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While numerous studies show that brain signals contain information about an individual’s
current state that are potentially valuable for smoothing man–machine interfaces, this
has not yet lead to the use of brain computer interfaces (BCI) in daily life. One of
the main challenges is the common requirement of personal data that is correctly
labeled concerning the state of interest in order to train a model, where this trained
model is not guaranteed to generalize across time and context. Another challenge is
the requirement to wear electrodes on the head. We here propose a BCI that can
tackle these issues and may be a promising case for BCI research and application
in everyday life. The BCI uses EEG signals to predict head rotation in order to improve
images presented in a virtual reality (VR) headset. When presenting a 360◦ video to a
headset, field-of-view approaches only stream the content that is in the current field of
view and leave out the rest. When the user rotates the head, other content parts need
to be made available soon enough to go unnoticed by the user, which is problematic
given the available bandwidth. By predicting head rotation, the content parts adjacent
to the currently viewed part could be retrieved in time for display when the rotation
actually takes place. We here studied whether head rotations can be predicted on the
basis of EEG sensor data and if so, whether application of such predictions could be
applied to improve display of streaming images. Eleven participants generated left- and
rightward head rotations while head movements were recorded using the headsets
motion sensing system and EEG. We trained neural network models to distinguish
EEG epochs preceding rightward, leftward, and no rotation. Applying these models to
streaming EEG data that was withheld from the training showed that 400 ms before
rotation onset, the probability “no rotation” started to decrease and the probabilities of
an upcoming right- or leftward rotation started to diverge in the correct direction. In the
proposed BCI scenario, users already wear a device on their head allowing for integrated
EEG sensors. Moreover, it is possible to acquire accurately labeled training data on the
fly, and continuously monitor and improve the model’s performance. The BCI can be
harnessed if it will improve imagery and therewith enhance immersive experience.

Keywords: EEG, brain computer interface, neuroadaptive technology, virtual reality, head mounted display, head
rotation, movement prediction, applied neuroscience
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INTRODUCTION

Real time monitoring of cognitive and affective processes using
brain signals could be potentially useful in a range of everyday
applications such as real time adaptation of automated systems
to fit the current state of a particular individual (Parasuraman
and Rizzo, 2007). Such neuroergonomic applications are referred
to as (passive) brain computer interfaces (BCI) (Zander et al.,
2008) or neuroadaptive technology (Zander et al., 2016). While
impressive progress has been made in the field, we think it is still
difficult to pinpoint concrete applications where these estimates
from brain signals could, in the near term, support the user
enough to justify wearing electrodes. There are several reasons
for this (Brouwer et al., 2015). One is that in many cases, other
measures of cognitive and affective state that are available, or
can be extracted, are more reliable and/or easier to interpret
(such as user performance, behavioral measures, and explicit
user input). While these measures may suffer from other specific
disadvantages, neuroadaptive technology will only flourish in a
scenario where even a limited reliability can be exploited such
that the user benefits outweigh the costs. Perhaps even more
important is the problem of acquiring data to train the BCI
system. Such data for training should preferably be collected for
the individual that is going to use the BCI and under the same
(real life) conditions as where the BCI system is to be used,
and updated regularly. Correct labels (i.e., the “true” cognitive
or affective state that goes with a data interval) are, especially
under real life conditions, often difficult to acquire. We here
present a possible BCI application that can be envisioned to
provide added value relatively soon, based on currently existing
methods and equipment, since it is a system that automatically
collects personal, correctly labeled data without user effort, it
can validate itself on the fly and gradually improve the man–
machine interaction even when the accuracy of its predictions
is not perfect. Errors do not have dangerous consequences and
users do not need to put extra equipment on the head. Also,
it is likely that at least in some applications, brain signals are
more informative than other possible sources of information. The
proposed BCI application is the prediction of head movements
in order to reduce delays in images presented in VR headsets.
Especially when presenting streaming video data, choices in usage
of bandwidth have to be such that image resolution is sacrificed
to reducing delays in the viewed image when the head moves.
This trade-off could be chosen more optimally if we would know
whether it is likely the head is going to rotate, and if so, in which
direction. These predictions may be made using EEG signals.

