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BACKGROUND: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent.
OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in
European women.
METHODS: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized
land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air
Pollution and Health impacts - Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM)
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≤2:5 lm, ≤10 lm, and 2:5–10 lm in diameter (PM2:5, PM10, and PMcoarse, respectively); PM2:5 absorbance; nitrogen oxides (NO2 and NOx); traf-
fic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox
regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.

RESULTS: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up.
We found positive and statistically insignificant associations between breast cancer and PM2:5 {hazard ratio ðHRÞ=1:08 [95% confidence
interval (CI): 0.77, 1.51] per 5 lg=m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10lg=m3], PMcoarse [1.20 (95% CI: 0.96, 1.49 per 5 lg=m3], and
NO2 [1.02 (95% CI: 0.98, 1.07 per 10 lg=m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 lg=m3,
p=0:04].

CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in
European women. https://doi.org/10.1289/EHP1742

Introduction
Established risk factors for breast cancer, including genetic muta-
tions, age, family history, alcohol consumption, smoking, repro-
ductive history, and postmenopausal hormone therapy (HT) use,
explain only approximately one-third of new cases (Brody et al.
2007b). Observations of higher incidence of breast cancer in
urban than in rural areas (Binachon et al. 2014; Reynolds et al.
2004), as well as an increase in breast cancer incidence along
with increasing traffic emissions over the last 30 y (Chen and
Bina 2012; Wei et al. 2012) suggested the relevance of air pollu-
tion for breast cancer etiology. Air pollution is a risk factor for
lung cancer (Hamra et al. 2015; Raaschou-Nielsen et al. 2013),
and it was recently classified as carcinogenic to humans (Loomis
et al. 2014). Experimental data provide some evidence supporting
a link between a number of carcinogens present in ambient air
pollution and breast cancer (Brody et al. 2007a), most consis-
tently for polycyclic aromatic hydrocarbons (PAHs), which can
cause oxidative stress and mammary tumors in laboratory ani-
mals (Mordukhovich et al. 2010). Furthermore, benzene, present
in traffic exhaust, has been linked to mammary tumors in mice
(Huff et al. 1989), and particulate matter (PM) showed DNA-
damaging activity and estrogenicity in human breast cancer cells
(Chen et al. 2013).

Epidemiological evidence is inconsistent and sparse, consist-
ing of five case–control (Bonner et al. 2005; Crouse et al. 2010;
Hystad et al. 2015; Lewis-Michl et al. 1996; Nie et al. 2007) and
four cohort (Andersen et al. 2016; Hart et al. 2016; Reding et al.
2015; Raaschou-Nielsen et al. 2011a) studies. An early case–con-
trol study found no association between either pre- or postmeno-
pausal breast cancer risk and living close to busy roads in Long
Island, New York (Lewis-Michl et al. 1996). The Western New
York Exposures and Breast Cancer (WEB) Study reported rele-
vance of early (at birth) but not of later life (at menarche, first
birth, 10- and 20-y before breast cancer) exposure to total sus-
pended particles (TSP), assumed to be a proxy for PAHs, to post-
menopausal breast cancer (Bonner et al. 2005). A study adding
traffic emissions data to the WEB study found a statistically sig-
nificantly increased risk of postmenopausal breast cancer risk
with exposures at first birth, but none with other exposure win-
dows (Nie et al. 2007). A Canadian case–control study found a
statistically significant increased risk of postmenopausal breast
cancer with increasing levels of nitrogen dioxide (NO2) at the
residence 10 y before diagnosis (Crouse et al. 2010). Another
Canadian case–control study study found an increased risk of pre-
menopausal and none with postmenopausal breast cancer related
to NO2 levels over the 20-y period before diagnosis (Hystad et al.
2015). In contrast, cohort studies found no association between
breast cancer (primarily postmenopausal) and nitrogen oxides
(NOx) levels over 35 y (Raaschou-Nielsen et al. 2011a) or NO2
levels over a few years before diagnosis (Andersen et al. 2016;
Reding et al. 2015) except for a statistically significant positive
association of NO2 with the risk of estrogen receptor ðERÞ+ /
progesterone receptor ðPRÞ+ breast cancer subtype (Reding

et al. 2015). Finally, three recent cohort studies, all in primarily
postmenopausal women, found no association between exposure
to PM with diameter <2:5 lm (PM2:5) or <10 lm (PM10) at the
time window close to diagnosis and breast cancer (Andersen
et al. 2016; Hart et al. 2016; Reding et al. 2015). With air pollu-
tion established as carcinogenic to humans, suggestive experi-
mental evidence on the biological plausibility, and inconclusive
epidemiological evidence, it is important to further examine asso-
ciations between air pollution and breast cancer.

We aimed to examine the association between long-term ex-
posure to ambient air pollution and incidence of postmenopausal
breast cancer in 15 European cohorts within the framework of the
European Study of Cohorts for Air Pollution Effects (ESCAPE;
http://www.escapeproject.eu/) (Beelen et al. 2014; Raaschou-
Nielsen et al. 2013).

Methods

Study Population
We approached 22 cohorts that have contributed to earlier
ESCAPE analyses on the association of ambient air pollution
with lung cancer (Raaschou-Nielsen et al. 2013) and mortality
(Beelen et al. 2014). We included 15 cohorts from nine European
countries (Table 1, Figure 1) that had information on postmeno-
pausal breast cancer incidence and that had the resources (statisti-
cal analyst available) for participation. We included five Swedish
cohorts: European Prospective Investigation into Cancer and
Nutrition (EPIC)-Umeå, Swedish National Study on Aging and
Care in Kungsholmen (SNAC-K), Stockholm Screening Across
the Lifespan Twin study and TwinGene (SALT/TwinGene),
Stockholm 60 y old/IMPROVE study (60YO/IMPROVE), and
Stockholm Diabetes Prevention Program (SDPP); one Norwegian
cohort: Oslo Health Study (HUBRO); one Danish cohort: Diet,
Cancer and Health (DCH) study; two Dutch cohorts: EPIC-
Monitoring Project on Risk Factors and Chronic Diseases in
Netherlands (EPIC-MORGEN) and EPIC-Prospect; one United
Kingdom cohort: EPIC-Oxford; one Austrian cohort: Vorarlberg
Health Monitoring and Prevention Programme (VHM&PP); one
French cohort: EPIC-E3N; two Italian cohorts: EPIC-Varese and
EPIC-Turin; and one Spanish cohort: EPIC-San Sebastian (Figure
1). The majority of cohorts recruited participants from large cities
and the surrounding suburban or rural communities, and a few
covered large regions of the country, such as EPIC-MORGEN in
Netherlands, EPIC-Oxford in the United Kingdom, and the
VHM&PP cohort in Austria. For DCH, EPIC-Oxford, EPIC-E3N
and VHM&PP, exposure to air pollution was assessed for part of
the original cohort only. Data from the four Swedish cohorts from
Stockholm (SNAC-K, SALT/TwinGene, 60YO/IMPROVE, and
SDPP) as well as from the two Dutch cohorts (EPIC-MORGEN
and EPIC-Prospect) were pooled and analyzed as single cohorts,
which were named Cardiovascular Effects of Air pollution and
Noise in Stockholm (CEANS) and EPIC Netherlands (EPIC-NL),
respectively. All of the cohorts that contributed data to the present
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analysis received ethical approval, and all participants provided
informed consent.

Breast Cancer Definition
Cohorts have followed participants for cancer incidence via link-
age to national or regional cancer registries or via self-
administered questionnaires (in EPIC-E3N). Analyses were re-
stricted to women who were postmenopausal or who were older
than 55 y at the cohort baseline (in cohorts without information
on menopausal status) and who did not have cancer before the
study baseline (excluding nonmelanoma skin cancers) to study
incidence of breast cancer. We chose not to exclude women with
nonmelanoma skin cancers before baseline because these cancers
are very commonly diagnosed and, unlike other malignant cancers,
are easily treated if detected early, have very low case fatality
(<5%), and very low risk of metastasis. The reason for excluding
cancer before baseline (i.e., including only first cancer) is that
receiving a cancer diagnosis likely changes the risk of a subsequent
cancer for (at least) two reasons: carcinogenic cancer treatment and
change in lifestyle habits because of the cancer diagnosis; neither
of these applies to nonmelanoma skin cancer. Moreover, many can-
cer registries do not even register nonmelanoma skin cancer. We
chose to focus on postmenopausal women only based on the exist-
ing evidence available at the time the present study was planned in
2014, suggesting the relevance of air pollution for postmenopausal
breast cancer only, with no associations reported for premeno-
pausal breast cancer (Bonner et al. 2005; Crouse et al. 2010;
Lewis-Michl et al. 1996; Nie et al. 2007). Our outcome was
incident, malignant, primary breast cancer, defined according
to International Classification of Diseases and Related Health
Problems, 10th Revision (ICD-10; WHO 1990) code C50,
International Classification of Diseases and Related Health
Problems, 9th Revision (ICD-9; WHO 1977) code 174, and
International Classification of Diseases and Related Health
Problems, 7th Revision (ICD-7; WHO 1955) code 170.

