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Abstract

Background: A key feature of metabolic health is the ability to adapt upon dietary perturbations. A systemic review
defined an optimal nutritional challenge test, the “PhenFlex test” (PFT). Recently, it has been shown that the PFT
enables the quantification of all relevant metabolic processes involved in maintaining or regaining homeostasis of
metabolic health. Furthermore, it was demonstrated that quantification of PFT response was more sensitive as compared
to fasting markers in demonstrating reduced phenotypic flexibility in metabolically impaired type 2 diabetes subjects.

Methods: This study aims to demonstrate that quantification of PFT response can discriminate between different states
of health within the healthy range of the population. Therefore, 100 healthy subjects were enrolled (50 males, 50
females) ranging in age (young, middle, old) and body fat percentage (low, medium, high), assuming variation in
phenotypic flexibility. Biomarkers were selected to quantify main processes which characterize phenotypic flexibility in
response to PFT: flexibility in glucose, lipid, amino acid and vitamin metabolism, and metabolic stress. Individual
phenotypic flexibility was visualized using the “health space” by representing the four processes on the health space
axes. By quantifying and presenting the study subjects in this space, individual phenotypic flexibility was visualized.

Results: Using the “health space” visualization, differences between groups as well as within groups from the healthy
range of the population can be easily and intuitively assessed. The health space showed a different adaptation to the
metabolic PhenFlex test in the extremes of the recruited population; persons of young age with low to normal fat
percentage had a markedly different position in the health space as compared to persons from old age with normal to
high fat percentage.

Conclusion: The results of the metabolic PhenFlex test in conjunction with the health space reliably assessed health on
an individual basis. This quantification can be used in the future for personalized health quantification and advice.
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Background
In this paper, we present a comprehensive strategy with
the ultimate goal of quantifying and visualizing (personal)
health across a range of healthy phenotypes from the gen-
eral population. We reach this goal by using a nutritional
challenge test as a procedure of health assessment,
coupled to a novel statistical visualization method.
A crucial aspect of health is the ability to maintain

homeostasis under a large variety of continuously chan-
ging environmental conditions. Viewing health as a func-
tion of the resilience to daily stressors makes measuring
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phenotypic flexibility a necessary part of the quantification
of health [1].
A pivotal part of the strategy presented here is the abil-

ity to assess this resilience in human subjects. Measuring
the response to a (nutritional) challenge allows to quantify
the metabolic ability of an individual to deal with a copi-
ous meal, and as such to assess metabolic health. Previ-
ously, it was shown that quantification of challenge-
response significantly contributes to demonstrating health
effects of food and nutrition in dietary intervention studies
[2–4]. A standardized optimal nutritional challenge test
was defined after the performance of a systematic litera-
ture review [5], which was named the “PhenFlex test”
(PFT). Recently, this “PhenFlex test” was characterized,
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where 132 parameters were quantified during the 8-h re-
sponse time course, that report on 26 metabolic processes
distributed over seven organs (gut, liver, adipose, pancreas,
vasculature, muscle, kidney) and systemic stress [6]. It
showed that the adaptive capacities of the most relevant
metabolic processes can be modulated by PFT.
Furthermore, it was demonstrated that the PFT and de-
fined new biomarkers are reliable in discriminating meta-
bolically impaired subjects with type 2 diabetes from
healthy subjects, since it was a more sensitive, early, and
meaningful measure than the corresponding overnight
fasting measure [6]. For these reasons, the quantification
of the response after a (nutritional) challenge may be a
good alternative for the “classic (i.e., overnight fasting)
biomarkers” in nutritional and health sciences. A major
remaining challenge in this field is the accurate assess-
ment of the effect of food and nutrition on the health sta-
tus of individuals, particularly in healthy subjects. Current
methods used in nutritional research stem mainly from
pharmaceutical and medical research, which traditionally
focus on (effects from treatment on) disease, evaluating
overnight fasting concentrations of certain (surrogate) bio-
markers reflecting disease symptoms. This results in
current nutritional science attempting to demonstrate
nutritional health effects by using these surrogate or
disease-related markers. Nutrition does not interact with a
specific target like most drugs, but instead interacts simul-
taneously on a number of metabolic pathways and func-
tions. Furthermore, the magnitude of nutritional effects is
often much lower than that of commonly observed for
drugs [7, 8]. Because lifestyle and nutritional interventions
in many cases enhance processes that restore or maintain
homeostasis, we posit that the assessment of resilience is
essential for determining the impact of these interventions
on health [9]. To do so, it is important to characterize the
response to PFT in the healthy range of the population,
ranging from an optimal towards a suboptimal response
to the PFT as a measure of health.
The current study aimed to assess the ability of PFT

to quantify flexibility in the healthy range of the popula-
tion and whether it is possible to discriminate between
optimal and suboptimal flexibility and therefore evalu-
ated PFT response in 100 healthy male and female vol-
unteers. We hypothesized that male and female subjects
of higher age (60–70 years of age) and normal to high
body fat percentage would respond differently to PFT as
compared to young subjects (20–30 years of age) with a
low to normal body fat percentage. Furthermore, we
hypothesized that increasing adiposity (in terms of body
fat percentage) would decrease phenotypic flexibility
resulting in a higher metabolic age. The study is part of
a larger endeavor, aiming to develop a set of standard-
ized tools to substantiate health effects of dietary inter-
ventions [6]. Standardization of the nutritional challenge
is important in generating a solid base of comparable
evidence. Only with the use of a standardized challenge
test, study results will be comparable and interpretable
across studies. The parameters measured during the 8-h
response PFT time course cover flexibility in glucose,
lipid, and amino acid and vitamin metabolism as well as
metabolic stress. A large section of the parameters
within this selection is obtained by applying metabolic
profiling, which allows for the simultaneous measure-
ment of the challenge response for a large contingent of
parameters at once and has been applied extensively in
nutrition and health research [10–13]. All of the bio-
chemical parameters measured in this study were also
quantified in the previous study, allowing for the inte-
gration of both studies permitting the comparison of
PFT response of the healthy range of the male popula-
tion with the PFT response from 20 type 2 diabetic male
subjects. To evaluate PFT responses, a statistical
visualization methodology called “health space” was
applied as described earlier by Bouwman et al. [14].
Concretely, we use the PFT challenge, administered to

100 healthy individuals from a range of phenotypes, to-
gether with the application of the health space modeling
technique to assess and visualize phenotypic flexibility as
a measure of health. The emphasis in this study lies on
the visualization and comparison of phenotypic flexibil-
ity in a range of healthy phenotypes, reflecting the gen-
eral population. We show that PFT challenge with the
biomarker subset and health space visualization tool
form a nutrition research toolbox that can be used for
readily interpretable substantiation of health effects from
interventions as well as for personalized health quantifi-
cation and advice.