The main method for streaming video to VR headsets is
to stream an entire 360◦ video to the receiver, possibly in
3D. Streaming high-quality (possibly 3D) panoramic views
easily require tens or hundreds of Mbps, even with modern
video encoding techniques (Schilt et al., 2016), posing a high-
computational load and high-power consumption, which are
disadvantageous for many devices. As VR rendering devices
frequently stream the video stream via a bandwidth constrained
network, for example, a digital subscriber line (DSL), wireless
LAN (WLAN), or mobile connection (e.g., UMTS or LTE), the
bandwidth requirements result in low-video quality or streaming

is not even possible at all. To improve such streaming, a number
of methods have been developed to use the bandwidth only
(or mostly) for the part that is currently being looked at; only
this part needs to be displayed and sent to the VR headset.
These methods are called field-of-view (FoV) based streaming
approaches (Brandenburg et al., 2017; Podborski et al., 2017).

The problem with FoV-based VR streaming approaches is that
new content needs to be made available quickly when the VR user
rotates his or her head. Currently, such rotations are detected
using one or more sensors in or near the VR headset, such as a
gyroscope or an external camera facing the VR user. With video
streaming, it will take some time before a new video can be
started, because of the delays inherent in video streaming (e.g.,
requesting delays, encoding delays, network delays, buffering
delays, decoding delays). When requests for a new part of the
video are sent only after the head rotation is detected, new video
material for the new viewing direction will only be available
after some time. In real-time situations, for example in VR
video conferencing, the lowest achievable end-to-end delay (from
camera glass to display glass) is in the order of 100 ms (Kegel
et al., 2012). Lower delay comes at the cost of spatial quality. In
nonreal-time situations, for example, watching a TV broadcast,
encoding is already performed, and the complete video can be
made available on a node in the network close to the VR user.
In such, and otherwise optimal (i.e., lab) circumstances, delays
as low as 50 ms may be possible. These ultra-low delays will
come at the cost of higher bandwidth usage, not available to the
ordinary consumer. A potential solution is to optimize FoV-based
streaming approaches in terms of latency and content quality.
This can be dealt with by streaming the current field of view
in high resolution (i.e., using most bandwidth for this part) and
stream some of the adjacent parts in lower resolution (i.e., stream
“guard bands” using some bandwidth). If we can predict when
and where the head is going to rotate, appropriate adjacent parts
can be streamed (only) at appropriate times, such as to optimize
what to spend the bandwidth on. The specific way that this can be
done depends on what can be predicted and how precise. Figure 1
illustrates this schematically. If it can be predicted whether the
head is likely to rotate or not, only the current view needs to be
streamed if the head is likely to remain stationary; if the head is
likely to rotate, guard bands completely surrounding the current
view can be streamed in addition to the current view. If it can be
predicted that the head is likely to rotate to the left, a larger or a
smaller and more specific guard band to the left can be streamed,
depending on the precision with which the exact rotation of
the head can be predicted (examples are schematically indicated
in the lower panels of Figure 1). Figure 2 shows an example
streaming process for a receiver and a source connected via a
network, where 20 Mbps of bandwidth is available for the receiver
for this streaming process, and in the case that only rotation onset
can be predicted without knowing the rotation direction. In this
example, the user initially sits still and looks in one direction.
Normally, the streaming process should always have some way
to deal with a sudden onset of movement. This may consist of a
low-resolution fallback layer continuously provided for the entire
image, or of the delivery of guard band tiles surrounding the
current viewport. However, since here it is predicted that the head
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FIGURE 1 | Schematic representation of possible streaming decisions in terms of spatial area and mbps (megabit per second) to present images to a user of a VR
headset. The lower insets, respectively, represent possible decisions in cases that the head is not expected to rotate; expected to rotate in an unknown direction;
expected to rotate in some leftward direction; and expected to precisely rotate to the left.