Exposure Assessment
We estimated individual levels of air pollution at the baseline res-
idence for each cohort participant using standardized area-
specific land-use regression (LUR) models developed within the
ESCAPE study (Beelen et al. 2013; Eeftens et al. 2012b). In
brief, the LUR models were based on measurements of NO2 and
NOx in all 15 study areas and on measurements of PM2:5, PM10,
and PM2:5 absorbance in 11 study areas (owing to budgetary

reasons) for 1-y period and were conducted between October
2008 and May 2011 (Cyrys et al. 2012; Eeftens et al. 2012a). The
concentration of PMcoarse was calculated as the difference
between PM10 and PM2:5. Subsequently, LUR models were
developed for each pollutant in each study area to predict air pol-
lution levels at the residences of the cohort participants using
traffic and land-use predictors obtained from Geographic
Information Systems (GIS). Data from the nearest routine moni-
toring stations were used to back-extrapolate the LUR estimates
to the baseline year in 14 of the 15 study areas. Air pollution
measurements were performed in 2008–2011, but the exposure
window relevant for development of breast cancer extends further
back in time. We therefore extrapolated air-pollution concentra-
tions predicted by the LUR models around 2010 back to the time
of enrollment in the 1990s for the majority of cohorts, using the
absolute difference and the ratio between the two periods, based
on data from routine background monitoring network site(s) in
each study area. Details on this procedure can be found here:
http://www.escapeproject.eu/manuals/. We also used traffic inten-
sity on the nearest road (vehicles per day) as an indicator of expo-
sure to traffic-related air pollution. Furthermore, we used
estimated concentrations of eight elements in PM2:5 and PM10
(copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potas-
sium) as indicators of exposure (de Hoogh et al. 2013). PM filters
were then sent to Cooper Environmental Services (Portland, OR)
to analyze elemental compositions using X-ray fluorescence
(XRF) (de Hoogh et al. 2013). We selected eight of the 48 meas-
ured elements for epidemiological evaluation based on evidence
of their health effects (toxicity), their representivity of major
anthropogenic sources, a high percentage of detected samples
(>75%), and precise measurements. We selected copper, iron,
and zinc as indicators mainly of nontailpipe traffic emissions
such as brake and tire wear, sulfur mainly of long-range trans-
port, nickel and vanadium of mixed oil-burning and industry, sili-
con of crustal material, and potassium of biomass burning (de
Hoogh et al. 2013; Eeftens et al. 2014; Viana et al. 2008; Wang
et al. 2014). Each element can have multiple sources. We col-
lected information about potential predictor variables relating to
nearby traffic intensity, population/household density, and land
use from GIS and used regression modeling to evaluate this infor-
mation to explain spatial variation of annual average concentra-
tions. We have previously reported the LUR model results for all
study areas (Raaschou-Nielsen et al. 2016). LUR models for cop-
per, iron, and zinc in both fractions (PM10 and PM2:5) had aver-
age cross-validation–explained variance (r2) between 52% and

Table 1. Description of the 74,750 postmenopausal women (n=3,612) from 15 European cohorts included in the study.

Cohort, country Enrollment
Original

na
Final
n

%
Original

n
Mean±SD

age, y
n

Cases

Person-
years
at risk

Mean follow-up
time, years IR

EPIC-Umeå, Sweden 1992–96 4,238 3,762 88.8 54:4± 6:0 175 50,720 13.5 3.45
HUBRO, Norway 2000–01 4,077 1,931 47.4 57:2± 5:7 68 16,606 8.6 4.10
CEANS, Swedenb 1992–2002 6,930 5,997 86.5 59:8± 12:9 226 57,215 9.5 3.95
DCH, Denmark 1993–97 15,910 15,835 99.5 57:7± 4:2 1,054 237,655 15.0 4.44
EPIC-NL, Netherlandsc 1993–97 14,219 12,837 90.3 58:6± 5:9 542 147,788 11.5 3.67
EPIC-Oxford, UK 1993–2001 10,742 7,299 67.3 59:7± 8:3 319 95,430 13.2 3.34
VHM&PP, Austria 1985–2005 14,552 13,387 92.0 65:1± 7:5 628 218,960 16.4 2.87
EPIC-E3N, France 1993–96 11,207 5,319 47.5 57:2± 5:6 267 68,248 12.8 3.91
EPIC-Varese, Italy 1993–97 4,932 4,727 95.8 56:6± 6:5 201 51,851 11.0 3.88
EPIC-Turin, Italy 1993–98 2,376 1,950 82.1 55:2± 5:1 76 25,028 12.8 3.04
EPIC-San Sebastian, Spain 1992–95 1,806 1,776 98.3 55:3± 5:7 57 21,852 12.3 2.61

Note: CEANS, Cardiovascular Effects of Air Pollution and Noise in Stockholm; DCH, Danish Diet, Health and Cancer cohort; EPIC, European Prospective Investigation into Cancer
and Nutrition; EPIC-E3N, French cohort of the Etude Epidemiologique de Femmes de la Mutuelle Générale de l'Education Nationale; HUBRO, Oslo Health Study; IR, incidence rate
per 1,000 person-years; SD, standard deviation; VHM&PP, Vorarlberg Health Monitoring and Prevention Programme.
aNumber of postmenopausal women in the original cohort.
bPooled data from the 4 cohorts from Stockholm Sweden: SNAC-K, SALT/TwinGene, 60YO/IMPROVE, and SDPP.
cPooled data from 2 Dutch cohorts: EPIC MORGEN and EPIC Prospect.
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84% with a large variability between areas (Eeftens et al. 2012a).
Traffic variables contributed to most of these models, reflecting
nontailpipe emissions. Models for the other elements performed
moderately with average cross-validation r2 generally between
∼ 50% and ∼ 60%. For PM2:5, the average cross-validation r2

was 32% and ranged from 2% to 67%, consistent with the rela-
tively low spatial variation of sulfur concentrations within the
cohort areas.

Statistical Analyses
We used Cox proportional hazards models for the cohort-specific
analyses with age as the underlying timescale and censoring at
the time of any other cancer diagnosis (except nonmelanoma skin
cancer), death, emigration, or end of follow-up, whichever came
first. We analyzed air pollution exposure as a continuous variable.
Potential confounders were available from questionnaires at base-
line. We specified three confounder models a priori: Model 1,
adjusted for age (time scale) and calendar time (years of enroll-
ment); Model 2, additionally adjusted for smoking status (never,
former, or current), smoking intensity (grams/day), smoking du-
ration (years), alcohol consumption (grams/day; linear term),
physical activity in leisure time (yes/no), body mass index (BMI;
kilograms per meter squared; linear term), educational level (low,
medium, or high), employment (yes/no), parity (yes/no), number
of children (linear term), breastfeeding (yes/no), age at first

childbirth (years; linear term), postmenopausal hormone therapy
(HT) use (never/previous/current, never/ever), HT use duration
(years; linear term), oral contraceptive use (never/ever); and
Model 3, adjusted for Model 2 and additionally adjusted for area-
level socioeconomic status variables (mean income of the neigh-
borhood or municipality, in the majority of cohorts), using ran-
dom effects of the spatial area units in each cohort to check for
spatial clustering of residuals of the models. Model 3 was the
main confounder model. Model 2 included all established risk fac-
tors for breast cancer at the individual level, and Model 3 also
included area-level socioeconomic status, which is a possible risk
factor for breast cancer but is possibly one of the strongest determi-
nants of predicted air pollution concentrations at the cohort partici-
pants’ addresses. Available confounders differed between cohorts
(see Table S1 for an overview of available variables in each cohort).
Complete case analyses were defined within each cohort so that the
numbers of women included in Models 1, 2, and 3 were identical.
The complete case analyses method gives unbiased estimates when
data can be assumed to be missing completely at random (van der
Heijden et al. 2006). We performed a number of sensitivity analyses
within each cohort: We restricted analyses to participants who were
long-term residents (i.e., who had lived at the cohort baseline
address at least 10 y before enrollment); we restricted analyses to
participants who did not move during follow-up; we added the ru-
ral/urban indicator to adjust for different degrees of urbanization

