropriate or exaggerated immune response to allergens
may lead to hypersensitivity type I reactions, which include
allergic rhinitis (hay fever), allergic asthma, atopic dermatitis
(eczema), and food allergy. In addition, sustained responses
to persistent antigens, such as autoantigens or those derived
from commensal micro-organisms, lead to tissue remodeling
and disturbance of function of the affected tissue and to
diseases such as rheumatoid arthritis, inflammatory bowel
disease, and psoriasis. Lastly, the immune system plays an
important role in suppressing tumor development and shaping
tumor immunogenicity.

Therefore, in this manuscript we focused on the following
immune health endpoints immune health end points
Hypersensitivity, Autoimmunity and resistance to Infection

and Cancer and highlight the effects of immune interventions on
these end points.

Key Mechanistic Processes Driving the
Four Health Endpoints
There is a considerable amount of in vivo and in vitro data
available describing molecular and cellular events potentially
involved in hypersensitivity, autoimmunity and resistance to
infection and cancer. These events can be organized in a sequence
of related events that could plausibly lead to a certain health
endpoint. During the literature study, for each of the four health
endpoints, these molecular and cellular events were described
in a framework. These proposed frameworks simplify complex
biological process by collecting, organizing, and evaluating data
that describe the events at a biological level of organization
with relevance for risk assessment. The application of these
frameworks allows us to identify the major molecular initiating
key processes underlying hypersensitivity, autoimmunity and
resistance to infection and cancer. The processes included in
those frameworks are still highly complex at molecular-cellular
level, so the challenge is to integrate the processes to better
understand the mechanistic pathways. These frameworks offer
the opportunity to select crucial biomarkers to monitor effects
upon nutritional immune interventions.

Connecting Key Mechanistic Processes to
Candidate Biomarkers
The key mechanistic processes in the defined frameworks were
used to mine the Gene Ontology database and the Comparative
Toxicogenomics Database (CTD) to select pathways and/or
genes related to immune health endpoints as identified above.
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Knowledge used to generate CTD and GO database involves
information from both clinical/medical and pre-clinical settings.
The Gene Onthology Consortium defines concepts related to
gene functions (“GO terms”), and how these functions relate
to each other (“relations”) (www.geneontology.org/). These GO
terms enable us to connect genes/proteins to diseases using GO
identification numbers and MeSH identification numbers. Neo4J
is a graph-database with query-based calculations (Neo4j, Inc.,
San Mateo, CA, USA) and is used, together with Venn-diagrams
(11) to visualize and calculate the unique and overlapping
genes/proteins among the health endpoints/processes. These sets

of genes/proteins form the basis for a rank-based selection of
candidate biomarkers for these key mechanistic processes.

Proof of Principle/in silico Test Cases
After selecting a large set of genes for each immune health
endpoint and predicting their role in the initiation in disturbed
immune functions, the next step was to check whether this set of
genes could be validated. This was done by predicting whether
an immune intervention can result in a higher susceptibility to
any of the health endpoint disturbances. To this end, a set of
chemicals and food substances were selected that are currently

FIGURE 2 | Network visualization showing unique and shared molecules between hypersensitivity, infections, and autoimmune disorders. The red nodes indicate

molecules related to hypersensitivity, blue nodes indicate molecules related to autoimmune, and green nodes indicate molecules related to infections. Molecules in the

highlighted circles are shared between the indicated immune health end points. The squares indicate the names of the shared molecules. The molecules confined to

the fourth immune endpoint “cancer” are not depicted for clarity reasons as they are highly shared among the other immune health endpoints.
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used as immune interventions of which (i) adverse/beneficial
effects are described and (ii) top interacting genes are described
in the CTD. The CTD contains curated data on the top
interacting genes affected by a chemical/food substance (http://
ctdbase.org/help/ixnQueryHelp.jsp). Using these curated data,
the top interacting genes were compared with our previously
identified set of genes predicted to be involved in the initiation
of immune disorders, to check whether the previously described
adverse/beneficial effects confirmed our prediction.

RESULTS AND DISCUSSION

Key Processes Driving the Four Immune
Health Endpoints
In order to select molecules/genes involved in immune health
disturbances, overviews were generated of all key processes likely
to be involved in the induction of hypersensitivity (which can
be divided in four different types: hypersensitivity type I, II,
III, IV), autoimmunity, and resistance to infection and cancer
(Supplementary Figures 1–7) (12–19). These key processes are
described in the legends and visualized in biological frameworks.
These processes were used to select pathways/genes.

