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Abstract. Biomass is responsible for 25% of the primary energy supply in Brazil. However, future bio-
mass demand will be influenced by many factors. This study evaluates potential pathways for the utili-
zation of biomass in Brazil until 2050, while considering novel biobased sectors (renewable jet fuel and 
biochemicals), resource competition, and greenhouse gas (GHG) emissions. Whereas other least-cost 
optimization models assess biobased options to meet energy and chemicals demand in Brazil to a lim-
ited extent, this study provides a detailed breakdown of biomass feedstock, including an extensive 
portfolio of biomass conversion technologies. A least-cost optimization model is used to assess the 
demand for energy and chemicals, and the competition between biomass and other climate-mitigation 
measures such as renewable power generation technologies, carbon capture and storage (CCS), and 
energy efficiency. Varied over the three scenarios, 86–96% of the sustainable biomass supply potential 
is used. Under more stringent mitigation targets, novel biomass conversion technologies start to play 
an important role: Biobased electricity production with CCS, jet fuel production from lignocellulosic 
biomass, and chemicals are partly produced from ethanol and bio-naphtha. The modeling framework 
provides a transparent view of which type of biomass can be used for which specific purpose. It is 
therefore an interesting tool for future research, for example to examine the dynamic interaction with 
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Introduction

G
reenhouse gas (GHG) emissions will increase in the 
coming decades if no action is taken. Biomass is 
expected to play a critical role in preventing global 

warming from exceeding the 2 °C limit as it has significant 
GHG mitigation potential,1,2 especially in the transport 
sector, by replacing fossil fuels.3 Cost-efficient trajectories 
show that large-scale deployment of modern bioenergy, 
carbon capture and storage (CCS), and their combination 
(BECCS) are key mitigation strategies to supply energy, 
mitigate GHG emissions, and to reach this target.1,4,5 Brazil 
has a large biomass potential,6,7 a long history of producing 
bioethanol from sugarcane,8–10 and is currently the second 
largest producer worldwide.11 Furthermore, Brazil ś long-
term energy-system evolution may rely increasingly on bio-
mass because of its large potential at a relatively low-cost, 
compared to other renewable resources.12,13

The future use of biomass for the production of renewable 
energy and chemicals depends on the conversion efficiency 
from primary feedstock to end-use product, and economic 
competitiveness in comparison to other renewable energy 
options.14 To assess the conversion efficiency and the eco-
nomic competitiveness of biomass, different biomass feed-
stock types and conversion technologies should be merged 
into the framework of least-cost energy system models 
(ESMs) to assess their ability to serve demand for different 
end-use purposes. The integration of biomass into ESMs is 
often simplistic or incomplete.14–16 This is shown by studies 
focusing especially on the integration of biomass in ESMs. 
Current approaches have limitations in either the portfolio 
of conversion technologies or in accounting, fully or partly, 
for limited land resource availability.17–22 Studies focusing 
on the use of least-cost ESMs in the future energy system 
of Brazil also do not explicitly address the integration of 
biomass availability, or a full range of biomass conversion 
technologies, as they focus on other aspects of the energy 
system.23–26 As a result, they ignore possible competition 
for biomass between the different end-use products. 

The inclusion of bio-chemicals is also important because 
biomass is currently the most mature technology to produce 
large-scale renewable chemicals. Other alternatives are only 
in the research and prototype phases of development.27,28 

From an energy analysis point of view, it is relevant to 
include chemicals because a relevant share of the petroleum 
is used in the petrochemical industry for the bulk produc-
tion of  chemicals.29–31 With a full portfolio of renewable 
alternatives for petrochemical products, this study is able to 
analyze the transition of the petrochemical industry under 
stringent GHG mitigation measures. This is also high-
lighted by Brown and Brown,32 who foresee a large potential 
for biobased chemicals as renewable alternatives to plastics 
because the electrification of the transport sector reduces 
the production not only of petrol but also other refinery 
products, including naphtha, the base feedstock for the pro-
duction of plastics. Naphtha is a co-product of oil refiner-
ies. Oil refineries are designed in such a way to produce oil 
products with a fixed ratio. Gasoline is one of the products. 
As the demand for gasoline decreases due to electrifica-
tion of passenger transport the production of the other oil 
products (including naphtha) may decrease as well as they 
are produced with fixed ratios. As electrification is seen as a 
very important measure for reducing GHG emissions from 
the transport sector,33 the analysis of substituting naphtha 
should be part of integrated assessment studies. 

The production of bio-chemicals is considered in the 
energy-system modeling literature. Hoefnagels et al.20 
show that fossil chemicals can be replaced by biobased 
chemicals. However, they do not consider the development 
of other fossil and renewable technologies. Tsiropoulos et 
al.14 assess a full range of biotechnologies, as well as other 
fossil and renewable technologies to be integrated into the 
energy system of the Netherlands. However, the modeling 
of oil refineries is simplified due to data complexity, and 
the dynamic interaction between fixed outputs of oil refin-
eries and substituting biofuels is therefore not optimally 
addressed.14 Moreover, due to limited domestic biomass 
resources, the majority of the demand for bioenergy is met 
by imported biomass,14 which leaves the competition for 
land partly out of the assessment. 

