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Abstract: Lactulose, a disaccharide of galactose and fructose, used as a laxative or ammonia-lowering
drug and as a functional food ingredient, enhances growth of Bifidobacterium and Lactobacillus at
clinically relevant dosages. The prebiotic effect of subclinical dosages of Lactulose, however, remains
to be elucidated. This study analyses changes in the microbiota and their metabolites after a 5 days
Lactulose treatment using the TIM-2 system, a computer-controlled model of the proximal large
intestine representing a complex, high density, metabolically active, anaerobic microbiota of human
origin. Subclinical dosages of 2–5 g Lactulose were used. While 2 g Lactulose already increased
the short-chain fatty acid levels of the intestinal content, 5 g Lactulose were required daily for
5 days in this study to exert the full beneficial prebiotic effect consisting of higher bacterial counts
of Bifidobacterium, Lactobacillus, and Anaerostipes, a rise in acetate, butyrate and lactate, as well as a
decrease in branched-chain fatty acids, pH (suggested by an increase in NaOH usage), and ammonia.
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1. Introduction

Lactulose is a synthetic disaccharide consisting of galactose and fructose. It is indicated for the
symptomatic treatment of constipation at doses of 10 to 30 g and the treatment of portal systemic
encephalopathy at doses of 60 to 100 g. Furthermore, lower dosages than 10 g Lactulose are used as a
functional food ingredient. Lactulose is neither digested nor absorbed from the upper gastrointestinal
tract. Once it reaches the colon it is anaerobically fermented by the microbiota and serves as a
prebiotic substrate by increasing the count of Bifidobacterium, Lactobacillus, and bacterial metabolites
like short-chain fatty acids (SCFA) [1,2]. Hence, Lactulose can be characterized as a non-digestible
carbohydrate with fiber-like effects. In healthy individuals, daily dosages of 10 g Lactulose already
exerted beneficial effects on the human microbiota [3], as did even lower dosages like 4 g [4] and 3 g [5].
This raises the potential for the use of subclinical dosages of Lactulose, which do not have a strong
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laxative effect, exclusively for prebiotic effects. The minimal dose of Lactulose required for a prebiotic
effect, however, remains to be determined.

The above mentioned studies used different durations of treatments and different subject populations
which limits the interpretation of dose-dependency of the prebiotic effect of Lactulose. Furthermore, direct
effects of substances on the metabolic activity of the microbiota are difficult to determine in humans due
to the substantial absorption and metabolism of products like short-chain fatty acids in the gut [6]. This
drawback can be circumvented using the TIM-2 system, a computer-controlled model of the proximal
large intestine representing a complex, high density, metabolically active, anaerobic microbiota of human
origin. Thus, we aimed at the evaluation of the prebiotic effect of different dosages of Lactulose under
controlled experimental conditions in the TIM-2 system.

In former studies with this system, daily 10 g Lactulose administration for 48 h led to a change in
the SCFA ratio mainly based on an increase in acetate and a decrease in butyrate [2], which was most
probably due to an increase in acetate producing Bifidobacterium and Lactobacillus species. When 7.5 g
Lactulose were administered for 72 h to fecal samples of lean volunteers in this system, elevated levels
of SCFA were observed in the Lactulose group as well and this dose of Lactulose mainly stimulated
the growth of Bifidobacterium as well as Alistipes spp., Parabacteroides spp., Parasutterella spp., and
Anaerostipes spp. [1]. No effect on Lactobacillus was reported in this group.

The current study is aimed at comparing daily dosages of 2 to 5 g Lactulose for 120 h in the TIM-2
system. In this study, we show that even 2 g Lactulose leads to an increase in SCFA, mainly reflected
by acetate, while 3 or more grams of Lactulose are required to also observe an increase in butyrate.
At 4 g Lactulose, the reduction in ammonia was as prominent as at a dose of 5 g, whereas an increase
in relative abundance of Bifidobacterium, Lactobacillus and Anaerostipes was most evident in the 5 g
Lactulose group. Our results show that a maximum daily dose of 5 g Lactulose for five days was
associated with the full pattern of beneficial prebiotic effects on the intestinal microbiota.

