
Dynamic synthetic environments:
A survey

Journal of Defense Modeling and
Simulation: Applications, Methodology,
Technology
c©The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1548512918811954
www.sagepub.com/

Ruben Smelik1, Freek van Wermeskerken1, Robbert Krijnen1 and Frido Kuijper1

Abstract
The real environment in which military operations take place is dynamic and ever changing under influence of natural
effects and human activities. In contrast, synthetic representations of these environments used in simulations typically
have had little support for dynamic effects and run-time changes. Advances in computer graphics research and
innovations in game technology now allow for real-time dynamic simulation of specific features, such as physics-based
building destruction or particle-based terrain deformation. However, widespread application of these algorithms and
techniques in the context of military training and mission preparation is complicated by the additional requirements
imposed by the distributed and heterogeneous nature of military simulation technology, such as the need for correlation
and coping with specific limitations of (legacy) simulators. In this survey, we review the state of the art of methods and
techniques for dynamic synthetic environments and discuss their applicability and current limitations in the context of
distributed interactive simulation.

Keywords
distributed interactive simulation, synthetic environment, dynamic terrain, deformation, destruction, correlation

1 Introduction
A Synthetic Environment (SE), i.e. a virtual representation of
actual geographic or fictional but lifelike terrain, provides the
basis of any military simulation scenario. Since its inception,
the application of military simulation technology has become
increasingly widespread, initially focusing on the education
and training domain, but now including Concept Development
and Experimentation (CD&E), large international exercises,
mission and operational planning, preparation and analysis.
Because of these new application domains, the demands and
requirements with respect to scale and the level of fidelity and
detail of SEs have grown as well, nowadays encompassing
large geographical areas (provinces, countries) and being
based on sub-meter resolution source data.

Despite these advances, SEs more often than not remain
relatively static models of the real world. They represent
a snapshot in time, and do not evolve with changes in the
real world or during the course of the simulation scenario
execution, e.g. evolving weather conditions, a change in
season, events or operations such as weapon effects or combat
engineering. The lack of support for dynamic changes to the
environment decreases the fidelity of the simulation and can
diminish the value of training or preparation sessions1. For
instance, a static, fair-weather SE cannot prepare a platoon
commander for coping with deteriorating weather conditions
that affect the trafficability of a chosen route.

Advances in processing power and GPU computing (i.e.
algorithms running on Graphics Processing Units) now make
it possible to execute complex deformation and fracturing
algorithms, originating from computer graphics research and
initially developed for application in the movie industry,
in real-time on desktop systems. As a result, high-end
entertainment game developers are steadily incorporating

dynamic effects, such as destructible buildings, in their games
and game engines. At a somewhat slower pace, some of these
effects are finding their way into modern military simulation
systems as well.

Even if specific simulation systems include some
capabilities to dynamically modify their instance of the SE,
the correlation between the SE instances of heterogeneous
simulators in a distributed execution is quickly lost as a
result of dynamic effects: each simulator implements dynamic
effects in a proprietary way or might not support it at all,
resulting in differences in e.g. line of sight or cover that can
affect the fair fight principle or training value.

There is a clear need in the military M&S community for
more dynamic synthetic environments (denoted here as DSEs)
in distributed interactive simulations (DSEs have actually been
on the community’s wish list since the early 90’s2,3), and the
required research and technology to support this is slowly
becoming available. However, the widespread deployment of
DSEs is hindered by a lack of coherence and standardization:
what kind of algorithms are suitable for simulating dynamic
effects, what information should the DSE data model contain
to support dynamic modifications, how can changes to the DSE
be executed in a correlated way across all federates, and what
additional requirements are imposed by sensor simulations
and Computer Generated Forces (CGF)?

The goal of this survey is to provide a representative
overview of the state of the art of methods, algorithms
and techniques applicable to DSEs and discuss open issues,
specifically to what extent current methods fulfil the additional

1Modelling, Simulation and Gaming department, TNO, The Netherlands

Corresponding author: Ruben Smelik, ruben.smelik@tno.nl.

Author version, final version available at https://doi.org/10.1177/1548512918811954.

ruben.smelik@tno.nl
https://doi.org/10.1177/1548512918811954


2 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

requirements and constraints imposed by distributed military
simulation, such as the level of fidelity, performance and
scalability, and correlation across heterogeneous simulators.
The focus of the survey is on two topics within the field of
DSE research: terrain deformation and object destruction.

The article is structured as follows: Section 2 introduces
the concept of the DSE, its features and requirements, and the
scope of the synthetic environment chosen for this survey;
Section 3 surveys methods related to deformations of the
terrain skin as a result of e.g. explosions, weather effects
or engineering; Section 4 focuses on methods for fracturing
or destroying materials and objects in real-time; Section 5
discusses to what extent the currently available work is able to
fulfil the requirements for DSEs and what avenues for future
research there are; and, finally, Section 6 summarizes the
findings of the survey.

2 Dynamic Synthetic Environments
There are many definitions available for the concept of the
synthetic environment (SE). For the purpose of this survey,
we follow the definition used in the NATO Modelling &
Simulation Group tasked with exploring dynamic synthetic
environments for distributed simulation4:

A Synthetic Environment (SE) is a collection
of elements that represents the physical world
within which (simulation) models of systems
exist and interact (i.e. terrain, weather, oceans,
space). It includes both data and models
representing the elements of the environment,
their effects on systems, and models of the
impact of systems on environmental variables.

To get some sense of how a dynamic synthetic environment
(DSE) differs from a traditional static SE, consider the
following (non-exhaustive) list of examples of dynamic
changes to a real-world environment that can happen during
the course of a military mission or operation:

• A tracked armored vehicle traverses a sand plain,
leaving distinctive tracks in the ground.

• Due to heavy rainfall in the last weeks, a wadi is flooded
and no longer traversable by ground vehicles.

• A combat engineering unit constructs a network of
trenches and tank traps to fortify a position.

• A fire team breaches a wall of a target compound.
• Retreating troops blow up a small levee dam, causing

the land to become flooded and disrupting the advance
of their pursuers.

• A large multi-story industrial facility is hit by an
air strike, causing heavy damage to the interior and
resulting in a partial collapse of several top floors.

• A building collapses in a uncontrolled way after an
detonation of an illegal munition supply, causing heavy
damage to nearby buildings and vehicles as a secondary,
collateral effect.

As follows from these examples, a DSE differs from
a traditional static SE because it can react and adapt to
changing configurations (e.g. heavy rainfall) or events (e.g.
wall breaching), whereas in a static SE, the environment is

essentially frozen and, although it may display superficial
effects (fire, smoke, damage decals), on a structural level it is
unaffected by any events that occur during the course of the
scenario.

The current lack of support for dynamic changes to the
synthetic environment leads to discrepancies between the
simulated outcome of a plan or activity and the outcome it
would have in reality1. For instance, by neglecting the effect
of heavy rainfall on the soil conditions and the trafficability of
(especially unpaved) roads and river beds, a route of a convoy
that is planned by a commander might be determined to be
fast and safe in simulation, but very slow or even infeasible in
practice. If the fire team is not able to breach the wall of the
compound in their simulator because of a lack of technical
support for this, the team leader is forced to enter through
the gate instead, thereby reducing the speed of the operation
and possibly increasing risks of failure. More importantly, the
training or preparation value of this simulated operation is
strongly reduced, as the plan execution in the simulator no
longer matches with the operational plan.

It should be noted that increasingly often modern
simulators incorporate a part of the full feature set of a
DSE, for instance destructible objects with fixed damage
states, vehicle tracks (often as a visual effect only), or, in
specific cases, support for some types of combat engineering.
In general, these dynamic effects are implemented in a
constrained, ad-hoc, and proprietary way, and these simulators
do not communicate their changes to the SE with other
participating systems. Often, such simulators are developed
as standalone procedures or operator training tools, for
instance an excavator training simulator that is used as
part of a combat engineering training curriculum, and not
intended to be employed in a distributed simulation. To the
best of our knowledge, there is currently no fully featured
implementation of a DSE available.

The primary intended application of DSEs this survey
focuses on is mission training or preparation in an interactive
(i.e. real-time) and distributed simulation context, with a
number of virtual and constructive entities participating
in a shared scenario, controlled from a heterogeneous
set of simulators coupled using a standard data exchange
protocol such as Distributed Interactive Simulation (DIS 5)
or High-Level Architecture (HLA 6). Distributed simulation
scenarios are extremely diverse and can include any possible
combination of unit types, aggregation and abstraction levels,
plans and tasks, and environments and conditions, and, as
such, could require any of the features of a DSE.

