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Abstract. Results from the EU AVATAR project have indicated vortex methods generally
to be in good agreement with computational fluid dynamics simulations for resolving rotor
aerodynamic forces in a variety of operational and inflow conditions. Limitations of the more
crude blade element momentum method, most widely used in industry, have been exposed.
Although not as expensive as computational fluid dynamics, the application of vortex methods
to resolve rotor aerodynamics in wind turbine design and loads calculations is still hindered by
its computational burden. An increase in computer power and parallelization has helped over
the decades, but an efficiency boost is required to make the last step. The effect of simplifying
the far wake description on predicted loads as well as computational effort is investigated for a
variety of load cases. Results indicate that dynamic and time averaged loading characteristics
are preserved when the mid to far wake grid resolution is reduced. The applied wake reduction
is a promising technique leading to desktop design load calculations using vortex wake methods.

1. Introduction

The design of larger turbines with lighter and more flexible blades relies on the integration
between accurate unsteady aerodynamics, structural dynamics and control within fast
comprehensive numerical tools. Within the EU AVATAR project [1], the accuracy of large
rotor aerodynamic simulations has been investigated by comparing different fidelity models and
experiments for a variety of operational and inflow conditions [2]. State-of-the-art aerodynamics
codes used for design load calculations are currently based on well-assessed engineering blade
element momentum (BEM) models. Computational fluid dynamics (CFD) tools are increasingly
showing their capability to achieve a physically consistent description of turbine flow-field,
but they are still not well suited for aeroelastic analyses in practical preliminary design and
certification. In this scenario, potential-flow methods represent an advanced convenient solution
to overcome the limitations of BEM codes to fill the gap with complex and time consuming
CFD simulations. Still, the wide use of these models for wind turbine aeroelastic design load
calculations requiring simulation time steps in the order of 1° rotor azimuth or smaller, has
been hindered by the computational effort necessary for an accurate description of blade wake
dynamics. Thus, although parallelization goes a long way in reducing the burden, an efficiency
step has to be made. Several efforts to overcome this bottleneck have been undertaken in the
past. Prescribing wake geometry [3] rather than engaging in the costly nonlinear procedure based
on Biot-Savart law to align the wake with the local flowfield [4] fails to bring accuracy in transient
and dynamic load case calculations. More recently, a fast multilevel integral transform [5] has
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been applied to a panel method to reduce CPU-time for the simulation of turbine rotor wake
flow. Alternatively, effective hybrid wake techniques simplifying the far wake description in
comparison to the near wake have been proposed [6-9]. Within these methodologies, the present
paper investigates a cost-effective free-wake model that requires limited programming effort to
the existing codes and can be considered as an engineering method making approximations to
vortex wake theory.

2. Rotor wake engineering models

Vortex wake methods for the solution of the potential flow around turbine blades rely on
the discretization of the wake into a network of shed and trailing vortices and on free-wake
algorithms to align the rotor wake to the local induced flowfield. This nonlinear iterative process,
acknowledging the fact that a suitable wake length behind the turbine has to be taken into
account, has a severe impact on the memory and CPU-time requirements of the simulation. A
significant reduction of computational costs is herein achieved by splitting the wake into a near,
a transition and a far portion. A free-wake approach presenting a full lattice dimensioned by
spanwise and temporal resolution is used within the near wake. Differently, the transition wake
is simplified by progressively neglecting the effect of shed vortices, preferably only retaining the
influence of trailing vortices at the far wake end. Two different methods to make the wake
treatment more efficient are attempted as described below.

(a) Grid coarsening after half a revolution (red (b) Wake shape prediction (3 shed vortices are
lines) compared to fine wake grid (black lines). skipped after one revolution).

Figure 1. Illustration of the applied rotor wake reduction technique.

2.1. Wake reduction

The CPU-time saving is achieved by decreasing the total number of wake points through
coarsening grid resolution in streamwise direction after the near wake region. An example of
this technique is shown in Figure 1(a), where, for clarity, the transition zone is started after half
a rotor revolution, skipping two streamwise wake points as depicted in red (the fine wake grid
being in black). During blade revolution, at each time step a new sheet is shed into the wake.
The wake reduction technique allows to uncouple the time discretization of the problem from
the streamwise spatial resolution of the wake. Indeed, after the transition line (in blue in Figure
1(a)) the effective time step for wake sheets convection is increased (triple in this example) whilst
the time discretization for the numerical solution of the problem remains unchanged. Hence, due
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to the reduction, in this example two shed vorticity lines are discarded and the trailing vorticity
is distributed along a straight path spanning a larger azimuth step. In this way, the vorticity
shedding process from one lattice element to the next one in streamwise direction is applied to
wake elements of increasing azimuthal dimension. In practical applications, the transition zone
is further downstream (e.g. after one rotation, like illustrated in Figure 1(b)). Also, a more
ideal approach would include multiple transition zones, and not only skipping shed vorticity
lines but also mid-span trailing vorticity. Alternatively an analytical formulation representing a
cylindrical wake may be used to account for the far wake from a certain downstream distance.