Methods
Subjects
The study was conducted at the Center for Human Drug
Research (CHDR) in Leiden, the Netherlands. Study
participants were recruited from the CHDR volunteer
database and via study-specific advertisements in local
media and over the internet. All subjects gave written in-
formed consent, and the study was approved by the
Independent Ethics Committee of Leiden University
Medical Center (LUMC), the Netherlands. The study
was conducted according to the principles of the
Helsinki Declaration and in accordance with the Dutch
Medical Research in Human Subjects Act (WMO). The
study was performed in compliance with good clinical
practice (GCP). The trial was retrospectively registered
on 12 May 2017 with ID: ISRCTN10600261.
This was a single-center, explorative, open-label study

among 100 healthy subjects (50 males, 50 females). All
subjects were aged between 19 and 71 years and were
equally assigned to ten groups based on combinations of
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the three phenotypic characteristics: age, body fat per-
centage, and gender. The groups present in the study are
outlined in Table 1. Body adiposity was determined
using bioelectrical impedance analysis using an Inbody
720 body composition analyzer (Biospace Co., Ltd.,
Korea), and subjects were grouped according to body fat
percentage qualifiers (low, normal and high) as seen in
the last column of Table 1. All of the groups mentioned
in Table 1 contain ten individuals, for a total of 100 sub-
jects. Phenotypic groups 1 and 6 were selected to repre-
sent “optimal phenotypic flexibility” as it is commonly
perceived, while groups 5 and 10 were selected to repre-
sent “reduced phenotypic flexibility.” These will be
referred to as the two reference groups. The two refer-
ence groups were used for the creation of the health
space model representing the two extremes of pheno-
typic flexibility. The other individuals were grouped
according to a combination of age and adiposity, repre-
senting a range of healthy phenotypes as commonly
found in the general population. These will be referred
to as “healthy range of phenotypes” and were used for
evaluation of PhenFlex challenge test response and its
ability to discriminate between different states of health.

Design
All subjects were given the PhenFlex test (PFT) in
the morning after an overnight fast (≥ 10 h). On study
days before the first blood draw, a cannula was placed
and blood samples were taken at t = 0 (fasting) and
six time-points (t = 0.5, t = 1, t = 2, t = 4, t = 6, and t =
8 h) after consumption of the PFT. Subjects were not
allowed to eat or drink until the last blood sampling,
except from drinking water. Subjects were instructed
to eat the same meal on the evening before the study
Table 1 Phenotypic groups of participants included in the study

Gender Age (years) Group nr. Phenotypic group

Male 20–29 1 Reference group “optimal

30–59 2 Healthy range of phenoty

3

4

60–70 5 Reference group “reduced

Female 20–29 6 Reference group “optimal

30–59 7 Healthy range of phenoty

8

9

60–70 10 Reference group “reduced
day. Subjects were instructed to refrain from heavy
physical activity/sports, alcohol, paracetamol, NSAIDs
(i.e., ibuprofen, aspirin) starting 24 h before each
study day.

PhenFlex challenge
The 400 mL beverage consisted of a mixture of 12.40%
(w/w) palm olein, 17.25% (w/w) dextrose, 4.13% (w/w)
Protifar® (Nutricia), 0.10% (w/w) vanilla flavor, 0.12% (w/
w) trisodium citrate, 0.08% (w/w) sodium hydroxide, and
66.12% (w/w) water. This resulted in a drink of 3950 kJ/
950 kCal with a macronutrient composition of 60 g fat
(of which 39% saturated fatty acids, 47% monounsatu-
rated fatty acids, 14% polyunsaturated fatty acids), 75 g
glucose, 5 g polysaccharides, and 20 g protein (analyzed
by TNO Triskelion BV). The food-grade production of
the beverage took place at the NIZO food research pro-
cessing center in accordance with HACCP principles.

Metabolic plasma parameters
Blood samples were collected in tubes containing clot
activator for serum or in ice-chilled tubes containing Li-
heparin or ethylenediaminetetraacetic acid (K2EDTA) as
an anticoagulant for plasma and whole blood. In addition
to K2EDTA, aprotinin was added to tubes for glucose-
related parameters. After centrifugation (for 15 min at ap-
proximately 2000×g at approximately 4 °C within 30 min
after collection), plasma and serum samples were stored
at ≤ − 20 °C for clinical chemistry and ≤ − 70 °C for all
other parameters. The following parameters were mea-
sured at 0 h (fasting) and six post-prandial time-points
(0.5, 1, 2, 4, 6, and 8 h): clinical chemistry in serum—total
cholesterol, HDL-cholesterol, LDL-cholesterol, triglycer-
ides, nonesterified free fatty acids (NEFA), glucose,
Body fat %

phenotypic flexibility” Low to normal < 20%

pes Low 30–39 years < 8%
40–59 years < 11%

Normal 30–39 years 8–20%
40–59 years 11–22%

High 30–39 years > 20%
40–59 years > 22%

phenotypic flexibility” Normal to high > 20%

phenotypic flexibility” Low to normal < 30%

pes Low 30–39 years < 21%
40–59 years < 23%

Normal 30–39 years 21–33%
40–59 years 23–34%

High 30–39 years > 33%
40–59 years > 34%

phenotypic flexibility” Normal to high > 30%
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gamma-glutamyltransferase (GGT), ALAT, aspartate-
aminotransferase (ASAT), alkaline phosphatase (ALP),
albumin, and creatinine; glucose-related parameters—glu-
cagon, insulin, and C-peptide in plasma by enzyme-linked
immunosorbent assay (ELISA). Finally, GC metabolomics
has been performed for the assessment of endogenous
plasma metabolites by GCMS technology, where only a
selection of a total of n = 26 amino acids and derivatives
and ketone bodies were included according to the method
described by Koek et al. [15]. All parameters were ana-
lyzed by TNO Triskelion BV.

