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Comparison of logistic-regression based
methods for simple mediation analysis with
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Abstract

Background: Logistic regression is often used for mediation analysis with a dichotomous outcome. However, previous
studies showed that the indirect effect and proportion mediated are often affected by a change of scales in
logistic regression models. To circumvent this, standardization has been proposed. The aim of this study was
to show the relative performance of the unstandardized and standardized estimates of the indirect effect and
proportion mediated based on multiple regression, structural equation modeling, and the potential outcomes
framework for mediation models with a dichotomous outcome.

Methods: We compared the performance of the effect estimates yielded by the three methods using a simulation
study and two real-life data examples from an observational cohort study (n = 360).

Results: Lowest bias and highest efficiency were observed for the estimates from the potential outcomes framework
and for the crude indirect effect ab and the proportion mediated ab/(ab + c’) based on multiple regression and SEM.

Conclusions: We advise the use of either the potential outcomes framework estimates or the ab estimate of the indirect
effect and the ab/(ab + c’) estimate of the proportion mediated based on multiple regression and SEM when mediation
analysis is based on logistic regression. Standardization of the coefficients prior to estimating the indirect effect and the
proportion mediated may not increase the performance of these estimates.

Keywords: Mediation analysis, Indirect effect, Proportion mediated, Multiple regression, Structural equation modeling,
Potential outcomes framework, Dichotomous outcome

Background
Epidemiologists are often interested in the relationship
between an exposure and an outcome. The pathways
underlying such a relationship, however, often remain
unknown. These unknown pathways can be assessed
using mediation analysis. Mediation analysis decomposes
the total effect of an exposure on an outcome (c path)
into a direct effect (c’ path in Fig. 1) and indirect effect
(a and b paths in Fig. 1). This makes mediation analysis
especially useful for disentangling mechanisms of disease
development, and for identifying important intermediate
factors in establishing treatment effects [1].

In simple mediation models, as visualized in Fig. 1, the
indirect effect can be calculated as either the product of
the a and b paths (i.e. the product-of-coefficients ap-
proach), or as the difference between the c and c’ paths
(i.e. the difference-between-coefficients approach). In
addition, a proportion mediated can be calculated using
one of the following approaches: 1) divide the indirect
effect ab by the sum of ab and the direct effect c’, 2)
divide the indirect effect ab by the total effect c, or 3)
subtract the direct effect c’ divided by the total effect c
from 1 [2]. Multiple regression analysis and Structural
Equation Modeling (SEM) can both be used to estimate
the paths in Fig. 1.
In general, when the mediator and outcome are both

continuous, the product-of-coefficients and difference-
between-coefficients approach for calculating the indirect
effect and the three approaches for calculating the
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proportion mediated will lead to the same results [2].
However, previous simulation studies showed that the
different estimates of the indirect effect and propor-
tion mediated will no longer coincide when the out-
come is dichotomous and logistic regression analysis
is used to estimate the paths in Fig. 1 [2, 3].
To limit the discrepancies between the different ap-

proaches for calculating the indirect effect and propor-
tion mediated, several authors proposed to standardize
the logistic regression coefficients. MacKinnon and Dwyer
[3] proposed the use of y-standardization, Kenny [4] pro-
posed the use of full-standardization, and MacKinnon and
colleagues [2] proposed the use of the standardized logistic
solution. Standardization equalizes the scales of the coeffi-
cients across multiple different logistic regression models to
make the coefficients comparable. Another regression-
based method that has been proposed for estimating the
indirect effect and proportion mediated is the potential out-
comes framework. This framework provides definitions of
causal effects, which can be used to decompose the total ef-
fect into a causal direct and indirect effect without requir-
ing standardization of the coefficients [5].
It remains unclear which (standardized) approach for

calculating the indirect effect and proportion mediated
is preferred in what situation, and when the potential
outcomes framework should be preferred over multiple
regression and SEM. Therefore, our aim is to show the
relative performance of the unstandardized and stan-
dardized estimates of the indirect effect and proportion
mediated based on multiple regression, SEM, and the
potential outcomes framework for models with a dichot-
omous outcome and 1) a continuous mediator, and 2) a
dichotomous mediator.

Methods
Aim
The aim of this paper is to show the relative performance
of the unstandardized and standardized estimates of the
indirect effect and proportion mediated based on multiple
regression, SEM, and the potential outcomes framework
for models with a dichotomous outcome and 1) a continu-
ous mediator, and 2) a dichotomous mediator.