2.2. Shed skipping

One of the bottlenecks of free-wake algorithms is the evaluation of the induced velocity on
wake and blade points through the Biot-Savart law. The shed skipping technique aims to
reduce the CPU-time demand of this computation whilst keeping a streamwise constant surface
discretization along the wake. Hence, this approach skips wake points only during evaluation
of the Biot-Savart law rather than really removing them from the wake grid. To this aim, all
the shed vortices in the near wake are retained; then, in the transition wake, a skip function is
applied to gradually neglect shed contributions. Differently, in the far wake, all shed vortices are
neglected whilst trailing vortices are all retained up to a prescribed distance from rotor plane.
Finally, only tip and root vortices are taken into account.

3. Implementation and validation strategy

The proposed wake models are implemented into a generalized lifting line theory and a 3D
unsteady panel method and applied for a number of load cases to assess their accuracy and CPU-
time saving. A brief overview of the used solvers is provided further in this section. For both
techniques the streamwise position of the start(s) of the coarsening and the degree of coarsening
itself are varied, which can be compared to a reference without coarsening. To enable a proper
comparison, the full wake length in terms of convected distance was kept the same between
reference and coarsened simulations. BEM results are calculated as well allowing to identify the
added value of the vortex wake methods. To give the comparison a physical reference, measured
load cases from the New Mexico wind tunnel campaign [10] have been used where possible. This
test features the fully instrumented 4.5 m diameter three bladed Mexico rotor with variable
speed and pitch control, tested in the large open jet facility of the German Dutch Windtunnels
DNW. A comparison is made using the sectional loads obtained from the fast pressure sensors
instrumented at five different spanwise sections (25%, 35%, 60%, 82% and 92%R). Since the
measured values at the 60%R station were suspect (outlier), these were replaced using linearly
interpolated values from the nearest stations. Chord normal and tangential sectional forces
are obtained by integrating the measured pressure distributions along the local chord. Rotor
integral variables such as axial force and torque are obtained by integrating these along the
span. To prevent differences due to the limited number of sensors, the experimental resolution
in spanwise direction is used to obtain these from the simulations. An experimental uncertainty
is estimated assuming an uncertainty in the pressure sensors of 35 Pa. The solid aluminium
blades are considered rigid, hence the simulations featuring the Mexico rotor do not include
aeroelastic interaction.

3.1. Aerodynamics codes

Both a generalized lifting line theory and a 3D unsteady panel method for the analysis of
inviscid flows around lifting bodies in arbitrary motion are considered to address turbine rotor
aerodynamics modelling. The used codes and the featured settings are described below.
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The ECN Aero Module [9,11] features a BEM method similar to the implementation in
Phatas [12] and a free vortex wake code in the form of AWSM [13]. AWSM models the wake
geometry by convecting shed and trailing vorticity into a vortex lattice. Here the trailing vorticity
accounts for the effects of spanwise circulation variation, whilst the shed vorticity accounts for
the effects of bound vortex variation with time. Both models are lifting line codes and they
make use of aerodynamic look-up tables to evaluate airfoil performance. Several dynamic stall
models, 3D correction models, wind modeling options and a module for calculating tower effects
are included. The set-up allows to easily switch between the two aerodynamic models whilst
keeping the external input the same, which is a prerequisite for a good comparison between
them. The package is coupled to the FOCUS-Phatas simulation software [14] that solves the
structural dynamics of a wind turbine, thus enabling full aeroelastic interaction.