Indexes and summations
The Matsuda index was calculated according to Matsuda
et al. (Eq. 1) [16].

10000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fasting insulin mU=Lð Þð Þp � mean insulin mU=Lð Þð Þ � mean glucose mg=dLð Þð Þ
ð1Þ

The hepatic insulin resistance index (HIRI) was calcu-
lated by the validated method of Matsuda et al. (Eq. 2).

fasting insulin mU=Lð Þ � fasting glucose mg=dLð Þ ð2Þ

The concentration of non-essential amino acids was
calculated as the sum of alanine, glutamine, glycine, pro-
line, serine, and tyrosine. The concentration of aromatic
amino acids (AAA) was calculated as the sum of phenyl-
alanine, tyrosine, and tryptophan. The amount of
branched-chain amino acids (BCAA) was calculated as
the sum of isoleucine, leucine, and valine. Fisher’s ratio
was defined as BCAA to AAA ratio [17]. We also calcu-
lated the phenylalanine hydroxylase activity index which
is the concentration of tyrosine divided by the concen-
tration of phenylalanine [18]. Finally, also the vitamin C
index was calculated as concentration of proline divided
by the concentration of hydroxyproline [19].

Questionnaires
Apart from biomarkers derived from the blood, several
questionnaires were administered: the State-Trait Anx-
iety Inventory (STAI), the short questionnaire to assess
health-enhancing physical activity (SQUASH), and the
food frequency questionnaire (FFQ) as well as screening
questionnaires concerning disease, allergy, smoking,
drug/alcohol, and sleep history and status, as well as
education level and subjective evaluation of weight.

Area under the curve calculations
For all parameters measured during the dietary chal-
lenge, incremental areas under or over the baseline were
calculated using the first measurement (0 h) as a refer-
ence. The term area under the curve (AUC) refers to
both values, which were delineated as negative AUC
(AUC−) and positive AUC (AUC+).

Questionnaire features
The inclusion of questionnaires in the health space
model required conversion of answers into numerical
values. Using each questionnaire question as a separate
feature leads to sparse features; to prevent this, it was
decided to summarize questionnaires to several con-
structed features. The feature “allergy” was composed of
the questions: allergy for food or food components,
allergy for iodine, allergy for latex, allergy for any medi-
cation, allergy for plasters, and any other allergy. The
feature “disease” was composed of the questions to
history of the following: cardiovascular disorder, gastro-
intestinal disorder, head/eyes/nose/throat disorder,
hematological disorder, hepatic disorder, immunological
disorder, endocrine/metabolic disorder, musculoskeletal
disorder, neurological disorder, psychiatric disorder, pul-
monary disorder, dermatological disorder, urogenital dis-
order, or any other disorder. This was done by setting
the constructed feature value to 1 when any of the
underlying questions reported positively and 0 when
negative. Smoking, sleeping disorder, body weight per-
ception, night-shift, and education level answers were
converted to numerical values. Zero or 1 values were
used for polar questions, while leveled answers were
converted to − 1/0/1. Reported sleep hours were con-
verted to numerical values. After the conversion, these
questionnaire answers were used as features.

Health space analysis
To evaluate PFT responses, a statistical visualization
methodology called “health space” was applied,
described earlier by Bouwman et al. [14]. In the current
approach, we have adapted this methodology to use two
reference groups to define the health space. This means
that the health space was constructed to reflect differ-
ences between subjects from the reference group with
“optimal phenotypic flexibility” and subjects from the
reference group with “reduced phenotypic flexibility.”
Having this predefined health space allowed for the
visualization of individuals from “the healthy range of
phenotypes,” so that their position in this space reflects
their health status. The positioning of the healthy range
of individuals in the health space is based on the regres-
sion values of the health space model, and since the
health space is defined according to the difference
between the two reference groups, the individuals’ health
status is visualized on a spectrum ranging from one
reference group to the other.
Axes were defined as four processes which characterize

phenotypic flexibility, named (1) flexibility in glucose, (2)
lipid, (3) amino acid and vitamin metabolism, and (4)
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metabolic stress. The first three axes represented meta-
bolic components of phenotypic flexibility, while the
fourth represented a measure of metabolic stress on the
system as a whole. All measured parameters related to
glucose metabolism and carbohydrate intake, lipid metab-
olism and fat intake, and amino acid metabolism and
protein and vitamin intake were used for the axes named
flexibility in glucose-, lipid-, amino acid and vitamin me-
tabolism, respectively. The axis on metabolic stress was
composed of parameters indicative for metabolic stress
such as risk factors, injury markers, and well-being. Axes
were not defined to be independent, since features were
shared across axes. The metabolic stress axis had overlap
with all other axes. The categories contain features from
several types of data, namely clinical chemistry, metabolo-
mics, anthropometry, several compound indices, and
questionnaire answers. In order to utilize the data
obtained during the challenge test in an interpretable way,
the 0 h and the AUC− and AUC+ were used for plasma
parameters. Subsequently, model performance and assess-
ment of model overfitting with the selected features were
evaluated according to the error rate. The error rate was
defined as the misclassification rate of the two reference
groups per axis of the health space model. For the model
training, the “optimal phenotypic flexibility” reference
group (aged 20–29, fat percentage low to normal) and the
“reduced phenotypic flexibility” reference group (aged 60–
70, fat percentage normal to high) were used. The model
was trained to discriminate between these two reference
groups using a separate tenfold double cross-validated
(DCV) PLS-DA model for each of the four axes using
their respective features. In this way, the model is repeated
ten times in such a way that each individual has a 90%
chance of being in the training or in the cross-validation
set. In the DCV procedure, the model error was estimated
independently of the model complexity and reported as a
misclassification rate of the two reference groups per axis
of the health space model and was calculated as the aver-
age percentage of individuals of the cross-validation set
that is wrongly classified in each of the ten DCV-PLS-DA
subtests. Since the health space model was composed of
four different axes, four different error rates were being
calculated. These error rates can be used to determine
how relevant a biological process is for the separation of
the two reference groups. In all analyses, all features were
scaled to mean 0 and variance of 1. In every cross-
validation step, the regression value for each parameter is
saved (this equals the contribution of each biological com-
pound to the model). Using these values, relative standard
deviations (RSDs) of the regression value can be deter-
mined for each parameter. The order of magnitude of the
RSD values gives an impression of the stability of the
parameter for the importance of the discrimination be-
tween the reference groups in the axis and hence the
relevance to the health space model. An instable param-
eter (having a high RSD value) may be of biological im-
portance but acts as noise in the health space model. The
RSD values were used as variable selection criterion.
Parameters with high RSD values (200, 100, or 50%) were
removed from the dataset, and the model was built again.
In statistics, this approach of variable selection is called
jackknifing.
All features used for each axis after jackknifing of the