The aim of this study is to explore the role that biomass 
can play in meeting the demand for energy and chemicals 
along with the mitigation of GHG emissions in Brazil 
up to 2050. The assessment is carried out in a least-cost 
optimization energy system model built with the TIMES 
(The Integrated Market allocation EFOM (Energy Flow 

demand for land. © 2019 The Authors. Biofuels, Bioproducts, and Biorefining published by Society of 
Chemical Industry and John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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Optimization Model) System) platform. The modeling 
structure of TIMES makes it possible to examine the 
development of a biobased economy, in relation to the 
development of fossil and other renewable conversion 
technologies for the production of energy and chemicals. 
This assessment connects the issue of resource competi-
tion to a full-range portfolio of biomass conversion tech-
nologies. Three scenarios are used to explore the potential 
pathways for a biobased economy (BBE) in Brazil, consid-
ering GHG mitigation policies, biomass supply potential, 
and techno-economic uncertainty (rate of progress and 
maturity of novel conversion technologies).

Methods

TIMES is a linear optimization model that is used to cal-
culate the least-cost energy system expansion under a set 
of user-defined restrictions.34 The objective is to meet the 
demand for energy in specific sectors (power, transporta-
tion, industry, residential and commercial, and agricul-
ture). The demand can be fulfilled by different conversion 
routes and / or primary energy carriers. Figure 1 shows 
a simplified structure of TIMES together with the prime 
parameters. More information on TIMES can be found 
in Appendix I in the supplementary material. The charac-
teristics of (1) the supply of primary energy feedstock, (2) 
the conversion technologies, and (3) the policy constraints 
determine the extent to which biomass will be used in the 
future energy system of Brazil as modeled in this study. 

This research builds on the TIMBRA (TIMES-Brazil) 
model developed by Nogueira.36 TIMBRA is especially 
designed for the Brazilian energy system. Details about 
TIMBRA can be found in Appendix I and in Nogueira.36 
The operating timeframe runs from 2010 until 2050. 

Extension of TIMBRA with a biobased 
module

To explore the role that biomass can play in meeting the 
demand for energy and chemicals until 2050 in Brazil, 
the original TIMBRA model36 has been updated with 
information on the biomass supply chain for energy and 
chemicals. A biobased module has been created within 
the existing modeling framework to deal with biomass 
supply information, biomass conversion technologies, 
and demand for biobased products. In general, the share 
of biomass to meet final energy and chemical demand in 
2050 is influenced by three factors:

• supply of biomass feedstock: supply potential and feed-
stock costs;

• biomass conversion technologies: available technolo-
gies and technological learning curves;

• environmental policy: GHG budget (the GHG budget 
in this study refers to the total accumulated GHG 
emissions over the period 2010 to 2050) and biofuel 
blending mandates.

The biobased feedstock- and conversion types and their 
links to the end-use of energy are shown in Fig. 2. Techno-

Figure 1. Simplified structure of TIMES (based on figures in references 34,35)
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economic details about biomass conversion technologies 
are found in Appendix II, including the costs and supply 
potential of biomass feedstock types. A list of all non-
biobased technologies used in this study can be found in 
Appendix III. The updated version of TIMBRA is called 
TIMBRA-BBE from here on. 

TIMBRA-BBE components

Supply

Next to biomass feedstock (see Fig. 2), fossil, nuclear, 
hydro, and renewable resources are included in this study. 
The supply potential is obtained from the literature on 
fossil,37 nuclear,38 hydropower,39 wind,40 and solar41,42 
resources. The supply potential for sugarcane,6,39 soy-
beans,43,44 and woody biomass 6,45 is obtained from inter-
national sources and governmental literature. The poten-
tial for agricultural residues is estimated by extrapolating 
the share of rice and maize used for domestic consump-
tion. This is the main driver for rice and maize production. 
It is assumed that the consumption per capita will not 
change over time. The method of Portugal-Pereira et al.46 
is used to translate the production quantity of sugarcane, 
soy, rice, and maize into the sustainable potential of the 
related agricultural residues, husks, straw, and stover. The 
supply potential for agricultural residues (including the 
residues from sugarcane and soybeans) is the sustainable 

potential.46 The sustainable biomass potential is defined 
as the part of the technical biomass supply potential that 
can be harvested without negatively influencing soil func-
tions (e.g. maintain soil organic carbon levels, protection 
from soil erosion and maintain soil moisture levels) and 
biodiversity and is sometimes also defined as the ecologi-
cal potential.46,47 The supply potential of municipal solid 
waste (MSW) is estimated by extrapolating the current 
production of MSW,48 assuming that per capita produc-
tion remains the same. The prices of fossil fuels are based 
on the domestic production costs.36,49 For the prices of 
imported fossil fuels, the New Policies scenario of the 
International Energy Agency (IEA) is used.50 (‘The New 
Policies scenario is designed to show where existing poli-
cies as well as announced policy intentions might lead 
the energy sector.’50) Prices for biomass resources are 
the 6-year average prices based on data from govern-
mental institutions in Brazil (see Appendix II for more 
information). 

