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Abstract The timed dataflow model of computation is
a useful performance analysis tool for electronic system
level design automation and embedded software synthesis.
Its determinism gives it strong analyzability properties. Its
monotonic temporal behavior provides hard real-time guar-
antees on throughput and latency. It is expressive enough to
cover a large class of applications and platforms. The trend
however, in both embedded applications and their platforms
is to become more dynamic, reaching the limits of what
the model can express and analyze with tight performance
guarantees. Scenario-aware dataflow (SADF) allows more
dynamism to be expressed, introducing a controlled amount
of non-determinism into the model to represent different
scenarios of behavior. We investigate so-called weakly con-
sistent graphs in which the scenario changes are not tightly
coupled with periods of repetitive behavior of the static
dataflow behavior in scenarios as in previous methods. We
define the semantics of such graphs in terms of (max, +)-
algebra and we introduce a method to analyze throughput
using a generalization of (max, +)-automata. We show that
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weakly-consistent SADF generalizes many of the existing
analyzable dynamic dataflow models, such as CSDF, PDF
and CFDF and we present an algorithm to convert CSDF
graphs to SADF.
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1 Introduction

To develop concurrent embedded software applications and
the platforms on which they execute, it is important to
be able to efficiently assess whether or not performance
requirements will be met. The parallel tasks and resource
arbitrations create synchronization dependencies between
tasks and time delays for processing and arbitration. Such
behavior is captured well by performance models that build
upon the (max, +)-semi-ring [1], such as Network Calcu-
lus [2], Real-Time Calculus [3], timed Petri-nets [4, 5],
max-plus automata [6], and the timed dataflow models.
An example is the MP3 decoder graph shown in Fig. 1.
Figure 1a shows its structure. It has a File Reader compo-
nent that reads the encoded audio stream from a source,
an Entropy Decoder component that decompresses the bit-
stream and the MP3 Synthesis filter banks that transform
the encoded audio into samples that can be played by an
analog-to-digital converter. Figure 1b shows the structure of
the dataflow model of the decoder. The MP3 Synthesis com-
ponent itself is refined into a complex dataflow graph, not
shown in detail. Edges between tasks show dependencies
that lead to synchronizations and scheduling constraints.
The Huffman entropy decoder cannot start before the data
is read from the file stream. Similarly, the dataflow graph
models that the activities in the graph take time. This time
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is a consequence of both the amount of work that needs to
be done by a task as well as the processing speed due to
the amount of resources from the platform that have been
reserved to do it. The dataflow model will typically assume
an execution time that is the worst case (or any upper bound)
for the actual execution time, which may vary. The exam-
ple is discussed in more detail below. An important feature
of timed dataflow models for performance analysis is their
determinacy. In the most restricted dataflow models, such as
timed Synchronous Dataflow (SDF) [7, 8], task dependen-
cies must be independent of input data, while some more
dynamic models (for instance Dynamic Dataflow [9]) allow
such data-dependent dependencies. The growing challenge
is that the static structures of data dependencies and regular
execution times with limited variation are becoming more
and more exceptional as both applications and platforms are
becoming more dynamic. Applications are becoming more
dynamic, for instance, because of complex data reduction
schemes, which introduce strong data-content dependen-
cies. Hand-held devices need to support a wide range and
diversity of communication protocols. More and more is
handled in software by software-defined radio implementa-
tions. Novel cognitive radio protocols have strong adaptivity
to environmental conditions. For MP3 compression, differ-
ent parts of the audio, called frames, may be encoded using
different methods. These methods cannot be accurately cap-
tured in a static dataflow model. Besides the application,
also the platforms are becoming more dynamic. They need
to dynamically handle various use-case scenarios of applica-
tions and use dynamic QoS management to match available
resources with applications. Moreover, variability in the
production process of integrated circuits makes that perfor-
mance can vary from processor to processor, even on the
same die, or vary over time with thermal changes or the
aging process.

To deal with the increasing amount of dynamic behav-
ior in applications and platforms, there is a growing need
for performance models that can deal with more dynamic
behavior and can still provide tight performance guaran-
tees. The Scenario-Aware Dataflow (SADF) timed dataflow
model [10–13] tries to maintain as much as possible of
the determinacy of dataflow behavior, while introducing
the possibility for non-deterministic variations in the form
of scenarios. In MP3 decoding for instance, there are
five individual coding schemes for audio frames. Each of
these schemes can be represented accurately by a static
dataflow graph, while the types of frames may occur
non-deterministically (picked by the encoder depending
on the sound content) in arbitrary orders. The SADF
model and analysis techniques exploit the determinacy
in behavior within a single scenario, while allowing for
non-deterministic selection of the scenarios that occur. A

crucial aspect is the concurrency among scenarios. Con-
current implementations of streaming applications are often
pipelined. For the MP3 decoder this means that differ-
ent frames in different scenarios may simultaneously be
decoded. Yet, the analysis of scenario behaviors can be sep-
arately handled; they can be analyzed sequentially, despite
their overlap in time when the application executes.

Analysis methods for the Synchronous Dataflow model
based on spectral analysis techniques in the linear alge-
bra on the (max, +)-semi-ring have been introduced [12,
13]. These papers address the analysis of a particular subset
of SADF models that are called strongly consistent, which
means that every individual scenario behavior corresponds
to a complete iteration of an SDF graph. For the analysis
of the combination of non-deterministic sequences of sce-
narios which are modelled as SDF behaviors, the theory of
(max, +)-automata [6] has been used [13].

The contribution of this paper is to generalize the per-
formance analysis approach of [13] to the case of [10], in
which scenarios may occur at a finer granularity than com-
plete SDF iterations. This class is called weakly consistent
SADF, as opposed to the strongly consistent case, in which
every scenario corresponds to a full iteration. For weakly
consistent graphs, this is not necessarily the case, although
in the long run, they need still be consistent to guarantee
boundedness and freedom of deadlock. This generalization
is important because it allows us to use non-determinism to
model dataflow graphs that are not globally synchronous.
This type of behavior is observed, for instance, in the MP3
example where the file reading front-end operates asyn-
chronously from the sound decoding back-end, i.e., the
amount of data that needs to be read to produce a new audio
frame may vary, due to data-dependent levels of data reduc-
tion. We introduce methods to determine the worst-case
throughput of a weakly consistent SADF and a compact
state-space from which latency type of properties can be
determined. The generalization also makes the Finite State
Machine (FSM) based SADF model a proper generalization
of the Cyclo-Static Dataflow (CSDF) [14] model and many
other analyzable dynamic dataflow models. In CSDF, actors
can have dynamically varying communication rates and
varying execution times, but these variations are restricted
to be deterministically varying in periodic patterns.

An example of the type of system that we are address-
ing is the MP3 decoder of Fig. 1. The decoder gets its input
from some data source, e.g., a file, in an input buffer that
is being refilled when it becomes empty. The input data
is decompressed by an entropy decoder based on a Huff-
man code. Every now and then, depending on the input
data, an audio frame is completed and can be processed
by the synthesis filter banks. The blocks in the block dia-
gram and the circles/ellipses in the dataflow model are
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Figure 1 An MP3 decoder.
File Reader MP3 SynthesisEntropy Decoder

MP3 Synthesis
F.R. E.D.