first health space are listed in Table 2. In the output of
the health space model, the relative absolute regression
vector values indicate relative importance of the respect-
ive feature on an axis.
GCMS-based features from the subjects in this study

were combined with the same GCMS features from sub-
jects of [6] in the second health space. Due to the com-
bination of GCMS results, the two study outcomes had
to be aligned for the creation of this health space, as this
GCMS method produced relative concentrations. To do
this, GCMS-based features were centered and normal-
ized around a common value. Features from both groups
were normalized separately around the means of their
respective healthy controls. Because questionnaires were
not available for the subjects in the second study, all
questionnaire-related features had to be omitted in this
instance. For the training of this model, the same refer-
ence groups were used as in the original health space.
After model training, all individuals were assigned

values for each axis according to the regression vectors
provided by the trained model. The resulting four
values per individual represent coordinates on the four
predefined axes of the health space model. The same
eapproach was taken for the health space that combines
data from two different studies. All axes are biologically
and statistically interdependent and can be directly
visualized in a 4D space. Model output includes error
rates indicative of model performance.

FlexScore
The FlexScore is a summarized ranking of subjects
based on the preselected features. These preselected fea-
tures were based on markers of which a higher or lower
response to the PFT had a biological meaning in the
sense that these could be interpreted as either beneficial
or detrimental to health. Each subject was assigned a
rank by summating all feature ranks for the subject. It is
structured so that a higher score means less flexibility
and vice versa. Additional file 1: Table S1 presents an
overview of all features used for ranking.
For all features except Matsuda index, disposition

index, and 3-hydroxybutanoic acid, rankings were made
by ordering subjects from small to large values. For the
remaining three features, subjects were ordered by
values from large to small, as a small value for these



Table 2 The selected features for the four axes of the health space
Glucose Coefficients Lipid Coefficients AA and Vit Coefficients Metabolic stress Coefficients

C-peptide (AUCp) 0.062 LDL (t0) 0.060 D-Glutamic acid (t0) 0.054 LDL (t0) 0.060

Total carbohydrates (Q) − 0.060 Body fat % 0.059 L-Tyrosine (t0) 0.040 Cholesterol (t0) 0.059

Polysaccharides (Q) − 0.058 Cholesterol (t0) 0.059 L-Isoleucine (AUCp) 0.040 Systolic blood
pressure

0.055

Glucose (t0) 0.055 Waist circumference 0.055 Vitamin C index 0.038 Current weight (Q) 0.046

4-Methyl-2-oxovaleric-acid
(t0)

− 0.052 BMI 0.055 Fisher ratio − 0.036 GGTP (t0) 0.041

3-Methyl-2-oxo-valeric-acid
(t0)

− 0.049 Systolic blood pressure 0.054 Iron index − 0.035 Diastolic blood
pressure

0.041

Insulin (AUCp) 0.045 Diastolic blood
pressure

0.040 L-Phenylalanine (AUCp) 0.035 Triglyceride
(AUCp)

0.040

Matsuda index − 0.045 Triglyceride (AUCp) 0.040 L-Leucine (AUCp) 0.035 Triglyceride (t0) 0.038

L-Isoleucine (AUCp) 0.045 Triglyceride (t0) 0.038 Albumin (t0) − 0.034 Education (Q) − 0.038

Mono- and disaccharides
(Q)

− 0.044 Body weight 0.037 D-Glutamic acid (AUCn) − 0.033 Glucose (t0) 0.037

Hepatic insulin resistance
(HC)

0.041 Waist-hip ratio 0.037 Vitamin B6 (Q) − 0.033 L-Tyrosine (t0) 0.031

Glucose (AUCp) 0.040 Triglyceride (AUCn) 0.028 Phenylalanine hydroxylase
activity index

0.033 Matsuda index − 0.031

L-Leucine (AUCp) 0.039 Total fat (Q) − 0.023 AAA 0.032 Alcohol (Q) − 0.029

3-Methyl-2-oxo-valeric-acid
(AUCn)

0.032 3-Hydroxybutanoic acid
(AUCp)

− 0.016 Vitamin B1 (Q) − 0.031 Triglyceride
(AUCn)

0.029

Glucagon (AUCp) 0.030 Albumin (AUCn) 0.029 Fisher ratio − 0.028

L-Valine (AUCp) 0.029 L-Lysine (t0) 0.029 Glucose (AUCp) 0.027

4-Methyl-2-oxovaleric-acid
(AUCn)

0.026 L-Methionine (t0) − 0.027 L-Phenylalanine
(AUCp)

0.027

Glucagon (AUCn) 0.024 L-Valine (AUCp) 0.026 Albumin (t0) − 0.026

Creatinine (AUCn) 0.025 Smoking (Q) − 0.024

L-Tyrosine (AUCp) 0.025 Allergy (Q) − 0.024

L-Ornithine (t0) 0.025 Albumin (AUCn) 0.023

Vitamin B2 (Q) − 0.024 Glucose (AUCn) − 0.022

Glycine (AUCp) − 0.023 ALP (t0) 0.021

L-Serine (AUCp) − 0.022 L-Tyrosine (AUCp) 0.019

Glycine (AUCn) − 0.021 4-oxoproline
(AUCp)