Figure 1.Map of the study sites in the breast cancer analyses.
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within the study area; we used diagnostic tools to check the propor-
tional hazards (PH) assumption for the categorical predictors in
Model 3 and stratified the Cox model for predictors that did not
meet the PH assumption; and we tested whether back-extrapolation
(difference and ratio method) of the concentrations to the baseline
year had any effect on the estimates. Next, we evaluated smoking
status and educational level as effect modifiers in stratified analyses.
Finally, we examined the shape of the association and evaluated if
there was a deviation from linearity between each pollutant and
breast cancer risk by a) inputting the exposure term as a natural
cubic spline with two equally spaced inner knots and comparing the
model fit of the linear and the spline models using a likelihood-ratio
test; b) implementing “threshold models” in which the following
threshold concentrations were defined a priori for each pollutant:
PM2:5: 10 lg=m3, 15 lg=m3, 20 lg=m3, 25 lg=m3; PM2:5 absorb-
ance: 1, 2, 3, 4; PM10: 10 lg=m3, 20 lg=m3, 30 lg=m3, 40 lg=m3;
PMcoarse: 5lg=m3, 10lg=m3, 15lg=m3; NO2: 10 lg=m3,
20 lg=m3, 30lg=m3, 40 lg=m3; and NOx: 20 lg=m3, 30 lg=m3,
40 lg=m3, 60 lg=m3, 80 lg=m3. Then, threshold analyses were
performed by consecutively running models including only partici-
pants who had exposure estimates below the prespecified thresholds
in the analyses [e.g., starting at 25 lg=m3 for PM2:5, which is the
European Union (EU) annual mean limit value (European
Commission 2013), 20 lg=m3, 15lg=m3, and lastly, <10lg=m3,
which is the World Health Organization (WHO) limit value (WHO
2006)]. Similarly, for other pollutants, starting threshold values
were set based on EU limit values (European Commission 2013)
(40lg=m3 for PM10 and NO2). Threshold values were based on the
concentration distributions obtained from the ESCAPE measure-
ment period between 2008 and 2011. We used the same analytical
strategy for analyses of elemental components of PM2:5 and PM10
as we used for the main pollutants (described above). Analyses with
elemental components of PM were identified a priori as secondary
analyses to limit the issue of multiple comparisons. All cohort-
specific analyses were performed in STATA versions 10–12
(StataCorp LLC) using a common script.

Meta-Analyses
We performed meta-analyses of cohort-specific effect estimates
using the DerSimonian-Laird method with random effects
(DerSimonian and Laird 1986). We calculated hazard ratios
(HRs) and 95% confidence intervals (CIs) for fixed increments
that were chosen to cover the range in concentrations within the
different cohorts and to keep increments broadly comparable
between pollutants. We considered summary estimates statisti-
cally significant when the p-value was <0:05. We evaluated the
heterogeneity between cohort-specific results by applying the
Chi-squared test from Cochran’s Q statistic, which was quantified
by the I2 statistic (Higgins and Thompson 2002). We considered
cohort-specific estimates to be heterogeneous when I2 > 50% or
when the p-value of the Chi-squared test was <0:05. We eval-
uated the effect modification across the strata of each modifier by
meta-analyzing the pooled estimates from the different strata and
by performing the Chi-squared test of heterogeneity. We inves-
tigated the robustness of the results by examining the effect of
NOx in a subset of cohorts with PM data, by excluding the
cohort with the smallest number of confounders available in
Model 3 (VHM&PP) from the meta-analyses, by performing
meta-analyses including the five cohorts (DCH, EPIC-Oxford,
EPIC-E3N, EPIC-Varese, and EPIC-Turin) with the most
available confounders in Model 3, and by excluding cohorts with
the largest number of postmenopausal women (>30%) in the orig-
inal cohort (HUBRO, EPIC-E3N, and EPIC-Oxford). We used
STATA version 12.1 (StataCorp LLC) for all meta-analyses.

Results

Study Population
A total of 74,750 postmenopausal women from 15 European
cohorts participated in the study (Figure 1), of whom 3,612
developed breast cancer during a mean follow-up of 12.4 y and a
total of 991,353 person-years (Table 1). The crude overall inci-
dence rate of postmenopausal breast cancer was 3.64 per 1,000
person-years, ranging from 2.61 per 1,000 person-years in EPIC-
San Sebastian (Spain) to 4.44 per 1,000 person-years in DCH
(Denmark). The mean age at the time of enrollment ranged from
54.4 y in EPIC-Umeå (Sweden) to 65.1 y in EPIC-E3N (France).
The proportion of women included in the study ranged from
47.4% to 99.5% (overall 82.1%) of the total number of postmeno-
pausal women in the original cohorts after excluding women with
missing values for any of the covariates included in Model 3.
Women were recruited into the cohorts between 1985 and 2005,
with the majority recruited between 1992 and 2002 (Table 1).

The majority of cohorts had low numbers of women with
missing data (<5%) on lifestyle (smoking, alcohol use, BMI,
physical activity) and education. However, a number of cohorts
either lacked altogether or had large amounts of missing data for
variables on reproductive factors (age at first birth, parity, breast-
feeding) and HT use. HUBRO had excluded a large number of
postmenopausal women because of missing information on HT
use, and EPIC-Oxford had excluded a large number because of
missing information on reproductive factors and HT use, which
explains the low percentage of the original cohort participating in
the study, 47.4% and 67.3%, respectively (Table 1). In EPIC-
E3N, the majority of postmenopausal women were excluded
owing to lack of follow-up data on breast cancer or failure to
complete the baseline questionnaire, leaving 47.5% of women for
the analyses.

The majority of cohorts had information on smoking (status,
duration, and intensity), alcohol use, physical activity, BMI, and
education, except for EPIC-Umeå, which lacked information on
physical activity, and VHM&PP, which lacked information on
physical activity, alcohol use, and education (see Table S1).
Current baseline smoking rates were highest in Denmark (34.7%)
and Norway (28.6%) and lowest in the Austrian (4.7%) and
Spanish (7.2%) cohorts. Alcohol consumption at baseline was
highest in Denmark (14:4 g=d) and France (12:2 g=d) and lowest
in Sweden (1:8–2:5 g=d) (see Table S1). Women who were
excluded from analyses because of missing data on potential risk
factors did not differ from those included in the analyses with
regard to age, smoking status, alcohol consumption, and BMI in
the majority of the cohorts, but in a few cohorts (HUBRO, E3N),
the excluded women were older, less likely to be smokers, or
both, than the included women (data not shown).

Air Pollution Exposure
The air pollution levels at the participants’ residences varied sub-
stantially within and between study areas, with increasing levels
from northern to southern study areas (Table 2). The mean con-
centration of NO2 ranged from 5:4 lg=m3 in Umeå, Sweden, to
53:0lg=m3 in Turin, Italy (Table 2); the mean concentration of
PM2:5 ranged from 7:3lg=m3 in Stockholm, Sweden, to
30:2lg=m3 in Turin, Italy. Correlations between pollutants
were generally >0:5 (see Tables S3–S13). Mean levels of
PM2:5 and PM10 elements also varied substantially between
study areas (see Table S2). However, air pollutant levels were
identical in excluded and included women (results not shown).
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Associations between Air Pollutants and Breast Cancer
We found positive and statistically nonsignificant associations
between most of the main pollutants in the fully adjusted model
(Model 3) and postmenopausal breast cancer except for PM2:5 ab-
sorbance and traffic intensity on the nearest road, for which no
association (HRs 1.00 and 1.01, respectively) was found (Table
3, Figure 2, Figure 3; see also Figure S1). Only the association
with NOx was statistically significant [HR=1:04 (95% CI: 1.00,

1.08) per 20 lg=m3; p=0:04], with no heterogeneity between
individual cohort estimates (I2 = 0:0) (Table 3, Figure 2). The
main NOx results (Model 3) were robust to confounding and to
model specification as observed in extensive sensitivity analyses
(Table 4). However, we found large and statistically significant
heterogeneity between individual cohort estimates for NOx when
the analyses were restricted to nonmovers from 10 cohorts with
available information on moving (Table 4). Three cohorts mostly

Table 2. Description of the air pollution and traffic intensity levels at the participants addresses in 15 cohorts.