(a) block diagram of the MP3 decoder
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(b) dataflow graph of the MP3 decoder

(c) FSM specifying scenario sequences

annotated with a name (in roman font) and with the sce-
narios in which these components may execute (in italics).
The bigger ellipse in Fig. 1b, labelled ‘MP3 Synthesis’ is
in fact a large dataflow graph, which depends on the audio
frame type and consists of up to 25 separate actors taking
hundreds of actor firings to complete the synthesis of the
frame. The three tokens shown on the edges sticking out
of the synthesis graph represent the dependencies carried
over from one frame to the next. In this example, we have
mapped the decoder onto three processors. The three tokens
Proci represent these resource dependencies. Each proces-
sor individually, but independently from each other, needs
to complete a frame before starting the next frame. Note
that in Fig. 1b there are three tokens labelled Proc1; these,
in fact, represent the same token modeling the processor
1 dependency, but in different scenarios. This is formal-
ized in Section 6. The MP3 dataflow graph can operate
in seven different scenarios: reading from file, performing
entropy decoding, and five different types of audio frame
synthesis. The finite state automaton (on infinite words) in
Fig. 1c is our specification of the possible orders in which
these scenarios can occur. We have used counters (r and s)

to provide a more compact representation of the automa-
ton, but it can easily be unfolded to a regular FSM. Edges
are labeled with guards on the counters and assignments
to counters, but, most importantly, with the scenario that is
executed when the edge is taken. dec denotes execution of
the entropy decoder, rd of the file reader and ss, sl, ls, ll and
mm represent decoding of any of the five different types of
audio frame. The file reader needs to be run exactly once
every ten firings of the decoder and the decoder may non-
deterministically produce a complete frame or not, but needs
to complete a frame at least once in every five subsequent
executions.

Interleaving of non-deterministic choices of the FSM
(which, after unfolding the counters, has 65 states) with
the execution of this dataflow graph (792 firings in the
largest scenario, ss, as well as pipelining of multiple frames)
can easily lead to state-space explosion in a naive state-
space model. Moreover, in this example there are two
independent, unsynchronized, sources of non-deterministic
behavior. On the one hand, the entropy decoder occasionally
produces a frame to be synthesized, but how often depends
on the compression achieved for the particular piece of
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music. On the other hand, the decompressed frames occur
in different types which are decoded differently. Making
this distinction leads to tighter estimates of the performance
compared to synchronous dataflow models without scenar-
ios. The results of this paper make it easier to model the
individual scenarios independently and to model them more
accurately. Forcing this behavior into a strongly consistent
behavior, or even a static synchronous model may require
abstractions that lead to less precise performance estimates.
We illustrate this in the experimental section with a static
abstraction of a channel equalizer model.

This paper is an extended version of [15]. It provides
more details and experiments and it discusses the rela-
tionship with existing dynamic dataflow models including
an algorithm to transform a CSDF graph into an SADF
graph. The paper is organized as follows. The next section
discusses related work. Section 3 introduces various pre-
liminaries and notations. Section 4 introduces the SADF
model and semantics by an example. Section 6 formal-
izes the general model and semantics. The new analysis
methods are introduced in Section 7. Section 8 relates the
weakly consistent SADF model to other existing analyz-
able dynamic dataflow models. Experimental evaluations
are presented in Section 9. It is followed by conclusions in
Section 10.

2 Related Work

Within the broad scope of performance analysis and schedu-
lability analysis, we focus on a particular class of systems
with repetitive behavior, processing on streams of data lead-
ing to strong dependencies between the individual tasks.
The (max, +)-semi-ring and its linear algebra [1] are very
suitable to express the behavior and semantics of such
models and it forms the foundation of many popular per-
formance analysis models, such as Network Calculus [2],
Real-Time Calculus [3], timed Petri-nets [4, 5], and the
family of timed dataflow models of which SADF is a
member.

Dataflow models of computation range from very static
through more dynamic and (partially) analyzable models,
to very dynamic, but also very hard to analyze mod-
els [11]. The static models include (homogeneous, cyclo-
static) synchronous dataflow [8, 14, 16] and Computation
Graphs [17]. Heterochronous Dataflow (HDF) [18] intro-
duces dynamism by combining a finite state automaton
with synchronous dataflow graphs in the individual states.
The model is restricted to executing complete iterations
per state transition of the automaton and the model does
not have a timed version for performance analysis. Param-
eterized Synchronous Dataflow (PSDF) [19] considers a
static structure of a dataflow graph, where one or more of

the port rates are parameters. It is possible to find param-
eterized schedules and appropriate buffer sizes, but the
possibilities for expressing dynamism are limited. In the
variable rate dataflow model (VRDF) [20] communication
rates may vary arbitrarily and are not necessarily constant
over a complete iteration. Analysis methods for this model
are efficient, but restricted to (conservative) buffer sizing
under throughput constraints. More dynamic variations on
dataflow models have been defined, but they introduce seri-
ous difficulties in the analysis. Examples include Dynamic
Dataflow (DDF) and Boolean Dataflow (BDF) [21], which
are models with data dependent firing rules. Their buffer
sizing and throughput analysis problems are undecidable.
Kahn Process Networks [22, 23] are also a form of dynamic
dataflow model, but not based on actors with firing rules.
(Lee and Matsikoudis discuss the relationship between
Kahn’s semantics and dataflow with firing rules [16].) Its
dynamism and data-dependent behavior make the relevant
analysis problems undecidable.

Network Calculus was introduced for the analysis of net-
work processing on streams of network traffic. It abstracts
concrete streams into worst-case bounds on amounts of
traffic observed in any interval of a particular duration.
Real-Time Calculus is a specialization of the Network
Calculus approach to schedulability analysis of real-time
embedded systems, in particular towards modeling of arbi-
tration of shared resources and resource composition. The
abstraction into the time-interval domain makes it harder
to model dependencies, in particular circular dependencies,
although extensions have been made to make handling such
dependencies feasible or more accurate [24].

Petri-nets [25], with its many variants is also a model of
computation that can express deterministic dataflow behav-
ior, as well as non-deterministic behavior. Timed Marked
Graphs [4] are in fact a class of Petri-nets equivalent to
timed synchronous dataflow graphs. Determinism and con-
sistency can be expressed as network invariants. There are
no Petri-net analysis techniques that combine large aggre-
gations of deterministic dataflow behavior with only the
essential non-deterministic choices like in this paper.

An appropriate semantic domain for timed synchronous
dataflow behavior is (max, +)-linear algebra [1]. Spec-
tral analysis in this linear algebra is intimately related to
throughput and latency analysis. (max, +)-automata [6]
combine (max, +)-linear behavior with non-deterministic
choice. We use this combination to model non-deterministic
scenario transitions. The Heaps of Pieces model [26, 27]
is a specialization of (max, +)-automata, used in literature
to study the behavior of discrete event systems and in par-
ticular Safe Timed Petri-nets (see for instance [27]). It is
important to observe the difference between the (max, +)-
automaton model and the Heaps of Pieces model, namely
that Pieces cannot accurately capture a larger collection of
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dataflow actor firings as a single Piece, since Pieces have
fixed relative starting times (the ‘lower contour’) and fixed
completion times (the ‘upper contour’). As such, a Piece is
‘rigid’, while an iteration in a dataflow graph is more ‘flex-
ible’ as it consists of a collection of independent actor fir-
ings, i.e., each actor firing can be modeled as a piece. Thus
an iteration forms an aggregated stack of Pieces; the result-
ing upper contour may depend on the starting lower contour.
By modelling only individual firings, the Heaps of Pieces
model is too fine-grained to efficiently represent complex
graphs.

We show how our analysis problem is ultimately mapped
on a Maximum Cycle Ratio (MCR) problem on a directed
multigraph, derived from a (max, +)-automaton. A gen-
eralization of cycle ratio analysis is provided by spectral
analysis of (max, +)-linear systems [28, 29]. Spectral anal-
ysis gives not only the cycle ratio (eigenvalue), but also
an eigenvector, which relates to the relative firing times
of actors, or latency. A good overview and comparison of
cycle mean, cycle ratio and spectral analysis methods can
be found in [30].