It must be noted that an appropriately functioning immune
system is a dynamic system in which everything is kept in an
optimal balance. So even though this balance might be disturbed
by the upregulation/activation of certain pathways/molecules,
this does not automatically result in a malfunctioning of
the immune system, as a healthy dynamic immune system
will eventually return to a balanced state. Therefore, it is of
importance that the predicted biomarkers that might influence
the immune functions after immune intervention, are validated
in an appropriate assay/study.

Connecting Key Mechanistic Processes to
Candidate Biomarkers
The key mechanistic processes were used to mine the GO
database and CTD to select pathways and/or genes driving
the four immune health endpoints as identified above. In the

CTD the molecules were collected related to each immune
health endpoint: hypersensitivity (hypersensitivity D006967:

total 184 molecules), autoimmunity (autoimmune diseases
D001327: total 564), infection (parasitic diseases D0101272,
Bacterial Infections and mycosis D001423: total 357 molecules),

virus diseases (D014777), and cancer (neoplasm D009369: total
3173 molecules). In addition, on basis of the health endpoint

framework, the associated biological processes (GO pathways)

were selected that are involved in the initiation of the four
different immune health endpoint functions (including number

of genes). This resulted for hypersensitivity in 164 key processes,
for autoimmunity 203 key processes, for infection 187 key
processes, and for cancer 309 key processes. This set was used

to determine the overlap between the immune disease related
genes from the CTD indicated that the set of genes from CTD
already incorporated most genes involved in development of
immune diseases. As an example of overlapping molecules for
the immune health end points hypersensitivity, autoimmunity

and infection, a network visualization depicting the unique and
shared molecules between these health end points was generated
(Figure 2). A selection of candidate biomarkers was generated
from the network by filtering down all proteins indicated by the
UniProt database as secreted proteins. A network visualization of
these secreted proteins with overlap among the different immune
health endpoints is displayed in Figure 3. To complete overlap
analysis of all immune health endpoints, we visualized the results
for clarity reasons in a Venn diagram (Figure 4). The names of
the individual genes per immune health endpoints are depicted
in the Supplementary Tables 1–4. In total 15 molecules were
overlapping between all four immune health endpoints: ALB,
HLA-DPB1, HLA-DQA2/ HLA-DQA1, HLA-DRB1, ICAM1,
IFNG, IL1B, IL4, IL6, IL10, IL12B, IL18, MPO, CCL2, and TNF.

Proof of Principle/in silico Test Cases
The top interacting genes identified by the CTD for a specific
intervention were used for comparison with our previously
identified set of genes predicted to be involved in the initiation
of immune disorders, to check whether the previously described
adverse/beneficial effects confirmed our prediction. Below,
several examples of immune modulating substances are given as
a proof of principle to illustrate the plausibility that they might
interact with any of the other immune health endpoints.

Anti-cancer Drugs
Anti-cancer drugs are also called anti-neoplastic agents or
chemotherapeutic agents, and act upon rapidly dividing
cancer cells to destroy them/for destruction. Examples of
anti-cancer drugs are alkylating agents (cisplatin, chlorambucil,
procarbazine, carmustine etc.), antimetabolites (methotrexate,
cytarabine, gemcitabine etc.), anti-microtubule agents
(vinblastine, paclitaxel etc.), topoisomerase inhibitors (etoposide,
doxorubicin etc.), cytotoxic agents (bleomycin, mitomycin etc.),
and proteasome inhibitors (bortezomib). Anti-cancer drugs have
severe adverse effects like hair loss, nausea and vomiting, anemia
and increased susceptibility to infection.

Bleomicin and bortezomib, as examples of anti-cancer drugs,
were checked in the CTD (database) for their top interacting
genes. Subsequently, those genes were checked whether they
were involved in the onset of the four identified immune health
endpoints (Figure 5). As expected, most of the top interacting
genes are found in the immune health endpoint infection.

Bleomicin was shown to have interactions with all immune
health endpoints. The immune related adverse reactions
described for this drug indeed also include hypersensitivity
reactions, increased risk for infections and scleroderma (an
autoimmune condition). Bortezomib showed to have only
interaction with the immune health endpoint infection. The
immune related adverse reactions described for bortezomib is an
increased risk for infections (T lymphocytopenia).