Different than for standalone simulators, because of
the variety in systems involved and in scenarios and
events, distributed interactive simulations impose two main
requirements with respect to DSEs:

Correlation In a distributed simulation context, the measure
of correlation of the SE across multiple heterogeneous
systems can have a large effect on the training value
and effectiveness of the simulation. This holds even
more so for DSEs. For instance, human observers might
need to be able to draw the same conclusions of the
damage state of a building in different simulators,
meaning that the visual appearance needs to match to
the extent that is required. As another example, changes

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


Smelik, Wermeskerken, Krijnen, Kuijper 3

in trafficability of a road due to weather influences the
need to match between a manned HUMVEE simulator
and CGF vehicles both driving on that road. Without
a high degree of initial correlation and mechanisms in
place to preserve correlation throughout the simulation
execution, with each update to the DSE, the states of
the different instances of the DSE within the federation
will diverge, reducing fair fight and training value.

Integration Since distributed interactive simulations need
a fully featured DSE, it is important that individual
methods and techniques are properly integrated in a
technical framework, i.e. made to work well together.
This means, among other things, that the datamodel
of the DSE (its terrain representation(s), structure of
objects and features) should fit the heterogeneous
techniques that operate on it and be kept internally
consistent, and that the framework should be able to
cope with secondary or delayed effects of certain events
and operations. For instance, a small patch of terrain
might subsequently or perhaps even simultaneously be
deformed as a cause of a heavy tracked vehicle driving
through it, an exploding artillery shell, and eroded by
an intense rain shower. Each of these deformation types
might be implemented in a different way and work
on different representations and data structures of the
terrain patch. A DSE implementation should be able to
cope with these different computational approaches to
deformation and preserve the stability and consistency
of that particular patch of terrain.

Additionally, the wide variety of simulated platforms
(space, air, ground, surface, subsurface) participating in the
federation as virtual entities (i.e. human-in-the-loop), and
the presence of computer-controlled constructive entities
(civilians, opposing forces) give rise to two additional high-
level requirements:

Sensors Sensors other than the human eye often play
an important part in distributed simulations. When
using a DSE, the sensor simulation algorithms of the
participating virtual and constructive entities should
be able to cope with dynamic effects and changes,
e.g. accurately simulate the temperature differences
on debris and craters after an explosion.

CGF As simulation scenarios often feature a number of
Computer Generated Forces (CGF), it is important
that these entities are able to sense the dynamic
changes in the SE and act accordingly. In particular,
navigation and behaviour planning should deal with
dynamic changes to the environment, e.g. by updating
navmeshes, updating line-of-sights, reassessing suitable
cover points, etc.

Zooming in on individual techniques and effects, to assess
the applicability of the methods reviewed in this survey
to distributed interactive simulations, the following list of
detailed requirements and constraints have been considered:

Performance It should be feasible to execute the method in
real-time, given an efficient implementation running on
current or near-future hardware.

Scalability The method should scale well to large datasets,
object counts or geographic extents, as distributed
military simulation scenarios most often use large-scale
and detailed environments. This constraint makes for
instance deformation methods that can only operate
on tightly constrained sandboxes (e.g. an excavator
simulator) not applicable as-is.

Realism The method should produce results that match
the level of fidelity and level of detail desired
by the intended application, which in most cases
means a plausible result that matches the expectations
of the training instructor, scenario developer or
exercise leader. In a distributed simulation context,
the focus is not on the precise simulation of a
single interaction event or munition effect, but on the
performance of an operational plan or the effectiveness
of communication and decision making of a (multi-
national) task group. This means that often one does
not need the most accurate and complex simulation of
a dynamic phenomenon available, and abstractions or
simplifications can sometimes be justified.

Control Dynamic effects can have far reaching consequences
for the course of the scenario, which can introduce
risks to an exercise or training session, for instance
resulting in a trainee not being able to meet all the
training goals because a route has unexpectedly become
impassable. To mitigate the risk of derailing a scenario,
the method should have a predictable outcome and
be stable. In some specific application scenarios, a
sacrifice of realism in order to achieve this predictability
might be needed or the instructor or exercise controller
needs additional tools to control the effects on the
scenario.

Authoring A method might impose additional requirements
on the information contained in and the structure of
content and data models, for instance a wall object
might need precomputed fracture lines for a particular
destruction method. Furthermore, a scenario might
need to be extended to include or trigger dynamic
effects at certain locations. The required data and
authoring activities for content and scenarios to support
dynamic effects and interactions should (eventually) be
seamlessly integrated in the SE generation pipeline, i.e.
the process to go from source data to simulator-specific
terrain databases and supporting tools for each phase
of the process (e.g. a 3D modelling package, a database
generation system (DBGS)).

To provide focus in the survey, we have limited the scope
of DSEs to the base terrain model and its natural (soil
material, vegetation, hydrography) and man-made features
(infrastructure, buildings, other objects). We will not give
special attention to the dynamic simulation of deep ocean
environments and space. Furthermore, although weather and
climate are important factors for the dynamism of the world
and can have a major impact on simulation outcomes1, we do
not treat works dealing purely with its simulation. However,
the effects of weather, foremost precipitation, on the soil and
terrain is included in this survey. Finally, special effects such

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


4 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

Figure 1. A diagram showing the representation of terrain as a
height field from Holz et al. 8, who implemented the height field in
such a way that it can be dynamically updated. Courtesy of D.
Holz. c© EUROGRAPHICS Association 2009, reprinted with kind
permission.

as animations and particle systems required to visualize a
dynamic effect such as an explosion in a plausible way in
real-time are not treated extensively in this survey.

The following sections review in detail the body of work
on the two main topics of this survey: terrain deformation and
object destruction.

3 Terrain Deformation
Terrain deformation in the context of interactive simulations
means altering the terrain surface or skin at run-time,
including first and foremost the manipulation of values of
the surface height field (see Figure 1) or triangulated irregular
network (TIN), but also the modification of surface soil
materials resulting in changes in texture appearance or in
simulation properties (e.g. surface friction). Although there
are many possible causes for a terrain to deform, ranging from
footsteps in mud to earthquakes, we focus our discussion on
the types of deformation most relevant to a military simulation
context: vehicle tracks, combat engineering, in particular
digging7, craters, local erosion and changes in soil condition
and trafficability due to weather effects.

For each of the terrain deformation methods treated here,
we consider everything from the concepts and approach of
simulating dynamic terrain to the actual implementation.
However, we do not discuss visualisation algorithms and
effects (such as dynamic textures, shaders).

In general, terrain deformation has a clear trade-off between
performance and scalability on the one hand, and realism
and level of detail on the other. However, because of the
ever-increasing compute capabilities of modern hardware,
the move to both GPU-based parallel processing and cloud
computing, it is clear that the performance statistics of less
than recent publications might be based on outdated or
obsolete implementation techniques and hardware. As a result,
more detailed and complex methods published some time ago

might already be feasible to run at interactive rates in modern
implementations. Therefore, we try to give a more qualitative
appreciation of the performance and scalability options of
each method.

The criteria we use for comparing methods are its
capabilities, the computational algorithms and terrain
representations employed, and performance possibilities. It
should also be clear that many publications focus on one
specific aspect or capability of dynamic terrain, for which a
small test area or sandbox is constructed. This is in contrast
to what we are in search of: a unified approach and technique
to enable dynamic terrain deformation that can be used for all
relevant purposes.

3.1 Deformation Capabilities
We discern the following capabilities that terrain deformation
methods can support. In italics are capabilities we consider to
be especially important for military simulation.

• Vehicle tracks
• Combat engineering: digging,

– Can an excavator create a trench or earth wall?

• Trafficability affected by soil state,
• Explosions and crater forming,
• Types of soil materials,

– Does the method support several different types
of soil materials (gravel, mud, dry earth, asphalt,
rock), or is it specialized for one particular
material, e.g. fine sand?

– Which parameters can be specified for each
supported soil material, e.g. the level of moisture?

• Soil materials distribution over the terrain surface, e.g.
surface maps,

• Layered soil materials, e.g. sand over bedrock,
• Volume preservation, and
• Erosion and material stability over time.

– Is the angle of repose accounted for?
– Is erosion by weather supported?

Since modern SEs involve a multitude of different soil
materials, typically embedded in a surface mask texture or
defined using standard encodings such as Surface Material
Coding (SMC), the ability to simulate dynamic terrain for
multiple materials is very relevant. The effect of soil material
on trafficability and digging operations adds additional
scenario possibilities in the military context (see the work
of Birkel9 as part of SEDRIS for an in-depth technical
specification of terrain trafficability simulation). In addition
to this, the capability to simulate the effects of munitions and
explosions on the terrain surface would further enhance the
realism and training value of the scenario.

We have categorized the real-time computational
approaches that approximate the physics of terrain
displacement.

• Solve a partial differential equation,

– How accurate are the used approximations?

• Use static rules,

– How many degrees of freedom are supported?

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


Smelik, Wermeskerken, Krijnen, Kuijper 5

• Apply a parametric effect template, and

– What is dynamically changed by applying the
template?

– How large can the template library be?