− 0.018

Total protein (Q) − 0.021

Folic acid (Q) − 0.021

L-Valine (AUCn) 0.021

Threonine (AUCp) − 0.020

Albumin (AUCp) 0.019

L-Leucine (AUCn) 0.018

L-Phenylalanine (AUCn) 0.018

L-Serine (t0) − 0.018

L-Proline (AUCn) 0.016

L-Tyrosine (AUCn) 0.016

L-Asparagine (t0) − 0.015

L-Asparagine (AUCp) − 0.015

Nonessential AA 0.014

Coefficients represent relative weights for the features, indicating importance for separation of reference groups. AUCp refers to positive part of
AUC, AUCn to negative part of AUC, t0 to fasting measurements, and Q to questionnaire
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features is associated with improved flexibility. This
means that the FlexScore is a knowledge-based scoring
system that provides an unbiased scoring of phenotypic
flexibility, which was used to validate the health space
model.

Visualization of data
For the health space visualization, the axis scores of each
individual were transformed into a JavaScript Object No-
tation (JSON) data structure. The JSON data format is a
language-independent data exchange format specified by
the RFC 7159 standard.
For the FlexScore visualization, the scores as well as the

additional data for each subject were transformed into a
JSON data structure as well. The JSON data structures
were interpreted and manipulated for visualization using
CanvasXPress (version 7.8, by Isaac Neuhaus, distributed
under GNU GPLv3). CanvasXPress provides an interactive
HTML5/JavaScript interface for easy data exploration and
visualization. Correlations were visualized by CanvasX-
Press, Spearman’s rank correlation coefficients, and associ-
ated p values are provided by R (version 3.1.2 by the R
Foundation for Statistical Computing, distributed under
GNU GPLv3 with the Hmisc package, version 3.14-6 by
Frank E. Harrell Jr.).

Results
Young and leaner subjects showed higher phenotypic
flexibility in all health domains when compared to elderly
subjects with higher adiposity
To investigate if male and female subjects of higher
age (60–70 years of age) and normal to high body fat
percentage would respond differently to PFT as com-
pared to young subjects (20–30 years of age) with
low to normal body fat percentage, we used the
health space methodology. After training and optimiz-
ing the health space model using “optimal phenotypic
flexibility” (20–29 years, low-normal fat percentage,
see also Table 1) and “reduced phenotypic flexibility”
(60–70 years, normal-high fat percentage, see also
Table 1) reference groups, the two groups were seen
to be well separated on all four axes of the health
space (Fig. 1). The reduced phenotypic flexibility sub-
jects center around a value of 1 for each of the axes,
while the optimal phenotypic flexibility subjects
center around 0. For the classification of the two ref-
erence groups used in this health space model error
rates, which is the misclassification rate of the two
reference groups per axis of the health space model
after tenfold double cross-validation, were 13, 8, 23,
and 3% for the glucose, lipid, amino acids and vita-
min, and metabolic stress axes, respectively. After
feature selection, 18 out of 46, 14 out of 32, 38 out
of 75, and 25 out of 71 parameters, respectively, were
important for separating the two reference groups for
the glucose, lipid, amino acids and vitamin, and meta-
bolic stress axes (Table 2).
For the axis representing flexibility in glucose

metabolism, out of 18 included features, the positive
AUC for C-peptide was the most important determin-
ant for reference group separation, which increased in
the “reduced phenotypic flexibility” group. Further-
more, results from the Dutch language FFQ were
important for the glucose axis; total carbohydrates as
well as polysaccharide intake were the second and
third most important features for determining separ-
ation that decreased in the “reduced phenotypic flexi-
bility” group. As the importance further declines,
features which serve as common biomarkers in type 2
diabetes mellitus (T2D) appear (4-methyl-2-oxovaleric
acid, 3-methyl-2-oxovaleric acid, fasting glucose,
Matsuda index, and positive AUC for insulin) that all
have higher concentrations in the “reduced pheno-
typic flexibility” group.
On the axis representing flexibility in lipid metab-

olism, fasting LDL and total fasting cholesterol were
important determinants for reference group separ-
ation, as well as systolic and diastolic blood pres-
sure, together with anthropomorphic features such
as percentage body fat, waist circumference, and
BMI. These are well-established clinical markers of
metabolic syndrome as defined by the World Health
Organization [20] and showed elevated concentra-
tions in the “reduced phenotypic flexibility” as
compared to the “optimal phenotypic flexibility” ref-
erence group.
The amino acid and vitamin flexibility axis used 38

features to create reference group separation, by far the
most of any of the axes. While each of these features
represents only a small contribution to the reference
group separation, fasting glutamic acid is with some dis-
tance the most important feature. L-tyrosine, positive
AUC of L-isoleucine, vitamin C index, and Fischer’s ratio
are the following topmost important features. All
features’ values are higher in the “reduced phenotypic
flexibility” reference group, apart from Fischer’s ratio
which is opposite.
The axis representing metabolic stress shared some

of its most distinguishing features with the lipid axis.
Here, fasting LDL, total cholesterol, and systolic blood
pressure were the most important features together
with self-reported satisfaction with body weight for
separation of the two reference groups. Because these
axes shared features, the behavior of the subjects
along the lipid and metabolic stress axes is likely to
be similar.
To evaluate if the observed separation between the

two reference groups with the health space



Fig. 1 Overview of the reference groups in the main health space, with both sexes included. Three spatial axes are labeled for the domain they
represent. “AA-Vit” stands for amino acids and vitamins. Groups labeled using their respective age intervals as well as their body fat percentage
intervals, L for low, N for normal, and H for high. The dot size represents the “metabolic stress” axis of the health space
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methodology is reliable, different clinical markers
(BMI and waist circumference; total, HDL, and LDL
cholesterol; fasting glucose and 2 h glucose; systolic
and diastolic blood pressure; and triglycerides) were
being evaluated. All, except for HDL, were found to
Fig. 2 Boxplots for the two reference groups “optimal phenotypic flexibility
values of the three outlier subjects (subjects 12, 52, and 73 shown in a red
interquartile range; whiskers indicate the maximum and minimum non-out
indicates cut-off values; levels above this line indicate abnormal clinical valu
and the upper dotted line represents cut-off values for male; p indicates st
be significantly different (Fig. 2 and Table 3). In re-
sponse to PFT persons of young age with low to nor-
mal fat percentage could be well discriminated from
persons of higher age with normal to high fat per-
centage using the health space methodology.
” (green) and “reduced phenotypic flexibility” (red) as well as the
, blue, and yellow circle, respectively). Box shows the 25 to 75%
lier values. Crossbar indicates the median values. Horizontal dotted line
es. In waist, the lower dotted line represents cut-off values for female
atistical significance after t test