Conversion technologies

The technologies present in TIMBRA-BBE encompass the 
entire energy sector including fossil, nuclear, renewable, 
and biobased technologies. The technologies are character-
ized by their conversion efficiency, capital and operational 
expenditures, load factors, and size. The efficiency of the 
technologies is based on lower heating values obtained 

Figure 2. Simplified flow sheet of the flows of biomass feedstock towards the 
type of conversion and end-use demand used in this study.
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from the literature. The location factor used in this study 
for Brazil is 1.3.51 The location factor is a factor that adds 
the costs of equipment and machinery that needs to be 
imported for the construction of (energy) projects.51 A 
location factor of 1.3 means 30% extra costs. Hydropower 
plants built in Brazil require no imports of goods and 
therefore they have a location factor of 1.51 Carbon dioxide 
emissions are attached to the conversion of energy carriers 
to secondary or final energy, and include process-related 
emissions. Some conversion technologies can capture CO2 
from the production process. The techno-economic details 
of the technologies, including CO2 capture rates, are found 
in Appendices II and III. 

For the selection of biomaterial producing technolo-
gies, including biomaterials in other sectors such as the 
paper and pulp industry, and charcoal production for the 
iron and steel industry,36 the focus is on the production 
of bio-chemicals because they have the ability to mitigate 
GHG emissions and replace fossil petrochemicals.52,53 The 
production of polyethylene, polypropylene, ammonia, and 
methanol represents 60% of the total volume of chemicals 
produced in Brazil in 2014.54 Other chemicals are pro-
duced in negligible quantities and are often derivatives of 
these platform chemicals.54 They are therefore excluded 
from this research. 

Demand

Demand for energy per sector is determined exogenously 
based on demand projections for Brazil.36,49 The demand 
in the transport sector is given per person/freight kilome-
ter. Other than the demand in the industrial, agricultural, 
and residential and commercial sector, the demand in the 
transport sector is for useful energy. There are different 
transport modes with specific efficiencies present in the 
model, allowing for energy efficiency measures. Demand 
for the four bulk chemicals used in TIMBRA-BBE is based 
on extrapolation of demand per capita data for Brazil 
from the Organisation for Economic Cooperation and 
Development (OECD) and the IEA.30 The demand for 
polylactic acid (PLA) and poly ethylene furanoate (PEF) is 
modeled as the demand for ethylene because they have the 
characteristics to replace ethylene.55 In total, the demand 
for PLA and PEF can be no more than 50% of ethylene 
because this is assumed to be the maximum substitution 
rate.56 The demand data are found in Appendix II. 

Scenarios

It remains uncertain how the BBE may develop in Brazil. 
The state of the BBE depends on the development of 

the economy, technology, and environmental policy. To 
address the uncertainty in TIMBRA-BBE, the develop-
ment of these elements is addressed by three scenarios. 
The scenarios are based on the shared socioeconomic 
pathways (SSPs), which are designed to structure uncer-
tainty in climate change mitigation and adaptation.57 
Table 1 shows how the general SSP elements can be trans-
lated to the scenarios of this study. The technological 
development is introduced in the scenarios based on the 
technology readiness level (TRL) of biobased technologies 
as define in the literature.27,59,60 A matrix is used to show 
the relation between the introduction year in relation 
to the TRL (see Appendix II). The actual data consider-
ing the biobased technologies per scenario are found in 
Appendix II. The supply potential of biomass is discussed 
in detail in Appendix II. 

SSP1: Rapid development towards a 
sustainable future

Technological development follows a progressive trend. 
The environmental policy for SSP1 is based on the 
national determined contributions (NDC) agreements of 
Brazil until 2030 (as in SSP2). However, to meet the global 
2°C warming target more stringent mitigation measures 
need to be taken by Brazil. Rochedo et al.58 estimated that 
the total carbon budget for the energy system of Brazil 
should be 16 Gt CO2 equivalent to fulfill the global 2°C 
warming target up to 2050. This is also the target in SSP1. 
Biofuel blending targets are set at B10 and E30. The supply 
potential of biomass assumes a high productivity increase. 
Additional land will be available for short-rotation euca-
lyptus plantations for energy production following trends 
from Tolmasquim.6

SSP2: Middle of the road / business as usual 
(BAU)