• Combinations of the above approximations.

Often these methods are applied simultaneously with or
just after the common object-to-object physics update loop.
Input to the terrain physics update loop are the internal state of
the terrain surface model (which can include internal forces)
and external influences (entities, events). Some methods allow
for optional performance optimizations, which can be very
beneficial to implement to improve scalability. We have
identified the following global approaches to performance
optimization in the context of terrain deformation:

• Locally refining the terrain representation (e.g.
increasing resolution),

• Simplifying the terrain representation, and
• Only calculating physics in active regions and

dynamically track and update the active regions.

Also, each method has a representation of the terrain
surface. We distinguish between:

• Particles,
• A height field (grid),
• A surface (some continuous representation), and
• Combinations of the above representations and rules

for switching between these.

3.2 Deformation Methods
We review the terrain deformation methods in roughly
chronological order.

The early work of Sumner et al.10 focuses on footprints and
tracks in soft soil, and, given the limitations of contemporary
hardware, proposed approximations of the physics involved
in the deformation, focusing on plausible appearance and
animation instead of accuracy. The computational approach
is a set of rules involving the detection of the collision
area and estimation of the impacted volume. This volume
is displaced around the impacted area. Erosion is applied as a
post-processing effect to create a more plausible footprint or
track. Soil materials supported are sand, mud and snow, and
the terrain is represented by a dynamically updated height
field. Although a good starting point for research in terrain
deformations, the method ultimately lacks in realism and
versatility.

While primarily proposed as a level-of-detail (LOD)
approach for large terrain meshes, the ROAM algorithm by He
also included basic support for dynamic terrain and textures,
although the physical deformation calculation is not discussed
in this work11. Advances in GPU computing have made this
purely Central Processing Unit (CPU)-based scheme obsolete.

Pla-Castells et al. present the application of cellular
automata to simulate the behaviour of granular materials in
a number of publications12–14. First they derive a number
of physical functions for the mechanics of granular ground
surfaces. These functions are subsequently discretized such
that they can be calculated in the form of a cellular automaton
(i.e. per cell per time step). The resulting method allows

for dynamic changes regarding trafficability and erosion,
however, it remains unclear what type of granular materials
are supported and if these can be simulated in conjunction,
getting mixed up over time. In the follow-up publications13,14,
the method is tested in a simulation application and external
forces on the terrain are incorporated in the method (soil-tool
and soil-tire interactions).

The work of Aquilio et al.15 focuses on deforming clay-like
terrain, primarily with vehicle tracks. It was one of the first
terrain deformation approaches using GPU-based techniques
to efficiently compute the material displacement caused by a
rigid body colliding with the terrain, by rendering the object
to a displacement buffer that is applied to a height-field
texture. As such, it involves a crude approximation of the
physical deformation and will not be immediately applicable
to different types of soil material. Furthermore, the authors
note that they have not implemented erosion of the surface
and that the method is not very scalable.

Explosions and craters are supported in the method of Cai
et al.16, which adapts the above-mentioned ROAM algorithm.
The technique involves deploying a parameterized crater
template (e.g. size) to a dynamic height field. The downside of
this method is that it is limited to crater forming and assumes a
uniform soft soil. Brandstetter III et al.17 introduce a different
CPU-based terrain refinement and deformation method, which
supports deforming the terrain due to e.g. craters and tire
tracks both within and outside the active area (out-of-core).

Another example of dynamic terrain effects from
explosions is from Andersson et al.18, which explains the
dynamic terrain available in the Frostbite game engine19. This
modern engine supports different soil materials and can create
craters in the terrain skin using a dynamic height map. It is
unclear how the terrain deformation is calculated and if the
underlying soil material has any influence on the deformation.

In the paper of Wang et al.20, we find another method to
dynamically alter terrain as a result of explosions. The method
is template-based as well; it consists of pushing a sphere into
the terrain and displacing the height map accordingly. Local
terrain textures are then adjusted to create a visually appealing
crater appearance. The method is limited to soft soil materials.

There are a number of recent approaches that primarily
focus on improving deformation performance by devising
efficient GPU-based processing schemes, for instance the
GPU stamps21 (i.e. templates), the GPU-friendly dynamic
terrain mesh structure by Pangerl22, and the GPU framework
for deforming terrain modelled as subdivision surfaces23,24.
With their focus on optimization, the actual deformation
algorithm and terrain datamodel are often relatively simple.
However, they clearly show the feasibility of real-time terrain
deformation on current hardware. Furthermore, Pennings et
al.25 explore the performance and consistency maintenance
challenges of applying deformations in a networked multi-
user setup.

Holz et al.8 are the first to use a particle simulation
combined with a dynamic height field to simulate terrain
deformations. As long as there are no interactions with objects,
the terrain is represented in its most efficient manner, i.e. as
a grid. When an interaction occurs, the local region affected
is transformed into particles and a particle simulation is
started to capture the effects of the interaction. When all
forces involved have stabilized, the particles are translated

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


6 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

Figure 2. A diagram showing the representation of terrain as a
particle system from Zhu and Yang. 27. Courtesy of B. Zhu.
c© EUROGRAPHICS Association 2010, reprinted with kind

permission.

back into the grid representation, updating the dynamic
height field. The method is able to simulate different soil
materials, since the particles can have different (physical)
properties. Each soil material generates a (possibly mixed)
set of particles, and upon compacting the particles, the grid
topmost soil material can be updated as a result of the
simulation. The method supports changes in trafficability,
simulating erosion and performing digging operations. The
performance is improved by tracking active areas; only in
these areas the costly particle simulation is performed. In
his more recent publication26, Holz introduces an improved
particle simulation method, including more physical laws
and effects and thereby improving the plausibility of the
behaviour of the terrain. A physical coupling with rigid bodies
is embedded into the method, enabling two-way interaction
between the terrain and objects.

Another publication in which a particle system and a height
field are used in conjunction is from Zhu and Yang27. They
propose a method with multiple layers stacked vertically,
where each layer consists of different kinds of particles. On
top is a layer of dynamic particles, followed by a layer of
interface particles and at the bottom a layer of static particles
(see figure 2). The static layer can expand and decrease
depending on the flow of the interface and dynamic layers.
The method excels when simulating a scene where the flow
of granular materials is key and the authors note that the
method performs well for large-scale 3D scenes. However,
in the context of distributed military simulation, these scenes
can still be considered small. Furthermore, it is not clear how
the interaction with objects should be modelled.

A completely new representation of the terrain surface and
its dynamic properties is given in the thesis of Chen29. It
is a method tailor-made for vehicles driving through terrain.
The terrain is modelled by an elastic layer and a static layer.
Between these two layers, a mass spring system captures the
dynamics of the terrain. This system is capable of simulating
sand, snow, sawdust and other surfaces by adjusting the
elasticity equation. Tire tracks are added by indenting the
surface with a specific template for each tire. The limitations
of this approach are not fully described, e.g. will multiple
subsequent vehicles have increasingly deteriorating effect on
the terrain?

In the paper of Gilardi et al.28, a deformation method is
proposed which applies a discretized drift-diffusion equation
to a height field. The height field can be updated using von
Neumann neighbourhoods and then applying the effect of the
angle of repose. Therefore, the method scales linear with the
grid size and good performance is obtained. The method can
simulate different surface types by adjusting the advection,
diffusion coefficient or angle of repose constants for a grid
cell. However, there is no information on mixing surface
types.

3.3 Preliminary Conclusions
In this section, we summarize the work on dynamic terrain
deformation and suggest avenues of future research.

In general, most publications deal with one particular
use-case (see figure 3), which also limits the broadness in
capabilities of the presented method. Combining these single-
purpose methods to a generic multi-purpose method that
can be applied to large-scale environments has to date been
neglected. A logical consequence of this is that proposed
performance optimizations are often tailored for the chosen
use-case.

The first typical use-case is a vehicle that drives through
dynamic terrain, where the capabilities of trafficability,
multiple (horizontal) surface types and erosion are accounted
for. The terrain representations employed vary considerably.
The physical rules to update the terrain surface are often
founded on (partial) differential equations interpreted to
fit the chosen representation. The supported types of soil
materials typically depend entirely on the kind of physical
rules implemented. Moreover, it is not clear which types
of materials can be simulated and which would require
extensions of the methods and further research, since only the
implemented soil material parameters are mentioned. With
respect to the requirements presented in Section 2, the most
promising method for this use-case is from Gilardi et al.28.

The second common use-case involves an excavator
that performs digging in a patch of dynamic terrain
(including erosion). The digging operation is modelled as a
particle simulation for several types of granular materials,
implementing a physically detailed method that can be
calculated using particles. When such a method does not
include simplifications or is not able to transform its particle
representation to a dynamic height field, its scalability is
severely reduced. The techniques to switch from particles
to a height field and vice versa are still diverse. The most
promising method for this use-case is introduced by Holz et
al.8,26. The work by Dukstein et al.30 is very relevant for this
use case, as it implements excavator training in a military
simulation context. Notable topics they cover are the effect
of weather on the terrain state and communicating terrain
deformations between simulators using experimental DIS
protocol messages (including distributing changes in elevation
and soil material at regular intervals using compressed
grids31).