Simulation set up
To assess the relative performance of the compared
methods, we simulated data for two types of mediation
models with a dichotomous outcome; 1) with a continu-
ous normally distributed mediator with a mean of 0 and
variance of 1, and 2) with a dichotomous mediator. For
both the dichotomous mediator and the dichotomous
outcome three prevalence rates were simulated: 0.10,
0.30, and 0.50. Therefore, three conditions were created
with a continuous mediator and dichotomous outcome,
and nine conditions with a dichotomous mediator and
dichotomous outcome. The exposure was a normally
distributed continuous variable with a mean of 0 and a
variance of 1 in all conditions. The dichotomous medi-
ator and outcome where generated directly from a logis-
tic model. Furthermore, in each condition the a, b, and
c’ paths in the underlying population model were set to
0.6, reflecting a medium-to-large effect size [2]. The
standardized effect estimates were yielded by standardiz-
ing the crude effect estimates in each simulated sample.
Table 1 provides an overview of the true underlying

estimates of the indirect effect for each simulated condi-
tion. The true values for the standardized effect esti-
mates were calculated by applying the standardization
equations to the true underlying crude effect estimates
[2, 6]. In all conditions the true proportion mediated in
multiple regression and SEM equaled 0.375. For the po-
tential outcomes framework the true proportion mediated

Fig. 1 Path diagram of a relatively simple mediation model

Table 1 True underlying indirect effect estimates for each
simulated condition

Continuous
mediator

Dichotomous mediator
prevalence

0.1 0.3 0.5

Multiple regression/SEM

crude 0.360 0.360 0.360 0.360

y-standardization 0.168 0.098 0.097 0.096

Full-standardization 0.196 0.048 0.044 0.048

Standardized logistic solution 0.360 NA NA NA

Potential outcomes framework 0.360 0.047 0.087 0.081

Abbreviations: NA not available
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was 0.375 for the condition with a continuous mediator,
and 0.119, 0.127, and 0.073 for the conditions with a di-
chotomous mediator with a prevalence of 0.5, 0.3, and 0.1
respectively. For each condition, 500 simulated samples of
1000 subjects were generated. All simulations were per-
formed using STATA statistical software release 14 [7].

Performance measures
The performance of each method was evaluated using
the (absolute) bias and Mean Squared Error (MSE). The
bias is calculated as the average difference between the
effect estimates in the simulated samples and the true
underlying effect. A negative bias indicates that the
method underestimates the true underlying effect, and a
positive bias indicates that the method overestimates the
true underlying effect. The MSE is calculated as the aver-
age squared difference between the effect estimates in the
simulated samples and the true underlying effect. The
MSE represents the amount of variasbility in the effect es-
timates. So the higher the MSE, the higher the variability
is and thus the lower the efficiency of the method is [8].

Real-life data examples
To demonstrate the similarities and differences between
the effect estimates yielded by the compared methods,
two real-life data examples from a longitudinal observa-
tional cohort study were used. The aim of this longitu-
dinal study was to follow up the natural growth, health,
and lifestyle in a representative sample of 698 Dutch
adolescents [9]. In total, ten measurement rounds were
performed between 1976 and 2006. Our data example
was based on the measurement round in the year 2000,
when the participants were in their 30s. The exposure
was the sum of four skinfolds in centimeters, which is
an indicator of body fatness. The outcome was carotid
distensibility (CD), which is a measure of carotid artery
elasticity. The association between the sum of four skin-
folds and CD was thought to be mediated by heart rate.
Heart rate was analyzed as both a continuous and a di-
chotomous measure. Heart rate and CD were dichoto-
mized by splitting them at the median. The analytical
cohort consisted of 360 participants. The statistical ana-
lyses were performed with STATA statistical software
release 14 [7]. The STATA package ‘paramed’ was used
to apply the potential outcomes framework [10].

Methods for statistical mediation analysis
Multiple regression and SEM
Equations 1, 2, and 3 can be used to fit simple mediation
models, as shown in Fig. 1, with multiple regression and
SEM [11]. The difference between multiple regression
and SEM is that with multiple regression separate
models are fitted for each equation, whereas with SEM
eqs. 2 and 3 can be fitted simultaneously in one model

[12]. When the mediator is continuous, eqs. 1 and 3 are
fitted with logistic regression and eq. 2 with linear re-
gression. When the mediator is dichotomous, all equa-
tions are fitted with logistic regression.