In this paper we use synchronous dataflow graphs in
the individual scenarios. However, we do not consider only
complete iterations [13, 18], but allow partial iterations
after which the graph may not return to the initial state.
A special case of grouping firings results from clustering
of SDF actors [31–33]. The result can be a quasi-statically
scheduled system, in which the clustered actors can be mod-
elled as scenarios of a weakly-consistent SADF. Hence,
the proposed analysis can also be applied to such sys-
tems. Another work exploring this aspect is [34], which
considers a modular implementation of SDF, where firings
of an SDF iteration are grouped together. These may be
individually scheduled depending on the presence of input
data.

3 Preliminaries

We give brief introductions to SDF, the extension of
dataflow with scenarios, the timing-semantics of SDF for-
mulated in (max, +)-algebra, and (max, +)-automata as
an analysis tool to the minimal extent required for this
paper.

3.1 Synchronous Dataflow Graphs

Synchronous Dataflow Graphs are directed (multi-)graphs
in which the nodes represent actors, entities that model
computations or other events that take time, such as a com-
putation task on a processor or resource arbitration delays.
Actors perform their events or actions repeatedly. A sin-
gle action is called a firing of the actor. The directed

edges, connecting actors, are called channels and repre-
sent dependencies between actor firings. Dependencies in
the model may have different origins in reality. They may
be data dependencies, but they may also represent resource
dependencies, for instance when an activity requires a
resource that first needs to be released by another activity.
Concrete dependencies are incarnated by tokens (some-
times also called delays) that are being communicated
across the channels. In SDF, actors producing or con-
suming tokens can do so with constant rates. Each firing
may consume or produce multiple tokens, but the number
needs to remain constant across firings. Channels may ini-
tially already contain some tokens, which are called initial
tokens.

Because of the constant rates with which tokens are com-
municated, actor firings occur in repetitive patterns called
iterations. An iteration defines a (smallest, positive) num-
ber of firings for each actor which is such that the number
of tokens on channels remains unchanged. From this invari-
ant, it is clear that this pattern or iteration can be repeated
indefinitely to obtain a streaming execution of the dataflow
graph.

3.2 (max, +) semantics of SDF

Semantics of SDF graphs comes in two flavours. Some
focus on functional behavior of actors and graphs. Others
focus on the performance of SDF graphs to predict their
throughput or latency. In this paper, we investigate the sec-
ond kind, timed SDF [8]. SDF graphs can be translated into
equivalent event graphs [1, 8], although this may involve
a considerable increase in the size of the graph. From this
it does follow however that the timing behavior of SDF
graphs follows similar patterns as event graphs. In particu-
lar, their behavior is deterministic and eventually becomes
periodic. This behavior can be captured efficiently by means
of (max, +)- algebra [1], a linear algebra based on the
operations of maximum and addition.

An interesting feature of timed SDF graphs is that
although the semantics assumes fixed, deterministic execu-
tion times and therefore has a deterministic behavior, it can
faithfully capture systems in which the execution times are
non-deterministic, yet bounded from above, by determinis-
tic execution times. Throughput results of the deterministic
SDF graph provide guaranteed lower bounds on the actual
throughput of the system [1, 8]. The timing is encoded by
dater functions which assign to tokens alive in the graph
at a given state, a time stamp of their first occurrence. We
illustrate this with an example in Section 4.

We now briefly introduce some notation related to
(max, +)-algebra (see [1] for background on (max, +)-
algebra). (max, +)-algebra defines the operations of the
maximum of numbers and addition over the set IR−∞ =
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IR ∪ {−∞}, the real numbers extended with a smallest
element called −∞. For readability we use the standard
notation for the max and addition operations instead of
the ⊕ and ⊗ notation mostly used in (max, +) literature.
Moreover, for scalars x and y, x · y (with shorthand xy)
denotes ordinary multiplication, not the (max, +) ⊗ opera-
tor. The max and + operators are defined as usual with the
additional convention that −∞ is the zero element of addi-
tion: −∞ + x = x + −∞ = −∞ and the unit element
of max, max(−∞, x) = max(x, −∞) = x. (max, +) is a
linear algebra: x + max(y, z) = max(x + y, x + z).

The algebra is additionally extended to a linear alge-
bra of matrices and vectors in the usual way. Note that
any matrix-vector multiplication in this paper denotes a
(max, +) matrix-vector multiplication and not a traditional
matrix-vector multiplication. For a matrix M and vector x,
we use Mx to denote the (max, +) matrix multiplication. If
a = [ai] and b = [bi] with ai, bi ∈ IR−∞ are vectors of size
k, then we write a � b to denote that for every 1 ≤ i ≤ k,
ai ≤ bi . With a a vector and c a scalar, we use c+a or a+c

to denote a vector with entries identical to the entries of a

with c added to each of them: c + a = a + c = [ai + c]. We
use 0 to denote a vector with all zero-valued entries. The size
of 0 is derived from the context. We use max(a, b), defined
as [max(ai, bi)] as a max operator on vectors and a + b,
defined as [ai + bi] as addition of vectors. ||a|| denotes a
vector norm, defined as: ||a|| = maxi ai , i.e., the maximum
element. It is a proper vector norm in the algebra, because (i)
||a|| = −∞ iff ai = −∞ for all i; (ii) ||c + a|| = c + ||a||;
(iii) ||max(a, b)|| ≤ max(||a||, ||b||). For a vector a with
||a|| > −∞, we use anorm to denote a − ||a||, the normal-
ized vector a, so that ||anorm|| = 0. We use aT to denote
transposition of a vector, to turn a column vector into a row
vector and vice versa. An inner product is defined as fol-
lows: aT b := maxi (ai + bi). If matrix M = [mj ] (i.e.,
has column vectors mj ), then Mx := maxj (mj + x) and
MT x := [mT

j x]. It is easy to verify that also matrix mul-
tiplication is linear: M(max(x, y)) = max(Mx,My) and
M(c + x) = c + Mx. Moreover, matrix multiplication is
monotone: if x � y, then Mx � My.

3.3 Scenario-Aware Dataflow Graphs

Scenario-Aware Dataflow graphs [10] are a variant of
dataflow models that try to occupy a sweet spot in the
trade-off between analyzability and expressiveness [11], in
particular to express more dynamic behavior. It can be seen
as a timed extension of the Heterochronous Dataflow (HDF)
model [18]. It combines Synchronous Dataflow behavior
with finite state machines (FSMs). However, it extends the
HDF model with time and optionally stochastic behavior,
by using Markov chains instead of FSMs. It allows the FSM

transitions to occur not only at the borders of complete iter-
ations of the SDF behaviors, but also at intermediary stages
of the data flow. Note that some of the earlier analysis
methods have also adopted the constraint that FSM transi-
tions may only occur at iteration boundaries [11–13]; this
paper frees the analysis from this restriction. An impor-
tant element of the timed model is that even though the
FSM transitions occur in-between pieces of deterministic
dataflow behavior, this does not mean that such pieces can-
not overlap in time. They can be pipelined. If that were
not allowed, no tight performance predictions could be
made. In this paper, we exploit the fact that although they
are pipelined, they are independent and their analysis can
be sequentialized. An important strength of the (timed)
synchronous dataflow model is its determinism. An impor-
tant goal of the SADF model is to preserve the benefits
of the deterministic behavior within scenarios for efficient
analysis, despite the addition of non-deterministic scenario
changes.

The semantics of SADF can be captured by a com-
bination of classical FSM semantics and (max, +)-based
semantics of the scenarios of determinate synchronous
dataflow behavior. The precise semantics is worked out in
more detail in Section 6. It uses a combination of state
machines and (max, +)-matrix multiplication that is called
a (max, +)-automaton and is briefly introduced in the next
subsection.