Technological development follows an intermediate 
trend. The SSP2 scenario is the business-as-usual sce-
nario. It includes the climate policy actions in the NDC 
for the Paris Agreement,61 where the maximum level of 
annual GHG emission is set at 1.2 Gt CO2-equivalent in 
2030 and the share of renewables at 45%. The share of 
the GHG emissions for the total energy sector (includ-
ing industrial process emissions) is estimated at 575 Mt 
CO2 equivalent; the rest comes from agriculture, forestry, 
and other land use (AFOLU).36 In TIMBRA-BBE this 
policy is translated to a carbon budget for the energy 
system, where the CO2 cap from the NDC is frozen from 
2030 until 2050. The carbon budget in SSP2 is 22 Gt CO2 
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equivalent. The supply potential is based on a medium 
productivity increase. No additional land is assumed to 
be available for short-rotation eucalyptus plantations.

SSP3: No climate mitigation measures

Technological development is more oriented towards 
fossil fuels because the short-term trends and long-term 
forecasts (without environmental policy) in Brazil veer 
slightly towards more use of fossil energy.12,23,39 There 
is no development of CCS in this scenario, except for 
CCS from conventional ethanol distilleries, which is 
already in a pilot-scale phase in Brazil.62 Apart from 
the current biofuel blending targets, no environmental 
policies are considered. The supply potential is based 
on a low productivity increase. No additional land is 
assumed to be available for short-rotation eucalyptus 
plantations. 

Results

Primary energy and final energy 
consumption
The use of biomass will continue to play an important role 
in the total primary energy supply (TPES) in the com-
ing decades (Fig. 3(a)). In 2010, nearly 35% (5 EJ) of the 
primary energy supply was met by biomass. In 2050 the 
total supply of biomass ranges from 11.4 (SSP3) to 16.6 
EJ (SSP1). The supply of hydropower, solar, and wind will 
grow from 1.5 EJ in 2010 to 3.7–4.1 EJ in 2050, depend-
ing on the scenario. The presence of fossil fuels remains 
important in the total energy mix of Brazil, mainly for 
the SSP3 scenario and to a lesser extent, for the SSP2 and 
SSP1. The total amount of energy available for final con-
sumption (total final consumption, TFC) approximately 
doubles from 2010 until 2050 for all scenarios (Fig. 3(b)). 

Table 1. Technical and environmental characteristics of the scenarios as used in TIMBRA-BBE for this 
study.
Scenario SSP1 SSP2 SSP3

Technological development:

Introduction time of technologiesa Progressive Slightly progressive Medium 
change 

Conservative

Efficiency improvements chemicals 
over timeb

0.5%/y (bio), 0.25%/y (fossil) 0.5%/y (bio), 0.25%/y (fossil) 0.25%/y (bio), 0.5%/y (fossil)

Maturity of technologiesc Rapid change (fast maturation) Rapid change (less fast than 
SSP1)

Slow change (low 
maturation) 

CCS technologies included, and their 
development

BECCS, ethanol distilleries (early 
development) 

BECCS (late development), 
ethanol distilleries (early) 

Only for conventional 
ethanol distilleries (late 
development)

Environmental policy:

GHG policyd CO2 budget of 16 Gt of CO2 eq. 
in 2050

CO2 budget of 22 Gt of CO2 
eq. in 2050

No GHG emission policy

Biofuel blending mandatesg B10 + E30 B07 + E27 B05 + E25

Energy prices and biomass supply potential

Biomass supply potentiale 17.3 EJ 14.1 EJ 12.3 EJ

Biomass costse ($2010/GJLHV) 3.2 (BM), 5.3 (SC), 1.1 (AR), 6.1 (SO), −2.4 (MSW)

Fossil energy costsf ($2010/GJLHV) Domestic: 10.1 (O), 1.8 (C), 7.6 (NG). Import: 16.8 (O), 3.3 (C), 9.5 (NG).
aThe time when a biobased technology becomes available in the model is based on commercialization matrices. See Appendix II for the 
actual introduction years for the different scenarios. 
bAdapted from Tsiroupoulos et al.14 The maximum yield is based on the stoichiometric formula of the conversion route. See Appendix II 
and III for the data per technology and scenario. 
cThe improvement in costs and efficiency of biobased technologies over time. See Appendix II for the data. 
dBased on the carbon budgets as discussed in Rochedo et al.58 
eThe biomass supply potential includes woody biomass (BM), sugarcane (SC), agricultural residues (AR), soybean oil (SO) and municipal 
waste (MSW). The methods used for the quantification of the supply potential are described in Appendix II, where also the details regarding 
costs are found. 
fOil (O), coal (C) and natural gas (NG). Based on domestic production costs (see Section 2.2.1) and on the new energy policy scenario from IEA.50

gBiofuel can be blended with fossil fuels. The acronym B05 stands for a fuel blend of 5 vol.% biodiesel (B) and 95 vol.% fossil diesel. E25 
stands for a fuel blend of 25 vol.% ethanol (E) and 75 vol.% gasoline. 
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(Final consumption relates to energy use for final con-
sumption per sector as described by the International 
Energy Agency,50 e.g. to heat homes, to fuel cars, to pro-
duce industrial goods, etc.) However, the TFC of SSP1 is 
lower, which is mainly caused by more efficient transport 
modes. The relative share of the energy carriers differs per 
scenario. In SSP3 the shares remain similar for 2050 in 
comparison to 2010 but, when the carbon budget is lower, 
a switch away from oil to biomass (mainly in 2050 for 
SSP1) and to electricity is noticeable. 