The third use-case is an explosion that creates a crater in
the terrain. These types of deformation are often modelled by
indenting the terrain surface with a sphere-like object (which
size depends on the explosion force or munition type). In
these publications, only the explosions are supported and no
extensions to other capabilities are shown.

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


Smelik, Wermeskerken, Krijnen, Kuijper 7

Figure 3. Examples of methods from the three most common use-cases for terrain deformation: vehicle tracks generated by the
method of Gilardi et al. 28, an excavator simulation by Holz 8, and crater generation by Brandstetter III 17. Courtesy of M. Gilardi, D.
Holz., and W. Brandstetter III. c© EUROGRAPHICS Association 2009, 2016, reprinted with kind permission.

Other neglected dynamic changes to the terrain are changes
to the soil materials due to weather effects, or mixing of
different soil materials. In general, the methods presented do
not consider large-scale environments and do not prioritize
performance optimizations. Lastly, a currently unexplored
area is how to correlate dynamic terrain changes and how
to compute dynamic terrain deformation at multiple levels
of detail for simulators that operate on different abstraction
levels.

4 Object Destruction
Object destruction in the context of interactive simulations
means altering the state and structure of an object that is part
of the SE at run-time as a result of blast damage or other
physical forces which act upon this object. The alterations
could include modifications to the visual appearance of
the object (meshes, textures, shaders) but also changes in
functionality (navigation, cover, interaction). Furthermore,
sensors other than the human eye might perceive the object
differently due to the alterations made (e.g. a thermal infrared
(TIR) sensor might sense local changes in temperature on
the object). Lastly, object destruction might entail secondary
effects, e.g. debris from one object could do significant
damage to another object, potentially triggering a chain of
object destruction.

In distributed interactive simulations, objects that are part
of the SE have traditionally been static. Later on, in line with
how damage to entities was typically modelled, important
objects such as target compounds were enhanced with a
discrete set of pre-computed damage states (e.g. undamaged,
damaged, destroyed), where the pre-computed model might
be hand-modelled by an artist or the output of a (procedural)
generation algorithm. Fixed damage states suffer from clear
drawbacks, as the precomputed damage might have little
relation with the actual damage that was inflicted (e.g.
different types of weapons and munition, direction of the
blast, etc.). Still, they are the prevalent way of modelling
object destruction today.

Inspired by the advances in physics-based object
destruction in entertainment gaming, some simulators have
gradually started implementing more dynamic damage effects
to specific objects, such as buildings. However, the technology
developed for gaming is aimed at enhancing the player’s
immersion and experience, and still needs to be extended to
better fit the specific requirements of distributed simulation
(see Section 2).

As with terrain deformation, discussed in the previous
section, for object destruction there is again a trade-off
between performance and scalability on the one hand, and not
only realism and level of detail, but also increased flexibility
and interactivity, on the other hand.

Below, we review relevant methods to dynamically alter
objects that are part of the SE, i.e. partly or fully destroy
objects of different breakable materials. Most of the discussed
methods focus on one particular capability, physical process
or material. They differ, among other things, on the extent of
pre-computation or modelling that is required. Consequently,
authoring requirements, as discussed in Section 2, are highly
relevant for object destruction. Object destruction has more
industrial support of middleware and extensions of physics
engines, therefore the dominant technology in this field is
addressed as well.

4.1 Destruction Capabilities
We discern the following capabilities that object destruction
methods can support. In italics are capabilities we consider to
be especially important for military simulation.

• Fully destructible buildings,
• Destruction of solid objects, for instance infrastructure:

bridges, communication towers, lighting poles,
• Breaching doors and windows,
• Breaching a wall, i.e. blowing a hole in a wall,
• Secondary effects, i.e. damage from debris,
• Tree felling,
• Collapsible buildings (stress-based collapse),
• Cracking and fracturing of objects (stone, rock, glass,

ice, metal, cloth),
• Chippable surfaces (micro destruction),
• Micro effects (particle debris),
• Primary destruction from fire propagation (forest fires),

and
• Realistic animations, visual, sound and lighting effects

related to damage and destruction.

In this field of research, the terms cracking and fracturing
are commonly used32, where cracking relates to the formation
of lines in a surface without separating it (e.g. cracks in a
mud surface), and fracturing is the separation of an object or
material into two or more pieces under the action of stress. We
have limited our focus on cracking and fracturing of relatively
large solid objects, because of the relevance for military
simulation, but there exists much more work in the field of

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


8 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

object destruction. For an in-depth survey of techniques for
simulating numerous phenomena that can affect the state of
an object, such as aging, weathering, melting and corroding,
we refer to the extensive research done by Frerichs et al33.

4.2 Destruction Methods
From an entertainment gaming perspective, when developing
methods for simulating destruction effects, the real-time
performance and graphical quality are of the highest
importance34–36. Whether the approach actually produces
physically accurate results is not as much of an issue as long
as the results are perceived as plausible. Other important
criteria are the ease of use for the designers and the degree of
control it provides them to create a visually appealing effect.
As a result, computationally demanding but more accurate
methods are being adopted in the industry at a much slower
pace.

As discussed above, the traditional method for
implementing destructible buildings in computer games is
to hand-model one or more variations of a (partly) destructed
building. During run-time, when the fracturing occurs, e.g.
due to an explosion, the model is replaced by a destroyed
counterpart. The switching of these models is obscured using
special effects (explosion, smoke, dust, debris particles). This
approach is scalable, computationally cheap and predictable.
The downside of this approach is, however, that the pattern
of destruction does not correspond to the location of impact
and that the number of damage states is fixed37. This pre-
fracturing process requires careful preparation of all the
destructible models and a level of foresight on how and where
a model will be destroyed. Especially with large objects that
are partially destroyed it is impossible to cover all cases.
Secondary effects of debris on adjacent objects, entities or
trafficability are also hard to implement.

A final important downside of the pre-scripted approach
is the increase in content authoring time. Content creation
already typically is a major bottleneck in both the game
development and SE generation process. By introducing
pre-modelled destruction states to every object in the SE,
considering that most pipelines for content involve much
manual modelling effort, content creation can become very
costly indeed. Tools like Maya38 and Houdini39,40 support a
semi-automated workflow, where fractures can be computed
automatically based on user parameters.

Earlier improvements on the model-switching approach
was first explored by Mazarak et al.41. In their method, objects
are represented using a connected voxel datastructure, out of
which solid pieces of debris can be extracted resulting from
explosions, instead of using simple polygons animated using
a particle system with no physical relation to the mass and
geometry of the original objects. Particles are effective at
modelling the special effects part of an explosion, like fire
and smoke. They are not suited for modelling the actual debris
of explosions, because unlike particles, which move only in
3D space and can be defined by a vector, debris occupies space
and have properties like a center of mass and six degrees of
freedom.

The voxel approach by Mazarak et al.41 uses a blast wave
model to calculate the pressure field on an object. Micro-
fractures or flaws are present in most materials, and the

pressure of the blast wave causes these micro-fractures to
grow, eventually fragmenting the object into many parts of
debris. Voxels, just as pixels, suffer from ’staircased edges’.
This aliasing effect can be reduced by decreasing the voxel
size, i.e. increase the resolution. Due to computational and
memory limitations, a trade-off has to be found between voxel
size and scalability.

Fracturing an object is performed by breaking links
between voxels (crack formation), whenever the pressure
caused by the wave exceeds the maximum pressure the
link can withstand, up until the point that segments become
separated from the rest of the object (they become debris).
Rigid Body Simulation (RBS) is then used to animate the
dynamic behaviour of the debris. The authors note that the
bottleneck of their method is in the collision detection; in case
of sustained fragmentation, the number of debris objects and
boundary voxels continues to grow, resulting in increasingly
many body-to-body collision checks.

With the advances in GPU processing capabilities, new
methods allow for dynamic fracturing of solid objects into
a large number of debris pieces at real-time. These methods
allow one to apply user-defined fracture patterns at one or
more impact locations on the object37. These approaches
reduce the authoring effort, as only a small library of fracture
patterns needs to be modelled, which can then be applied to all
objects in the SE. However, it requires dynamic cutting of the
object into sub-meshes (fragments), by performing Boolean
operations on the objects using the desired fracture pattern.
Mülller et al.37 and van Gestel and Bidarra42 proposed a fast
method to cut the model in real-time (see Figure 4).