Cohort, country
PM2:5,
lg=m3

PM2:5
absorbance,
10−5=m

PM10,
lg=m3

PM2:5–10,
lg=m3

NO2,
lg=m3

NOx,
lg=m3

Traffic intensity
on the nearest

road (vehicles/d)

EPIC-Umeå, Sweden
Mean±SD — — — — 5:4± 2:5 9:1± 5:8 863± 1,511
Min–max — — — — 3.5–18.2 4.8–49.2 1–17,433
HUBRO, Norway
Mean±SD 8:9± 1:4 1:2± 0:3 13:4± 3:1 3:9± 1:9 19:6± 7:2 35:9± 13:9 2,266± 4,310
Min–max 3.7–14.6 0.5–2.4 8.4–32.9 3.2–18.0 6.9–48.7 15.8–120.4 500–1,600
CEANS, Swedena

Mean±SD 7:3± 1:3 1:6± 0:2 15:1± 4:3 7:5± 3:4 11:8± 5:0 21:1± 11:3 1,856± 5,396
Min–max 4.2–11.7 0.4–1.4 6.0–31.1 0.7–20.3 6.0–35.8 11.1–86.5 30–140,000
DCH, Denmark
Mean±SD 11:3± 0:8 1:2± 0:2 17:2± 1:9 5:7± 1:0 16:5± 7:0 27:2± 18:5 3,109± 7,412
Min–max 7.4–12.8 0.7–1.9 12.6–22.4 4.0–8.5 5.6–43.3 1.6–92.4 0–93,240
EPIC-NL, Netherlandsb

Mean±SD 16:8± 0:5 1:4± 0:2 25:3± 1:2 8:5± 0:7 26:3± 5:0 39:0± 10:4 1,072± 3,477
Min–max 15.6–20.7 1.0–2.6 23.7–33.2 7.6–13.1 13.6–54.6 21.6–89.5 0–92,524
EPIC-Oxford, UK
Mean±SD 9:6± 1:0 1:1± 0:2 15:9± 2:0 6:3± 0:9 22:9± 7:0 38:1± 13:9 1,425± 4,513
Min–max 8.2–17.8 0.8–3.2 11.8–31.1 5.6–10.6 12.9–89.0 19.7–231.5 500–114,356
VHM&PP, Austria
Mean±SD 13:6± 1:2 1:7± 0:2 20:8± 2:4 6:7± 0:9 20:4± 5:5 40:5± 9:8 1,844± 3,903
Min–max 9.6–16.5 1.0–2.6 11.5–28.9 4.2–11.0 2.9–41.9 17.6–91.7 500–25,949
EPIC-E3N, France
Mean±SD — — — — 30:9± 12:7 56:0± 28:3 6,538± 8,257
Min–max — — — — 8.7–93.7 4.0–228.7 0–124,848
EPIC-Varese, Italy
Mean±SD — — — — 44:2± 17:4 87:8± 42:1 —
Min–max — — — — 1.5–85.7 0.0–202.4 —
EPIC-Turin, Italy
Mean±SD 30:2± 1:6 3:1± 0:4 46:6± 4:1 16:6± 2:7 53:0± 10:3 96:1± 20:3 4,044± 9,596
Min–max 21.8–35.3 0.3–4.1 30.8–55.1 6.6–20.2 14.9–83.0 32.9–179.3 0–85,696
EPIC-San Sebastian, Spain
Mean±SD — — — — 24:1± 6:7 47:7± 12:5 —
Min–max — — — — 9.8–45.1 20.6–87.9 —

Note: —, missing data on these pollutants; CEANS, Cardiovascular Effects of Air Pollution and Noise in Stockholm; DCH, Danish Diet, Health and Cancer cohort; EPIC, European
Prospective Investigation into Cancer and Nutrition; EPIC-E3N, French cohort of the Etude Epidemiologique de Femmes de la Mutuelle Générale de l'Education Nationale; HUBRO,
Oslo Health Study; NO2, nitrogen dioxide; NOx, nitrogen oxides; PM2:5, particulate matter <2:5 lm; PM2:5–10, particulate matter 2:5–10 lm; PM10, particulate matter <10 lm; SD,
standard deviation; VHM&PP, Vorarlberg Health Monitoring and Prevention Programme.
aPooled data from the 4 cohorts from Stockholm Sweden: SNAC-K, SALT/TwinGene, 60YO/IMPROVE, and SDPP.
bPooled data from 2 Dutch cohorts: EPIC MORGEN and EPIC Prospect.

Table 3. Results from random-effects meta-analyses for the association between exposure to air pollution and breast cancer incidence in 15 European cohorts.

Exposure
Fixed
increase n cohorts n

Model 1a

HR (95% CI)
Model 2b

HR (95% CI)
Model 3c

HR (95% CI)
p-Value
model 3

I2

(p-value)d

PM2:5 5 lg=m3 11e 68,806 0.99 (0.73, 1.33) 1.03 (0.76, 1.40) 1.08 (0.77, 1.51) 0.67 56.7 (0.03)
PM2:5 absorbance 10−5=m 11e 68,806 0.95 (0.80, 1.15) 0.97 (0.80, 1.17) 1.00 (0.80, 1.25) 0.98 23.6 (0.25)
PM10 10lg=m3 11e 68,806 1.08 (0.90, 1.28) 1.05 (0.88, 1.25) 1.07 (0.89, 1.30) 0.46 16.0 (0.30)
PMcoarse 5 lg=m3 11e 68,806 1.20 (0.97, 1.49) 1.16 (0.95, 1.43) 1.20 (0.96, 1.49) 0.10 40.2 (0.12)
NO2 10lg=m3 15 74,750 1.02 (0.98, 1.06) 1.02 (0.97, 1.06) 1.02 (0.98, 1.07) 0.33 0.0 (0.72)
NOx 20lg=m3 15 74,750 1.04 (1.00, 1.08) 1.04 (1.00, 1.08) 1.04 (1.00, 1.08) 0.04 0.0 (0.78)
Traffic intensityf 5,000mv=d 15 74,750 1.02 (0.98, 1.05) 1.02 (0.99, 1.05) 1.01 (0.97, 1.05) 0.54 24.5 (0.22)

Note: CI, confidence interval; HR, hazard ratio; NO2, nitrogen dioxide; NOx, nitrogen oxides; PM2:5, particulate matter <2:5 lm; PM10, particulate matter <10 lm; PMcoarse, coarse
particulate matter.
aAdjusted for age and year of enrollment.
bModel 1 adjusted for smoking status, smoking duration among ever smokers (y), smoking intensity among ever smokers (g/d), alcohol use (g/d), physical activity, BMI, educational
level, employment, age at 1st birth, parity, hormone therapy use, hormone therapy duration (maximum of available variables).
cModel 2 plus area-level socioeconomic status.
dCochran’s test for heterogeneity for Model 3 of effect estimates between the cohorts.
ePM not available for EPIC-Umeå, EPIC-E3N, EPIC-Varese, and EPIC-San Sebastian.
fTraffic intensity on the nearest road.
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Figure 3. Adjusted associations (Model 3) between breast cancer and particulate matter <2:5 lm (PM2:5), (per 5 lg=m3), PM2:5 absorbance (per 10−5=m), par-
ticulate matter <10 lm (PM10) (per 10 lg=m3), and particulate matter 2:5–10 lm (PMcoarse) (per 5 lg=m3) in 11 European cohorts [Cardiovascular Effects of
Air pollution and Noise in Stockholm (CEANS)-Stockholm consists of four Stockholm, Sweden, cohorts: Study on Aging and Care in Kungsholmen (SNAC-
K), Screening Across the Lifespan Twin study (SALT)/TwinGene), 60 Years Old (60YO)/IMPROVE, and Stockholm Diabetes Prevention Program (SDPP);
European Prospective Investigation into Cancer and Nutrition (EPIC)-Netherlands consists of two Dutch cohorts: EPIC-MORGEN and EPIC-Prospect]:
Results from cohort-specific analyses and random-effects analyses.