The driving force for a larger share of renewables in SSP1 
and 2 is climate policy. The differences become visible in 
2050, when fossil fuels supply over 47% of the primary 
energy when no additional climate policy is considered 
whereas for SSP1 the share of biomass grows to 62%, com-
pared to 22% for fossil energy. Apart from the growing 
share of biomass it can also be observed that the supply of 
fossil energy decreases when the climate mitigation targets 
become more stringent: 13.6 EJ for SSP3 compared to 5.9 
EJ in SSP1. In the SSP1 scenario, the amount of primary 
energy supply decreases in comparison to SSP3 from 28.8 
to 26.7 EJ, which shows that energy is converted in a more 
efficient way because final demands are equal. 

Pathways for biomass per scenario

SSP1

In total, 16.6 EJ of the sustainable biomass supply potential 
is used (Fig. 4). The first result that stands out is the use of 
lignocellulosic biomass (9 EJ) from different sources for 
final use. The lignocellulosic material is mainly consumed 
by gasification conversion technologies producing 2G 

transport fuels but another relevant share is used for elec-
tricity and heat production for the residential and industrial 
sector. The reason for the large production of 2G transport 
fuels is that gasification conversion technologies produce 
renewable fuels for freight transportation and also renew-
able jet fuel (see Appendix V for more detail). While the 
cap on CO2 emissions is the most stringent in this scenario, 
biomass as primary source for renewable fuels for freight 
and aviation is selected as the most feasible option. The 
surplus bagasse from the milling of the sugarcane is used 
for the production of heat in the industrial sector rather 
than being used to produce 2G ethanol. (Surplus bagasse is 
defined as bagasse that is not consumed in the sugarcane 
refineries to produced on-site electricity and process heat 
but can be used in other sectors, with industrial heat as 
optimal application.) The captured CO2 emissions shown 
in Fig. 4 are captured by biomass integrated gasification 
combined cycle power plants (BIGCC) and Fischer–Tropsch 
synthesis (FT synthesis) plants producing biofuels.

The climate mitigation targets also play a role in the 
selection of technologies that have the ability to capture 
CO2 e.g., BIGCC-CCS and FT-synthesis. Municipal solid 
waste is the only biomass feedstock that is not used in the 
energy mix. The climate mitigation targets are likely to be 
the reason why MSW is not used, because not all carbon 
in MSW is biogenic and so there will be carbon emissions 
when MSW is converted to final energy. 

SSP2

In comparison with SSP1, the sustainable supply potential 
of biomass in SSP2 is not fully utilized (86%, 12.2 EJ). This 
is mainly because there is less demand for renewable bio-
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Figure 4. Sankey diagram of biomass flows as modeled in TIMBRA-BBE for scenario SSP1.

Figure 5. Sankey diagram of biomass flows as modeled in TIMBRA-BBE for scenario SSP2.

mass because of the less stringent climate-mitigation target. 
In terms of supply this translates into less supply from 
agricultural residues. Furthermore, the trends in the con-
version of biomass are comparable to SSP1; lignocellulosic 
biomass for 2G transport fuels including CCS (FT synthe-

sis) and also for the industry. In the sugarcane refineries, 
there are small differences in comparison to SSP1, because 
the focus switched from bagasse for the industry (0.9 EJ in 
SSP1 versus 0.1 EJ in SSP2) to the production of ethanol, 
including a small production volume of 2G ethanol (0.1 EJ). 
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SSP3

In SSP3, 93% (11.4 EJ) of the sustainable biomass supply 
potential is used. Municipal solid waste is not being uti-
lized because the production of electricity from MSW is 
economically unattractive due to high capital investment 
costs in comparison to other power plants. What is inter-
esting is that 4.6 EJ of biomass is used for the production 
of novel transport fuels (see Fig. 6), even though there is 
no climate mitigation target. This can be explained by 
investment costs for large-scale oil refineries, which are 
relatively expensive, as mentioned in Köberle et al.51 and 
Silverio.63 The model decides whether investments are 
necessary for oil refineries to fulfill demand for passenger- 
and freight transportation or if other alternatives are more 
attractive. 