To enable real-time destruction for complex shapes like
buildings, the method uses two separate meshes. A visual
mesh for rendering and a compound of convex shaped meshes
for the fracturing calculations. Using Volumetric Approximate
Convex Decomposition, the model decomposes into a set
of convex shapes where each convex shape contains a
unique part of the visual geometry. Using these pre-computed
decompositions only the fracture patterns have to be applied
to the convex shapes that are affected by the operation. After
fracturing of a convex shape the new convex shapes are fit to
the visual sub-mesh.

The sub-meshes of the model are then simulated using
physics simulation (RBS) to simulate the effects of the
destruction. To simulate different types of impacts (size,
force) different fracture patterns can be used. To prevent
a large number of dynamically generated meshes (debris),
thereby impacting performance, care has to be taken to limit
the cutting of models into sub-meshes, limit the minimal
size of meshes and remove or simplify meshes/debris after
a certain time. Although the technique makes it easy to cut
away geometry from an object, for low triangle count objects,
texture decals are generally used to enhance the visuals. Such
decal textures are placed automatically at the fracture lines of
the broken object.

Many current solutions are based on RBS to simulate non-
deformable objects like debris. The Finite Element model
approach described by Parker and O’Brien43,44 introduces a
solution that is also applicable to soft bodies and deformable
bodies in real-time. Finite Element Analysis (FEA) is best
known for its application in performing engineering analysis.

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


Smelik, Wermeskerken, Krijnen, Kuijper 9

Figure 4. Destruction of a Roman arena using real-time fracture masking techniques, as presented by Müller et al. 37. Courtesy of M.
Müller. c© ACM, reprinted with permission.

Typical problem areas include elasticity, structural analysis
and heat transfer. The method includes the use of meshes for
dividing a physical object into small elements. This mesh
contains the material and structural properties which define
how the object will react to certain physical conditions. It
allows the developer to assign different physical properties
not limited to structural simulation to calculate the stress,
deformation and fracturing.

The FEA system is based on a tetrahedral finite element
method and combines a number of existing simulation
techniques into a coherent and performant system. For each
object, a tetrahedral mesh is constructed that encompasses
the visual model, and each vertex in the visual model mesh is
linked to the enclosing tetrahedron. When any of the nodes
in the tetrahedral mesh moves, the linked vertex positions
are updated. The nodes of the tetrahedral mesh are described
using a mass, damping and stiffness matrix.

Based on the external forces acting on the mesh nodes, the
amount of stress is calculated. Once stress reaches its fracture
threshold, the connection is broken and the released energy
causes a cascade of fractures, resulting in the separation of
the tetrahedral mesh into separate nodes.

To limit the performance impact, in the proposed FEA
system, tetrahedral nodes are not split into sub-nodes. This
limitation can, however, result in visually unconvincing
fractures, especially if the tetrahedral mesh is relatively
coarse. Depending on the material and the anticipated stress
levels of a particular area within the object, a finer or more
coarse tetrahedral mesh can be created. To further improve
the perceived realism of the fracturing method, the concept
of splinters is introduced. These splinters are rendered as
part of the surfaces, but are not part of the Finite Element
simulation. Each splinter is associated with a single node of
the tetrahedron mesh based on the splinter mesh centroid.
During fracture, separate splinter meshes are created when
splinter vertices are no longer connected to the corresponding
tetrahedron nodes. Especially for brittle materials like wood
and stone, these splinters increase the visual realism of the
fracture.

Although the solution described by Parker and O’Brien43

refers to the real-time deformation and fracturing of solid
objects, the approach is also capable of simulating soft body

and deformable bodies and more physical properties than
mass and structural stiffness.

Effectively the FEA approach is much simpler. There is no
need to pre-fracture objects and it does not require a soft-body
solution to feed a RBS for special cases like plastics and metal
deformations. It however still comes with a price.

4.3 Destruction Engines
With the advancements of compute power and techniques,
procedural destruction found its way into middleware for
game development and game engines. These engines provide
an off-the-shelf solution for integrating destruction into the
game.

The basic support of these destruction engines consists of
the following stages:

1. Asset preparation. Preparing the geometry of the object
for breaking and shattering, e.g. Voronoi construction,
tetrahedralization, and pre-fracturing.

2. Applying constraints. In this stage, the artist uses
parameters and constraints, like connectivity trees or
specifying the strength of a wall, to influence the
destruction simulation and obtain a desired, predictable
result.

3. Running the simulation. As part of the simulation,
the engine actually fractures the object into separate
meshes and solves the object dynamics and collisions
using physics libraries like Bullet45, the Open
Dynamics Engine46, PhysX47 and Havok Physics48.

The following paragraphs give a brief overview of the
prominent destruction engines currently available:

Havok Destruction. Havok is an established middleware
company, originally focusing on its physics library (Havok
Physics) featuring rigid body dynamics, which was licensed
and integrated in several games and game engines. The
middleware suite they provide now includes AI (path finding
and dynamic nav mesh generation), clothing simulation, and,
finally, destruction. Havok Destruction 201249,50 has several
tools to support the required content authoring pipeline. It
uses fracture templates, which are procedural descriptions
of how a fracture will work on a given material. The tools
come with several predefined templates but allow the artist

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


10 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

to create their own unique fracture template. In addition to
the templates it provides a set of predefined debris templates
to generate debris pieces. To make low poly geometry more
interesting, the artist is able to provide decoration pieces
and decal maps to enhance destruction masking. The decal
textures and decoration pieces are applied to fracture faces at
run-time. For example, it can add protruding bricks to pieces
of a fractured wall.

For plausible destruction effects, the engine needs
information about the connectivity of the pre-fractured pieces
and how strong the connections are. Havok Destruction
therefore stores connectivity information within the breakable
shape. The connectivity ties the physics representations of the
pieces together. With this information the collapse of objects
is made possible. For asset preparation, plugins for Maya38

and 3ds Max51 are available to the artists.

NVIDIA APEX. Like Havok, NVIDIA is one of the
established suppliers of physics engine middleware (PhysX47)
for games. Engines like Unreal and Unity3D uses NVIDIA’s
PhysX as its main physics simulator. APEX52 is a software
framework built on top of PhysX, providing authoring tools,
custom pipelines and optimizations, with which developers
can create physics simulations such as clothing, particles,
force fields, and object destruction, without the need to build
these systems from scratch on top of a low-level physics
engine53. APEX also comes with plugins for common 3D
modelling packages such as Maya38 and 3ds Max51.

APEX Destruction uses hand modelled pre-fractured
meshes, additional sub-systems to handle aspects such as
damage propagation and a PhysX-driven rigid-body solver to
calculate interactions between chunks and fragments54. To
support more complex destruction behaviour, APEX includes
specific functionality, such as specifying a hierarchical
structure of the fracture chunks and defining connectivity
constraints between chunks. A standalone editor, named the
PhysX Lab Tool, provides a rich set of features to prepare
destructible objects and preview and debug their desired
destruction behavior35.

Starting in 2017, PhysX Destruction has been deprecated
to be replaced by NVIDIA Blast, which is, according to
NVIDIA, completely redesigned, and features improved
performance and scalability55.

CryEngine. The CryENGINE56 is Cryteks gaming engine
for the Crysis game series. Additionally, the engine has been
licensed and extended by other developers, for instance,
Amazon57. The engine includes an in-house developed
physics and destruction module.

The CryENGINE features several different types of
representations for modelling object destruction, each
suited and optimized for a specific type of fracturing or
material35. The representations that can be used in the
engine include (see the engines manual58) switchable damage
states, joint constraints (i.e. connectivity between parts),
pre-computed fracture pieces, deformable objects (based on
cloth algorithms), and even real-time Boolean operations
on geometry. Further, a complex (cinematic) destruction
sequence can be generated offline in a modelling package,
and executed as an animation to guarantee deterministic and
performant results. Plug-ins for the 3D modelling packages

Maya38 and 3ds Max51 are available for setting up the
destructible objects.

Frostbite. The Frostbite Engine is a game engine used
in the majority of the popular Battlefield game series by EA
DICE19. To date, Frostbite has been exclusively used in games
published by Electronic Arts. Destruction capabilities have
always been an integral part of the engine and as such it is one
of the most advanced destruction engines to date. The engine
supports destruction both on a very small and a very large
scale: small-arms fire can chip off pieces of walls and blocks,
exposing cover positions, while tall skyscrapers can collapse
due to stress caused by e.g. earthquakes. Furthermore, large
infrastructure such as a dam can be destroyed, causing the
entire map to be flooded by water. Because it is an internal
proprietary engine, unfortunately there is a limited amount
of up to date information publicly available regarding the
technology behind the destruction engine59.

DMM engine. The latest middleware supplier in the
field of destruction engines is Pixelux60, which introduced
advanced destruction technology called Digital Molecular
Matter (DMM) in 2008. DMM is based on the Finite Element
model approach described by Parker and O’Brien43. The
DMM solution uses tetrahedra to represent a 3D model (for
more on the algorithms of DMM in production, refer to
fxguide’s Art of Destruction44). Unlike traditional destruction
methods and the other engines discussed in this section,
which rely of pre-fracturing and extensive configuration of
the destructible material offline, DMM is based on real-world
material properties and generates fractures at run-time.