Y ¼ i1 þ cX ð1Þ
M ¼ i2 þ aX ð2Þ

Y ¼ i3 þ c0Xþ bM ð3Þ
Where, in eq. 1, Y represents the outcome, and cX rep-

resents the slope of the exposure. In eq. 2, M represents
the mediator, and aX represents the slope of the exposure.
In eq. 3, Y represents the outcome, c′X represents the
slope of the exposure, and bM represents the slope of the
mediator. In all equations i represents the intercepts.
The discrepancies between the different estimates of

the indirect effect and proportion mediated in multiple
regression and SEM are caused by a change of scales of
the coefficients in nested logistic models [13]. This change
of scales happens when variables are added to a logistic
regression model, and even happens when these variable
are not related to the independent variable in the model.
Because of this change of scales of the coefficients in logis-
tic regression analysis after adding a potential mediator
that is highly related to the outcome, the indirect effect
and proportion mediated based on the crude coefficients
from logistic regression might not be reliable indicators
for the presence of a mediated effect. Even when there
truly is mediation, the magnitude of the estimates of the
indirect effect and proportion mediated will be affected by
the change of scales of the coefficients.
To equalize the scales of the coefficients across logistic

regression models, y-standardization, full-standardization,
and the standardized logistic solution have been proposed
[2–4]. Both y-standardization and full-standardization can
be applied regardless of whether the mediator is continuous
or dichotomous, however with a continuous mediator the a
coefficient does not have to be standardized [6, 14]. The
standardized logistic solution can only be applied when the
mediator is continuous [2]. The three standardization
methods will be discussed in more detail below.

Y-standardization Y-standardization replaces the original
scale of the dependent variable with standard deviations
(SDs) [15]. After y-standardization, the dependent variable
has a standard deviation of 1. When y-standardization is
applied to the coefficients from multiple logistic regres-
sion models with the same dependent variable, the vari-
ance of this dependent variable will become comparable
across the models. After y-standardization, the coefficients
represent the SDs change in the dependent variable for a
one unit change in the independent variable. To perform
y-standardization, the coefficients from eqs. 1, 2, and 3 are
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divided by the SD of the dependent variable in that equa-
tion. The SDs of the dependent variables in eqs. 1, 2, and
3 can be derived using eqs. 4, 5, and 6, respectively [2, 6].

SD Y1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2VAR Xð Þ þ π2=3
p

ð4Þ

SD M2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2VAR Xð Þ þ π2=3
p

ð5Þ

SDðY3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c′2VARðXÞ þ b2VARðMÞ þ 2bc′COV ðXMÞ þ π2=3
q

ð6Þ
Where in Eq. 4, SD(Y1) represents the SD of the out-

come in eq. 1, c represents the c coefficient in eq. 1, and
VAR(X) represents the variance of the exposure. In
eq. 5, SD(M2) represents the SD of the mediator in
eq. 2, a represents the a coefficient in equation 2,
and VAR(X) represents the variance of the exposure.
In eq. 6, SD(Y3) represents the SD of the outcome
in eq. 3, c′ represents the c’ coefficient from equation 3,
VAR(X) is the variance of the exposure, b represents the b
coefficient from equation 3, VAR(M) represents the vari-
ance of the mediator, and COV(XM) represents the covari-
ance between the exposure and mediator. In all equations π
equals the number pi.

Full-standardization Full-standardization replaces both
the scale of the dependent and independent variable
with SDs [15]. Therefore, the SD of both the independ-
ent and dependent variable will be 1. After
full-standardization, the coefficients represent the SDs
change in the dependent variable for one SD increase in
the independent variable. However, it is important to
note that this interpretation does not make sense when the
exposure is dichotomous, for example one SD change in a
treatment [15]. To perform full-standardization, the coeffi-
cients from eqs. 1, 2, and 3 are multiplied by the SD of the
independent variable and then divided by the SD of the
dependent variable. The SDs of the independent variables
can be derived in the ordinary way, and the SDs of the
dependent variables can be derived using eqs. 4, 5, and 6.

The standardized logistic solution The standardized
logistic solution replaces the scale of the c coefficient
with the scale of the c’ coefficient using eq 7. [1, 2].

cstandardized ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2σ2MX

π2=3

s

ð7Þ

Where cstandardized is the standardized c coefficient, c is
the c coefficient from eq. 1, b is the b coefficient from
eq. 3, σ2MX is the residual variance from eq. 2, and π2/3
is the error variance of the standard logistic distribution
with π representing the number pi. Because in logistic

regression no residual variance is being estimated, the
standardized logistic solution can only be applied when
the mediator is continuous.