There are two mechanisms incorporated in the mod-
eling structure of TIMES that influence these decisions. 
First, oil refineries are designed to produce oil-products 
with fixed ratios. Second, the equations in TIMES to cal-
culate the least-cost optimal solution are demand driven: 
they incorporate all costs (capital expenditures (CAPEX), 
operational expenditures (OPEX), fuel, imports) and 
revenues (exports). There is specific end-use demand for 
plastics (naphtha), aviation (kerosene), freight (diesel), and 
passenger transport (gasoline), so the demand can be ful-
filled by oil-products from refineries. However, due to the 
fixed ratio of the oil refineries one particular demand (for 

instance, gasoline) can be fulfilled while another demand 
is not. The other demand can be met by other alternatives 
or by increased production from expanding the oil refiner-
ies, eventually leading to overproduction of one particular 
demand, which can be ‘solved’ by exporting that commod-
ity (e.g. export of gasoline).  

This result shows that investing in biofuels and electric 
cars, in combination with the export of crude oil, is eco-
nomically more attractive. The relatively large share of 
biomass for novel transport fuels comes from the fact that 
passenger transport will partly be met by electric cars, 
whereas for freight transportation biomass is the most fea-
sible alternative. 

Competition between biomass and other 
sources for end-use demand

The production of power doubles from 2010 to 2050, in all 
scenarios, to approximately 5 EJ. In all scenarios hydro-
power supplies 2.9 EJ. In SSP2 and SSP3 sugarcane refineries 
supply 0.4 EJ, whereas in SSP1 power from biomass is deliv-
ered in combination with the capture of CO2 from BIGCC 
power plants (0.5 EJ). The additional demand is met mainly 
by solar and wind energy for SSP1 and SSP2 (SSP3 to a lesser 
extent), whereas in SSP3 coal-fired power plants deliver 
0.7 EJ. The demand for transport fuels in 2050 reaches 
approximately 7.5 EJ for all three scenarios. Two trends can 
be observed when analyzing the scenarios. First, fossil fuels 

Figure 6. Sankey diagram of biomass flows as modeled in TIMBRA-BBE for scenario SSP3.
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become less important when climate targets become more 
stringent. In SSP3, 40% of the transport fuel demand is met 
by fossil sources, in comparison with 10% in SSP1. Second, 
in SSP1 more efficient (but also more expensive) technolo-
gies are needed to fulfill demand, like freight transport on 
biobased hydrogen and passenger transport with electric 
vehicles. The demand for energy in the industry in 2050 is 
approximately 4.1 EJ for all scenarios. Biomass (1.6 EJ) and 
natural gas (1.1 EJ) become more important in SSP1 as they 
meet 65% of the energy demand, against 35% for SSP3. The 
demand for petrochemicals (750 PJ) remains dominated by 
fossil sources in all scenarios. However, in SSP1 the majority 
(110 PJ, embodied energy) of the ammonia is produced from 
syngas, while 120 PJ of olefins is produced from ethanol and 
biobased naphtha. More details regarding final energy con-
sumption can be found in Appendix V.

GHG emissions

The annual GHG emissions in SSP3 will reach 1000 Mt in 
2050. The CO2 emissions from SSP1 and 2 are lower than 
SSP3 because of the climate policy. In SSP1 the net annual 
emissions in 2050 will reach 50 Mt, including CCS (150 Mt 
captured CO2). The majority of the captured CO2 in SSP1 is 
from BECCS (BIGCC: 74 Mt, FT-synthesis: 49 Mt, biobased 
hydrogen: 11 Mt) and 17 Mt is captured from fossil sources. 
In SSP2 the net annual emissions are 575 Mt, including 
49 Mt of CCS from FT synthesis. If we compare the annual 
emissions of SSP1 to SSP3 for 2050, in total 800 Mt of CO2 
is mitigated by switching to renewable alternatives, and 
another 150 Mt of CO2 is mitigated by CCS. 

Annual cost of supply of energy

The annual costs for the supply of energy (see Fig. 8) are 
highest for SSP2 (275 bn $/y), followed by SSP1 (245 bn $/y) 
and SSP3 (238 bn $/y). (The costs of supply of energy encom-

pass the costs for primary energy carriers and the costs of 
converting the primary energy into energy carriers for final 
energy consumption in the selected sectors. Costs for the 
conversion of final energy to useful energy – for instance, 
the conversion of gasoline to kinetic energy in a car – are 
therefore excluded. More details can be found in Appendix 
I.) The main reason why SSP1 is lower than SSP2 is that the 
import-export balance of oil and oil-products changes. In 
SSP1, the supply potential of biomass is greater than in the 
other scenarios, and hence imports of oil products are lower 
than in the other scenarios, as biofuels replace fossil trans-
port fuels. The current shortage of naphtha and diesel pro-
duction capacity in Brazil is assumed to persist, requiring 
imports to fulfil the demand. This effect is noticed in SSP2 
and SSP3 in this study but not in SSP1 where this demand 
is met by biomass derived diesel and naphtha. The costs of 
importing oil products are therefore significant in SSP1, as 
shown in Fig. 8. The production of biofuels outcompetes 
the import of fossil fuels in SSP1 to supply energy to the 
transport sector. More crude oil is therefore available (in 
comparison to the other scenarios), which is exported. The 
production costs of power, fuels, and energy for the industry 
increase under more stringent emission targets. 