will remain stationary, this is not necessary, and only the tiles for
the current viewport are requested. Thus, the best image quality
can be attained given the current bandwidth. In this case, for all
tiles in the current viewport segments are retrieved at the highest
quality, that is, at 2 Mbps. As long as no movement onset is
predicted, the receiver can continue to request new segments for
these same tiles, as conceptually shown in the figure by repeating
the same HTTP request. Then, at a certain point in time, rotation
onset is predicted to occur in 400 ms, giving the receiver ample
time to retrieve segments for new tiles. Because in this example,
only rotation onset is predicted and not rotation direction, guard
band tiles are requested next to all current viewport tiles. The
streaming is limited in bandwidth to 20 Mbps, which in this
situation means that the viewport quality will decrease to make
bandwidth available for retrieval of guard band tile segments.
This is shown in Figure 2 in the next step, where the segments
for the nine viewport tiles are now requested at 1 Mbps and the
16 guard band tiles surrounding the viewport are requested at
0.5 Mbps. Then, the actual rotation starts as detected using a
motion sensor such as a gyroscope. This sensor also detects the
rotation direction. Once the direction is known, the streaming
can be further optimized by requesting only guard band tiles in
certain directions, that is, in this case to the left, up, and down, as
a complete reversal of head movement from left to right cannot
happen instantaneously. Finally, in the last two HTTP requests,
movement has already started, the viewport has moved one tile
to the left and only 11 guard band tiles (i.e., left, up, and down)
are still requested. For more details on this example, as well as
other examples, see Schilt et al. (2016).

We propose to use EEG brain signals to predict rotation
onset and rotation direction in order to optimize the FoV-based
streaming approaches (Brouwer et al., 2017). Before a body
movement takes place, several processes have occurred in the
brain. Depending on what elicited the movement, or what is
its goal, attention has been drawn, a decision has been taken,
and the movement has been planned. After planning, signals are

sent to the muscles to contract, and only then the movement
starts. This means that we can potentially use brain signals to
shorten the time of reliably detecting movement onset compared
to conventional methods, or to even predict the movement.

The literature reports two general signals related to movement
planning that can be captured by EEG. One is the readiness
potential (cf. lateralized readiness potential, contingent negative
variation, or CNV, bereitschaftspotential: Walter et al., 1964;
Kornhuber and Deecke, 1965; Coles, 1989; Leuthold et al., 2004;
Guggisberg and Mottaz, 2013), and the other is (lateralized)
event related desynchronization (Pfurtscheller, 2001). The first
type of signal has been observed at the motor cortex when
signals are synchronized on (hand) movement onsets. Depending
on the exact research paradigm, a slow negativity can start
to occur already 2 s before movement onset. This effect has
been attributed to nonspecific (attention related) preparation
for action. Around 400 ms before movement onset, the signals
become asymmetric according to whether the movement is left
or right (the “lateralized” part). For the desynchronization type
of signal, we do not examine EEG waves as a time-series signal
as we do for the readiness potential, but we look at the power in
the 10–12 Hz (alpha or mu) frequency band. A desynchronized
signal, represented by a low power in the 10–12 Hz band, roughly
corresponds to a high level of activation of that area. Left hand
movement imaging, planning, and execution correspond to a
relatively low power in the right hemisphere, and vice versa.
Studies on these signals usually employ hand or arm movements.
In the literature, we could not find specific information about
EEG and head rotation. Still, similar information from EEG as
mentioned above may be used.

In order to be able to use brain signals to predict a single
movement, it does not suffice to look at signals averaged across
many instances of, for instance, left-, right-, and no movements,
even though this is the common approach in research such
as cited above in order to average out noise. For our type of
application, we will have to be able to extract this information
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FIGURE 2 | Schematic representation of a streaming process over time, integrating prediction, and detection of head rotation.

reliably from a single, short interval of brain data. There has been
successful work in this area with respect to (offline) predicting
single movements in the case of emergency braking in virtual or
real driving (i.e., predicting movement of the foot or leg before it
is detectable from letting go of the gas pedal: Haufe et al., 2011,
2014; Kim et al., 2015); steering a steering wheel in virtual driving
(Gheorghe et al., 2013), self-paced reaching movements (Lew
et al., 2012), and self-paced foot movements (Liu et al., 2017).
These studies show that EEG allows predicting movement onset

200 to 800 ms before it is detected using conventional measures
and/or electrical signals from the muscles (EMG – Lew et al.,
2012; Haufe et al., 2014).