In the current set-up, several engineering extensions are used by the BEM model identical
to previously reported set-ups [9]. The airfoil data used both for the BEM and AWSM code
originate from dedicated 2D tests [15] with modifications in the form of a 3D rotational correction
and dynamic stall model of Snel [16,17]. The AWSM code computational setup has been based on
previous convergence studies and the wake length has been extended to approximately three rotor
diameters downstream of the rotor. Unless otherwise indicated the time step of the simulations
is set to equal 10° rotor azimuth. The applied wake reduction technique in AWSM consisted of
one transition zone from where the shed vorticity lines were coarsened, usually applied after one
rotation. Differently, for the shed skipping technique several transition zones were prescribed.
The AWSM code was ran on a computer that allowed parallelization over 40 cores.

The CNR-INSEAN FUNAERO solver features a potential flow aerodynamic formulation
for incompressible, inviscid and irrotational flows around 3D lifting bodies in unsteady motion
[4,18]. The integral solution of the Laplace equation governing the flow field is derived by
applying the unbounded-space Green function technique [19] to obtain a superposition of
singularities on the actual surface of the rotor blades (sources and vortices) and their wakes
(vortices). The velocity potential upon the blades is evaluated through discretization of blades
and wakes surfaces and application of a zero-th order Boundary Integral Equation Method
(BIEM). Blade loads are finally calculated by integration of blade pressure distribution provided
by the Bernoulli equation. A flow-aligned unsteady free-wake solution scheme is adopted to
characterize the behavior of trailing and shed vortices. A thorough analysis of the numerical
convergence of the algorithm along with guidelines for the choice of the corresponding numerical
parameters setup is provided in [20]. The FUNAERO solver is suitable to efficiently predict rotor
airloads and wake inflow under attached flow operating conditions whilst viscosity effects (like,
for instance, unsteady flow separation occurring in off-design operations) can be approximately
described through inclusion of suitable models. To this aim, FUNAERO has been combined to
the Beddoes—Leishman airfoil theory for dynamic stall [21], the Viterna—Corrigan approach [22]
for deep stall regimes and the empirical corrections based on the laminar boundary layer
theory [16] for centrifugal effects. FUNAERO is also coupled to an aeroelastic formulation
based on the Finite Element Method (FEM) for performance and stability predictions [23]. The
wake reduction technique implemented in FUNAERO consists in a variable number of transitions
with the option of defining an analytical function to achieve a continuous coarsening of wake grid
in streamwise direction. For the aim of the present work, a rough estimation of the viscosity-
induced tangential stresses is achieved under the simplified assumption that the boundary layer
on the blade surface behaves like that over a flat plate at Reynolds number matching turbine
operating conditions. The time step of the simulations is always set to equal 6° rotor azimuth.
The FUNAERO code was ran on a cluster that allowed parallelization over 36 cores in a shared
memory environment.
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3.2. Load cases

For uniform axial inflow conditions, a traverse through the operational regime is performed
from very low thrust values (featuring a high local angle of attack and separated flow), to design
conditions and to high loading in the turbulent wake state. Several representative unsteady
load cases were also selected: three cases in 30° yawed flow, a hypothetical case featuring large
vertical wind shear (power law exponent o = 1) and a dynamic inflow case featuring two fast
pitch steps. Finally, a normal production load case in partial load is subject of investigation,
featuring a rigid version of the 200 m AVATAR 10MW rotor in turbulent inflow. Here time
varying pitch and rotational speed have been prescribed as obtained from a BEM simulation

with controller to ensure realistic local inflow conditions. An overview of the cases is given in
Table 1.

Table 1. Load case overview.

Name Nr. Rotort U, Pitch Rot. TSR BEM AWSM FUN-

cases angle speed AEROf
H /s ] [pm] [

Axial flow 9 M 7-30 -2.3 425  3-13 X X X

Yawed flow (30°) 3 M 10-24 -2.3 425  4-10 X X

Sheared flow 1 M 14.9%  -23 425 6.7 X X X

Dynamic inflow 1 M 10.0 steps 425  10.0 X X

Turbulent inflow 1 A 8.0 0.0 var®  var® b X

£ M = Mexico, A = AVATAR T Attached flow cases only T Power law exp. a =1

! Time averaged hub height wind speed, class A NTM stochastic field
* Prescribed temporal variation based on BEM simulation with controller

4. Results
4.1. Axial flow
Since computational time and its saving mainly depend on the used number of wake points,
they can be regarded irrespective of the load case under consideration. For axial flow, a full tip
speed ratio (M) traverse was simulated both by the panel and lifting line codes. The design load
case was taken to study the effect on the computational effort of the proposed wake models. A
summary of the results is given in Table 2. For the shed skipping approach in AWSM, almost
30% of CPU-time saving can be achieved at a small expense in the prediction of axial force
(Fur) and power (P). However, progressively coarsening the wake geometry resolution after one
wake revolution for the wake reduction technique, results in up to 79% CPU-time reduction at
a comparable expense in accuracy. Based on these results it was decided to focus on the wake
reduction technique rather than the shed skipping approach. The FUNAERO results are even
more promising for the wake reduction technique in terms of CPU saving and accuracy, which
is attributed to the usage of multiple transition zones. The same wake reduction configurations
as reported have been used for all the load cases herein considered.