Figure 2. Adjusted associations (Model 3) between breast cancer and nitrogen dioxide (NO2) (per 10 lg=m3) and nitrogen oxides (NOx) (per 20 lg=m3) in 15
European cohorts [Cardiovascular Effects of Air pollution and Noise in Stockholm (CEANS)-Stockholm consists of four Stockholm, Sweden, cohorts: Study
on Aging and Care in Kungsholmen (SNAC-K), Screening Across the Lifespan Twin study (SALT)/TwinGene, 60 Years Old (60YO)/IMPROVE, and
Stockholm Diabetes Prevention Program (SDPP); European Prospective Investigation into Cancer and Nutrition (EPIC)-Netherlands consists of two Dutch
cohorts: EPIC-MORGEN and EPIC-Prospect]: Results from cohort-specific analyses and random-effects analyses.
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explain the increase in heterogeneity in nonmovers from 10
cohorts compared with analyses in 15 cohorts with all cohort par-
ticipants: The HR for HUBRO increased from 1.47 (Figure 3) to
1.75 (not shown) and the HR for VHM&PP increased from 1.08
to 1.14, whereas the HR for EPIC-Oxford decreased from 0.98 to
0.80. The summary HR for NO2 was similar to that for NOx
[HR=1:02 (95% CI: 0.98, 1.07) per 10lg=m3], also with no het-
erogeneity between individual cohort HRs, although it did not
reach statistical significance (Table 3, Figure 2). Estimates for all
pollutants remained unchanged after adjustment for individual-
level confounders except for PM2:5, which increased from <0:99
in the crude model (Model 1) to 1.08 in the fully adjusted model
(Model 3) (Table 3, Figure 3). The summary estimates for all PM
proxies showed moderate to low heterogeneity between the indi-
vidual cohorts, although they were statistically significantly het-
erogeneous for PM2:5 in Model 3 [HR=1:08 (95% CI: 0.76,
1.53); I2 = 58:2, per 5lg=m3] (Table 3, Figure 3). HRs for PM2:5

were both enhanced and attenuated in sensitivity analyses, with
substantial heterogeneity between individual cohort estimates
(Tables 4 and 5). The summary estimates for PM10 [HR=1:07
(95% CI: 0.89, 1.30); I2 = 16:0, per 5 lg=m3] and PMcoarse
[HR=1:20 (95% CI: 0.96, 1.49); I2 = 40:2, per 5 lg=m3] showed
a similar pattern to that of PM2:5 but with less heterogeneity
between individual cohort HRs (Figure 3). There was no evi-
dence of deviation from linearity in associations between air pol-
lutants and breast cancer risk (results not shown). We found no
statistically significant modifications of associations between any
of the main pollutants and breast cancer by smoking status or
education. For example, for NOx, we found similar HRs among
never [HR=1:05 (95% CI: 0.99, 1.11)], former [HR=0:98 (95%
CI: 0.90, 1.07)], and current [HR=1:09 (95% CI: 1.01, 1.18)]
smokers (p for interaction= 0:69).

Secondary analyses of the elemental components of PM10 and
PM2:5 showed mostly positive associations except for weak

Table 4. Results from random-effects meta-analyses for the association between exposure to NOx and breast cancer incidence in 15 European cohorts: The
sensitivity analyses.

NOx n Cohorts n HR (95% CI) I2 (p-value)a

Main model 15 74,750 1.04 (1.00, 1.08) 0.0 (0.77)
Limited to cohorts with PM data 11b 68,806 1.04 (0.99, 1.10) 1.8 (0.40)
Excluding VHM&PP (poor covariate adjustment) 14 61,363 1.04 (1.00, 1.08) 0.0 (0.71)
Including cohorts with all breast cancer risk factors (Model 3) 5c 35,130 1.03 (0.99, 1.08) 0.0 (0.82)
Restricted to long-term residents 7d 37,150 1.05 (0.98, 1.12) 0.0 (0.92)
Restricted to nonmovers 10e 54,425 1.04 (0.95, 1.13) 67.5 (<0:01)
Further adjustment for urbanization 12f 67,107 1.03 (0.99, 1.08) 0.0 (0.99)
Variables that do not meet PH assumption as strata 15 74,750 1.04 (1.00, 1.08) 0.0 (0.79)
Cohorts with back-extrapolation (difference, method) 12g 71,467 1.05 (1.00, 1.11) 0.0 (0.99)
Cohorts with back-extrapolation (ratio, method) 12g 71,467 1.04 (0.98, 1.09) 0.0 (0.98)
Excluding cohorts with >30% of original cohort excluded 12h 60,271 1.05 (1.00, 1.10) 0.0 (0.99)
Excluding HUBRO and EPIC-Oxford (lack of information on HT) 13i 65,500 1.04 (1.00-1.08) 0.0 (0.99)

Note: CEANS, Cardiovascular Effects of Air Pollution and Noise in Stockholm; CI, confidence interval; DCH, Danish Diet, Health and Cancer cohort; EPIC, European Prospective
Investigation into Cancer and Nutrition; EPIC-E3N, French cohort of the Etude Epidemiologique de Femmes de la Mutuelle Générale de l'Education Nationale; HR, hazard ratio; HT,
hormone therapy; HUBRO, Oslo Health Study; NOx, nitrogen oxides; PH, proportional hazard; PM, particulate matter; VHM&PP, Vorarlberg Health Monitoring and Prevention
Programme.
aCochran’s test for heterogeneity for Model 3 of effect estimates between the cohorts.
bPM not available for EPIC-Umeå, EPIC-E3N, EPIC-Varese, and EPIC-San Sebastian.
cFive cohorts with information on all breast cancer risk factors: DCH, EPIC-Oxford, EPIC-E3N, EPIC-Varese, EPIC-Turin.
dSeven cohorts: HUBRO, CEANS (4 Swedish cohorts pooled), DCH, and VHM&PP.
eTen cohorts: HUBRO, CEANS (4 Swedish cohorts pooled), DCH, EPIC-Oxford, EPIC-E3N, VHM&PP, and EPIC-Varese.
fTwelve cohorts: CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts pooled), EPIC-Oxford, EPIC-E3N, VHM&PP, EPIC-Varese, and EPIC-San
Sebastian.
gTwelve cohorts: CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts pooled), EPIC-Oxford, VHM&PP, EPIC-Varese, EPIC-Turin, and EPIC-San
Sebastian.
hTwelve cohorts: EPIC-Umeå, CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts pooled), VHM&PP, EPIC-Varese, EPIC-Turin, and EPIC-San
Sebastian.
iThirteen cohorts: EPIC-Umeå, CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts pooled), VHM&PP, E3N, EPIC-Varese, EPIC-Turin, and EPIC-San
Sebastian.

Table 5. Results from random-effects meta-analyses for the association between exposure to PM2:5 and breast cancer incidence in 15 European cohorts: The
sensitivity analyses.

PM2:5 n Cohorts n HR (95% CI) I2 (p-value)a

Main model 11 68,806 1.08 (0.77, 1.51) 56.7 (0.03)
Excluding VHM&PP (poor covariate adjustment) 10 55,419 1.28 (0.99, 1.65) 0.0 (0.71)
Including cohorts with all breast cancer risk factors (Model 3) 3b 25,014 1.35 (0.96, 1.90) 0.0 (0.91)
Restricted to long-term residents 7c 37,150 2.19 (0.29, 16.58) 75.9 (<0:01)
Restricted to nonmovers 8d 44,449 1.01 (0.22, 4.74) 62.8 (0.03)
Further adjustment for urbanization 9e 57,286 1.20 (0.18, 7.86) 75.4 (<0:01)
Variables that do not meet PH assumption as strata 11 68,806 1.21 (0.23, 6.40) 72.3 (<0:01)
Excluding cohorts with >30% of original cohort excluded 10f 54,559 0.99 (0.67, 1.48) 64.5 (0.02)

Note: CEANS, Cardiovascular Effects of Air Pollution and Noise in Stockholm; CI, confidence interval; DCH, Danish Diet, Health and Cancer cohort; EPIC, European Prospective
Investigation into Cancer and Nutrition; EPIC-E3N, French cohort of the Etude Epidemiologique de Femmes de la Mutuelle Générale de l'Education Nationale; HR, hazard ratio;
HUBRO, Oslo Health Study; PH, proportional hazard; PM2:5, particulate matter ≤2:5 lm; VHM&PP, Vorarlberg Health Monitoring and Prevention Programme..
aCochran’s test for heterogeneity for Model 3 of effect estimates between the cohorts.
bThree cohorts with information on PM and all breast cancer risk factors: DCH, EPIC-Varese, and EPIC-Turin.
cSeven cohorts: HUBRO, CEANS (4 Swedish cohorts pooled), DCH, and VHM&PP.
dEight cohorts: HUBRO, CEANS (4 Swedish cohorts pooled), DCH, EPIC-Oxford, and VHM&PP.
eNine cohorts: CEANS (4 Swedish cohorts pooled), DCH, EPIC-Oxford, EPIC-Netherlands (2 Dutch cohorts pooled), and VHM&PP.
fTen cohorts: CEANS (4 Swedish cohorts pooled), DCH, EPIC-Oxford, EPIC-Netherlands (2 Dutch cohorts pooled), VHM&PP, EPIC-Turin.
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inverse associations with the potassium components of PM10 and
PM2:5 and with the zinc component of PM2:5 (Tables 6 and 7)
We detected the strongest associations with the vanadium compo-
nents (per 3 ng=m3 increase) of both PM2:5 [HR=1:29 (95% CI:
0.93, 1.78)] and PM10 [HR=1:30 (95% CI: 0.95, 1.77)] (see
Tables 6 and 7; see also Figure S2) and with the nickel compo-
nent of PM10 [HR=1:30 (95% CI: 1.09, 1.55); I2 = 0:0, per
2 ng=m3] (see Tables 6 and 7 and Figure 4), which reached statis-
tical significance, with no heterogeneity in the estimates.
Associations with the nickel component of PM10 were enhanced
when adjusting for PM10 [HR=1:54 (95% CI: 1.11, 2.11);
I2 = 59:4, per 2 ng=m3] to account for possible confounding by
PM mass (Mostofsky et al. 2012).