As of yet it is unknown whether such single trial movement
prediction is possible for the case of head rotation. When
head rotation is elicited by the occurrence of relevant visual
or auditory stimuli (such as emergence braking was elicited by
the perception of braking lights in the study referred to above),
brain signals reflecting the perception of and attention to these
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events may be exploited to predict body movement. In such cases,
automatic detection of or otherwise knowing about these events
may also be used directly to predict head rotation, decreasing
the chances of EEG to be of added value in the prediction.
Therefore, we are especially interested in the case of predicting
voluntary, completely top-down determined head rotation. This
represents a different, relatively hard case since rotating the head
involves a large number of muscles on both sides of the body,
a relatively small amount of motor cortex is dedicated to the
neck, and, as mentioned, we cannot make use of brain processes
associated with processing sensory signals. On the other hand,
other markers such as those related to spatial attention are
expected to be especially tightly connected to head movements
compared to limb movements, and may be used. Additionally, in
this case of voluntary, top-down movements, other higher order
processes of attention and planning may be used as well.

In the current study, we investigate whether it is possible
to predict (the direction of) a single, voluntary head rotation,
and if so, how long in advance and how accurately this can
be done for a (simulated) real-time scenario. This is important
given our envisioned VR use case, where a continuous stream
of EEG would need to be judged continuously with respect
to the likelihood of upcoming head rotations. For rotation
direction, we focus on left- and rightward direction since the
horizontal dimension is usually the one with the largest changes
in displayed imagery. We further focus here on features from
EEG time-series rather than frequency analysis since single
trial movement prediction studies showed that time-series based
features are strongly preferred over frequency based features
(Lew et al., 2012; Haufe et al., 2014; and especially Liu et al.,
2017).

MATERIALS AND METHODS

Participants
We recorded from 11 participants who were recruited through
the local participant pool of the research institute where the
study was conducted. They were between 20 and 60 years
old (SD 12.6). This study was carried out in accordance with
the recommendations of the Helsinki Declaration of 1975, as
revised in 2013 (World Medical Association, 2013). The protocol
was approved by the TNO Institutional Review Board (TCPE).
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. Participants received monetary
compensation for their time and travel.

Equipment
For EEG, 32 active silver–chloride EEG electrodes were placed
according to the 10–20 system and were referenced to the
Common Mode Sense (CMS) active electrode and Driven Right
Leg (DRL) passive electrode (Biosemi ActiveTwoMk II system).
Participants wore a light-weight Head Mounted Display (HMD)
(FAT SHARK Dominator HD2). This HMD contains an inertial
measurement unit (IMU), combining signals from gyroscope,
accelerometer, and magneto sensors. The 128 Hz IMU output was
used to collect data on the head’s actual rotation.

Procedure
After the study was explained, any questions answered and the
informed consent forms signed, the EEG sensors were attached
and the HMD put in place. Participants were asked to make
self-paced right- and leftward head rotations, starting from and
returning to the center at voluntarily chosen, arbitrary times,
but leaving at least 2 s in between rotations starting from the
center. The HMD showed a black screen since as explained in the
introduction, we here test the situation that head rotations are
performed voluntarily, that is, we did not want to capitalize on
brain signals that are expected to be generated by perceiving and
attending to visual or auditory stimuli. Participants were asked
to perform the task for 20 min, keeping their eyes open. Then
the HMD was taken off for a 10-min break after which another
20-min session followed.