Table 3 This table shows the mean (SD) values for the two reference groups “optimal phenotypic flexibility” (20–29 L to N) and
“reduced phenotypic flexibility” (60–70 N to H) as well as the values of the three outlier subjects (subjects 12, 52, and 73)

Marker (unit) 20–29 L to N 60–70 N to H Subject 12 Subject 52 Subject 73

BMI (kg/m2)*** 20.61 (2) 27 (3.6) 24.2 32.1 17.6

Cholesterol (mmol/L)*** 3.56 (0.5) 5.51 (0.9) 6.9 4.6 6.1

LDL (mmol/L)*** 1.7 (0.4) 3.48 (0.8) 4.5 2.6 3.1

Glucose (mmol/L)*** 5.11 (0.5) 5.73 (0.6) 6.8 6.8 5.4

HDL (mmol/L) 1.49 (0.2) 1.38 (0.3) 1.1 0.9 1.9

TG (mmol/L)*** 0.82 (0.3) 1.43 (0.7) 2.9 2.2 2.4

Waist (cm)*** 72.55 (7.7) 93.02 (10.1) 87 99 62

Sys. BP (mmHg)*** 120.9 (9.1) 142.15 (10.4) 140 138 138

Dia. BP (mmHg)*** 68.7 (6.5) 78.15 (8.1) 85 87 83

Glucose, 2 h (mmol/L)*** 5.57 (1.2) 7.33 (2) 8.3 9.9 9.8

Indicated is the statistical significance level of the difference between the reference groups (***p < 0.005)
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Increasing body fat percentage is associated with a
reduced resilience
To investigate if increasing adiposity (in terms of body
fat percentage) would decrease phenotypic flexibility, we
visualized male and female subjects from the “healthy
range of phenotypes” in the health space model trained
on the two reference groups. Figure 3 shows that most
of the subjects in the age range of 30–59 years were
distributed in between the “optimal” and “reduced
phenotypic flexibility” reference groups on all four axes
of the health space. From the pattern of distribution, we
observed that subjects from the healthy range of pheno-
types with a low fat percentage had partly overlapping
Fig. 3 The main health space, with both sexes included. Three spatial axes
acids and vitamins. The dot size represents the “metabolic stress” axis of th
well as their body fat percentage intervals, L for low, N for normal, and H f
52, and 73)
and partly reduced resilience when comparing to the
“optimal phenotypic flexibility” reference group. The
subjects from the healthy range of phenotypes with a
normal fat percentage had little overlap with the “opti-
mal” nor “reduced phenotypic flexibility” reference
groups and were located in the middle of the health
space, in between the two reference groups. The subjects
from the healthy range of phenotypes with a high fat
percentage were considerably different as compared to
the “optimal phenotypic flexibility” reference group
and overlapped with the “reduced phenotypic flexibil-
ity” reference group who were of higher age. In
response to PFT persons from the healthy range of
are labeled for the domain they represent. “AA-Vit” stands for amino
e health space. Groups labeled using their respective age intervals as
or high. The three outlier subjects are encircled in green (subjects 12,
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phenotypes (aged 30–59 years) with increasing fat
percentage showed reduced resilience using the health
space methodology.

Male type 2 diabetics showed reduced flexibility
compared to healthy males, especially in the domains of
glucose metabolism and metabolic stress
To investigate if metabolically impaired subjects with
type 2 diabetes could be discriminated from subjects
with reduced phenotypic flexibility as well as from sub-
jects from the “healthy range of phenotypes” with this
health space model, data from male type 2 diabetics
(T2D) were integrated with data from healthy males.
Figure 4 shows a second health space which was created
using the original male subjects from the healthy ranges
study combined with data of subjects from a previous
study using the same PFT and similar analytical plat-
forms [6]. In this study, two groups were evaluated: male
T2D and healthy controls. In order to project these sub-
jects into a health space, only common features were
used. After training and optimizing of the health space
model using again males from the original two reference
groups (“optimal” and “reduced phenotypic flexibility”),
the maximum error rates were 10, 10, 15, and 0% for the
glucose, lipid, amino acids and vitamin, and metabolic
stress axes, respectively. Subsequently, this optimized
health space model was used to visualize data from the
healthy males and male T2D from the previous study.
It was observed that the 20 healthy males (age range
30–55 with a mean average from 42 ± 7 and BMI
Fig. 4 The combined health space including subjects from two different st
“AA-Vit” stands for amino acids and vitamins. The dot size represents the “m
respective age intervals as well as their body fat percentage intervals, L for
the first health space is again encircled in green
range 20–25 with a mean average from 23 ± 1.5) from
this previous study was positioned between the two
reference groups, similar to the healthy range of male
phenotypes with a normal fat percentage. It was
clearly observed that 20 male T2D had a different
position in the health space as compared to all
groups from the healthy range of phenotypes, espe-
cially in the domain of glucose metabolism and meta-
bolic stress. Together, these data showed that male
T2D in response to PFT showed reduced flexibility
compared to healthy males, especially in the domains
of glucose metabolism and metabolic stress.

