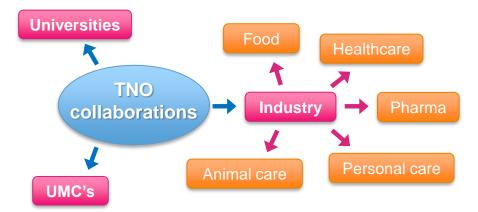
MICROBIOME FOR HEALTH

Microbiology & Systems Biology

Contact: Edwin Abeln



TNO innovation for life

TNO MICROBIOLOGY

> TNO is an independent research institute

- Many collaborators
 - > National and international
 - Industry and academy
- 🕨 High expertise on microbiology 🔶
- > Applied research

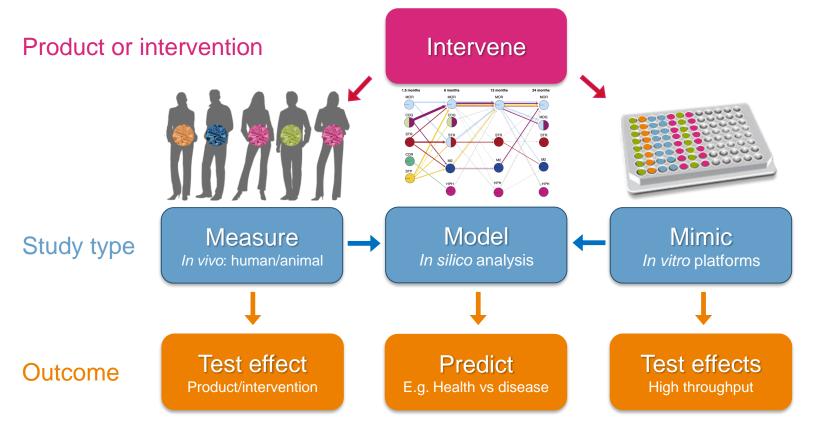
- > TNO has over 15 years of experience in microbiome research
 - High quality data
 - > Publications, peer-reviewed
- Integrated, systems biology approach
- Functional tests to link microbiome to physiology

Early Respiratory Microbiota Composition Determines Bacterial Succession Patterns and Respiratory Health in Children

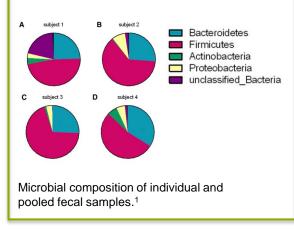
Giske Biesbroek¹⁺, Evgeni Tsivtsivadze²⁺, Elisabeth A. M. Sanders¹, Roy Montijn², Reinier H. Veenhoven^{3†}, Bart J. F. Keijser², and Debby Bogaert¹

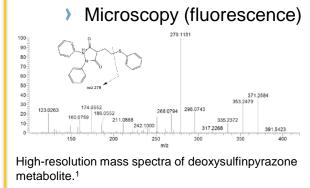
In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota

Sophie Fehlbaum ^{1,*}, Kevin Prudence ¹, Jasper Kieboom ², Margreet Heerikhuisen ², Tim van den Broek ², Frank H. J. Schuren ², Robert E. Steinert ¹¹


VISION

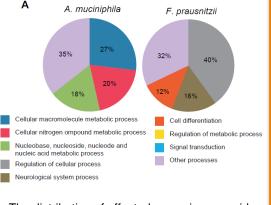
- > We believe that a healthy microbiome is essential to optimize health.
- TNO therefore aims to develop better research tools that enable the development of microbiome-directed health products.
 - > Our application areas:


TYPES OF RESEARCH



WHAT WE Measure

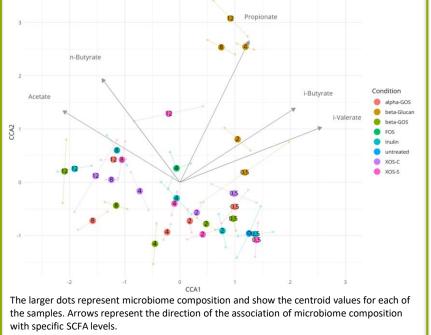
- Microbiome composition
 - > 16S or metagenome
 - > ITS Fungal composition
 - > Anti-biotic resistance
 - Viability

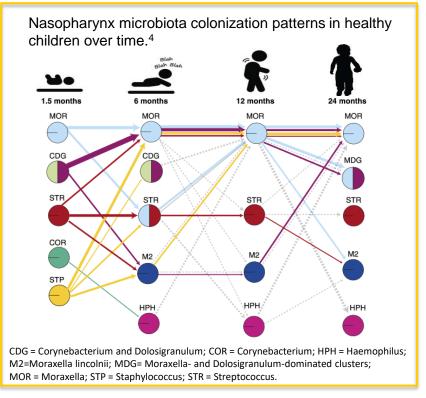


- Microbiome function
 - Metagenome
 - > Transcriptome
 - Metabolome
 - > SCFA analysis
 - Microbiome metabolites
 - Drug metabolites