3.4 (max, +)-automata

A (max, +)-automaton [6] is a generalization of a regu-
lar finite state automaton with time durations on its edges.
The representation of automata using their characteristic
matrices is the most convenient for our purposes. We use
it instead of the more common, equivalent, representation
as states and transitions. It is defined as a tuple A =
(�,M,M), of a finite set � of scenarios, a mapping M,
which assigns to every scenario σ ∈ � a (max, +)-matrix
M(σ ) and a morphism M on finite sequences of scenarios,
mapping such sequences to a (max, +)-matrix such that

M(σ1 . . . σk) = M(σk) . . .M(σ1).

For a given finite sequence of scenarios, the automaton
defines the completion time as follows:

A(σ1 . . . σk) = ||M(σ1 . . . σk)0|| = ||M(σk) . . .M(σ1)0||.
Then, M(σ̄ )0 captures the production times of the tokens
of the SADF after the sequence σ̄ of scenarios. The time
when the final token is produced is captured by taking the
(max, +)-norm (maximum entry) of the resulting vector.
We are often interested in the worst-case throughput for
any possible sequence of scenarios. Gaubert shows [6] how
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this maximum growth rate of the completion time (mini-
mum throughput) can be computed as the maximum cycle
mean of the equivalent timed event graph [1] of the matrix
M = maxσ∈� M(σ ). It also shows how, given an (infinite)
regular sub language of �∗, the set of all finite scenario
sequences, the maximum growth rate can be determined
using a classical product automaton construction. Its worst-
case behavior can then be analyzed using spectral analysis
of a corresponding matrix, or if we are only interested in
throughput by maximum cycle mean analysis directly on
the automaton graph (R, ε), where the nodes R contain a
node for each row/column of the matrices in M. The labeled
edges ε ⊆ R × IR−∞ ×R contain an edge (k, v, m) for each
v = M(m, k) > −∞ [6].

For this paper, we need to generalize this concept. In
particular, instead of studying the average growth rate per
step of the automaton, we study the ratio of the growth
rate of the completion time relative to another quantity of
progress expressed as the sum of a certain benefit or reward
per scenario. This amounts to application of the generalized
spectral problem [28] to (max, +)-automata. In this case,
the worst-case throughput can be determined as an MCR of
the automaton where edges have two labellings, delays and
rewards. We also generalize the model by associating non-
square matrices M(σ ) with scenarios. We assume that we
use a specification of legal scenario sequences that is con-
sistent with the matrix sizes, i.e., such that the morphism M
is well-defined.

4 A Semantic Model of Weakly Consistent SADF

In strongly consistent SADF, every transition of the FSM
corresponds to a full iteration of the SDF graph for the par-
ticular scenario. It is therefore a piece of behavior that can
be repeated forever. Moreover, switches between scenarios
are always possible in such states of the dataflow graphs,
because their initial states are identical. State in this case
refers to the tokens present in the graph, as the graph’s actors
and channels may be different in different scenarios, but the
initial tokens are found in all scenarios. Specifically ‘state’
of those tokens refers to a dater function on the tokens, time
stamps indicating the time of their availability to be used
(consumed).

Although for many applications of this type of scenario-
aware dataflow behavior, scenarios align well with pieces
of behavior that constitute iterations, there exist also situa-
tions in which it is convenient to consider units at smaller
granularity, as explained above. We generalize the model to
allow for edges of the FSM to correspond to arbitrary (but
fixed) collections of firings. In contrast with the strongly
consistent case, the starting and ending state of a scenario

dataflow graph are not necessarily the same. Such weakly
consistent graphs can still be fully and precisely character-
ized by a (max, +)-matrix, which is not necessarily square
in this case.

5 Example

As an example we first establish the (max, +)-automaton
model of the running example graph shown in Fig. 2. We
give a precise general definition in the next section. The
initial state of the FSM is k with an edge to itself labelled
with the scenario α, which has one firing of P and one
firing of Q in the ‘mode’ of scenario a in which the exe-
cution times of both actors P and Q are 2 and the output
rate of actor Q on the channel to R is 0. This combina-
tion of two firings has no net effect on the distribution of
the three tokens on positions 1, 2, and 4 (indicated by the
labels inside the tokens). The relevant part of the starting
state, for these two firings, is defined by the two tokens
1 and 2 in the figure, with time stamps t1 and t2. This is
captured in a (max, +)-vector [t1 t2]T . In scenario α P

needs to fire before Qa (a firing of actor Q in mode a)
and consumes both tokens. Hence, its earliest starting time
is max(t1, t2). The firing takes 2 time units and completes
at time max(t1, t2) + 2, which in (max, +)-sum-of-product
form is equal to max(t1 + 2, t2 + 2), or in vector inner-
product notation: [2 2] · [t1 t2]T . This is the time stamp
of the new token produced at position 1. Next, Qa fires and
consumes the token just produced by P on the edge from P

to Q. Its firing takes also 2 units of time and completes at
max(t1 +4, t2 +4), or: [4 4] · [t1 t2]T . At this time the token
at position 2 is reproduced. Combining the two symbolic
states into a matrix-vector equation, we get the following
relation between the starting state vector and the end state
vector.[

t ′1
t ′2

]
=

[
2 2
4 4

] [
t1
t2

]

This matrix characterizes the collective effect of the (two)
firings in this scenario. Note however that, considering the
whole graph, there is a third token present at position 4 that
is neither consumed nor produced in this scenario. It is how-
ever part of the state and needs to be accounted for in state
and matrix. It is easy to see that this is done by adding the
following row and column.⎡
⎣ t ′1

t ′2
t ′4

⎤
⎦ =

⎡
⎣ 2 2 −∞

4 4 −∞
−∞ −∞ 0

⎤
⎦

⎡
⎣ t1

t2
t4

⎤
⎦

The transition α = PQa in the FSM can be considered a
complete iteration in the sense that it has no net effect on the
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Figure 2 An example
weakly-consistent SADF.

distribution of the tokens, although actor R is not involved
in the firings. This is not true for all transitions however.
Another transition, from state k to state l, is labeled with
scenario β consisting of the firings P , Qb. These firings
produce an additional token on position 3 on the channel
from Q to R in the SDF graph. The combined effect can be
represented by the following matrix vector equation.
⎡
⎢⎢⎣

t ′1
t ′2
t ′3
t ′4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 2 −∞
5 5 −∞
5 5 −∞

−∞ −∞ 0

⎤
⎥⎥⎦

⎡
⎣ t1

t2
t4

⎤
⎦

Note that the matrix is no longer square (4 by 3), because the
end state has four tokens while the starting state has three.

After this, a single firing Rc will take place in scenario
γ , moving from state l to m. This consumes tokens 3 and 4
and produces token 4, according to t ′4 = max(t3 +2, t4 +2).
Token 3 disappears in this process and tokens 1 and 2 remain
untouched. The full matrix thus has size 3 by 4.

⎡
⎣ t ′1

t ′2
t ′4

⎤
⎦ =

⎡
⎣ 0 −∞ −∞ −∞

−∞ 0 −∞ −∞
−∞ −∞ 2 2

⎤
⎦

⎡
⎢⎢⎣

t1
t2
t3
t4

⎤
⎥⎥⎦

From state m, an arbitrary number of scenarios δ are pos-
sible, a single firing of Rd , each of which involves only
token 4, according to t ′4 = t4 + 3. The full matrix equation
is as follows.⎡
⎣ t ′1

t ′2
t ′4

⎤
⎦ =

⎡
⎣ 0 −∞ −∞

−∞ 0 −∞
−∞ −∞ 3

⎤
⎦

⎡
⎣ t1

t2
t4

⎤
⎦

At some point,1 a transition ε is taken, back to state k.
It is labelled with an empty set of firings and therefore
leaves all tokens at rest. The matrix representation is an
identity matrix. Note that every cycle in the FSM constitutes
a collection of firings that has no net effect on the token

1Note that we could add Büchi acceptance conditions to the automaton
to enforce that progress is made eventually. However, such require-
ments typically have no impact on the worst-case performance.

distribution, i.e., is consistent. This makes the graph weakly
consistent. As another a-priori sanity check on the graph,
it can be verified by a straightforward reachability analysis
whether or not a graph is deadlock free.