Potential outcomes framework
The potential outcomes framework provides definitions
of the mediated effect that can be used to decompose
the total effect of an exposure on an outcome into
causal direct and indirect effects [5]. The potential out-
comes framework therefore explicitly assumes that
there are no unobserved confounders of the relation-
ships in the mediation model. There are several ways in
which the potential outcomes framework can be used
to estimate direct and indirect effects [16–18]. In this
paper we focus on the logistic-regression based method
as described by VanderWeele and Vansteelandt [18].
Under the assumption of no unobserved confounders,
no exposure-mediator interaction, and a low outcome
prevalence (i.e. 10% or lower), the indirect effect for
mediation models with a dichotomous outcome is de-
fined as the product of the a and b coefficients from
eqs. 2 and 3 [19]. Furthermore, in this situation, the
direct effect equals the c’ coefficient from eq. 3. Under
the no unobserved confounders and no
exposure-mediator interaction assumptions, the indir-
ect and direct effect odds ratios for mediation models
with a dichotomous mediator and outcome can be cal-
culated using eqs. 8 and 9 [19].

Indirect effect OR ¼ ð1þ expði2ÞÞð1þ expðbþ i2 þ aÞÞ
ð1þ expði2 þ aÞÞð1þ expðbþ i2ÞÞ

ð8Þ

Direct effect OR ¼ exp c0ð Þ ð9Þ

Where i2 represents the intercept from eq. 2, b represents
the b coefficient from eq. 3, a represents the a coefficient in
eq. 2, and c′ represents the c’ coefficient from eq. 3.
The total effect is defined as either the product of the

direct and indirect effect when the effect estimates are
on the odds ratio scale, or as the summation of the dir-
ect and indirect effect when the effect estimates are on
the log odds ratio scale [19].

Results
Simulation study
Tables 2, 3, and 4 show the results of the simulation
study comparing the performance of multiple regression,
SEM, and the potential outcomes framework. Since the
estimates yielded by multiple regression and SEM were
exactly the same across all conditions, the results of
these two methods are presented together.
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Continuous mediator
When the mediator was continuous (Table 2), the esti-
mates based on the potential outcomes framework and
the crude indirect effect ab and proportion mediated
ab/(ab + c’) based on multiple regression and SEM gen-
erally had the lowest bias and highest efficiency. All
standardization methods decreased bias and increased
efficiency of the c-c’ estimate compared to the crude
c-c’ estimate based on multiple regression and SEM.
Y-standardization and the standardized logistic solution
both decreased bias and increased efficiency of the ab/c
and 1-(c’/c) estimates compared to the crude ab/c and
1-(c’/c) estimates based on multiple regression and SEM.
However, full-standardization was not able to decrease
bias and increase efficiency in the proportion mediated es-
timates based on multiple regression and SEM. These re-
sults were observed across all three outcome prevalences.

Dichotomous mediator
When the mediator is dichotomous (Table 3), the esti-
mates based on the potential outcomes framework and
the crude indirect effect ab and proportion mediated
ab/(ab + c’) based on multiple regression and SEM are

both unbiased with respect to their own true values. The
standardization methods did decrease bias and increase
efficiency in the c-c’ estimate, but the performance of the
standardized proportion mediated estimates was worse
than the performance of the crude proportion mediated
estimates based on multiple regression and SEM. Even
though the estimates based on the potential outcomes
framework and the crude indirect effect ab and propor-
tion mediated ab/(ab + c’) based on multiple regression
and SEM are unbiased and efficient with respect to their
own true values, differences were observed between the
effect estimates based on the potential outcomes frame-
work and multiple regression and SEM.