A visualization of the impact of this technique on the load prediction is given in Figure
2. The effect of the wake reduction technique is indicated by the lighter colored band for the
configurations outlined in Table 2, where the reference is indicated by the darker colored line.
BEM results are shown as well to identify the added value of the vortex wake methods. For
the low thrust cases up to the design load case (A=6.7), the effect of reducing the far wake
grid resolution is small judging by the axial force coefficient predicted by AWSM in Figure
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Table 2. Result of wake coarsening techniques for New Mexico design load case (Usx=14.93
m/s, A=6.7, pitch=-2.3°).

Code Applied  Revolutions Skip shed Tot. shed ACPU* AP* AF,*
technique’ before vortices vortices
transition

[revs] [ [ (%] (] [%]
AWSM 0 - 0 541 - - -
AWSM 1 1 1 288 -58 0.8 0.3
AWSM 1 1 2 204 -71 1.8 0.7
AWSM 1 1 3 162 -79 2.9 1.1
AWSM 2 2/4 1/3 198 -27 2.0 0.8
BEM - - - - -99 -3.4 -2.3
FUNAERO 0 - 0 481 - - -
FUNAERO 1 2/4* 2/3 261 -81 0.3 0.1
FUNAERO 1 1/4 2/3 231 -78 0.8 0.4
FUNAERO 1 2/4 3/4 221 -87 0.0 0.0
FUNAERO 1 1/4 3/4 181 -92 0.8 0.4

T O=reference, 1=wake reduction, 2=shed skipping * A with respect to reference (0)
! Two transitions are used in FUNAERO
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(a) Rotor axial force coefficient as a function of A. (b) Blade distribution of chord normal force (A=6.7).

Figure 2. Effect of wake reduction on loading in axial inflow for the Mexico rotor.

2(a). Above this condition this effect progressively increases the predicted loading. A look into
the wake geometry (not shown here) reveals the transition zone to be relatively close to the
rotor due to the high rotor induction. Hence, rather than specifying the start of the transition
zone in terms of rotor revolutions, it is better to define it in terms of downstream distance
(approximately half a diameter when using a 10° azimuth time step). Moreover, it is shown that
including multiple transition zones reduces the sensitivity of predicted loads to wake reduction.
The agreement between experiment and simulations is very good up to design load conditions.
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Inspecting the spanwise distribution of normal force in design load conditions (Figure 2(b)) also
reveals a generally good agreement. However axial force results seem to slightly diverge for high
tip speed ratios towards the turbulent wake state. It is hypothesized that BEM starts to suffer
from not accounting for radial expansion effects and the lack of physics included in the turbulent
wake state model. The difference between the two vortex wake models is attributed to the usage
of airfoil data, which seems to differ from the panel method calculated pressure distributions.
However the approximation of viscous effects in the latter can also add to the uncertainty. It
is also noted that these conditions feature relatively low tunnel speeds and consequently low
dynamic pressures utilizing only a small fraction of the measurement range (plus the fact that
absolute differences are non-dimensionalized with a lower velocity enlarging differences in Cpgy ).
A more detailed comparison between experiment and simulations is illustrated in [24].

4.2. Yawed and sheared inflow

The results of the design load cases in yaw are illustrated in Figure 3. The wake reduction
approach results in a small increase of the steady blade chord normal force component, similar
to the axial inflow case. The load variation (trend) is hardly influenced as depicted by the first
4 blade passage frequencies (i-P) magnitude shown in Figure 3(b). The other two load cases in
yaw (not shown here) reveal a similar behavior. It can also be observed that the AWSM trend is
very much in line with the experiment, where BEM clearly falls short. The level offset between
experiment and simulations is in line with the axial flow case at 82%R and is attributed to the
difference between the used airfoil data and real sectional performance. Similar conclusions can
be drawn for the other blade forces and moments and at different blade sections.