While DMM has been used in many high profile movies,
for its visual effects, DMM is also available as a plugin for
3d modelling packages and integrated into real-time game
engines. The engine was used for major entertainment game
titles like Star Wars: The Force Unleashed. The middleware
physics engine is available for licensing60.

4.4 Preliminary Conclusions
There is a long history of research on the subject of creating
destructible assets for entertainment games, and there are
quite a number of technical solutions (tools and engines)
commercially available. The main focus of solutions in
this domain has been performance efficiency, predictable
results and visual appeal. Physical correctness and secondary
effects are of less importance. Following the typical game
development workflow, in most cases preparing content for
real-time destruction involves considerable manual modelling
effort by artists, approximating the physical phenomenon and,
at the same time, creating a visually appealing effect. As
a result, with the increasing scale and level of interactivity
of game worlds, creating (destructible) content consumes a
substantial amount of the development budget.

Even for big budget games the ever-increasing effort
and costs of content creation are becoming a development
bottleneck. There is an urgent need for advanced content
creation tools to support artists, employing procedural and/or
physics-based algorithms. New solutions like the Finite
Element approach implemented by Pixelux60 in the DMM
engine aim to ease and speed up the authoring process and
seek to achieve the ultimate goal: a fully destructible game
world.

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


Smelik, Wermeskerken, Krijnen, Kuijper 11

With the amount of research available and the
quite extensive tooling and experience available in the
entertainment gaming and movie industry, the question
becomes to what extent the currently available technology can
be applied in the military M&S community for more dynamic
SEs in a distributed interactive simulation context. There is no
easy answer here:

• With sufficient resources (artists, time, budget), current
tools and engines could be applied to make every
asset in an SE destructible. However, budgets for
development of SEs are not comparable to the budgets
of AAA-game development, especially with respect to
content development, and there are often stricter time
constraints (e.g. a SE for mission preparation), therefore
parametric or procedural content generation is often the
only feasible path. At the same time, we see that even in
the game industry, more automated art production tools
are slowly being adopted. Therefore, we can expect that
the modelling pipeline for destructible content will be
made much more efficient in the coming years.

• Performance issues and considerations will continue to
severely limit the scale of destruction one can introduce
in a distributed simulated scenario. In the foreseeable
future, we cannot expect to compute and visualize
a physics-based high-ordinance munition detonation
over a city in real-time, with multiple federates using
heterogeneous simulators connected.

• In particular distributed simulation scenarios, where
the visual appearance of the destruction effects needs
to match almost perfectly, the required amount of
correlation between multiple heterogeneous systems
will be nearly impossible to achieve with current
technology, pipelines, standards and protocols. A
cloud-based destruction approach where the server
orchestrates effects for the different heterogeneous
systems could be one step toward a dynamic SE in
distributed simulation.

5 Discussion
In the previous sections, the state of the art in terrain
deformation and object destruction was presented and
some preliminary observations were made. This section
discusses the main concerns and open issues, returning to
the requirements specified in Section 2.

As stated in Section 2, the first and foremost requirement
for the successful introduction of DSEs in distributed
simulations is the preservation of correlation of the SE
amongst all participating federates during scenario execution.
Unfortunately, there seems to be surprisingly little work done
on the implications of dynamic changes to the correlation of
the SE within the federation. Clearly, these dynamic changes
make it very challenging to maintain a correlated SE at
runtime.

Even in the case of static SEs working from the same geo-
dataset and content library is often not enough to guarantee
true correlation, because specific limitations and conventions
of one participating simulator might force the DBGS to
make changes to the baseline data upon exporting to the
simulator’s proprietary runtime format. However, with the
use of offline correlation validation tools and, in some cases,

by downscaling the baseline data to suit the least capable
simulator, it is typically possible to achieve an acceptable
level of correlation between the different simulator-specific
versions of the SE across the federation. All of this correlation
is lost once the first dynamic change to the SE occurs and
each simulator handles this change in a different manner,
using proprietary algorithms, or lacks the capability to update
its SE at all.

Maintaining correlation for DSEs is clearly an area that
requires further research. There seem to be two main solution
directions which could be explored:

1. Standardizing and agreeing upon algorithms to be
used and expected results in order to increase
correspondence in the way in which individual
simulators handle dynamic events. The advantage
of this approach is that simulators stay relatively
unchanged and can still deal with the SE in
their proprietary and optimized format and runtime
implementation. Communication of changes would
typically be done using extensions on the distribution
protocols DIS (as already proposed by Lisle62) or HLA.
Simulator validation and certification might be required
in exercises where maintaining correlation and fair fight
is key.

2. Moving to an authoritative service to which all
participating federates subscribe and which has the
final say of the (dynamic) state of the SE. This
approach has the potential to ensure correlation and
fair fight even under extensive dynamic changes to
the environment during the scenario. Furthermore, by
implementing this service on a modern, distributed
and scalable cloud architecture, the performance and
memory constraints imposed by complex, physics-
based destruction and particle-based deformation can
be met. Finally, an individual simulator needs not
implement all possible dynamic operations that can
be executed on the SE (e.g. trench digging) in order
to participate in a dynamic SE scenario, as long
as it is able to visualize all changes communicated
by the SE service. However, this approach requires
a fundamental shift in simulator architectures and
implementations, which is problematic in practice
considering the vast amount of legacy simulators in use,
and is not without its challenges on the client side, e.g.
dealing with latency and network synchronization, area
of interest management, and the need for fast online
SE (re-)generation algorithms (see e.g. Ellis et al.63 for
work in this direction).

The second direction has the greatest potential for
achieving truly correlated DSEs in distributed simulations,
however the move to a service-based DSE will require
much more research & development and data model and
protocol standardization efforts, and might be slowed by the
vast amount of legacy simulators and proprietary, ad-hoc
implementations existing today. With the current focus and
momentum of the M&S as a service paradigm (see e.g.64), it
might be the right time to shift towards dynamic terrain as a
service.

Going back to the surveyed methods for terrain deformation
and object destruction, in line with the steady increase in

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


12 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

Terrain Deformation Object Destruction

Requirement Score [- .. ++] References Score [- .. ++] References

Performance ++ 21 ++ 37
Scalability +/- 8 +/- 61
Realism ++ 26, 28 ++ 43, 60
Control - none +/- 52
Authoring - none + 52, 60

Table 1. Coarse appreciation of the extent to which the requirements specified in Section 2 have been fulfilled by the surveyed
methods [-, +/-, +, ++], with noteworthy research from terrain deformation (Section 3) and object destruction (Section 4) included as
citations.

graphics and computing power, we see a slow transition from
appearance-based techniques, e.g. deformations based on
fixed terrain offset templates and destruction using fixed
damage states, to physics-based approaches, e.g. particle-
based deformation and FEA-based fracturing of objects and
materials. An obvious benefit of this transition is that newer
methods and techniques offer improved realism and, with the
move from pre-computation to real-time execution, enhanced
flexibility and, potentially, a decrease in authoring effort as
damage models and effects are generated at run-time instead
of modelled beforehand.

However, the transition has additional consequences for
the adoption of dynamic SEs in the M&S community. The
integration of individual techniques and representations into
a consistent dynamic world model, which to date is still one
of the most important missing pieces of the puzzle, would be
very much helped if this world model can be constructed from
(an approximation of) real-world laws of physics and material
properties, with as little tricks, limitations and special cases
as possible. Additionally, sensor simulations can work on
dynamic, physical changes to objects and materials, resulting
in more accurate sensor imagery. And, finally, CGF can more
easily be made aware of changes to the environment, as the
semantics of these changes are defined more precisely than in
the case of appearance-based changes, and, to cope with these
changes, can employ dynamic agent planning and navigation
mesh generation techniques already extensively explored in
the gaming industry (albeit for smaller-scale SEs).

As a consequence of this transition to real-time, physics-
based deformation and destruction, the physics engine will
become a core component of the distributed interactive
simulation architecture and will need to assume new
responsibilities going beyond the traditional rigid-body
simulation; we already discussed engine extensions to support
object destruction (Section 4.3), but in time also terrain
deformation might be integrated as a standard physics
engine capability. As a result, physics computations and
the required physics representation of the terrain and all
objects can quickly become the performance bottleneck of
future simulations. Cloud-based physics computation and
distribution is already being explored for state of the art
entertainment games and large online virtual worlds and
frameworks and middle-ware is becoming available61,65; this
might also be a relevant direction for dynamic SEs.