Omega-3 Fatty Acids/PUFA
Omega-3 fatty acids are polyunsaturated fatty acids (PUFAs).
Omega-3 fatty acids are used as food supplements and have
shown some benefits and some health risks (depending on the
dietary source) (20). Omega-3 fatty acids were checked in the

Frontiers in Immunology | www.frontiersin.org 5 February 2019 | Volume 10 | Article 231

http://ctdbase.org/help/ixnQueryHelp.jsp
http://ctdbase.org/help/ixnQueryHelp.jsp
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Meijerink et al. Immune Network to Predict Interventions

CTD for their top interacting genes. Subsequently, those genes
were checked to see whether they were involved in the immune
health endpoints (Figure 6). Interestingly, in all four of the
health endpoints the top interacting genes were present. These
findings are confirmed in literature: For the immune health point
resistance to cancer there is some evidence that the consumption
of fish omega-3 fatty acids is associated with a lower risk of
breast cancer (21); however, there is insufficient evidence of
its benefits on other types of cancer (22). For the immune

health point hypersensitivity a clinical trial showed that fish oil
consumption during pregnancy reduces persistent wheeze and

asthma in the offspring at ages 3–5 years (23). In addition for the

immune health point autoimmunity, a systematic review on the
intake of omega-3 PUFAs in patients with rheumatoid arthritis,
showed that among five proinflammatory markers evaluated,
only leukotriene B4 was found to be reduced (24). Last for the
immune health point resistance to infection a study showed

that omega-3 PUFA-derived lipid mediator protectins could be
a new innate suppressor of influenza virus replication that may
be further investigated as a potential antiviral drug (25).

These examples illustrate that the prediction with our systems
biology approach is promising and can be used to find both
negatively as positively correlated interactions. It must be noted
that this approach is greatly influenced by the amount of data
available on a specific compound; there will be more evidence
on the top interacting genes when there are more data available.
Therefore, it is of importance that the predicted biomarkers are
properly validated in an appropriate assay/study.

Limitations
The systems biology approach described here is a promising
tool, but it does have its limitations. These limitations are based
on the fact that it is essential that the data used are accurate,
complete, and up to date. Data are continuously generated, so the

FIGURE 3 | Refined network visualization of the unique and shared molecules between hypersensitivity, infections and autoimmune disorders, and predicted to be

secreted in plasma. All molecules labeled to be secretable according UniProt database are included in the network. The red nodes indicate molecules related to

hypersensitivity, bleu nodes indicate molecules related to autoimmune, and green nodes indicate molecules related to infections. Molecules in the highlighted circles

are shared between the indicated immune health end points. The squares indicate the names of the shared molecules.
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screening model presented here is a dynamic model and needs
continuous on-going scheduled refinements and improvements.
Moreover, the approach might be subjected to a reporting bias
as it can be difficult to distinguish the absence of a relationship
between molecules/pathways from a lack of evaluation of the
relationship/pathways. Another limitation is that the data used
to generated the toolbox are derived from databases which are
mainly disease-driven, and not focused on healthy situations.
To overcome this limitation, molecules from the key processes
(starting from a healthy condition) driving the development of
immune health disturbances were determined and included in
the screening/prediction model.

Future Directions
The approach has been evaluated using a few test cases
retrospectively, showing that the side-effects observed in the
human population could be retrospectively confirmed by our

FIGURE 4 | Venn diagram illustrating the (shared) sets of molecules involved in

key mechanistic processes driving immune health endpoint disturbances. The

key mechanistic processes were used to mine the GO database and CTD to

select the depicted number of genes.

screening/prediction tool as described in the manuscript.
When applied in the context of a testing strategy this
screening/prediction tool may be very valuable to identify
key molecules/pathways in order to assess safety/beneficial
effects of novel immune interventions. For further development
of the screening/prediction tool it is important to validate
predicted biomarkers in appropriate assays/studies. Moreover,
it would be very valuable to incorporate the possibility for
stratification of the observations based on parameters known
to strongly impact immune functioning, such a age, gender,
ethnicity etc.

CONCLUSION

We provide a promising systems biology approach to predict
genes that help to clarify, on one hand the relationships between
immune health interventions and the susceptibility to immune
related disorders, and on the other hand, the identification of

FIGURE 6 | Prediction from CTD omega-3 fatty acids. Gene names are listed

of the top 10 interacting genes per chemical. Crosses (X) indicate in which of

the four immune health endpoints they are involved. Below the table the

immune related side effects observed are listed.

FIGURE 5 | Prediction from CTD anticancer drugs. Gene names are listed of the top 10 interacting genes per chemical. Crosses (×) indicate in which of the four

immune health endpoints they are involved.
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interesting biomarkers to monitor in safety and efficacy studies
on immune interventions.

This systems biology approach forms a good starting point
to predict relevant genes and (immune) biomarkers to assess
the effects of the immune interventions, which will need to be
validated in a follow-up study. Instead of following a tick-box
approach for safety assessment, this approach forms the basis of
a science-based testing strategy to assess the safety and efficacy of
immune interventions. This proposed approach could support a
faster way to screen the effects of immune interventions.
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