FlexScore validates that health space model reflect
individual phenotypic flexibility
To investigate if the health space model provides a
biological valid representation of individual phenotypic
flexibility as a measure of health, we wanted to test the
individual health space representation against an inde-
pendent and unbiased score of phenotypic flexibility.
Therefore, a so-called FlexScore was calculated for the
100 subjects from the original study. The FlexScore was
based on preselected features of which a higher or lower
response to the PFT had a biological meaning in the
sense that these could be interpreted as either beneficial
or detrimental to health. A higher FlexScore indicated a
lower overall phenotypic flexibility.
When evaluating the FlexScores per phenotypic group

(Table 1), it becomes apparent that a separation of
groups was present in the FlexScores, similar to as what
udies. Three spatial axes are labeled for the domain they represent.
etabolic stress” axis of the health space. Groups labeled using their
low, N for normal, and H for high. The male outlier (subject 12) from
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was observed in the health space model (Fig. 5). Again,
the optimal phenotypic flexibility reference group (age 20–
29 with a low to normal fat percentage) and the reduced
phenotypic flexibility group (age 60–70 with a normal to
high fat percentage) had the lowest and highest average
FlexScores, respectively, (1539, SD = 199 and 1863, SD =
184). The three intermediate groups from the healthy
range of phenotypes appeared each with an increasing
FlexScore in proportion to their respective phenotypes
(low fat percentage 1580, SD = 271; normal fat percentage
1655, SD = 248; high fat percentage 1696, SD = 175). The
FlexScore showed a pattern that was remarkably similar to
that observed in the health space. These FlexScore results
substantiated, in an objective way, the findings from the
health space.

Phenotypic flexibility in conjunction with the health
space is a reliable measure for individual health
To investigate how reliable the outcome of the health
space model was as a measure for personalized health,
we investigated the PFT biomarker response of the indi-
vidual data of the so-called outlier subjects. Figure 3
shows outlier subjects (12, 52, and 73) that did not
follow the general pattern seen for increasing age and
body fat percentage. Figure 2 and Table 3 show the
values for ten clinical parameters for the two reference
groups as well as for these three outlier subjects.
Subject 52 is a female subject from the healthy range

of phenotypes with a low body fat percentage that was
visualized among subjects of the reference group with
reduced phenotypic flexibility. This subject appeared to
be the least flexible of all subjects in the amino acids
and vitamin domain and among the least flexible for the
other axes. A closer look at the biomarkers allowed for a
Fig. 5 FlexScore distribution per study group. Box shows the
interquartile range (IQR) with the median. The line indicates the
range of observations within the ± 1.5 × IQR. Groups labeling used
the respective age intervals as well as their body fat percentage
intervals, L for low, N for normal, and H for high
clinical view of the health status for this particular indi-
vidual when comparing her PFT responses to the two
reference groups. The 59-year-old female subject had a
high BMI and waist circumference despite a low fat per-
centage (subject 52, Figs. 2 and 3). This indicated the
retention of fluids, perhaps in the form of edema. Fast-
ing glucose, C-peptide, and ketones as well as glucose
and glucagon PFT response indicated insulin resistance.
Furthermore, the triglyceride and cholesterol PFT
responses were above average when compared to the
reference group with reduced phenotypic flexibility. Pos-
sible reduced liver functioning can be deduced by look-
ing at Fischer’s ratio, which showed worse values as
compared to the reference group with reduced pheno-
typic flexibility. More evidence for liver damage in this
subject came from extreme PFT responses of ASAT and
GGT, two features that were measured but not used in
the construction of the health space model.
Also, two other subjects from the healthy range of

phenotypes (subjects 12 and 73, Figs. 2 and 3) can be
seen among the least flexible subjects which were not
expected based by their age or fat percentage. Subject 12
was a 47-year-old male who showed a CVD risk pheno-
type with high total cholesterol and LDL, and high fast-
ing triglycerides as well as elevated triglyceride PFT
response, high ALP, and high GGT, despite a normal fat
percentage and BMI when comparing his data to the ref-
erence group with reduced phenotypic flexibility. This
clinical signature indicated possible liver steatosis. Fur-
thermore, the data of this subject indicated impaired
amino acid metabolism, shown by glutamic acid, tyro-
sine, methionine, and serine PFT response profiles.
Furthermore, insulin sensitivity in this subject was de-
creased as indicated by fasting glucose, C-peptide, and
Matsuda index as well as glucose and glucagon
responses.
The third outlier, subject 73, was a 53-year-old male

with a very low BMI and waist circumference. The re-
sponse of the clinical parameters projected this individ-
ual among the subjects from the reference group with
reduced phenotypic flexibility. His biomarker data indi-
cated impaired lipid metabolism and visceral fattening.
Elevated fasting cholesterol and triacylglycerol as well as
triacylglycerol PFT response and diastolic blood pressure
indicated disturbed lipid metabolism as do decreased 3-
hydroxybutanoic acid and total ketone bodies. Liver
steatosis is indicated by elevated ALP and the Fisher
index. Furthermore, in this subject, glucose showed pre-
diabetes, as indicated by glucose, C-peptide and gluca-
gon responses, and the Matsuda index.
Interestingly, these three outlying subjects appeared to

have extreme values for several non-clinical parameters,
even when compared to T2D average values from data
of a previous study [6]. All three subjects showed
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extreme values for 4-oxoproline (non-contributing).
More specifically, subject 73 showed similarities to the
T2D group for the triglyceride PFT response as well as
for the ketone body feature. Subject 12 showed values
more extreme than the average for the T2D group for
fasting C-peptide, PFT glucose, and the PFT triglyceride
response. For this same subject, the ASAT response is
extreme and much higher as compared to the T2D
group average. We refer to the supplementary for graphs
showing several key parameters of these outlier subjects
plotted against the values for the most flexible and least
flexible reference groups. Based on the individual bio-
marker data of the three outlier subjects, it was shown
that health space model outcomes provided a reliable
measure for individual health.