Equipped with the scenario matrices that characterise the
effect on a system state of individual scenarios, we can
determine the evolution of the system state for any given
scenario sequence. Assume we have the following sequence
ααβγ δδεαβγ and the initial state t0 = [0 0 0]T is such
that all tokens are present at time t = 0. t1, the state after the
first scenario α is: t1 = M(α)t0 = [2 4 0]T . Continuing,
the sequence of states evolves as follows.

t1 = M(α)t0 = [2 4 0]T
t2 = M(α)t1 = [6 8 0]T
t3 = M(β)t2 = [10 13 13 0]T
t4 = M(γ )t3 = [10 13 15]T
t5 = M(δ)t4 = [10 13 18]T
t6 = M(δ)t5 = [10 13 21]T
t7 = M(ε)t6 = [10 13 21]T
· · ·

This sequence is illustrated in Fig. 3. The horizontal axis
shows time and the vertical axis the four tokens in the
graph. Every scenario takes a starting vector, represented
by the connected tokens at their given time stamps, to a
final vector according to multiplication with the scenario
matrix. The corresponding actor firings are shown in a Gantt
chart below. The shading of the actor firings matches the
scenarios in which they occur.

Figure 3 Execution of a sequence of scenarios.
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6 Model and Semantics

We now formalize the weakly consistent SADF model.
We make precise how we specify the graph and what we
mean by its throughput. A weakly consistent SADF graph
is defined by a tuple (�, G, ρ, i, f, π,A). It has a finite set
� of scenarios and every scenario σ ∈ � has an associated
SDF graph G(σ) and a partial repetition vector ρ(σ), which
maps every actor of G(σ) to a non-negative number spec-
ifying how often the actor fires in the scenario. In contrast
with the habit in SDF analysis, this partial repetition vector
does not need to be a multiple of the usual repetition vec-
tor of an SDF graph [7]. The graph G(σ) has a collection
of i(σ ) ∈ IN initial tokens, which we assume to be indexed
0 ≤ n < i(σ ). (Note that in Fig. 2 we have used labels
1-4 in tokens to refer to their location in the graph. These
are not to be confused with the indices introduced here.)
After execution of the partial repetition vector, the graph
G(σ) has a collection of f (σ) ∈ IN ‘final’ tokens, which
are indexed 0 ≤ n < f (σ). (f can be determined from i,
G and ρ, but it is convenient to make it explicit.) We use
the (max, +)-semantics of the SDF graphs [1] to associate
with every graph G(σ), a (max, +)-matrix M(G(σ)) ∈
(IR−∞)f (σ )×i(σ ), or in short M(σ ), that precisely character-
izes the relationship between the time stamps of the initial
and final tokens in the graph in that scenario as illustrated
in Section 4. The FSM A is a tuple (Q, q0, δ) with a set
Q of states, an initial state q0 and a labelled transition rela-
tion δ ⊆ Q × � × Q. The scenario labels in the edges
must be consistent in the sense that for any state q ∈ Q,
any incoming edge labelled with scenario σ1 and outgo-
ing edge labelled with scenario σ2, f (σ1) = i(σ2), i.e.,
the number of final and initial tokens of subsequent sce-
narios must match. (We implicitly assume the tokens with
the same index to be coupled, its time stamp at the end of
scenario σ1 is the initial time stamp for scenario σ2.) We
denote this number of tokens for a state q: n(q). The FSM
defines infinite sequences of scenarios in the usual way. A
accepts the sequence σ̄ of scenarios if and only if σ̄ is in
the language L(A) of the FSM, i.e., there exists a sequence
q̄ of states such that q̄(0) = q0 and for every n ≥ 0, there
exists an edge (q̄(n), σ̄ (n), q̄(n+1)) ∈ δ. With sequence σ̄ ,
we associate the timing behavior, a sequence of (max, +)-
vectors, such that t0 = 0 and for all n ≥ 0, tn+1 =
M(σ̄ (n))tn. We can now clearly recognise the structure of a
(max, +)-automaton.

It is important to recall that, as is common in the timed
dataflow performance analysis [8], it may be assumed that
the (per scenario) constant execution times given in the
model are in fact upper bounds for the real system behavior
and may in reality be non-deterministically smaller. Exe-
cution times may vary in a realization due to variations in
workload caused by the concrete data being processed, or by

influences from its environment, for instance the amount of
interference from arbitration of shared resources and other
tasks in the system. Monotonicity of timing behavior in
dataflow graphs (and hence also in SADF graphs) which
follows immediately from monotonicity of the (max, +)-
operators, ensures that performance guarantees derived for
the model are in fact also guaranteed for such implementa-
tions [35].

For synchronous dataflow analysis, it is common to
quantify throughput by measuring the number of iterations
completed per time unit. In our case, it depends on the model
how much actual, ‘real-world’ progress is made per sce-
nario. We therefore assume that we explicitly quantify the
amount of progress per scenario. For instance, for the exam-
ple graph, we may be primarily interested in the number of
firings of actor R. In this case the progress is 1 for scenarios
γ and δ and 0 for any other scenario. For the MP3 example
we may count the number of completed audio frames, by
assigning progress of 1 (frame) to the scenarios ss, sl, ls, ll
and mm, and 0 to the others. In general, we define a reward
function π : � → IR≥0, which quantifies the amount of
progress per scenario σ as π(σ). The throughput obtained
from a scenario sequence σ̄ can hence be defined as follows.

τ(σ̄ ) = lim
k→∞ sup

∑k−1
n=0 π(σ̄ (n))

||tk||
I.e., throughput is defined as the average amount of progress
per unit of time. The analysis question we answer in this
paper is to determine the worst-case throughput of an SADF
graph:

τ = inf
σ̄∈L(A)

τ (σ̄ ).

We can define an explicit state space semantics of the
model. The states consist of pairs (q, t) consisting of a state
q ∈ Q of the FSM and a normalized vector t . The ini-
tial state is (q0, 0), having the initial state of the FSM and
the zero-vector for token time stamps. The transitions of the
state-space are determined by the scenarios allowed by the
FSM state. The FSM moves to the new state and the time-
stamp vector is updated according to the scenario behavior
and then normalized to keep the state space finite and cap-
ture only the relevant information, the relative differences
between the time stamps. For a state (q, t) in the state space,
consider every edge (q, σ, q ′) in the FSM. Then the state
space has a labelled transition(
(q, t), ||u|| − ||t ||, π(σ ), (q ′, unorm)

)
,

where u = M(σ )t . The transitions in the state space are
decorated with two labels. The first is the amount of time
progress ||u|| − ||t ||, i.e., the amount of time difference
between the normalized vectors. The second is the progress
reward, π(σ), that is associated with the scenario of the
FSM transition.
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7 Throughput Analysis

To determine the infimum of the throughput values for all
possible scenario sequences on the graph, we need to find
the worst-case scenario sequence. In any scenario sequence,
both time and total reward progress with the scenarios being
executed. Progress of time is measured as the (max, +)-
norm of the state vectors tk , the maximum element of the
vector. Since tk+1 = M(σ̄ (k))tk , every element of tk+1 is
determined by some element of tk and offset by the cor-
responding dependency in the matrix. This element in tk
can in turn be traced back to a single element in tk−1 and
so forth back to t0. In Fig. 3 these critical dependencies
are illustrated by the thicker white line. The norm of state
vector t7 is equal to 21 because of token t4 (its fourth ele-
ment). Token t4 in t7 is determined by token t4 in vector t6,
which in turn is determined by t4 in t5, t4 in t4, t3 in t3, t2
in t2, t2 in t1 and finally t1 = 0 in t0. Therefore, to study
the relation between time progress and scenario sequences,
we need not look at complete vectors, but we can concen-
trate on individual elements (initial / final tokens) and their
individual dependencies as expressed by the entries in the
matrices.