Discussion
We found suggestive evidence of an association between long-
term exposure to air pollution and incidence of postmenopausal
breast cancer in a large, multicenter European study. Associations
of breast cancer with NOx were significant with no heterogeneity
between individual cohort estimates and were robust to extensive
sensitivity analyses, whereas associations with PMcoarse, PM10,
and PM2:5 were not statistically significant and showed consider-
able heterogeneity between individual cohort estimates. Secondary
analyses with elemental composition of PM showed increased
HRs for vanadium and nickel, with the HR for the nickel compo-
nent of PM10 being statistically significant.

Comparison with Previous Studies on Nitrogen Oxides
Our finding of relevance of NOx for breast cancer is in line with
a single study on NOx and breast cancer incidence, based on the
Danish DCH cohort and including 28,435 women from
Copenhagen and Aarhus (987 breast cancer cases until 2006,
mainly postmenopausal), which detected weak, positive, statisti-
cally nonsignificant associations, but comparable to ours in mag-
nitude, considering different units of increase [HR=1:16 (95%
CI: 0.89, 1.51) per 100lg=m3] (Raaschou-Nielsen et al. 2011a).
Furthermore, the HR from Raaschou-Nielsen et al. (2011a) is
consistent with the HR in the present study for NOx [HR=1:03
(95% CI: 0.95, 1.11) per 20lg=m3] (Figure 2) based on the
Copenhagen part of the DCH study and with extended breast can-
cer follow-up until 2013. It should be noted that the DCH is also
included in this meta-analysis and that this is not an independent
finding. Our results are not in line with those of a case–control
study (301 cases and 220 controls) that detected a statistically
significantly increased risk of postmenopausal breast cancer
[odds ratio ðORÞ=2:58 (95% CI: 1.15, 5.83)] when comparing
the highest to the lowest quartile of traffic emissions at residence
at first birth (Nie et al. 2007) or with the results of a Canadian
case–control study from Montreal, Quebec, which found a strong
and statistically significant association between traffic-related
NO2 and postmenopausal breast cancer [OR=1:30 (95% CI:
1.00, 1.71) per 5 ppb ∼ 7:5 lg=m3] among 383 breast cancer
cases and 416 controls (Crouse et al. 2010). However, a larger
Canadian study in 10 Canadian provinces (1,039 postmenopausal

Table 6. Association between exposure to elemental components of PM2:5 and breast cancer incidence in 11 European cohorts with available data.

Exposure Fixed increase n Cohorts n Model 1 HR (95% CI) Model 2 HR (95% CI) Model 3 HR (95% CI) I2 (p-value)a

PM2:5 Cu 5 ng=m3 10b 51,937 1.02 (0.74, 1.39) 0.99 (0.74, 1.33) 1.02 (0.75, 1.39) 64.8 (0.01)
PM2:5 Fe 100 ng=m3 10b 51,937 1.05 (0.94, 1.16) 1.04 (0.92, 1.18) 1.11 (0.89, 1.39) 44.1 (0.11)
PM2:5 K 50 ng=m3 10b 51,937 0.88 (0.78, 0.98) 0.87 (0.78, 0.97) 0.98 (0.79, 1.23) 36.2 (0.16)
PM2:5 Ni 1 ng=m3 6c 44,009 1.15 (0.89, 1.49) 1.08 (0.86, 1.37) 1.13 (0.89, 1.44) 3.7 (0.38)
PM2:5 S 200 ng=m3 10b 51,937 1.02 (0.75, 1.38) 1.10 (0.81, 1.51) 1.09 (0.78, 1.52) 0.0 (0.55)
PM2:5 Si 100 ng=m3 9d 50,006 1.20 (0.88, 1.64) 1.06 (0.89, 1.27) 1.06 (0.88, 1.27) 0.0 (0.58)
PM2:5V 2 ng=m3 8e 36,619 1.42 (1.04, 1.94) 1.27 (0.92, 1.76) 1.29 (0.93, 1.78) 0.0 (0.96)
PM2:5 Zn 10 ng=m3 10b 51,937 0.92 (0.79, 1.08) 0.93 (0.78, 1.11) 0.97 (0.76, 1.23) 36.4 (0.16)

Note: CEANS, Cardiovascular Effects of Air Pollution and Noise in Stockholm; CI, confidence interval; Cu, copper; DCH, Danish Diet, Health and Cancer cohort; EPIC, European
Prospective Investigation into Cancer and Nutrition; EPIC-E3N, French cohort of the Etude Epidemiologique de Femmes de la Mutuelle Générale de l'Education Nationale; Fe, iron;
HR, hazard ratio; HUBRO, Oslo Health Study; K, potassium; Ni, nickel; PH, proportional hazard; PM2:5, particulate matter <2:5 lm; S, sulfur; Si, silicon; V, vanadium; VHM&PP,
Vorarlberg Health Monitoring and Prevention Programme; Zn, zinc. CEANS consists of 4 Stockholm, Sweden, cohorts: SNAC-K, SALT/TwinGene, 60YO/IMPROVE, and SDPP;
EPIC-Netherlands consists of 2 Dutch cohorts: EPIC MORGEN and EPIC Prospect. *Relating to Model 3.
aCochran’s test for heterogeneity for Model 3 of effect estimates between the cohorts.
bTen cohorts: HUBRO, CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts), VHM&PP, and EPIC-Turin.
cSix cohorts: HUBRO, DCH, EPIC-Netherlands (2 Dutch cohorts), VHM&PP, and EPIC-Turin.
dNine cohorts: CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts), VHM&PP, and EPIC-Turin.
eEight cohorts: CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts), EPIC-Turin.

Table 7. Association between exposure to elemental components of PM10 and breast cancer incidence in 11 European cohorts with available data

Exposure Fixed increase n cohorts n Model 1 HR (95% CI) Model 2 HR (95% CI) Model 3 HR (95% CI) I2 (p-value)a

PM10 Cu 20 ng=m3 10b 51,937 1.07 (0.96, 1.19) 1.05 (0.94, 1.18) 1.07 (0.93, 1.22) 14.9 (0.32)
PM10 Fe 500 ng=m3 10b 51,937 1.08 (0.96, 1.22) 1.07 (0.94, 1.22) 1.08 (0.92, 1.28) 24.6 (0.25)
PM10 K 100 ng=m3 9c 50,006 0.89 (0.72, 1.10) 0.89 (0.72, 1.10) 0.89 (0.72, 1.10) 54.3 (0.07)
PM10 Ni 2 ng=m3 6d 44,009 1.40 (1.00, 1.95) 1.27 (1.02, 1.59) 1.30 (1.09, 1.55) 0.0 (0.76)
PM10 S 200 ng=m3 10b 51,937 1.11 (0.82, 1.51) 1.11 (0.82, 1.51) 1.11 (0.82, 1.50) 18.7 (0.29)
PM10 Si 500 ng=m3 10b 51,937 1.15 (0.96, 1.37) 1.14 (0.95, 1.37) 1.16 (0.95, 1.42) 32.7 (0.19)
PM10V 3 ng=m3 10b 51,937 1.39 (1.03, 1.87) 1.25 (0.91, 1.70) 1.30 (0.95, 1.77) 0.0 (0.92)
PM10 Zn 20 ng=m3 10b 51,937 1.00 (0.85, 1.17) 0.99 (0.83, 1.17) 1.01 (0.81, 1.26) 42.5 (0.12)