Real-life data examples
Table 4 shows the results yielded for the real-life data ex-
amples. As in the simulation study, multiple regression and
SEM yielded exactly the same results. When the mediator
was continuous, the estimates of the indirect effect (−0.03)
and proportion mediated (0.12) in the potential outcomes
framework equaled the crude indirect effect ab and the
proportion mediated ab/(ab + c’) in multiple regression
and SEM. The indirect effect of −0.03 corresponds to an

Table 2 Bias and efficiency yielded by the three compared methods for models with a continuous mediator

Multiple regression and SEM Potential outcomes

Crude y-standardization Full-standardization Standardized logistic solution

Y prev bias MSE bias MSE bias MSE bias MSE bias MSE

0.5 Indirect effect −0.001 0.002

ab −0.001 0.002 −0.001 0.000 −0.000 0.001 −0.001 0.002

c-c’ −0.068 0.006 −0.008 0.000 −0.036 0.002 −0.021 0.003

Proportion mediated 0.003 0.003

ab/(ab + c’) 0.003 0.003 0.003 0.003 0.065 0.009 0.003 0.003

ab/c 0.032 0.005 0.009 0.003 0.073 0.010 0.011 0.003

1-(c’/c) −0.044 0.004 − 0.008 0.003 −0.008 0.003 −0.010 0.003

0.3 Indirect effect 0.000 0.003

ab 0.000 0.003 −0.000 0.000 −0.000 0.001 0.000 0.003

c-c’ −0.061 0.005 −0.005 0.001 −0.033 0.002 −0.012 0.003

Proportion mediated 0.001 0.004

ab/(ab + c’) 0.001 0.004 0.001 0.004 0.064 0.010 0.001 0.004

ab/c 0.027 0.005 0.005 0.004 0.069 0.010 0.006 0.004

1-(c’/c) −0.041 0.005 −0.006 0.004 −0.006 0.004 −0.007 0.004

0.1 Indirect effect 0.003 0.006

ab 0.003 0.006 0.001 0.001 0.001 0.001 0.003 0.006

c-c’ −0.036 0.005 0.005 0.001 −0.023 0.002 0.016 0.003

Proportion mediated 0.006 0.008

ab/(ab + c’) 0.006 0.008 0.006 0.008 0.070 0.017 0.006 0.008

ab/c 0.023 0.010 0.002 0.008 0.065 0.015 0.001 0.008

1-(c’/c) −0.020 0.008 0.011 0.009 0.011 0.009 0.013 0.009

Abbreviations: SEM structural equation modeling, Y prev outcome prevalence, MSE mean squared error
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Table 3 Bias and efficiency yielded by the three compared methods for models with a dichotomous mediator