Figure 4 shows a structure which encodes these depen-
dencies for the example of Fig. 2. The nodes in this graph
represent the initial/final tokens (horizontally) in each of the
states of the FSM (vertically). For every edge of the FSM,
we take the matrix M(σ ), with σ the label of the edge, and
for every finite (non −∞) element in the matrix we draw
an edge between the corresponding initial/final tokens and
label it with the value of that element and with the reward
π(σ) of σ . For clarity we have labeled it with the scenario σ

itself in the figure instead of the reward. The dashed boxes
are not actual nodes. They merely illustrate where the nodes
for token t3 would have been, had this token existed in that
state, in order to make the structure more clear. The precise

α,0

Figure 4 (max, +)-automaton of the example model.

definition of the (max, +)-automaton corresponding to the
SADF graph is as follows.

Definition 1 For an SADF graph (�, G, ρ, i, f, π,A), the
analysis (max, +)-automaton is defined in the form of a
graph (R, E) with vertices R and edges E, as follows.

• R = {(q, i) | q ∈ Q, 1 ≤ i ≤ n(q)}
• E = {((q1, i),M(σ )i,j , π(σ ), (q2, j)) | (q1, σ, q2) ∈

δ, 1 ≤ i ≤ n(q1), 1 ≤ j ≤ n(q2),M(σ )i,j �= −∞}

The worst-case throughput of the graph can be deter-
mined from a maximum cycle ratio analysis of the corre-
sponding (max, +)-automaton, i.e., by finding the cycle in
the graph with the worst-case ratio of total reward over time
progress.

Theorem 1 Let G = (�, G, ρ, i, f, π,A) be an
SADF graph and (R, E) be the corresponding (max, +)-
automaton graph, then infσ̄∈L(A) τ (σ̄ ) = MCR(R, E) is
the worst-case throughput of G.

Proof (Sketch) Analogous to the results of Section VI of
Gaubert [6], in particular Proposition 2, but generalized to
the case of time progress divided by reward progress.

Note that the example graph (Fig. 4) has cycles of zero
reward (α self-loops) and hence the worst-case throughput
is zero. Indeed, actor Q may never produce any output to
R in which case, R will never fire. In a refined model we
may limit the number of firings of Q in mode a to two,
before it must fire in mode b. And similarly we bound the
number of firings of actor R in mode d to three. This can be
modeled by introducing extra states in the FSM that count
the number of firings. Note that the behavior of this example
is characteristic for the asynchronous file reader front-end
of the MP3 example. After a predictable number of reads
it must have data available for decoding. This leads to the
automaton shown in Fig. 5, in which counters have been
used to enforce the above constraints. Counter x limits the
number of subsequent α’s to two, counter y the δ’s to three.
After unfolding the counters to a plain FSM, it has 8 states.

Figure 5 Refined example SADF.
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The corresponding (max, +)-automaton then becomes the
graph depicted in Fig. 6.

We have analyzed the graph of Fig. 5 using the conver-
sion and MCR analysis. The worst-case throughput is 1

13 .
The critical cycle also tells us the scenario sequence that
leads to this worst-case performance. In this case, it is deter-
mined to be the cycle of edges that is shown in bold in
Fig. 6. It corresponds to a repetition of the scenarios ααβγ ε,
which takes 13 units of time and involves only one fir-
ing of R. The critical dependencies involve only t2 in this
case.

8 Relation to Other Dynamic Dataflow Models

An important advantage of the relaxation of the consis-
tency constraint in the SADF model is that it makes the

model a proper generalization of the popular Cyclo-Static
Dataflow model (CSDF) [14]. As such it is an analyz-
able dataflow model that can serve as a semantic basis for
many of the popular analyzable dataflow models, includ-
ing the static HSDF and SDF [7], and dynamic models
such as HDF [18], CSDF [14] and parametric models such
as Parameterized Dataflow (PDF) [19] and Schedulable
Parametric Dataflow (SPDF) [36], (Structured) Variable-
Rate Phased Dataflow ((S)VRPDF) [37, 38] and Mode
Controlled Data Flow (MCDF) [39]. Parametric execution
time analysis [40–42] can also straightforwardly be gener-
alized to weakly consistent FSM-SADF (WC-FSM-SADF),
because the concept of convex throughput regions is pre-
served. In this section we show in detail how CSDF graphs
can be represented as weakly consistent SADF. We then
discuss the relationship of SADF to a number of existing
dataflow models.

Figure 6 Extended
(max, +)-automaton of the
example graph.
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A CSDF graph is a dataflow graph in which the
actors have token production and consumption rates that
can dynamically change with subsequent firings. These
dynamic changes are however restricted to occur in strictly
periodic patterns. An example of such behavior is a down-
sampling actor in which the number of new input samples
needed to compute an output sample varies periodically
depending on the sample rates. Figure 7 shows an exam-
ple of a CSDF graph representing a typical fragment of a
model of a data item that is written once and subsequently
used p + 1 times, including its buffer, taken from [38].
We assume that p is some arbitrary constant, rather than
an explicit parameter. The repetition vector of the CSDF is
ρ = {(A, 1), (B, p + 1), (C, p + 1), (D, p + 1), (E, p +
1), (F, p + 1), (G, 1)}. All actors have a self-edge with one
token, not shown in the figure for clarity, to prevent auto-
concurrency and out-of-order execution of the actor firings.
Actors B, C, E and F cycle through different phases with
different port rates. To capture this in SADF we need to
separate those firings into different scenarios. We need how-
ever not make every actor firing a different scenario, or have
a different scenario for every combination of actor phases.
We group as many actor firings as possible into a single
scenario. The resulting FSM for the SADF is also shown
in Fig. 7. It has three phases that are executed in the char-
acteristic cyclic fashion of CSDF graphs. We need three
scenarios and the partial repetition vectors of those scenar-
ios are also listed. In phase φ1, all actors except G fire once.
In the second phase the actors B, C, D, E and F fire accord-
ing the vector φ2. Note that only this phase depends on the
value of p. The last phase completes the CSDF iteration.
A reward of 1 is assigned to the last scenario φ3 to define
throughput as the number of iterations per time unit. Note
that in parametric extensions of CSDF, such as VPDF, p

can be interpreted as an explicit parameter. If the parame-
ter has a finite domain, this can be modelled by having a
copy of the φ2 state for each valuation of p and have the
FSM make a non-deterministic choice to enter any of them
after φ1. Alternatively, symbolic methods may be used, as
in [42].

Figure 7 A CSDF graph and its SADF scenarios.

Algorithm 1 shows the pseudocode of an algorithm to
convert a CSDF graph into a weakly consistent SADF. It
computes the repetition vector in Line 1, which counts all
the actor firings that need to be placed into scenarios. The
variable σ , initialized in Line 2, keeps track of the locations
of the tokens in the CSDF graph after the actor firings that
have been processed, to be able to determine which next of
the remaining actor firings are enabled. Variable sf is used
to keep track of all firings that will be assigned to a new sce-
nario to be created. In Line 4 the data structure is initialized
that will eventually contain the SADF that is the result of the
conversion. Initially, it is empty, has no scenarios. The sce-
narios are added later in the algorithm. Its FSM is initialized
to have a single state only, with no transitions yet. Those
will be added later. In the loop that starts on Line 6 actor
firings are added to scenarios. To prevent the generation of
an excessive number of states the algorithm combines maxi-
mal collections of actor firings into a single scenario. When
two subsequent actor firings use the same port rates, they
will be combined into one scenario (Lines 8–11). When the
rates change, a new state is created in the SADF for a new
scenario, because all actor firings within one scenario must
have identical port rates. This is done in Lines 13–17. With
“static in sf” in the condition in Line 7 we mean that the
firing uses the same port rates as firings of the same actor
in sf, if there are any. Note that if the input CSDF graph
is, in fact, an SDF graph, then the constructed SADF graph
will have only one state and one scenario and will there-
fore also be strongly consistent. When the loop is complete,
all actor firings have been processed. A final scenario is
created for the actor firings remaining in sf with a corre-
sponding state in the FSM returning to the initial state in
Lines 20 and 21. Finally, Lines 22 and 23 set the appropriate
rewards so that one iteration through all phases yields a total
reward of 1.