Analysis
Extracting Current Head Rotation
We moved a sliding window of 125 ms over the head rotation
velocity data of each participant. When the velocity exceeded a
noise threshold and remained there, we defined the moment that
the velocity exceeded the threshold first as movement onset. The
noise threshold was determined by the variance of the velocity
when the participant kept his or her head steady. This procedure
resulted in the labeling of each frame of corresponding EEG data
as “no rotation,” “leftward rotation,” and “rightward rotation.”
Figure 3 shows example IMU data with corresponding rotation
labels.

Preprocessing EEG
When selecting data intervals for training the model, intervals
containing EEG with amplitudes over 80 mV were discarded as
noise. Since we are particularly interested in slow components,
EEG was band pass filtered between 0.75 to 8 Hz. Finally, EEG
was downsampled to 128 Hz. The same preprocessing was done
when validating and testing the model.

Training and Testing the Neural Network
For each participant, a multi-layer perceptron model (Sarle, 1997;
Heaton, 2005) predicting head rotation was trained and validated.
Similar to what was done in previous studies (e.g., Huan and
Palaniappan, 2004; Mirghasemi et al., 2006; Nakayama et al.,
2007; Manyakov et al., 2011), we used a dense neural network
with three hidden layers (512, 256, and 6 nodes, respectively).
All hidden layers used the ReLu activation function (Hahnloser
et al., 2000) and L2 regularization. The first two hidden layers
also used 10% dropout (Srivastava et al., 2014). The input layer
received all 1024 features, and the output layer contained three
nodes with a sigmoid activation function for each of the three
classes. The network was trained for 150 epochs with the ADAM
optimizer (Kingma and Ba, 2014) in batches of 150 samples,
which were normalized. The learning rate was 0.001 with a
categorical cross-entropy loss function.

For training the model, 250 ms intervals of 32 electrode EEG
data were labeled as preceding no rotation, preceding leftward
rotation, and preceding rightward rotation. Only head rotations
going from the center (facing straight ahead) to one of the
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FIGURE 3 | Example IMU data showing the extracted movement onsets, as well as a random sample of moments in time that were considered to be no movement.

sides were considered since in contrast to movements started
with the head facing to one of the two directions, the rotation
direction of the next movement is unknown. Each rotation was
associated with seven partially overlapping, jittered windows,
where the window closest to the rotation onset ended 188 ms
before rotation onset as defined by the algorithm extracting
head rotation as outlined above, and the window furthest away
from rotation onset started 488 ms before rotation onset. The
center of the center interval was 338 ms before rotation onset.
Figure 4 provides a schematic illustration of this. The width of
these windows and their positioning in time may not be optimal;
however, they fit to the effort to stay clear of actual head rotation
while allowing picking up a differential signal. We estimated that
differences between no rotation, left-, and rightward rotation
would start to occur around 300–400 ms given the previous
single trial movement prediction studies, as well as that in our
task (rotate the head self-paced, leaving at least 2 s in between)
participants were not expected to plan a movement very long
ahead of time. The width of the window needed to be long enough
to be able to deal with potential timing differences in onset, and
short enough to be able to have a clear separation between “no
rotation” intervals and rotation intervals, while also staying clear
of head rotation. “No rotation” intervals never overlapped with
periods of head rotation (as defined above) and always ended at
least 1000 ms before rotation onset.

For each participant, an equal number of intervals for right,
left, and no rotation was included in training and testing the
model where this number was determined by the smallest
number of right- or left-rotation intervals. Randomly chosen
intervals were left out from the other categories in order to obtain
equal numbers. On average, participants’ datasets consisted of
975 intervals in each class for training (SD 137; participant

FIGURE 4 | Schematic overview of defining head rotation intervals for training
the model.

range between 816 and 1244) and 110 intervals in each class for
testing (SD 23; participant range between 81 and 152). Because
of the jittered windows, these numbers represent seven times the
number of used rotations.

The model was trained and tested in epochs. Every epoch, 72%
of data from the first and 72% of data from the second 20-min
block was selected as training data; 18% was selected as validation
data to optimize the network; and 10% (a 4-min continuous
stream of data) was set aside as test data to determine the accuracy
of the final model.