Note: CEANS, Cardiovascular Effects of Air Pollution and Noise in Stockholm; CI, confidence interval; Cu, copper; DCH, Danish Diet, Health and Cancer cohort; EPIC, European
Prospective Investigation into Cancer and Nutrition; EPIC-E3N, French cohort of the Etude Epidemiologique de Femmes de la Mutuelle Générale de l'Education Nationale; Fe, iron;
HR, hazard ratio; HUBRO, Oslo Health Study; K, potassium; Ni, nickel; PH, proportional hazard; PM10, particulate matter <10 lm; S, sulfur; Si, silicon; V, vanadium; VHM&PP,
Vorarlberg Health Monitoring and Prevention Programme; Zn, zinc. CEANS consists of 4 Stockholm, Sweden, cohorts: SNAC-K, SALT/TwinGene, 60YO/IMPROVE, and SDPP;
EPIC-Netherlands consists of 2 Dutch cohorts: EPIC MORGEN and EPIC Prospect.
aCochran’s test for heterogeneity for Model 3 of effect estimates between the cohorts.
bTen cohorts: HUBRO, CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts), VHM&PP, and EPIC-Turin.
cNine cohorts: CEANS (4 Swedish cohorts pooled), DCH, EPIC-Netherlands (2 Dutch cohorts), VHM&PP, and EPIC-Turin.
dSix cohorts: HUBRO, DCH, EPIC-Netherlands (2 Dutch cohorts), VHM&PP, and EPIC-Turin.
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breast cancer cases and 1,139 controls) detected weak and statis-
tically nonsignificant associations with NO2, with ORs ranging
from 1.07–1.10 per 10 ppb ∼ 19lg=m3 (Hystad et al. 2015),
which is closer to our findings for NO2 (Table 3, Figure 2). NO2
and NOx are closely related traffic pollutants with correlation
coefficients in our study ranging from 0.79 in EPIC-NL (see
Table S8) to 0.99 in EPIC-Umeå (see Table S3), except for 0.51
in VHM&PP (see Table S9). We found no association between
NO2 and breast cancer [HR=1:02 (95% CI: 0.98, 1.07) per
10lg=m3] (Table 3; see also Figure S1), which is consistent with
the findings of two recent cohort studies with data on NO2 (but
no data on NOx): The Sister Study cohort (United States and
Puerto Rico) with 47,591 women (1,749 breast cancer cases, 5 y
of follow-up), which reported an HR for NO2 of 1.02 [(95% CI:
0.97, 1.07) per 5.8 ppb] (Reding et al. 2015), and the Danish
Nurse Cohort study with 22,877 women (1,145 breast cancer
cases, 16 y of follow-up), which found an HR for NO2 of 1.00
[(95% CI: 0.94, 1.07) per 7:4 lg=m3] (Andersen et al. 2016).
Furthermore, our findings are in accord with those of a number of
ecological studies that have detected correlations between trends
in NOx emissions or other traffic-related pollutants (motor vehicle
density, consumption of gasoline) over time and breast cancer
incidence (Chen and Bina 2012; Wei et al. 2012; Park et al.
2014). Our estimate of a 4% increase in risk of breast cancer for
each 20lg=m3 increase in NOx levels at the residence presents a
modest risk but is comparable to that for NOx and lung cancer, as
found in a recent meta-analysis [HR=1:03 (95% CI: 1.01, 1.05)
per 10lg=m3] (Hamra et al. 2015). NOx represents the total con-
centration of nitric oxide (NO) and NO2 produced from the reac-
tions among nitrogen, oxygen, and hydrocarbons at high
temperatures, such as combustion processes, with the major
source in urban areas coming from motorized traffic. NOx is
marker of primary vehicle emissions, and NO2 also contains a
secondary component. Thus, NOx is likely to be more related to
ultrafine particles (PM with diameter <0:1 lm), and our finding
of a stronger association for NOx than for NO2 potentially sug-
gests the relevance of this fraction of PM and other unmeasured
particle metrics. A study from Copenhagen, Denmark, reported a
high correlation coefficient (>0:85) between ultrafine particles
and NOx and traffic volume, supporting the hypothesis that NOx
can be used as a tracer to estimate particle number and size

emission factors (Wang et al. 2010). A study from Salzburg,
Austria, reported a stronger correlation between ultrafine particles
and NOx than NO2 (Kwasny et al. 2010). The stronger associa-
tion found for NOx than for NO2 in the present study is not
explained by the better LUR model performance for NOx, which
was the case in 8 out of the 15 cohorts included in this meta-
analysis; in 4 cohorts, the LUR model performance for NO2
was better, and in 3 cohorts, the models for both pollutants
performed equally well.

Our suggestive finding of the relevance of air pollution to
breast cancer is supported by findings that exposure to benzene,
which is present in traffic exhaust, led to the development of
mammary tumors in mice (Huff et al. 1989). PAHs, mainly origi-
nating from traffic, were linked to breast cancer (Mordukhovich
et al. 2010, 2015), with the strongest associations found in
women with select biologically plausible DNA repair genotypes
(Mordukhovich et al. 2016). Potentially plausible biological
mechanisms for the association between PAHs and air pollution
and breast cancer incidence include aberrant methylation (White
et al. 2016) and DNA damage via the formation of adducts and
via oxidative stress (Mordukhovich et al. 2016). It has also been
suggested that air pollution may increase breast cancer risk by
increasing mammographic breast density, one of the strongest
biomarkers of breast cancer risk (Boyd 2013). However, of two
studies on air pollution and mammographic density, one detected
a positive association (Yaghjyan et al. 2017), and the other
detected no association (Huynh et al. 2015).

Comparison with Previous Studies on Particles
We found positive but statistically nonsignificant associations of
PM10, PMcoarse, and PM2:5 with postmenopausal breast cancer
(Table 3, Figure 3). Summary estimates for PM proxies were
moderately heterogeneous, particularly for PM2:5, ranging from
a statistically significant inverse association in VHM&PP
[HR=0:65 (95% CI: 0.47, 0.88)] to a positive association in
EPIC-Oxford [HR=1:54 (95% CI: 0.77, 3.10) per 5lg=m3]
(Figure 3). Difference in the sources and in the compositions of
PM2:5 may explain the variation in the magnitude and direction
of estimates for PM2:5, or these findings may be due to chance.
The results for PM2:5 were more variable in different sensitivity

Figure 4. Adjusted associations (Model 3) between breast cancer and the nickel component of particulate matter <10 lm (PM10) in 5 European cohorts
[European Prospective Investigation into Cancer and Nutrition (EPIC)-Netherlands consists of two Dutch cohorts: EPIC-MORGEN and EPIC-Prospect]:
Results from cohort-specific analyses and random-effects analyses.
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analyses (Tables 4 and 5) than those for NOx, possibly because
of the different sources of PM2:5 in different cities and locations
other than traffic, which is a main source of NOx. LUR model
performance for NOx was better than that for PM2:5 in the major-
ity of the cohorts (all but HUBRO and CEANS) (Raaschou-
Nielsen et al. 2013). Excluding VHM&PP from analyses of
PM2:5 enhanced the HR from 1.08 to 1.28 (95% CI: 0.99, 1.65)
and eliminated heterogeneity (I2 = 0:0) (Table 5). VHM&PP had
the least detailed confounder information, but we included the
VHM&PP cohort in our main analysis because of our a priori
analysis plan and to maintain consistency with previous ESCAPE
analyses. Furthermore, there was little evidence of confounding
when we compared fully adjusted and age-sex–adjusted HRs.

Our results are in accord with those of three cohort studies
with data on PM and breast cancer incidence, which did not
observe associations and which detected HRs above and below 1
(Andersen et al. 2016; Hart et al. 2016; Reding et al. 2015). The
Sister Study reported HRs for PM2:5 and PM10 of 1.03 [(95% CI:
0.94, 1.07) per 3:6 lg=m3] and 0.99 [(95% CI: 0.98, 1.00) per
5:8 lg=m3], respectively (Reding et al. 2015); the Danish Nurse
Study reported HRs for PM2:5 and PM10 of 1.00 [(95% CI: 0.91,
1.09) per 3:3 lg=m3] and 1.02 [(95% CI: 0.94, 1.11) per
2:9 lg=m3], respectively (Andersen et al. 2016); and the Nurses’
Health Study II [United States; 115,921 women (1,296 postmeno-
pausal breast cancer cases, 18 y of follow-up)] found HRs for
PM2:5, PM2:5–10, and PM10 (per 10lg=m3) of 0.76 (95% CI: 0.61,
0.95), 1.07 (95% CI: 0.92, 1.25), and 0.97 (95% CI: 0.86, 1.09),
respectively. The lack of association observed in our study and in
three other cohorts (Andersen et al. 2016; Hart et al. 2016;
Reding et al. 2015) may be due to use of recent PM exposures
(several years prior to breast cancer diagnoses) and lack of data
on exposures early in life. An early case–control study detected
an association between TSP levels at birth [OR=2:42 (95% CI:
0.97, 6.09), >140lg=m3 vs. <84lg=m3] and postmenopausal
breast cancer, but none with exposures later in life (at first birth,
10 y and 20 y before cancer diagnosis) (Bonner et al. 2005), indi-
cating a need for more (preferably cohort) studies with data on
early-life exposures.