Multiple regression and SEM Potential outcomes

Crude y-standardization Full-standardization

M prev Y prev bias MSE bias MSE bias MSE bias MSE

0.5 0.5 Indirect effect 0.000 0.000

ab 0.002 0.008 0.000 0.001 0.000 0.000

c-c’ −0.287 0.083 −0.054 0.003 0.006 0.000

Proportion mediated 0.001 0.001

ab/(ab + c’) −0.003 0.005 −0.136 0.021 −0.235 0.057

ab/c 0.167 0.048 −0.096 0.014 −0.236 0.057

1-(c’/c) −0.266 0.072 −0.254 0.066 −0.254 0.066

0.3 Indirect effect −0.001 0.000

ab 0.003 0.010 −0.001 0.001 0.000 0.000

c-c’ −0.288 0.083 −0.055 0.003 0.007 0.000

Proportion mediated 0.001 0.001

ab/(ab + c’) −0.004 0.006 −0.136 0.022 −0.235 0.057

ab/c 0.168 0.054 −0.095 0.016 −0.235 0.057

1-(c’/c) −0.265 0.071 −0.254 0.066 −0.254 0.066

0.1 Indirect effect 0.002 0.001

ab 0.016 0.021 −0.003 0.001 0.002 0.000

c-c’ −0.284 0.081 −0.052 0.003 −0.004 0.000

Proportion mediated 0.004 0.002

ab/(ab + c’) −0.001 0.012 −0.132 0.024 −0.230 0.056

ab/c 0.187 0.087 −0.087 0.021 −0.231 0.057

1-(c’/c) −0.261 0.070 −0.248 0.064 −0.248 0.064

0.3 0.5 Indirect effect −0.001 0.001

ab −0.001 0.020 −0.001 0.001 −0.000 0.000

c-c’ −0.299 0.081 −0.062 0.003 − 0.009 0.000

Proportion mediated −0.001 0.001

ab/(ab + c’) −0.006 0.013 −0.138 0.025 −0.247 0.062

ab/c 0.171 0.086 −0.093 0.022 −0.246 0.062

1-(c’/c) −0.283 0.070 −0.272 0.066 −0.272 0.066

0.3 Indirect effect −0.001 0.001

ab −0.001 0.011 −0.001 0.001 0.000 0.000

c-c’ −0.294 0.087 −0.060 0.004 −0.007 0.000

Proportion mediated 0.001 0.001

ab/(ab + c’) −0.003 0.007 −0.135 0.022 −0.244 0.061

ab/c 0.176 0.061 −0.090 0.016 −0.244 0.061

1-(c’/c) −0.274 0.076 − 0.264 0.071 −0.264 0.071

0.1 Indirect effect 0.003 0.001

ab 0.012 0.010 0.002 0.001 0.001 0.000

c-c’ −0.283 0.090 −0.054 0.004 −0.001 0.000

Proportion mediated 0.004 0.003

ab/(ab + c’) −0.004 0.006 − 0.134 0.022 −0.242 0.062

ab/c 0.179 0.054 −0.090 0.015 −0.244 0.062

1-(c’/c) −0.260 0.081 −0.252 0.075 −0.252 0.075
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odds ratio of 0.97, which indicates that for one unit increase
in the sum of four skinfolds the odds of being in the high
CD group decreases by a factor of 0.97 via an increase in
average heart rate. This indirect effect explained 12% of the
total effect of sum of four skinfolds on CD.
When the mediator was dichotomous, the crude ab

and ab/(ab + c’) estimates based on multiple regression
and SEM were −0.06 and 0.25 respectively. This indirect
effect estimate corresponds to an odds ratio of 0.94, in-
dicating that for one unit increase in the sum of four
skinfolds the odds of being in the high CD group de-
creases by a factor of 0.94 via an increased odds of being
in the high average heart rate group. This indirect effect
explained 25% of the total effect of sum of four skinfolds
on CD. The indirect effect and proportion mediated
based on the potential outcomes framework were − 0.01
and 0.07 respectively. This indirect effect estimate corre-
sponds to an odds ratio of 0.99, indicating that for one
unit increase in the sum of four skinfolds the odds of be-
ing in the high CD group decreases by a factor of 0.99
via an increased odds of being in the high average heart
rate group. This indirect effect explained 7% of the total
effect of sum of four skinfolds on CD.

Discussion
The aim of this paper was to show the relative perform-
ance of different methods to estimate the indirect effect
and proportion mediated for mediation models with a
dichotomous outcome. The effect estimates based on
the potential outcomes framework and the crude indir-
ect effect estimate ab and the crude proportion medi-
ated ab/(ab + c’) based on multiple regression and SEM
perform well in all situations. When the mediator was
continuous, the effect estimates in the potential out-
comes framework and in multiple regression/SEM coin-
cided, but this was not the case when the mediator was
dichotomous. Standardization of the coefficients from
multiple regression/SEM prior to estimating the indirect
effect and the proportion mediated does generally not
increase the performance of these estimates.
For both models with a continuous or a dichotomous

mediator and across all prevalence rates of the mediator
and outcome, the crude indirect effect estimate c-c’ and
the crude estimates of the proportion mediated ab/c and
1-(c’/c) performed worse than the crude ab and ab/
(ab + c’) estimates. We found that, compared to the
crude estimates, standardization only decreased bias and

Table 3 Bias and efficiency yielded by the three compared methods for models with a dichotomous mediator (Continued)