Physiology of host

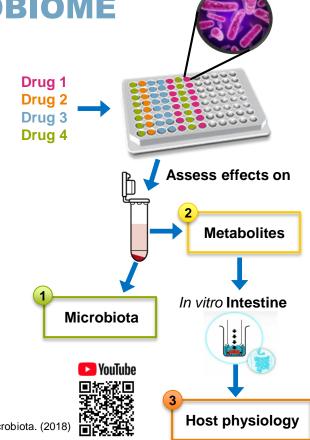
- Blood biomarkers
- Metabolites
- Host-microbiome interactions


The distribution of affected genes in organoids in relation to *A. muciniphila and F. prausnitzii.*²


- . Van de Steeg et al. An Ex Vivo Fermentation Screening Platform to Study Drug Metabolism by Human Gut Microbiota. (2018)
- 2. Lukovac et al. Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids. (2014)

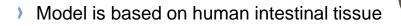
IN SILICO Modelling

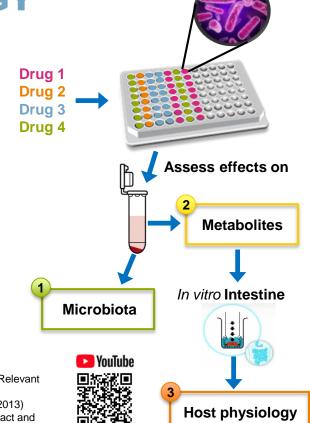
Relationship between the composition of the gut microbiota and the levels of short-chain fatty acids (SCFAs).³


- 3. Fehlbaum et al. In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota. (2018)
- 4. Biesbroek et al. Early Respiratory Microbiota Composition Determines Bacterial Succession Patterns and Respiratory Health in Children. Am J Respir Crit Care Med (2014)

I-Screen: an *in vitro* human gut microbiome model^{1,3,5}

> Test your product:


- Cost efficient set up allows for screening of compounds
- Proven benefit for food, ingredient and drug testing
- > Evaluate effects of compounds on
 - 1. Gut microbiota
 - 2. Compound metabolism
- Full analytical omics toolbox \rightarrow see measure
- Validated in comparative study¹
- 1. Van de Steeg et al. An Ex Vivo Fermentation Screening Platform to Study Drug Metabolism by Human Gut Microbiota. (2018)
- 3. Fehlbaum et al. In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota. (2018)
- 5. Ladirat et al. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition. (2013)

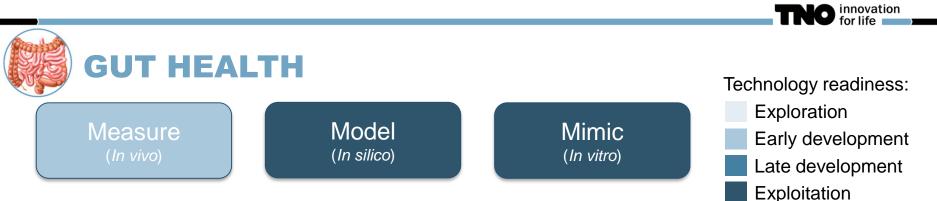

innovation

Mimicking // V/VO GUT PHYSIOLOGY

- InTESTine[™]: an *in vitro* human intestinal tissue model^{6,7,8}
- > Test your product:
 - > Effect of microbiome metabolites on gut health/absorption
 - Gut absorption (of drugs, nutrients, metabolites)
 - > Epithelial barrier function
 - Detection of early immune response
 - Reduce in vivo studies

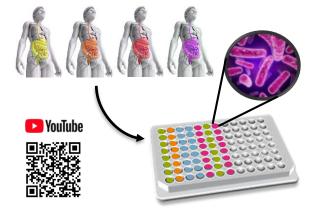
- 6. Westerhout et al. Prediction of Oral Absorption of Nanoparticles from Biorelevant Matrices Using a Combination of Physiologically Relevant In Vitro and Ex Vivo Models. (2017)
- 7. Westerhout et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. (2013)
- 8. Vaessen et al. Regional Expression Levels of Drug Transporters and Metabolizing Enzymes along the Pig and Human Intestinal Tract and Comparison with Caco-2 Cells. (2017)

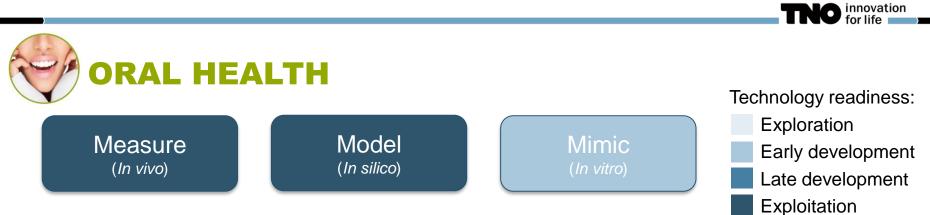
innovation for life



MICROBIOME FIELDS WE WORK IN

> We have established multiple research tools, but we are looking to expand our toolbox further. Therefore, we are looking for co-development partners.