The complexity and run-time of the algorithm are chiefly
influenced by the while loop on Line 6. The number of
iterations of the loop is equal to the sum of the entries in
the repetition vector of the CSDF graph. This number is
typically in the order of the least common multiple of the
actor firing rates in the graph and in the worst case it is
equal to the product of all the firing rates. This makes the
algorithm scale exponentially, in the worst-case, with the
size of the graph and (pseudo-)polynomially with the fir-
ing rates themselves. Note however, that there are no known
exact performance analysis algorithms for CSDF (or SDF)
that scale better than with the size of the repetition vector,
although there exist approximations [43]. The computation
of the repetition vector itself (Line 1) is only linear in the
number of actors in the graph. The additional operations
inside or outside the loop can all be realized with com-
plexity linear in the size of the number of actors in the
graph.
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Theorem 2 Weakly consistent FSM-SADF generalizes
CSDF. I.e., for any CSDF graph one can create an equiva-
lent weakly consistent FSM-SADF with the same throughput
and having a one-to-one mapping between actors of the
CSDF and the SADF with the same actor firing times.

Proof Assume (without loss of generality) that the CSDF
graph is deadlock free. Algorithm 1 computes a weakly
consistent SADF with the required properties. It is straight-
forward to demonstrate that dependencies between actor
firings are preserved in the transformation. In the determin-
istic FSM that is generated, all states form a single cycle of
states and a reward of exactly one is obtained for every pass-
ing of a complete cycle, which corresponds to a complete
iteration of the CSDF graph.

We briefly discuss some of the other popular analyzable
dataflow models that weakly consistent SADF generalizes.

Static SDF , including HSDF, Computation Graphs and
Weighted Marked Graphs are clearly generalized by SADF.
They operate in only one scenario and are therefore strongly
consistent.

HDF is generalized by SADF in the sense that it uses the
same concept of scenarios or modes, but the model does not

include a timing model. Its implementation in Ptolemy II
does not allow pipelining of scenarios. It is also restricted to
strongly consistent models.

PDF is a rate-parameterized dataflow model in which
parameters may assume different values for each iteration.
For each given value of the parameter the graph is a consis-
tent SDF graph. It is therefore a strongly consistent SADF.
When the number of possible parameter values is finite, it
can be represented as a strongly consistent FSM-SADFG,
otherwise parametric representations are required [42].

SPDF graphs are rate-parametric dataflow graphs with
additional structural constraints on how the parameters are
used that make them schedulable. It is a subclass of PDF
and therefore of SADF.

(S)VPDF combines the actor phases of CSDF with parametric
rates similar to SPDF. Those features can all be expressed
in SADF. The example of Fig. 7, is a SVPDF when p is
interpreted as a parameter that can vary per iteration.

MCDF, Mode Controlled Data Flow, is a dynamic dataflow
model with a very similar semantics to SADF. Syntacti-
cally, it adds actors that explicitly control the modes or
scenarios and switch and select actors that introduce mode-
dependent behavior in a conceptually similar way it was
done in the original SADF formulation [10]. MCDF mod-
els can be directly translated to SADF models. Constraints
on scenario sequences are implicit in the functional behav-
ior of the mode controller actors. If this information can be
extracted by static analysis of the actor, it can be captured in
an FSM.

Execution-time-parametric dataflow models [40–42,
44] take any of the existing models and replace constant
actor execution times with parameters that may or may not
be able to change values between iterations. Combined val-
uations of the execution time parameters can be seen as
scenarios of an SADF [42] or regions of similar parameter
values can be grouped into a single scenario representing its
worst-case behavior [45]. Whether a parameter receives a
value once, or repeatedly in every iteration can be expressed
by the structure of the FSM. If the parameters take values
from an infinite or continuous domain, there may also be an
infinite number of states and a symbolic or implicit analysis
is required. [44] explores such an approach, in which also
constraints on dependencies between parameters are taken
into account.

Core Functional Dataflow (CFDF) [46] is an analyzable
version of the Enable-Invoke Data Flow [46] model, and
Parameterized Set of Modes (PSM) [47] is a syntactic model
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to allow their parametric specification. In CFDF, actors may
fire according to different modes. This can be expressed in
WC-FSM-SADF using scenarios for the individual actor fir-
ings. This may lead however to a too fine-grained model
with a very large FSM. Static analysis of the enabling
conditions and dependencies between actor modes could
possibly be used to reduce the complexity of the SADF
representation.

Boolean Parametric Data Flow (BPDF) [48] is a para-
metric dynamic dataflow model with strong analysis pos-
sibilities that combines boolean conditions in dependencies
with parametric rates. Similar to other models, both aspects
can be modeled with SADF scenarios. For boolean con-
ditions this is very natural. The parametric rates can be
enumerated in scenarios, but a parametric specification and
analysis are preferred.

9 Experimental Evaluation

We have implemented the worst-case throughput analysis
method in the SDF3 tool set [49] as an extension to the
available scenario-aware dataflow analysis. To get the per-
formance analysis results, a maximum cycle ratio analysis is
performed on the (max, +)-automaton using the algorithm
of Young et al. [50]. In this section we first illustrate the
method and the tool with two use cases. We then investi-
gate how it compares to other approaches and then we take
a closer look at the conversion algorithm from CSDF to
SADF.

9.1 Use Cases

We have used the tool to analyze an MP3 decoder model
with a file reader front-end (Fig. 1). Weak consistency
is needed for this model to be able to express the asyn-
chronous operation of the file reader and the decompression
of the MP3 decoding. The specification consists of seven
dataflow graphs for the five coding scheme scenarios and
two additional file processing scenarios. The graphs of the
frame decoding scenarios are fairly large (up to 25 actors).
The specified FSM has 65 states. The (max, +)-matrices
extracted from the scenario dataflow graphs are 3 by 3
matrices, where the rows/columns each represent one of
the three processors on which the decoder is presumably
mapped. The decoding process itself is stateless; therefore
there are no additional initial or final tokens. The determi-
nate behavior of the large scenario dataflow graphs, with
many firings, can thus be very compactly represented with
a small matrix. The (max, +)-automaton that is constructed
from the FSM and the matrices has 195 nodes (one for
every combination of the three initial tokens and one of

the 65 FSM states) and it has 2745 edges. The MCR anal-
ysis of this graph tells us the maximal throughput which
is guaranteed to be attainable. The computation time on a
standard PC is around 35ms. As a result we get the worst-
case throughput as well as a critical scenario sequence from
a critical cycle of the MCR analysis. This is the sequence
ss · (dec)5 · ss · (dec)4 · rd ·dec (there may be other sequences
with the same throughput). We see that the worst-case sit-
uation is that the decoder needs its maximum number of
firings (5) to produce an audio frame, combined with the
(apparently) hardest of the frame synthesis scenarios, ss.