Zooming in on the individual methods and techniques
and reciting the requirements specified in Section 2, we
can conclude that with the current state of the art, one can

process terrain deformations and object destruction in real-
time at a sufficient level of physical realism (sometimes, even
beyond the level one typically needs in distributed military
simulation scenarios and exercises). Furthermore, industrial
implementations and content pipelines exist, although they
were developed with a clear focus on the workflow in
use in the entertainment game industry (focus on manual
modelling) and need some adaption to work in the typical GIS-
based DBGS workflows used for SE development. However,
scalability of methods to large-scale environments is often
not addressed in the research we surveyed; some notable
exceptions exist, e.g. hybrid data representations to increase
scalability. Lastly, by moving from fixed, pre-computed
results to dynamic computation, some amount of control over
the outcome of a dynamic event is inherently lost, which
could introduce the risk of diverging from or blocking the
preferred course of the simulation scenario. Table 1 gives
an appreciation of the extent to which the surveyed methods
fulfil the requirements and provides notable examples. One
can conclude from this table that most research effort has
focused on devising efficient algorithms that can realistically
deform or destroy content in real-time, however it is not yet
clear how to these methods can scale to the large environments
of military simulation scenarios, how to prepare the content
for dynamic modifications (this is especially true for terrain,
although there are many terrain authoring tools out there, they
only allow one to define and texture a static terrain skin), and
how to give e.g. training instructors or exercise leaders some
control over the outcome of dynamic changes to the SE.

Summarizing, although the move to real-time, physics-
based dynamic effects in both the academic and entertainment
gaming community is promising, what is clearly lacking
and hindering wide acceptance and application in the M&S
community is a unifying approach and agreed-upon SE
run-time data model, addressing the particular concerns
for distributed interactive simulations, most importantly
perhaps, correlation, but also scalability to large-scale
environments and long running scenarios, predictability
and controllability, and, ease and efficiency of authoring.
Solution directions such as the standardized SE development
process RIEDP 66, streaming terrain data serving67, moving to
service-based SEs68,69 and the mentioned cloud-based physics
engines70 should be explored to determine their suitability
for ensuring the scalability and consistency of the dynamic
SE, and maintaining correlation between all participating
heterogeneous simulators during execution of the scenario.

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954


Smelik, Wermeskerken, Krijnen, Kuijper 13

6 Conclusions
In the M&S community, for over twenty years there has
been a strong desire to move from the traditional static
and inflexible terrain databases to interactive and dynamic
environments which, just as their real-world counterparts,
continuously change as a result of natural processes and
human interventions. Advances in computer graphics research
and technology, and the increased availability of computing
power and parallel processing capabilities now make it
possible to simulate many of the individual features that
together make up a dynamic SE in real-time on desktop
computers.

In this survey, we reviewed the state of the art of
methods and techniques for dynamic synthetic environments,
focusing on terrain deformation and object destruction,
and discussed to what extent the research and industrial
solutions available today are applicable in the general
context of distributed interactive simulation. For both terrain
deformation and object destruction, we found methods and
techniques with a suitable balance between physical accuracy
and performance. What is lacking is a unifying approach that
encompasses these individual techniques, while at the same
time addressing the particular concerns for our application
of distributed military simulation: scalability to large-scale
environments, predictability, efficiency of authoring, and,
finally, maintaining correlation across the federation.

Further research in this direction, focusing on developing
such a unifying approach, could help our community to
realize the dream of truly interactive and lifelike synthetic
environments.

Declaration of conflicting interests

The authors declare that there is no conflict of interest.

Funding

This research is supported by the research program ”Mission
Training through Distributed Simulation (MTDS)” (V1701), funded
by the Dutch Ministry of Defence.

Acknowledgements

We thank the members of the NATO Task Group Dynamic
Synthetic Environments for Distributed Simulation (MSG-156)
for the constructive discussions on this topic, and the anonymous
reviewers for their insightful comments and suggestions that helped
to improve this article.

References

1. Pfeiffer KD and Tamash T. Measuring the Impact of Natural
Environment Representation on Combat Simulation Outcomes.
In Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC). 2014.

2. Moshell JM, Blau B, Li X et al. Dynamic Terrain. Simulation
1994; 62(1): 29–40.

3. Rybacki RM. Reliable Dynamic Terrain Updates and Fault
Tolerant Terrain Servers for Distributed Interactive Simulations.
Master’s Thesis, University of Texas at San Antonio, 1995.

4. Exploratory Team MSG-ET-045. Dynamic Synthetic Natural
Environments for Distributed Simulation. Final report, NATO
Science & Technology Organization, 2017.

5. DIS Working Group. IEEE 1278 - Standard for Distributed
Interactive Simulation, 2012.

6. HLA Evolved Working Group. IEEE 1516 - Standard for
Modeling and Simulation (M&S) High Level Architecture
(HLA), 2010.

7. Gilbert S, Keren N, Winer E et al. Evaluating the Value
of Dynamic Terrain Simulation on Training Quality. In
Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC). 2016.

8. Holz D, Beer T and Kuhlen T. Soil Deformation Models for
Real-Time Simulation: A Hybrid Approach. In Workshop in
Virtual Reality Interactions and Physical Simulation (VRIPHYS).
The Eurographics Association, 2009.

9. Birkel PA. Terrain Trafficability in Modeling and Simulation.
SEDRIS Technical Paper 2003; 1.

10. Sumner RW, O Brien JF and Hodgins JK. Animating Sand,
Mud, and Snow. Computer Graphics Forum 1999; 18: 17–26.

11. He Y. Real-time Visualization of Dynamic Terrain for Ground
Vehicle Simulation. PhD Thesis, University of Iowa, 2000.

12. Pla-Castells M, Garcı́a-Fernández I and Martı́nez RJ. Interactive
Terrain Simulation and Force Distribution Models in Sand Piles.
In 7th International Conference on Cellular Automata, for
Research and Industry (ACRI). 2006. pp. 392–401.

13. Pla-Castells M, Garcia-Fernandez I and Martinez-Dura RJ.
Physically-Based Interactive Sand Simulation. In Eurographics
(Short Papers). The Eurographics Association, 2008.

14. Pla-Castells M, Garcı́a-Fernández I, Gamón-Giménez MÁ et al.
Interactive Earthmoving Simulation in Real-time. In XIX
Spanish Computer Graphics Conference (CEIG). 2009. pp.
235–238.

15. Aquilio AS, Brooks JC, Zhu Y et al. Real-time GPU-based
Simulation of Dynamic Terrain. In International Symposium on
Visual Computing. Springer, 2006. pp. 891–900.

16. Cai X, Li F, Sun H et al. Research of Dynamic Terrain in
Complex Battlefield Environments. In International Conference
on Technologies for E-Learning and Digital Entertainment.
Springer, 2006. pp. 903–912.

17. Brandstetter III WE. Multi-Resolution Deformation in Out-of-
Core Terrain Rendering. Master’s Thesis, University of Nevada,
Reno, 2007.

18. Andersson J. Terrain Rendering in Frostbite using Procedural
Shader Splatting. In ACM SIGGRAPH Courses. ACM, 2007.
pp. 38–58.

19. EA DICE. Frostbite. Available from ea.com/frostbite.
20. Wang D, Zhu Qs and Xia Y. Real-time Multiresolution

Rendering for Dynamic Terrain. JSW 2014; 9(4): 889–894.
21. Crause J, Flower A and Marais P. A System for Real-time

Deformable Terrain. In Proceedings of the South African
Institute of Computer Scientists and Information Technologists
Conference on Knowledge, Innovation and Leadership in a
Diverse, Multidisciplinary Environment. ACM, 2011. pp. 77–
86.

22. Pangerl D. Dynamic GPU Terrain. In Engel W (ed.) GPU Pro
6. CRC Press, 2016. pp. 3–17.

23. Schäfer H, Keinert B, Nießner M et al. Real-Time Deformation
of Subdivision Surfaces from Object Collisions. In Proceedings
of the 6th High-Performance Graphics Conference. EG, 2014.

24. Schäfer H, Nießner M and Stamminger M. Real-Time
Deformation of Subdivision Surfaces on Object Collisions. In
Engel W (ed.) GPU Pro 6. CRC Press, 2016. pp. 27–50.

Author version, final version available at https://doi.org/10.1177/1548512918811954.

ea.com/frostbite
https://doi.org/10.1177/1548512918811954


14 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

25. Pennings S. Dynamic Layering System for Real-time Interaction
between Entities and Terrain. Master’s Thesis, Utrecht
University, 2014.

26. Holz D. Parallel Particles (P2): A Parallel Position Based
Approach for Fast and Stable Simulation of Granular Materials.
In 11th Workshop on Virtual Reality Interactions and Physical
Simulations (VRIPHYS). Bremen, Germany: Eurographics
Association, 2014. pp. 135–144.

27. Zhu B and Yang X. Animating Sand as a Surface Flow. In
Eurographics (Short Papers). The Eurographics Association,
2010. pp. 9–12.