Every epoch, weights of the neural network were adjusted
such as to fit the training data to the labels. The output of the
model was a three-number vector indicating the probability of
a label as belonging to none, left or right, for example, [0.003;
0.025; 0.002]. This was compared to the vector representing
the truth, for example, for a leftward rotation [0; 1; 0]. In this
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example, the model would be accurate (the highest probability
corresponds to the correct label) but since the probabilities
are all quite low (0.025 is far from 1), the loss (root mean
squared error) would be high. The model optimized on limiting
the loss (categorical cross entropy). Then, the final trained
model was applied to the withheld test set in order to monitor
generalization of classification performance to completely unseen
data.

Given the stochastic nature of the modeling, this procedure
was repeated three times for each participant, such that three
values were obtained of the final model’s performance on the
unseen data.

Applying the Trained Model
As described above, the model was trained and tested on labeled
intervals of data. However, in our real-time application scenario,
we would need to classify streaming data rather than predefined
intervals of data. This was simulated by having the model classify
the withheld 4-min stream of test data by presenting it as
subsequent 250 ms intervals of data, every time shifted by one
frame (i.e., 7.8 ms).

RESULTS

Figure 5 shows classification accuracy for each participant for
the withheld test data. The percentage correct indicates the
percentage of intervals that is correctly classified into one of the
three different classes (right, left, and no rotation). For most
participants, classification accuracy is above chance level. The
upper level of chance performance is around 38% (110 trials –
Müller-Putz et al., 2008).

For each participant, the trained model was applied to
unseen “streamed” test data to simulate a real time situation.
For every frame, the model indicates the probability of no
rotation, left-, and rightward rotation. Figure 6 shows these
probabilities over time preceding rotation onset (time 0) and
averaged across epochs and participants. Figure 6A shows data
preceding rightward head rotation and Figure 6B leftward
rotation. Figure 7 represents the same but for only one individual
participant (the one with the highest classification accuracy for
the test set as represented by the left-most bar in Figure 5).
Standard deviations are indicated by the shaded areas. The graphs
show that 600 ms before rotation onset, the probability of no
rotation is high whereas the probabilities of right- and leftward
rotations are both low, and equally low. Around 400 ms before
rotation onset, the probability of no rotation starts to decrease.
Shortly before, the probability of the rotation in the correct
direction starts to increase. Notably, and consistent with the
observation that low accuracy in Figure 5 is mostly due to
intervals being incorrectly classified as “no rotation” intervals,
the probability of no rotation remains high. The figures showing
data from the participant that can be classified relatively well
differentiate from the overall average in that the “no rotation”
probability decreases steeper and the probability for the correct
rotation increases steeper such that 330–200 ms before rotation
onset, the probability of the correct rotation is on average higher
than the probability of no rotation probability.

Figure 8 shows the mean voltage over the 1000 ms preceding
right (A) and left (B) rotation onset for each electrode (baselined
on the start of the epoch). The difference signal is shown
in Figure 8C. For this figure, equal numbers of right- and
left rotations were used for each participant, and averaging
occurred first per participant and then across participants so that

FIGURE 5 | Mean classification accuracy for the testing set, separately for each participant. Chance level is 33%. Error bars denote standard deviations.
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FIGURE 6 | Modeled probability for no rotation (red), rightward rotation (blue),
and leftward rotation (green) over time preceding rightward rotation (A) and
leftward rotation (B). Probabilities are averaged across participants and data
intervals [representing a total of 58 rightward rotations in (A), and a total of 63
leftward rotations in (B)]. Shaded areas represent standard deviations.

each participant is represented equally strongly in the figure.
The information distinguishing between the two directions of
rotation is mostly frontal and lateralized. There seems to be no
information at the electrodes close to the neck.

DISCUSSION

We found that whether, and in which direction a head is going
to rotate can be predicted on the basis of EEG data starting
at around 400 ms before the rotation occurs. Performance is
variable between participants, where the main difference seems
to be in the strength of the bias to label data as preceding “no
rotation.” Intervals of unseen test data could be classified as
belonging to one of the three rotation categories with accuracies
ranging between 32% (chance level) to 79%.