Multiple regression and SEM Potential outcomes

Crude y-standardization Full-standardization

M prev Y prev bias MSE bias MSE bias MSE bias MSE

0.1 0.5 Indirect effect 0.004 0.001

ab 0.013 0.026 0.002 0.002 −0.018 0.000

c-c’ −0.333 0.111 −0.082 0.007 −0.032 0.001

Proportion mediated 0.004 0.001

ab/(ab + c’) −0.006 0.011 −0.137 0.025 −0.284 0.082

ab/c 0.223 0.113 −0.066 0.020 −0.281 0.081

1-(c’/c) −0.332 0.111 −0.326 0.107 −0.326 0.107

0.3 Indirect effect 0.003 0.001

ab 0.009 0.025 0.002 0.002 −0.018 0.000

c-c’ −0.328 0.108 −0.080 0.006 −0.030 0.001

Proportion mediated 0.005 0.001

ab/(ab + c’) −0.005 0.013 −0.135 0.025 −0.283 0.082

ab/c 0.225 0.121 −0.065 0.022 −0.281 0.081

1-(c’/c) −0.323 0.105 −0.318 0.102 −0.318 0.102

0.1 Indirect effect 0.003 0.001

ab 0.002 0.033 −0.001 0.002 −0.018 0.001

c-c’ −0.319 0.102 −0.076 0.006 −0.026 0.001

Proportion mediated 0.003 0.002

ab/(ab + c’) −0.024 0.027 −0.145 0.033 −0.286 0.084

ab/c 0.193 0.130 −0.081 0.031 −0.285 0.084

1-(c’/c) −0.310 0.098 −0.307 0.096 −0.307 0.096

Abbreviations: SEM structural equation modeling, M prev mediator prevalence, Y prev outcome prevalence, MSE mean squared error
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increased efficiency in the c-c’ estimate of the indirect ef-
fect and the ab/c and 1-(c’/c) estimates of the proportion
mediated. In line with our findings, previous studies only
advised standardization of the coefficients when calculat-
ing the indirect effect as c-c’ and the proportion medi-
ated as ab/c or 1-(c’/c) [2–4]. This is advice is relevant
when the indirect effect is phrased in terms of a differ-
ence in coefficients [2]. Furthermore, when the mediator
was dichotomous, the standardized estimates of the pro-
portion mediated performed worse than the crude esti-
mates in terms of bias and efficiency. Furthermore, it is
important to note that both y-standardization and
full-standardization may hamper a clinically meaningful
interpretation of the indirect effect [15].
That multiple regression and SEM yielded exactly the

same estimates of the indirect effect and proportion medi-
ated can be explained by their mathematical equivalence
[20]. Furthermore, when the mediator is continuous and in
the absence of exposure-mediator interaction, the formulas
for calculating the indirect effect and proportion mediated

in the potential outcomes framework are mathematically
equivalent to the ab and ab/(ab + c’) estimates in multiple
regression and SEM [18]. However, when the mediator is
dichotomous, there is a discrepancy between the indirect
effect estimate in the potential outcomes framework and in
multiple regression and SEM. This discrepancy is caused
by the differences in the formulas of the indirect effect
used by the two methods when the mediator is dichotom-
ous [21]. Further research is needed to assess why and
when these two formulas lead to different indirect effect
estimates.

Change of scales in logistic models
The systematic underestimation of the c-c’ estimate of
the indirect effect can be explained by the change of
scales of the coefficients in nested logistic models. The
scale of the coefficients in logistic models is dependent
on the total variance of the dependent variable [3]. The
total variance in a variable is a combination of explained
and unexplained variance. When a particular variable is

Table 4 Application of the three compared methods to the real-life data examples

Multiple regression and SEM Potential outcomesa

Crude y-standardization Full-standardization Standardized logistic solutionb

Situation 1
M continuous
Y dichotomous

Total effect (c) −0.20 −0.11 −0.20 −0.21 −0.21

a coefficientd 0.67 0.67 0.67 0.67 0.67

b coefficient −0.04 −0.02 −0.23 −0.04 −0.04

Direct effect (c’) −0.19 −0.10 −0.18 −0.19 −0.19

Indirect effect −0.03

ab −0.03 −0.01 −0.15 −0.03

c-c’ −0.02 −0.01 −0.02 −0.02

Proportion mediated 0.12

ab/(ab + c’) 0.12 0.12 0.47 0.12

ab/c 0.13 0.12 0.77 0.12

1-(c’/c) 0.09 0.11 0.11 0.11

Situation 2
M dichotomous
Y dichotomous

Total effect (c) −0.20 −0.11 −0.20 NA −0.21

a coefficient 0.11 0.06 0.11 NA 0.11

b coefficient −0.60 −0.32 −0.16 NA −0.60

Direct effect (c’) −0.19 −0.10 −0.19 NA −0.19

Indirect effect −0.01

ab −0.06 −0.02 −0.02 NA

c-c’ −0.01 −0.01 −0.01 NA

Proportion mediated 0.07

ab/(ab + c’) 0.25 0.16 0.09 NA

ab/c 0.32 0.17 0.09 NA

1-(c’/c) 0.06 0.07 0.07 NA

Abbreviations: SEM structural equation modeling, M mediator variable, Y outcome variable, NA not available
aThe output of the potential outcomes framework contains odds ratios, the coefficients in the table are log transformed to make the coefficients comparable to
the coefficients yielded by multiple regression and SEM
bThe standardized logistic solution cannot be applied to mediation models with a dichotomous mediator variable
dThe a coefficient is based on linear regression
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added to a linear regression model, the unexplained vari-
ance decreases with the same amount as the explained vari-
ance increases. However, in a logistic regression model a
standard logistic distribution is assumed, in which the un-
explained variance is fixed at 3.29 [22]. So, the total amount
of variance in the dependent variable must increase when
an added variable explains some of the variance in the
dependent variable. Consequently, also the scale of the
coefficients in the model will increase.
The change of scales becomes a problem when medi-