28. Gilardi M, Watten PL and Newbury P. Drift-Diffusion Based
Real-Time Dynamic Terrain Deformation. In Eurographics
(Short Papers). The Eurographics Association, 2016.

29. Chen X. Real-time Physics Based Simulation for 3D Computer
Graphics. PhD Thesis, Georgia State University, 2013.

30. Dukstein G, Watkins J, Le K et al. Extending Construction
Simulators through Commonality & Innovative Research.
In Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC). 2013.

31. Tamash T. SISO PCR 236.A: Dynamic Terrain. Dignitas
Technologies, LLC, 2016.

32. Iben HN and OBrien JF. Generating Surface Crack Patterns.
Graphical Models 2009; 71(6): 198 – 208.

33. Frerichs D, Vidler A and Gatzidis C. A Survey on
Object Deformation and Decomposition in Computer Graphics.
Computers & Graphics 2015; 52: 18 – 32.

34. Muguercia L, Bosch C and Patow G. Fracture Modeling in
Computer Graphics. Computers & Graphics 2014; 45: 86 –
100.

35. Hettich R. Approaches to Destruction Effects in Real-time
Computer Graphics. Master’s Thesis, Karlsruhe University of
Applied Sciences, 2013.

36. Desbenoit B, Galin E and Akkouche S. Modeling Cracks and
Fractures. The Visual Computer 2005; 21(8): 717–726.

37. Müller M, Chentanez N and Kim TY. Real Time Dynamic
Fracture with Volumetric Approximate Convex Decompositions.
ACM Transactions on Graphics 2013; 32(4): 115:1–115:10.

38. Autodesk. Maya. Availabe from autodesk.com/

products/maya.
39. Side Effects Software. Houdini. Available from sidefx.com.
40. Goffredo E. A Tool for Procedural Destruction in Houdini

Shattering + Dynamics. Master’s Thesis, NCCA Bournemouth
University, 2010.

41. Mazarak O, Martins C and Amanatides J. Animating
Exploding Objects. In Proceedings of the 1999 Conference
on Graphics Interface. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999. pp. 211–218.

42. van Gestel J and Bidarra R. Procedural Modelling of
Destructible Materials. In Proceedings of V Ibero-American
Symposium on Computer Graphics. Faro, Portugal, 2011.

43. Parker EG and O’Brien JF. Real-Time Deformation and
Fracture in a Game Environment. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.
2009. pp. 165–175.

44. Seymour M. Art of Destruction (or Art of Blow-
ing Crap Up). fxguide.com/featured/art-of-

destruction-or-art-of-blowing-crap-up, 2011.
Accessed: 2018-10-16.

45. Coumans E. Bullet Real-Time Physics Simulation. Available
from bulletphysics.org.

46. Smith R. Open Dynamics Engine. Available from ode.org.
47. NVIDIA. PhysX. Available from developer.nvidia.

com/gameworks-physx-overview.
48. Havok. Physics. Available from havok.com/physics.
49. Havok. Havok Destruction. Available from havok.com/

destruction.
50. Havok. Havok Destruction 2012 SDK Manual. Product

documentation., 2012.
51. Autodesk. 3ds Max. Available from autodesk.com/

products/3ds-max.
52. NVIDIA. APEX. Available from nvidia.com/object/

apex.html.
53. PhysXInfo. Category:APEX. physxinfo.com/wiki/

Category:APEX. Accessed: 2018-10-16.
54. PhysXInfo. APEX Destruction. physxinfo.com/wiki/

APEX_Destruction. Accessed: 2018-10-16.
55. NVIDIA. Blast. Available from developer.nvidia.com/

blast.
56. Crytek. CryEngine. Available from cryengine.com.
57. Amazon. Lumberyard. Available from aws.amazon.com/

lumberyard.
58. Crytek. CryEngine Manual: Breakable Objects.

docs.cryengine.com/display/SDKDOC2/

Breakable+Objects, 2016.
59. Kihl R. Destruction Masking in Frostbite 2 Using Volume

Distance Fields. In SIGGRAPH Course: Advances in Real-Time
Rendering in 3D Graphics and Games. 2010.

60. Pixelux. DMM. Available from pixelux.com.
61. Cloudgine Ltd (part of Epic Games). Cloudgine. Available from

cloudgine.com.
62. Lisle C. Architectures for Dynamic Terrain and Dynamic

Environments in Distributed Interactive Simulation. Technical
report, Institute for Simulation and Training, University of
Central Florida, 1994.

63. Ellis C, Babenko P, Goldiez B et al. Dynamic Terrain for
Multiuser Real-Time Environments. IEEE Computer Graphics
and Applications 2010; 30(1): 80–84.

64. Hannay JE and van den Berg T. The NATO MSG-136 Reference
Architecture for M&S as a Service. In M&S Technologies and
Standards for Enabling Alliance Interoperability and Pervasive
M&S Applications (STO-MP-MSG-149). 2017.

65. Improbable. SpatialOS. Available from improbable.io.
66. RIEDP Product Development Group. Reuse and Interoperation

of Environmental Data and Processes (RIEDP) Data Model
Foundations. SISO, 2017.

67. Hebert KJ and Sexton D. Dynamic Synthetic Environments
Through Run-Time Modification of Source Data. In
Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC). 2012.

68. Siegfried R, van den Berg T, Cramp A et al. M&S as a Service:
Expectations and Challenges. In Fall Simulation Interoperability
Workshop (SISO). Orlando, FL, USA, 2014.

69. Watkins J, Tamash T and Campbell C. Future Simulation
Paradigms and Synthetic Natural Environments. In
Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC). 2016.

70. Sirigampola S, Mondesire S, Martin GA et al. Development
and Analysis of a Physics Server for Large Virtual Worlds.
In Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC). 2016.

Author version, final version available at https://doi.org/10.1177/1548512918811954.

autodesk.com/products/maya
autodesk.com/products/maya
sidefx.com
fxguide.com/featured/art-of-destruction-or-art-of-blowing-crap-up
fxguide.com/featured/art-of-destruction-or-art-of-blowing-crap-up
bulletphysics.org
ode.org
developer.nvidia.com/gameworks-physx-overview
developer.nvidia.com/gameworks-physx-overview
havok.com/physics
havok.com/destruction
havok.com/destruction
autodesk.com/products/3ds-max
autodesk.com/products/3ds-max
nvidia.com/object/apex.html
nvidia.com/object/apex.html
physxinfo.com/wiki/Category:APEX
physxinfo.com/wiki/Category:APEX
physxinfo.com/wiki/APEX_Destruction
physxinfo.com/wiki/APEX_Destruction
developer.nvidia.com/blast
developer.nvidia.com/blast
cryengine.com
aws.amazon.com/lumberyard
aws.amazon.com/lumberyard
docs.cryengine.com/display/SDKDOC2/Breakable+Objects
docs.cryengine.com/display/SDKDOC2/Breakable+Objects
pixelux.com
cloudgine.com
improbable.io
https://doi.org/10.1177/1548512918811954


Smelik, Wermeskerken, Krijnen, Kuijper 15

Author Biographies

Dr. Ruben Smelik is a scientist at TNO since 2007. He holds a
MSc degree in computer science from Twente University. He earned
a PhD degree from Delft University of Technology based on his
thesis on the automatic creation of 3D virtual worlds. His current
work focuses on innovations in the field of automated synthetic
environment modelling for military simulation applications.

Freek van Wermeskerken is a scientist at TNO since 2015
and has a MSc degree in Mathematics from the Vrije Universiteit
Amsterdam. He specializes in optimization and modelling dynamical
systems. His work focuses on creating models and algorithms to aid
the field of safety and security on topics of analysis and decision
support.

Robbert Krijnen is a scientist at TNO since 1996 and has a MSc
degree in computer graphics from Delft University of Technology.
He specializes in the use of virtual environments for serious gaming
applications. His current work focuses on innovations in the field of
Augmented Reality and Virtual Reality applications for ’Training
& Education’ and ’Concept Development & Experimentation’
applications in the military domain.

Frido Kuijper has been affiliated with TNO since the early
nineties. Originating from the fields of computer graphics and
high performance computing, he is now a senior research scientist,
focusing on innovations for automatic generation of virtual
environment models for simulation. He has a broad experience in
projects that served the military with effective use of simulation
technology in training and mission support.

Author version, final version available at https://doi.org/10.1177/1548512918811954.

https://doi.org/10.1177/1548512918811954

	1 Introduction
	2 Dynamic Synthetic Environments
	3 Terrain Deformation
	3.1 Deformation Capabilities
	3.2 Deformation Methods
	3.3 Preliminary Conclusions

	4 Object Destruction
	4.1 Destruction Capabilities
	4.2 Destruction Methods
	4.3 Destruction Engines
	4.4 Preliminary Conclusions

	5 Discussion
	6 Conclusions