Discussion

The aim of this study was to explore the extent to which 
biomass could be used in the future energy and chemical 
system in Brazil. The results should not be interpreted as 
final outcomes with absolute values but rather as trends for 
the future energy system and how much biomass will be 
needed. The results are influenced by the methods selected 
and the assumptions regarding the input data. 

The total primary energy supply in 2050, as found in this 
study, is comparable to other studies that assess the future 
energy mix in Brazil, e.g. IEA,64 Empresa de Pesquisa 
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Energética (EPE),39 Nogueira et al.24 and Rochedo.49 The 
research differs in terms of approach or methodology but 
the primary energy supply of biomass is comparable (see 
Appendix IV). However, the level of detail that is given 
in this study provides us with details on the consump-
tion of biomass per sector, as well as which technology is 
used. This is important because dynamic competition can 
therefore be explored within end-sectors, between biomass 
feedstocks, between other renewable and fossil energy car-
riers, and between competing technologies. A clear exam-
ple of this dynamic competition is observed in the use 
of bagasse. Research shows that, nowadays, only a small 
fraction of the total potential of bagasse is used for elec-
tricity production in sugarcane refineries, highlighting the 
potential for biobased electricity production.65 However, 
this study shows that under a stringent climate mitigation 
policy, bagasse for industrial use is favored above bagasse 
for electricity production. 

It is noteworthy that the supply potential of biomass 
plays an important role in the magnitude of the produc-
tion of biobased energy and chemicals in all three scenar-
ios. In TIMBRA-BBE there is a constraint on the supply of 
lignocellulosic biomass but, over time, the supply potential 
increases significantly. Land availability and land-use 
related issues (competition with food, land use change 
(LUC)-related GHG emissions, impacts on biodiversity 
and soil quality) may influence the supply of biomass 
(either positively or negatively) for energy and chemical 

production. However, the sensitivity analysis also shows 
that the need to reduce GHG emissions by using biomass 
is lower in comparison to the SSP scenarios, as less than 
80% is used under high biomass availability (Appendix 
VI). Moreover, the transportation of biomass is only par-
tially addressed. The price of biomass includes transpor-
tation to the processing plant. However, the differences 
between harvest location and location of demand can be 
large in Brazil, and it is therefore either economically or 
environmentally unfeasible to transport biomass over 
large distances.66 To assess the influence of biomass on the 
energy system in more detail, spatially explicit modeling 
of the supply potential of biomass is necessary. 

Furthermore, only direct CO2 emissions are taken into 
account in TIMBRA-BBE. In general, the upstream CO2 
emissions are relatively small in comparison to the direct 
emissions.67 It is difficult to insert the full lifecycle emis-
sions into the modeling framework,16 and the upstream 
emissions are relatively small, so they have been excluded 
from this research. It should be noted that the full lifecy-
cle emissions of bioenergy can have a substantial effect 
on the emission factors (CO2 equivalent/MJ of bioenergy) 
of bioenergy, if (indirect) land use change emissions are 
considered.68–70 In van der Hilst et al.,71 LUC emissions 
(both direct and indirect) are assessed given an increasing 
demand for bioethanol in Brazil. The relevance of agricul-
tural management becomes clear as land-use change miti-
gation measures (high agricultural productivity, switch to 
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2G ethanol, and strict conservation of protected areas) can 
result in lowering the LUC emissions from 26 (reference) 
to 12 gr. CO2 eq./MJetoh (all mitigation measures). Until 
recently, the Brazilian government tried hard to reduce 
deforestation. Most of the legal mechanisms meant to 
reduce deforestation are part of the Brazilian Forest Code. 
However, the latest revisions of the Forest Code (2012) 
are not yet (fully) implemented due to lobbying from, 
e.g., agribusiness.72 On the contrary, new laws outside the 
Forest Code were put into force in 2017 that enabled pri-
vate land owners to legalize their land holdings,73 allowing 
for land grabbing and subsequently leading to deforesta-
tion.58,74 When the government decides not to live up with 
the Forest Code it will be impossible to reach targets that 
are necessary for limiting global warming to 2°C.58 On the 
other hand, biomass can also be produced by good agricul-
tural management and spatial planning, which can result 
in better GHG performance because iLUC is prevented 
and more carbon is stored in agricultural soils.5 However, 
this requires an integrated approach to assess land use 
change and related emissions, which is not incorporated 
in TIMBRA-BBE yet. Due to the considerable demand for 
bioenergy in some of the scenarios of this study, it will be 
worthwhile investigating this issue in future research. 