Whereas we could have expected the best prediction around
the timepoint at which the intervals were selected for training
the model (i.e., at 338 ms before rotation onset), after which a
decrease may have set in, we do not observe such a “tuning.”
At around 450 ms before rotation onset, the probability of the
correct direction of head rotation starts to rise, where it keeps
rising or stays at the same level until the rotation is made.
The model thus bases itself on processes that last until rotation
onset rather than processes that occur in a bounded interval
before rotation onset and is not hindered by processes that start
occurring closer to the rotation onset.

FIGURE 7 | Modeled probability for no rotation (red), rightward rotation (blue),
and leftward rotation (green) over time preceding rightward rotation (A) and
leftward rotation (B) for one participant. This participant produced eight
rightward head rotations in the test data [i.e., (A) represents eight rightward
rotations] and 12 leftward rotations [i.e., (B) represents 12 leftward rotations].
Shaded areas represent standard deviations.

We did not think that eye movements could be very helpful in
predicting head rotation, and that our models could capitalize on
artifacts generated by eye movements preceding head rotation,
since normally, top-down large head rotations are not preceded
by eye movements. Freedman (2008) reviews studies on eye-
head coordination. When eyes and head are free to move, they
start moving at around the same time, with the eyes arriving
at the desired gaze location before the head stops moving.
Freedman reports a few studies where eye movements precede
head movements, but this was with (only) 30 ms. Summarizing
all reviewed studies, he states that motor commands of head
movement generally precede those of eye movements, and that
especially for large amplitude movements (as in our case) head
movements begin well before saccades. In accordance with this,
Solman et al. (2017) shows and reviews evidence that especially
when gaze shifts are intentional (as in our case) rather than
reacting to an appearing visual stimulus, the head rather leads
the eyes than the other way around. However, given the frontal
lateralized results shown in Figure 8, it is important to further
examine the role of eye movements. While EOG electrodes are
difficult to combine with wearing a HMD, future experiments
should use a HMD with an integrated eye tracker to test this.
For the application, the underlying cause of the signal is relevant
insofar that it may predict whether or not the model will
generalize to other situations, and to explore other data streams
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FIGURE 8 | Mean voltage over the 1000 ms preceding right (A) and left (B) rotation onset and their difference (left minus right) (C) for each electrode. Epochs were
baselined on –1000 ms.

(in this case, an embedded eye tracker) that may add to or replace
the information obtained from EEG electrodes.

Given the “no rotation” probability bias (Figure 6), it would be
suboptimal to base a VR data-streaming decision on the highest

probability of one of the three classes at some point in time, as
was done to determine the classification accuracy represented in
Figure 5. An algorithm aiding such a decision should base the
decision on whether and which type of rotation is expected on the
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consistency with which one of probabilities of the two directions
of rotation diverges from the other, together with a decrease in the
no rotation probability. Note that for the participant presented in
Figure 7, the model is very certain of the low probability of the
wrong direction of rotation (very small standard deviation) from
250 ms before movement onset. This would support a good VR
data streaming decision.

We should note that we presented the probability data as a
function of time such that it makes sense from the point of view
of predictive value contained in the EEG data at around that time.
That is, the probabilities of the three classes resulting from an
interval of 250 ms of EEG data are plotted at the time of the
center of that interval. The information is only available for use
after the whole interval has elapsed, that is, in this case where we
used 250 ms intervals, the information is available 125 ms later
than plotted in Figures 3, 4. Still, our data show that the EEG-
based predictions can be available well in advance of the actual
head rotation, and early enough for enhancing VR experience.
Applying a trained model to classify incoming streamed data
takes a negligible amount of time and bandwidth (Balakrishnan
and Puthusserypady, 2005; Abadi et al., 2016).