- What we have:
 - In vitro platform I-screen based on colon microbiota from healthy people^{1,3,5}
- > What we would like:
 - Disease specific and personalized *in vitro* platforms I-screen
 - In vitro platforms I-screen based on small-intestinal microbiota
 - > Quantitative microbiome drug metabolism system

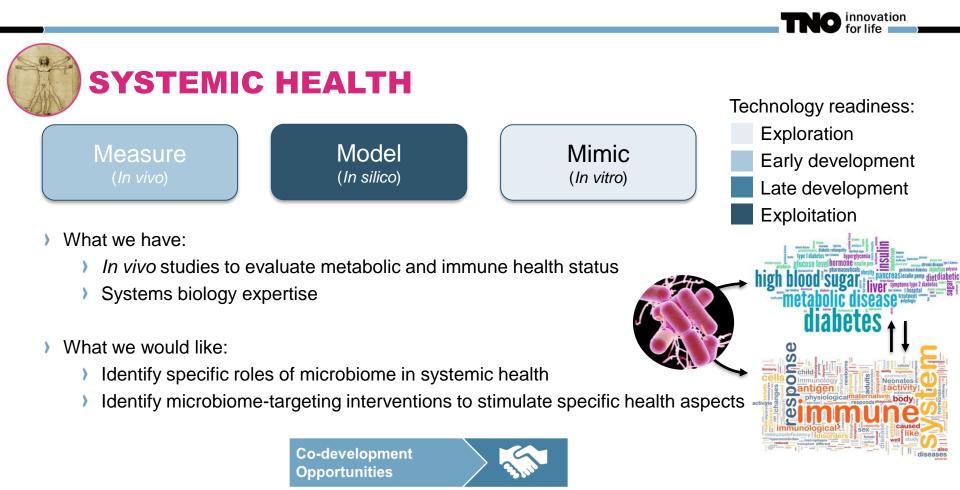
- 1. Van de Steeg et al. An Ex Vivo Fermentation Screening Platform to Study Drug Metabolism by Human Gut Microbiota. (2018)
- 3. Fehlbaum et al. In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota. (2018)
- 5. Ladirat et al. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition. (2013)

- What we have:
 - Knowledge and *in vivo* studies on the microbiome of the healthy mouth
- What we would like:
 - In vitro model for dental biofilms and tongue (halitosis)
 - > Develop a sensor toothbrush for oral (microbiome) health

- What we have:
 - > Knowledge and *in vivo* studies e.g. on early life development of microbiome in relation to health⁴
- > What we would like:
 - *In vitro* microbiology model
 - > Preventive personalized healthcare strategies

4. Biesbroek et al. Early Respiratory Microbiota Composition Determines Bacterial Succession Patterns and Respiratory Health in Children. Am J Respir Crit Care Med (2014)

- What we have:
 - Extensive knowledge on the vaginal microbiome
 - > Experimental set-up to mimic the vaginal microbiome, in healthy and disease
- > What we would like:
 - Develop a personalized screening system for identifying non-antibiotic treatments for Bacterial Vaginosis and other health problems



- What we have:
 - Exploratory research on *in vitro* microbiome model
 - > Generic toolbox for microbiome research and skin sampling protocol
- > What we would like:
 - > Translational healthy skin microbiome model
 - > Develop in-depth knowledge on relation microbiome and health
 - > Translational skin disease microbiome model e.g. atopic dermatitis

TNO COLLABORATION

FLEXIBILITY TO CHOOSE MODEL OF COLLABORATION

- Fit in goals of TNO
- > Together with industry
- Translate knowledge into applicable models / readouts

License agreements

- Tailor made study designs making use of existing models
- Making use of broad knowledge and expertise available
- > Excellent project management and reporting

Public Private Partnerships

innovation

E.g. EU projects

PEOPLE & CONTACT

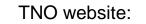
Edwin Abeln

Sr. Business Development Manager

Email: edwin.abeln-at-tno.nl Location: TNO Zeist Utrechtseweg 48

LITERATURE

- 1. Van de Steeg et al. An Ex Vivo Fermentation Screening Platform to Study Drug Metabolism by Human Gut Microbiota. (2018)
- 2. Lukovac et al. Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids. (2014)
- Fehlbaum et al. In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut 3 Microbiota. (2018)
- Biesbroek et al. Early Respiratory Microbiota Composition Determines Bacterial Succession Patterns and Respiratory Health in 4. Children. Am J Respir Crit Care Med (2014)
- 5. Ladirat et al. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition. (2013)
- Westerhout et al. Prediction of Oral Absorption of Nanoparticles from Biorelevant Matrices Using a Combination of 6. Physiologically Relevant In Vitro and Ex Vivo Models (2017)
- Westerhout et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. 7. (2013)
- Vaessen et al. Regional Expression Levels of Drug Transporters and Metabolizing Enzymes along the Pig and Human Intestinal 8. Tract and Comparison with Caco-2 Cells. (2017)


Further reading:

> THANK YOU FOR YOUR ATTENTION

Take a look at

🕨 YouTube

TNO innovation for life

Presentation by Dide Reijmer, MSc