The impact of the assumptions related to investment 
costs, fuel prices and biomass supply potential, on the 
modeling results, are shown in the sensitivity analysis 
(Appendix VI). The availability of biomass is the major 
parameter that influences the results: when biomass is lim-
ited available renewable energy will be delivered by alter-
native sources. Fuel prices (both biomass and fossil) and 
investment costs have less impact on the results. This is 
because the effect of the carbon budget (strict limit on car-
bon emissions) is larger than the effect of price differences. 

The results show a large increase in intermittent renewa-
bles in the power sector. This may affect the stability of the 
grid in Brazil.75 The operation of the power sector was not 
the focus of this study and the assessment of the reliabil-
ity of the power grid requires a different method because 
the production patterns of solar and wind energy and the 
demand for electricity are aggregated to periods of approx-
imately 5 h,36 while hourly patterns are required to assess 
the reliability of power systems.76 

Technological development of conversion technolo-
gies can influence modeling results as the costs of solar 
and wind energy showed large reductions in past years77 
but investments in advanced biomass technologies also 
slowed down60 during those years. These developments are 
assessed in the sensitivity analysis (see Appendix VI for 
more detail), showing that cost reductions of intermittent 

power supply only slightly influences the modeling results 
for 2050, as they are already present due to the restrictions 
in GHG emissions of the carbon budget. When advanced 
biomass technologies are introduced less quickly, a switch 
in technologies is observed. Less efficient biomass con-
version technologies (e.g. dimethyl ether (DME) plants 
instead of FT plants) are present in the technology mix, 
resulting in lower production of energy available for final 
consumption. More renewable electricity (mainly pro-
duced from solar and wind energy) is therefore required to 
meet energy demands (see Appendix VI for more detail). 

he least-cost optimization method used in this study did 
not incorporate social dimensions as it was not designed 
to do so. So-called computable general equilibrium (CGE) 
models can assess the socio-economics of biomass produc-
tion. In the case of Brazil, the results of CGE models show 
that the socio-economic situation can improve when the 
biobased economy is growing. Brinkman et al.78 show a 
significant increase, towards 2030, in newly created jobs 
and GDP growth with growing demand for sugarcane. 
The effect of growing demand for sugarcane is not only 
positive for the economic situation but also for the social 
situation. Walter et al.79 and Gerber et al.80 show a higher 
human development index (HDI) in municipalities with 
sugarcane cultivation, in comparison to municipali-
ties without sugarcane cultivation. On the other hand, 
there are also social issues in the Brazilian agricultural 
business. Working conditions in sugarcane plantations 
are described as bad due to the hard physical labor. The 
International Labour Organization (ILO) noticed that 
‘forced labor’ is still an issue, and the burning of cane can 
cause health problems,81 although the recent mechaniza-
tion of sugarcane cultivation ensured a decrease of the 
number of employees working under tough conditions.82 
Land ownership is also a problem as Brazil is sensitive to 
land grabbing by (international) agro-industrials, which 
threatens small-scale farmers and indigenous communi-
ties.58,83,84 Recently, however, international organizations 
have expended great effort to include all of these social 
issues in certification schemes for biobased products, 
ensuring improvements in social conditions with a grow-
ing demand for biobased products.82 

The results highlight the importance of BECCS in reduc-
ing atmospheric carbon emissions. However, the technol-
ogy related to the capture and storage of CO2 is still in the 
development stage.2 Issues like transportation costs, sea-
sonality, and reservoir capacity will all play an important 
role in the economic and physical feasibility of CCS.85 

Energy efficiency measures are present in the transport 
sector only. For a fair comparison this should be expanded 
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in annual supply costs, as investment costs for conversion 
technologies are 17% higher. 

Upstream GHG emissions can have either a negative 
(LUC emissions and large transport distance) or a positive 
(net increase of the carbon sink) impact on the GHG per-
formance of biomass produced for energy and chemicals. 
The modeling framework of this study is an interesting 
tool to link supply-related issues of biomass production to 
biomass demand for energy and chemicals. It can therefore 
serve as a platform to inform the debate on the sustain-
ability of biomass resources in Brazil, especially by being 
transparent about the methods and data chosen. 

Recommendations for future research are:

• The linking of TIMBRA-BBE to a land-allocation 
model. With interlinked models, the dynamic interac-
tion between demand for biomass and (indirect) land 
use change can be quantified. 

• Increasing the shares of intermittent renewables may 
affect grid stability in Brazil. To model the reliability of 
low-carbon power systems an improved model is needed 
that includes hourly demand patterns, and hourly pro-
duction patterns of intermittent renewable energy.

• Transportation of captured CO2, and its geological 
storage potential, need to be assessed to investigate the 
feasibility of BECCS as a climate-change mitigation 
measure. 
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