520 157

Mg ol

0s
360 [ g™ [ Expariment ) | ' Expariment
Exp Uncertainty
BEM ! BEM
360 - Erie i AWSM
AWSM Wake Reduction I AWSM Wake Reduction |
440 i " e oL NNENEN penEy B B B
0 60 120 180 240 300 360 1P 2p 3P 4P
azi [deg) ug
(a) Blade chord normal force variation at 82%R. (b) 1, 2, 3 and 4P magnitudes of the flapwise blade

root moment, referenced by experimental value.

Figure 3. Effect of wake reduction for yawed flow (30°), Mexico rotor, A=6.7.

Although no experimental data is available for the shear case, the comparison to the
FUNAERO code is provided. From Figure 4(a) there is a small positive offset in loading due
to the application of wake reduction for the AWSM code, in line with the previous load cases.
The FUNAERO result shows a small load decrease when the blade is in the downward position
(180° azimuth). The harmonics analysis in Figure 4(b) indicates a small effect on the dynamic
loading characteristics, most noticeable for the higher harmonics. The offset between AWSM and
FUNAERO are in line with the previous comparisons for the high magnitude harmonics (1 and
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Figure 4. Effect of wake reduction for extreme sheared inflow (o = 1), Mexico rotor, A=6.7.

2P), whilst increasing discrepancies arise at 3 and 4P where unsteady flow separation phenomena
(not modelled in the panel code) can affect those harmonics magnitudes that, however, are very
small in terms of absolute value. Also, Figure 4 clearly shows that BEM overestimates the load
fluctuation in comparison to AWSM, which is due to the fact that induction variations in BEM
are smoothed out over the annular streamtube. Although this difference may seem small it can
be regarded as a canonical case for turbulent inflow conditions, imagining a blade slicing through
turbulent eddies, which dominates blade fatigue loading.

4.8. Dynamic inflow

Coarsening the wake resolution is expected to have an impact on dynamic loading in case of
sudden wake geometry changes. A dynamic inflow case featuring two pitch steps, first from
-2.3° to 5° and then back to -2.3° again, is illustrated here. For this case the Mexico turbine is
operating at a relatively high thrust (A=10) and the time step is set to approximately 6° azimuth.
Figure 5 indicates that, apart from the small level offset, both the initial load overshoot as well
as the damping caused by the wake inertia are preserved. The latter effect is seen to be modeled
superiorly by AWSM in comparison to the poor agreement with the experiment for BEM, which
returns to the equilibrium value too soon.

4.4. Turbulent inflow

A rigid version of the AVATAR rotor is used with a turbulent windfield as defined in Table
1. The time step is set to approximately 4° azimuth, depending on the prescribed rotor speed
variations. Fatigue loads are determined over a 4 minute time series. The tabulated results in
Figure 6 indicate that the applied wake reduction configurations hardly influence the fatigue
loads, also illustrated by the time trace of normal force at 82%R. This can be explained by the
fact that the AVATAR rotor operates at a relatively low thrust coefficient, together with the
fact that the time step in terms of azimuth angle is smaller than for the other load cases (i.e.
the wake description suffers less from linearization of its curved shape). In agreement with the
sheared inflow case, the BEM results feature larger load fluctuations resulting in a 7.4% higher
damage equivalent load for the blade root flapwise moment.
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Figure 5. Effect of wake reduction for a pitch step (-2.3° — 5° — —2.3°), Mexico rotor, A=10.
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Figure 6. Effect of wake reduction for turbulent inflow load case, AVATAR rotor.

5. Conclusions

A cost-effective free-wake model has been investigated that requires limited programming effort
to existing codes and can be considered as an engineering method making approximations to
free vortex wake theory. The resolution of the far wake is reduced by progressively skipping
shed vortices. The effect of this approach on loading characteristics has been investigated for
a variety of load cases, from steady axial inflow to yawed flow, a dynamic pitch step and a
turbulent inflow case. Results indicate that generally speaking dynamic and time averaged
loading characteristics are preserved when the mid to far wake grid resolution is reduced, whilst
CPU-time reductions of 60% to 90% are obtained. An offset in the average load levels can be
found if the grid coarsening is initialized too close to the rotor plane. Gradually coarsening the
wake grid resolution by using multiple transition zones is more efficient. In the end the preferred
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wake reduction configuration depends on the application and the accuracy needed. Concluding
it can be stated that the applied wake engineering model is a promising technique bringing us
desktop design load calculations using vortex wake methods.
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