ation is investigated. Suppose we add a potential mediator,
that is highly related to the outcome, to a logistic regres-
sion model with an exposure variable. The strong relation-
ship between the mediator and outcome variable will
force the total amount of variance in the outcome variable
to increase. To deal with this increased total variance, the
scale of the coefficients in the model will increase as well.
This increase in the coefficient for the exposure variable
would also happen when there is no mediation at all, i.e.
when the relationship between the exposure and mediator
variable is equal to zero. In that case the increase in the
coefficient for the exposure variable would be completely
attributable to the increase in the total amount of variance
in the outcome variable and not to mediation [23].
When there truly is mediation, the change of scales in

logistic models will bias the c-c’ estimate of the indirect
effect. Because the mediator explains at least a part of
the total effect of the exposure on the outcome, the direct
effect (c’ coefficient) is expected to be lower than the total
effect (c coefficient). However, at the same time the mag-
nitude of the coefficient for the direct effect will increase
because of the addition of the mediator to the model.
Consequently, the c-c’ estimate will be a systematic under-
estimation of the true (positive) indirect effect. Previous
simulation studies showed that the magnitude of this
underestimation depends on both the strength of the rela-
tionship between the mediator and outcome, and on the
sample size [2, 3]. Furthermore, it is important to note
that even when the true mediated effect equals zero, the
indirect effect based on c-c’ will likely be nonzero and thus
a misleading estimate of the true indirect effect.

Significance testing
Often researchers are interested in using statistical tests
to test for the presence of a mediated effect. Further-
more, it has been suggested that when the outcome
prevalence is higher than 10%, the indirect effect esti-
mates can only be used to test for the presence of a me-
diated effect instead of interpreting the indirect effect
estimate itself [21]. It should, however, be noted that the
statistical significance of an indirect effect does not say
anything about its clinical relevance [24]. The clinical
relevance of an indirect effect can only be assessed through
its magnitude. Unfortunately, the magnitude of the indirect

effect based on logistic models will often be affected by
unobserved heterogeneity. To avoid the problem of unob-
served heterogeneity in the interpretation of the indirect
effect, the use of alternative models has been proposed,
such as linear probability models, average marginal effects
models, and log-linear models [19, 22]. Further research is
needed to assess the usefulness of these models for medi-
ation analysis with a dichotomous outcome.

Strengths and limitations
To our knowledge this is the first paper extensively com-
paring unstandardized and standardized estimates of the
indirect effect and proportion mediated based on multiple
regression, SEM, and the potential outcomes framework
for models with a dichotomous outcome. In our simula-
tion study we assessed multiple conditions based on the
prevalence of the mediator and outcome, as the potential
outcomes framework assumes the outcome to be rare.
Our study showed that the bias and efficiency of the esti-
mates of the indirect effect and proportion mediated
across all prevalence rates are low. However, it is import-
ant to note that the odds ratios from the potential out-
comes framework won’t approximate risk ratios for high
prevalence rates, i.e. 10% to 50% [18].
For the sake of simplicity, we did not include con-

founders in the simulated models. However, we believe that
the results in this paper also apply for models that do in-
clude confounders. In practice it is important to consider
potential confounders of all relationships in the mediation
model. In all three methods compared in this paper, the es-
timates of the indirect effect and proportion mediated can
be adjusted for confounding by adding the potential con-
founders to all fitted regression equations [25–27].

Conclusions
In general, standardization of the coefficients prior to esti-
mating the indirect effect and the proportion mediated may
not increase the performance of these estimates. We there-
fore recommend to either use the estimates based on the
potential outcomes framework or the crude ab estimate
and ab/(ab + c’) estimate of the indirect effect and propor-
tion mediated, respectively, based on multiple regression
and SEM. For models with a continuous mediator, these
estimates from multiple regression and SEM coincide with
the estimates from the potential outcomes framework.
When the mediator is dichotomous, the estimates based on
the potential outcomes framework deviate from the esti-
mates based on multiple regression and SEM. Further re-
search is needed to assess why and when these methods
lead to different effect estimates.

Abbreviations
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