Premenopausal versus Postmenopausal Breast Cancer
Of the existing studies on air pollution and breast cancer, one
focused on postmenopausal women only (Crouse et al. 2010),
whereas the majority included data on both pre- and postmeno-
pausal women (Andersen et al. 2016; Bonner et al. 2005; Hart
et al. 2016; Hystad et al. 2015; Lewis-Michl et al. 1996; Nie
et al. 2007; Reding et al. 2015; Raaschou-Nielsen et al. 2011b). It
remains unclear whether associations between air pollution and
breast cancer differ by menopausal status because three studies
found stronger associations with postmenopausal breast cancer
(Bonner et al. 2005; Lewis-Michl et al. 1996; Nie et al. 2007),
three found stronger associations with premenopausal breast can-
cer (Andersen et al. 2016; Hart et al. 2016; Hystad et al. 2015),
and two studies did not report air pollution estimates separately
by menopausal status (Reding et al. 2015; Raaschou-Nielsen
et al. 2011b).

Particle Composition Findings
We present a novel finding of the relevance of the nickel and pos-
sibly the vanadium components of PM to breast cancer develop-
ment (Tables 6 and 7, Figure 4; see also Figure S2). Nickel and
vanadium are heavy metals, originating mainly from mixed oil-
burning and industrial production emissions. The nickel compo-
nent of PM10 was also the element that showed the strongest
association with lung cancer incidence [HR=1:59 (95% CI:

1.12, 2.26) per 2 ng=m3] in a related ESCAPE study in 14
European cohorts (Raaschou-Nielsen et al. 2016). Furthermore,
our finding is consistent with those of an Italian study examining
the effects of living near incinerators, which detected an
increased risk of breast cancer mortality [OR=2:00 (95% CI:
1.00, 3.99)] among women living in areas with the highest
(>2 ng=m3) compared with the lowest (<0:5 ng=m3) concentra-
tion of heavy metals combined, including not only nickel and va-
nadium but also lead, cadmium, mercury, antimony, arsenic,
chromium, cobalt, copper, and manganese (Ranzi et al. 2011).
Nickel has been hypothesized to play a role in breast cancer de-
velopment by acting as a metalloestrogen, a heavy metal that
binds to estrogen receptors, mimicking actions of estrogen
(Aquino et al. 2012). A study of 112,379 women from the
California Teachers Study in the United States (5,361 of whom
developed breast cancer) failed to find an association between
any of 11 estrogen disruptors (modeled at the participants’ resi-
dences) and breast cancer risk but found some evidence of associ-
ation between inorganic arsenic and breast cancer in nonsmoking
nonmovers and between cadmium and ER−=PR− breast cancer
(Liu et al. 2015). A related study in the same cohort examined
the role of modeled levels of 24 mammary gland carcinogens
(MGCs) at the residence and found associations between propyl-
ene oxide and vinyl chloride and overall breast cancer risk, as
well as associations for acylamide, benzidine, carbon tetrachlor-
ide, ethylidene dichloride, and vinyl chloride with ER+ =PR+
breast cancer and for benzene with ER−=PR− breast cancer
(Garcia et al. 2015). More studies with data on elemental compo-
nents of PM exposures and breast cancer are needed to further
explore the relevance of specific chemical compounds to breast
cancer risk.

Strengths and Limitations
Our study benefited from a multicenter design and from a large
number of women recruited from general populations from
around Europe with large variations in air pollution levels, well-
defined information on the most important breast cancer risk fac-
tors, and a standardized definition of breast cancer from national
and regional cancer registries. Breast cancer diagnoses available
from the national registry have been validated in Denmark
against clinical records in a study that found that incidence data
were complete, with no tumors missing and with correct data on
malignancy and date of diagnosis (Jensen et al. 2002); national
and regional cancer registries in other similar European countries
likely have data of similar quality. The major strength of our
study is the standardized exposure assessment and standardized
statistical analyses across all cohorts. The air pollution LUR
models have been validated and were previously linked to lung
cancer (Raaschou-Nielsen et al. 2013). We adjusted the analyses
for a number of potential confounders but found little evidence of
confounding in air pollution estimates, minimizing the possibility
of residual confounding in cohorts that had missing data on the
confounders, typically on reproductive factors or HT use.

A weakness of our study is the lack of data on breast cancer
subtypes by ER and PR status: A recent study found that associa-
tion with NO2 was limited to ER+ =PR+ breast cancer
[HR=1:10 (95% CI: 1.02, 1.19) per 3:6 lg=m3] (Reding et al.
2015), and a similar trend, although without statistically signifi-
cant effect modification, was found for PM exposures (Hart et al.
2016). We lacked data on premenopausal breast cancer, and
some of the most recent studies suggest stronger associations for
air pollution and premenopausal breast cancer than for postmeno-
pausal breast cancer (Andersen et al. 2016; Hart et al. 2016;
Hystad et al. 2015). We lacked information on mammographic
screening participation, but the screening-related bias in breast
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cancer epidemiology (the timing of breast cancer diagnoses) is
more relevant for premenopausal breast cancer. Breast cancer
screening affects the timing of breast cancer diagnosis and results
in an increased rate of diagnosis in the early period, the so-called
incidence peak, which is compensated by lower incidence in the
later period of screening after screening age. In 2003, the
European Commission recommended breast cancer screening for
women 50–69 y old, and in 2007, organized breast cancer screen-
ing was in place in all of the countries included in this analysis
(initiated in 1974 in Austria; in the 1990s in the United Kingdom,
Sweden, and Netherlands; and between 2004 and 2007 in France,
Italy, and Denmark) (Altobelli and Lattanzi 2014). Screening par-
ticipation in 2014 varied between 57% and 80% in these countries
(Altobelli and Lattanzi 2014). It is not known whether women
who participated in breast cancer screening would have had
higher or lower air pollution at their residences, although a single
Canadian study with data on mammographic screening participa-
tion found higher levels of NO2 among women who participated
in screening (Hystad et al. 2015). That study also found an
attenuation of associations with NO2 in women participating in
screening programs, but for premenopausal women only, sug-
gesting that lack of adjustment for breast cancer screening partici-
pation would not change our results in postmenopausal women.
Furthermore, we lacked data on detailed occupational exposures
to chemicals that may be related to breast cancer risk apart from
a crude definition of night-shift work (defined as occupation as
nurse or physician) that was available in only one cohort (see
Table S1). We used exposure levels in adulthood, assessed close
to the time of the breast cancer diagnosis, and we lack data on
early-life exposures to air pollution, specifically before and
around first childbirth, which have been found to be relevant in
studies on air pollution (Bonner et al. 2005; Nie et al. 2007).
Notably, active tobacco smoking early in life, particularly before
first childbirth, has recently been established as a risk factor for
breast cancer (Dossus et al. 2014), increasing the plausibility that
exposure to air pollution early in life, when mammary tissue is
still in development and not fully differentiated, could be a criti-
cal factor for breast cancer carcinogenesis. Similarly, a study on
occupational exposures and postmenopausal breast cancer also
found that exposures to some compounds before 36 y of age were
most relevant (Labrèche et al. 2010).

In this study, we used LUR models that were developed on
air pollution measurements obtained between 2008 and 2011, but
we applied them to baseline addresses typically 10 to 15 y earlier,
which likely resulted in some exposure misclassification. Several
studies have documented stable spatial contrast of NO2 over
study periods of 10–15 y (Cesaroni et al. 2012; Eeftens et al.
2011; Gulliver et al. 2013). A study found stable traffic intensities
on Dutch streets over a 10-y period (Beelen et al. 2007), and spa-
tial models for black smoke in the United Kingdom provided rea-
sonable predictions going back to the 1960s (Gulliver et al.
2011). In analyses of nonmovers, we found identical associations
with NOx (Table 4) to those found in the main analyses but with
high heterogeneity between the individual cohort estimates. This
finding is likely explained by the smaller exposure misclassifica-
tion in nonmovers, which, as expected, resulted in detecting
stronger associations than in the entire cohort, but in cohorts with
HRs >1 and in two cohorts with HRs <1, which contributed to
an increase in the range of HRs and to higher heterogeneity.
Exposure misclassification may have also resulted from using
predicted concentrations of the pollutants and from a lack of in-
formation about participants’ activity patterns. Finally, we had no
data to examine associations between air pollution and breast
cancer in men, limiting the generalizability of the results.

Conclusion
In a large, multicenter European study on long-term exposure to
ambient air pollution and postmenopausal breast cancer inci-
dence, we found suggestive evidence of an association between
air pollution and incidence of postmenopausal breast cancer.
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