While in this study, we used gelled EEG electrodes, meant
for laboratory use, wearable “dry” or water-based EEG electrodes
are already available and shown to be able to genuinely detect
brain activity (Barham et al., 2017; Krigolson et al., 2017). Such
electrodes could be relatively easily integrated in a VR headset so
that users would not need to wear an extra device. Other types
of information coming from such integrated EEG electrodes,
notably information reflecting affective or cognitive state, may be
exploited as well, for example, in the context of gaming (Nijholt
et al., 2009). Integrated electrodes in a device that individuals
wear anyway potentially allows for collecting large amounts of
data that may enable modeling independent of the individual that
is otherwise difficult to do (Solon et al., 2017).

There are several routes to improve the classification accuracy
of the models. Classification accuracies around 95% for the
validation data for all participants indicated that overfitting
occurred, which may be dealt with using a smaller set of features
or different models. Furthermore, a soft-labeling approach may
be helpful. Currently, intervals of data are labeled as either
preceding a (certain) movement or not whereas in some of
the (earlier) windows preceding rotation there may actually not
be information present in the EEG data yet. Related to this is
the optimal time interval for predicting rotation onsets. In the
current study, the intervals were chosen such as to maintain a
solid buffer between detected rotation onset and the used interval,
to prevent using signals due to actual movement that may not
have reached the velocity detection threshold for determining
rotation onset. However, this may not have been the optimal
choice.

A general helpful property of the proposed BCI presented
here that we have not exploited, is that the model can keep
track of its own performance on the fly without requiring user
input. It predicts a future situation – and receives information
on whether this prediction was correct or not. This potentially
enables adaptive optimization of the model and can aid decisions
on whether or not the model is good enough to base certain

decisions on. During usage, the set of data to train models on
will grow automatically. While in this study, we started with head
rotations that are completely voluntarily determined, without
visual stimuli drawing attention, in real use the HMD will display
images. Depending on the context, for example, whether the
user is watching a live tennis game or is engaged in a group
meeting, head rotations will be more or less strongly determined
by the visual stimuli. This will affect EEG, and likely also the
specific signals associated with left-, right-, and no rotation which
may well be exploited. It may prove helpful to build and/or
improve models separately for different contexts. In addition, and
depending on the context, other features that are predictive of
head rotations, directly acquired from the presented visual and
auditory stimuli, can be exploited in the model and improve
predictions.

CONCLUSION

In sum, we showed the feasibility of predicting single voluntary,
top-down determined head rotations in a simulated online
scenario and indicated how predicted head rotations could be
used to improve streaming images to a headset. The proposed
BCI has the potential of large scale application given that users
would not need to wear additional equipment on the head, and
given that the BCI can train and validate itself on the fly. If
the predictions are not deemed good enough, the VR system
will function in its default way; if the model becomes better,
presentation of imagery can be improved in ways as indicated
by the examples in Figures 1, 2. In addition to the ability to
monitor its own errors, consequences of errors are not grave –
errors can cause a nonoptimal VR experience but will not result
in dangerous situations as could be the case when BCIs are used
for instance in vehicle control. All of this makes the costs of
using the BCI in real life relatively low. The potential gain is an
improved VR experience. Work that needs to be done before
the proposed BCI is a fact includes, as indicated above, testing
head rotation prediction in different other types of scenarios
including visual and auditory stimuli (where the BCI may exploit
neural signatures associated with detection of and attention
to these stimuli; and where these stimuli may be used in the
prediction directly), and determining the exact algorithm of
what exact streaming decision to make what the incoming
information. Importantly, good VR data streaming decisions
not only depend on what exactly can be predicted with what
certainty, but also on the net-effect of these decisions on user
experience. The best trade-off (for a certain user, in a certain
context) with respect to the number or length of noticeable
delays and the degree of (changes in) spatial resolution needs
to be determined. If headsets with embedded BCIs to predict
head rotation are used regularly, this will produce a large and
potentially valuable data base, not only for improving the BCI
itself, but also potentially valuable from a general neuroscientific
point of view. EEG data together with the presented stimuli
and behavioral data may prove valuable in studying attention
and motor planning processes in ecological circumstances,
or even studying real-life cognitive and affective state.
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