Discussion
In the current study, we showed that using the PFT and the
analysis and visualization of predefined biomarker panels
enabled the discrimination between different states of
health. Within the healthy range of the population, it was
possible to separate between subjects with optimal and sub-
optimal phenotypic flexibility since persons of young age
with low to normal fat percentage had a markedly different
position in the health space as compared to persons from
old age with normal to high fat percentage in all four health
domains which were glucose metabolism, lipid metabolism,
amino acids and vitamins, and metabolic stress. This was
also confirmed when evaluating a subset of clinical markers
(BMI and waist circumference; total, HDL, and LDL choles-
terol; fasting glucose and 2 h glucose; systolic and diastolic
blood pressure; and triglycerides) that all showed signifi-
cantly different values between the two reference groups
except for HDL. Furthermore, it was shown that with in-
creasing adiposity in terms of fat percentage, subjects
decreased phenotypic flexibility. The health space including
the 100 healthy subjects of both sexes showed that the indi-
vidual phenotypic flexibility scores fall within a convex
range, reaching from most flexible to least flexible. The gen-
eral pattern within this data indicated a relationship between
age and adiposity and the resulting phenotypic flexibility
score on each of the four defined axes. This relationship be-
tween age, adiposity, and phenotypic flexibility was also ob-
served in the unbiased FlexScore. In addition, the clinical
marker subset for the three outlier subjects showed that
multiple markers had values outside the normal range con-
firming their outlier position in the health space. Finally, this
study showed that using the PFT and the analysis and
visualization of predefined biomarker panels also enabled
the discrimination between subjects from the healthy range
of the population from diseased subjects with T2D. T2D
male subjects had higher values for all of the four defined
axes. In this health space, the glucose axis showed the lar-
gest overall range with [− 0.65 to 3.38] and [− 0.26 to 4.29]
for healthy and T2D subjects, respectively. Perhaps surpris-
ingly, of all axes, it was the metabolic stress axis with the
largest range difference between groups; healthy subjects’
stress axis values range from − 0.3 to 1.53, while in the T2D
group this ranges from 1.12 to 2.95. It can thus be con-
cluded that these T2D subjects showed a reduced pheno-
typic flexibility in comparison with the most inflexible
healthy individuals, even those of high age, especially for
glucose metabolism and metabolic stress. Together, these re-
sults indicated that phenotypic flexibility as quantified by
using the health space model appeared to be a reliable
representation of individual health.
As a follow-up, the quantification of the metabolic

PhenFlex test in conjunction with the health space
methodology can be used to assess the effects of (nutri-
tional) interventions on (individual) health. By applying
PFT at various stages in the experiment and measuring
and visualizing the biomarker responses according to the
health space concept, one can assess health effects that
occur by the (nutritional) intervention. In a parallel or
crossover designed intervention study, the ideal behavior
of the study groups would be that individuals from the
control or placebo group occupy the same area of the
health space, at the start and the end of the intervention
period. The individuals from the intervention group
would be expected to occupy the same area as would
the control subjects at the start of the study, while they
would move away from their starting position towards
the “optimal health” reference group after the interven-
tion period.
The aforementioned uses of the health space method-

ology concern group-wise comparisons. However, track-
ing changes for one individual across multiple occasions
is one of the strengths of the health space approach. Be-
cause individuals are visualized within the health space
in relation to the selected reference groups, it is possible
to determine improvement or deterioration of individual
health status, associated to time and/or treatment. The
visual nature of the method enables intuitive display and
tracking of individual health status. In personalized
health, this can serve as both a personal feedback
method and a way to determine and address areas of
health in which changes are occurring, for targeted ad-
vice and interventions.
Several publications using a challenge test show that it

has been difficult to show and interpret changes in
health status as judged by changes in challenge-response
induced by a nutritional intervention, especially for the
less known nutrigenomics based biomarkers [2, 21, 22].
Our used approach would be able to facilitate accurate
quantification of health changes as well as allow for in-
tuitive interpretation of the results on a group and indi-
vidual subject level simultaneously. This was shown for
example by the description of the three outlier subjects.
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By putting their individual data in the context of PFT re-
sponses from the two reference groups, but also in the
context of T2D responses, it was possible to provide an
interpretation if the direction of the PFT biomarker re-
sponse was beneficial or disadvantageous.
For one of the outlier subjects (subject 12), none of

the features used for the generation of the health space
appeared to be a true outlier. This means that an addi-
tive combination of features placed this subject among
the least flexible. Without a composite-based biomarker
model of health status, the highly decreased phenotypic
flexibility of this subject would not be apparent. This
subject is a prime example of the added value of the
PFT biomarker response quantification in conjunction
with health space visualization.

Conclusions
The current study aimed to assess the ability of PFT to
quantify flexibility in the healthy range of the population
and whether it is possible to discriminate between optimal
and suboptimal flexibility and therefore evaluated PFT re-
sponse in 100 healthy male and female volunteers. We
conclude that the results of the metabolic PFT in conjunc-
tion with the health space reliably assessed health on an
individual basis. In response to PFT persons of young age
with low to normal fat percentage could be well discrimi-
nated from persons of higher age with normal to high fat
percentage using the health space methodology. Further-
more, in response to PFT persons from the healthy range
of phenotypes (aged 30–59 years) with increasing fat per-
centage showed reduced resilience using the health space
methodology. Finally, male T2D in response to PFT
showed reduced flexibility compared to the full healthy
range of males, especially in the domains of glucose me-
tabolism and metabolic stress. The results from the work
shown here may provide a toolbox for the quantification
and interpretation of the effect of (nutritional) interven-
tion studies on health status by quantifying phenotypic
flexibility, be it in groups or for individuals. The use of this
toolbox on an individual level opens up the possibilities
for personal health diagnosis. Such a detailed and accurate
personal health diagnosis can be used as a starting point
for the generation of personalized health advices.
Additional file

Additional file 1: Table S1. Parameters used to calculate the FlexScore.
Figure S1. Upper figure shows the C-peptide response after the dietary
challenge of the two reference groups together with those of the three
outlier subjects (no. 12, 52, and 73). For the middle figure, this is the
triglyceride response; the bottom figure shows the glucagon response.
The red color shows the average values for the least flexible reference
group (60–70 N-H) with the 95% confidence interval plotted around it. The
green color shows the same for the most flexible reference group (20–30 L
to N). (DOCX 372 kb)
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