We have also used SADF to model a WLAN receiver [39,
51]. It is intended to demonstrate that the scenario model
of dynamic dataflow behavior fits very naturally with this
type of application. In the WLAN receiver the recep-
tion of a data frame consists of phases of synchroniza-
tion, header processing, payload processing and transmit-
ting an acknowledgement. The internal data processing
can be conveniently modelled with deterministic dataflow
behavior, but the changes from synchronization mode to
header processing mode and the length of the payload are
unknown. This behavior cannot accurately be modeled with
static dataflow models such as SDF or CSDF, but it can
be modelled with non-deterministic scenario changes in
SADF. Figure 8a shows the FSM expressing the scenario
sequences. Figure 8b shows the dataflow graph of one of
the scenarios (Payload). Note that for readability we have
chosen an FSM representation where scenarios and rewards
are associated with states instead of edges, but one repre-
sentation can easily be converted in the other. Inside SDF3 a

(a)

(b)

Figure 8 SADF model of a WLAN receiver.
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representation is used in which edges are labelled, because
this typically leads to fewer states. In the specification lan-
guage, states can be labelled with scenarios and the tool
converts and minimizes the automaton before analysis. Each
scenario in the WLAN model, except the CRC scenario,
corresponds to the processing of a single input symbol
(OFDM) of 4μs. Recall that although a new scenario starts
every 4μs, the duration of a single scenario may be longer
when the executions are pipelined. The model starts with
synchronization looking for a WLAN frame preamble in
scenario Sync. While searching it will continue in the Sync
scenario. When a frame is detected, it continues with the
Header scenario in which additional processing takes place
for demodulation and decoding. From any scenario, the
application may fall back to the Sync scenario when syn-
chronization is lost. When header processing succeeds, it
continues in the Payload scenario, which is slightly different
from the header processing scenario in terms of the process-
ing of the payload. Although a frame consists of at most 256
payload symbols, the model conservatively allows arbitrar-
ily long frames, which leads to a smaller FSM, since it does
not need to count till 256. When the payload symbols have
been processed, the frame is completed with computation
of CRC error detection and the transmission of an acknowl-
edgement in the CRC scenario. As rewards we assigned
the number of symbols processed by a scenario, which is
1 except for the CRC scenario, where it is 0. This way the
throughput computation determines the worst-case average
number of symbols that can be processed per time unit. In
terms of analysis it is a fairly simple model. The execution
time of the throughput analysis is below 1ms.

9.2 Comparison to Other Dataflow Approaches

To illustrate how dynamic dataflow models such as CSDF or
SADF can give more accurate bounds on performance than
static models of the same application, we have experimented
with the channel equalizer application dataflow model from
Moonen et al. [52, 53]. The graph is shown in Fig. 9. It
is modelled in [52] as a CSDF graph. The communication
rates of all actors in Fig. 9 are equal to 1, except where an
actor with a solid line connects to a dashed channel. There,
a token is produced or consumed only on every 8th fir-
ing of the actor. Because of this the actors with a dashed
line fire only once for every 8 firings of the solid actors.
In our terminology, the graph exhibits two (strongly consis-
tent) scenarios, one in which only the solid actors fire, and
one in which all actors fire. The former scenario is repeated
7 times in a row, followed by one execution in the latter
scenario and this pattern deterministically and periodically
repeats. A static abstraction can be made by conservatively
assuming that all actors execute in each scenario with their
worst-case execution times or, alternatively, by unfolding 8

Figure 9 CSDF model of a channel equalizer [52].

subsequent scenarios into one large dataflow graph. In the
latter case, for the channel equalizer, the number of actors
goes up from 12 to 82, moreover the unfolding is, in gen-
eral, only possible for models with deterministic sequences
of scenarios. The unfolding approach is used in [52] to com-
pute the throughput of the CSDF graph. We have applied
the former approach to obtain a static model of a single
scenario, the processing of a single sample in the channel
equalizer. The analysis shows that the throughput guarantee
provided by the equivalent static dataflow graph is 119kHz,
while the throughput guarantee from the CSDF/SADF
model is 162kHz. A difference, for this particular example,
of 36 %.

We investigate the scalability benefits of the separation
of the scenarios into matrix multiplications in the (max, +)-
automaton, by comparing the analysis with an explicit
state-space analysis approach as presented in [54]. We have
taken the MPEG-4 Simple Profile decoder use case from
[10]. The scenarios in the model represent different types
of encodings of the video frame that needs to be decoded.
The tool of [54], which is also integrated in the SDF3 tool
set, creates the explicit state-space of the operational seman-
tics of the model. Due to the pipelining of non-deterministic
different scenario sequences and the interleaving of concur-
rent actor firings, the state-space is rather large. The tool
reports a state-space of 6489 states after the state-space
reduction techniques that are described in [54]. We have
modelled the same application in our (max, +)-automaton
model. The (max, +)-automaton graph structure created
and analyzed by our method has 8 nodes, because the sce-
nario graphs have 8 tokens and the FSM has a single state,
because all scenarios are possible in arbitrary orders. The
throughput analysis of [54] takes 185 seconds, while our
analysis takes less than 15 milliseconds. Note that the tools
analyze different properties. The tool of [54] computes
expected long-run average throughput from a Markov model
of scenario sequences, while our analysis computes worst-
case throughput. In order to compute worst-case throughput
however, the same state-space would be generated.
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Table 1 Experiment with CSDF graphs.

Model actors phases rep.vector states transf. analysis

Channel equalizer [53] 12 8 656 24 <1ms 15ms

H.263 encoder [55, 56] 6 ≤ 99 398 3 15ms <1ms

MP3 playback [57] 4 ≤ 39 180283 325 1015ms 1656ms

9.3 Conversion from CSDF to SADF

Algorithm 1, to convert a CSDF graph to SADF, has
also been implemented in SDF3. The conversion has been
applied to three CSDF models. The first is the aforemen-
tioned channel equalizer [52, 53]. It has 12 actors, which
have 8 phases each and a total number of 656 firings in the
repetition vector. The second is an H.263 encoder [55, 56].
It has 6 actors, which have up to 99 phases each and a total
number of 398 firings in the repetition vector. The third is
an MP3 playback model [57] (a CSDF model different from
the MP3 model of Fig. 1). It has 4 actors which have up
to 39 phases each and a total number of 180283 firings.
Table 1 summarizes the results of experiments with these
CSDF models. It shows the number of actors in the mod-
els, the maximum number of phases of any of the actors,
the number of firings in the repetition vector, the number
of states in the FSM of the converted FSM-SADF, the time
the conversion took in SDF3 and the time the throughput
analysis in the converted model took in SDF3. We need to
add that the throughput analysis directly on the CSDF mod-
els, using SDF3, is still significantly faster than the analysis
of the converted SADF models. The translation algorithm
confirms the generalization results and allows us to apply
other SADF analysis algorithms to CSDF graphs. Needless
to say the throughput analysis yields the same results as
direct throughput analysis on the CSDF.

10 Conclusion

We introduced an exact analysis method for a class
of dynamic dataflow graphs, called weakly consistent
scenario-aware dataflow in which the behavior may non-
deterministically vary according to scenarios of behavior,
yet within these scenarios behavior is deterministic and fol-
lows the synchronous dataflow paradigm which provides us
with powerful analysis techniques. The model introduced in
this paper generalizes a wide class of analyzable dynamic
dataflow models, including CSDF, PDF and CFDF, and
is therefore a good candidate for a semantic framework
and analysis tool set. We have generalized the (max, +)-
semantics of SADF to allow non-consistent scenario behav-
ior to (a generalization of) (max, +)-automata and exploit
existing spectral analysis techniques in (max, +)-algebra

for performance analysis. We have implemented the tech-
niques in a tool for performance analysis of dataflow mod-
els, made available as part of the SDF3 tool set [49] at www.
es.ele.tue.nl/sdf3. We see that it can effectively analyze var-
ious real-world models, such as the MP3 decoder and the
WLAN receiver.
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