2. Materials and Methods

2.1. Test Product

The product administered in this study was Laevolac® (Fresenius Kabi Austria GmbH, Linz,
Austria), an oral solution containing 670 mg/mL lactulose. Experiments without the addition of
Laevolac® served as negative control.

2.2. Intestinal Conditions of the TIM-2 System

The TNO Intestinal Model (TIM-2) is a dynamic in vitro model of the proximal colon that has been
previously published [1,2,7,8]. The TIM-2 system was inoculated with a dense and highly metabolically
active colon microbiota of human origin. In the system the following standardized conditions were
simulated: body temperature; pH in the lumen of the proximal colon (pH 5.8); anaerobiosis; delivery
of a substrate from the ‘ileum’ (SIEM; Standardized Ileum Efflux Medium); mixing and transport of
the intestinal contents; absorption of water and absorption of fermentation products, metabolites and
other low molecular weight compounds (via a semipermeable membrane inside the colon model).

SIEM simulates material passing the ileocecal valve in humans, or in other words material reaching
the colon. SIEM was prepared as described previously [2,7–9] and contained the major non-digestible
carbohydrates (pectin, xylan, arabinogalactan, amylopectin, starch) found in a normal western diet
as well as protein (bactopepton, casein), ox-bile, Tween 80 as well as vitamins and minerals. SIEM
does not require pre-digestion and was added to the system at a speed of 2.5 mL/h. The speed of the
dialysis liquid was 1.5 mL/min. During the experiment, the intestinal contents are mixed continuously
by the peristaltic movements of the TIM-2 system. In order to simulate the transit of the chime from
proximal to distal colon, 25 mL of the lumen is removed every 24 h and discarded.

Prior to the performance of each experiment the secretion fluids and dialysis solutions were
prepared freshly, the pH electrodes calibrated, new membrane units installed and the system was
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inoculated (one day before the start of the test period) with a standardized microbiota of human origin.
This standardized microbiota was prepared as described [7] using fecal donations from a group of
4 healthy volunteers (1 male, 3 females, age 38.8 ± 3.9 years; BMI (body mass index) 24.2 ± 1.5 kg/m2).
Individuals provided signed informed consent prior to participation, were non-smokers and had not
used antibiotics, prebiotics, probiotics or laxatives within 1 month before the donation.

At the start of the adaptation period, the TIM-2 system was inoculated with approximately 30 mL
of the standardized microbiota and 80 mL dialysis fluid. The microbiota was allowed to adapt to the
model conditions and SIEM for 16 h. After the adaptation period the 120 h test period started, in which
test product was added to TIM-2 in a daily dose.

2.3. Addition of Test Product

The test product was added to the system at daily doses of 2 g, 3 g, 4 g, and 5 g Lactulose, mixed
in the SIEM, which was added throughout the entire test period. Each dose was studied in duplicate
(n = 2), while the control experiment was carried out as quadruplicate (n = 4). The test period of the
TIM-2 experiments lasted 120 h (5 consecutive days).

2.4. Sampling from TIM-2

Metabolites like the short-chain fatty acids, branched-chain fatty acids (BCFA), ammonia and
lactate produced in TIM-2 were continuously removed from the lumen by a semipermeable membrane
unit. This dialysate was collected at the start of the test period and after 24, 48, 72, 96, and 120 h.
Volumes were measured and samples were taken from the dialysate.

Luminal samples taken at the beginning and end of the experiment (t = 0 h and t = 120 h) were
used to investigate the composition of the microbiota. The samples were snap frozen in liquid nitrogen
and stored at ≤−72 ◦C until analysis.

2.5. Sodium Hydroxide Usage (pH)

The pH was kept at pH 5.8 by automatic titration with 2 M NaOH, the consumption of NaOH
was monitored.

2.6. Short-Chain Fatty Acids and Branched-Chain Fatty Acids

The dialysate and lumen fractions of TIM-2 were analyzed with gas chromatography for SCFA
(acetate, propionate and butyrate) and BCFA (iso-butyric acid and iso-valeric acid).

For SCFA/BCFA, samples were prepared and analyzed as described previously [10]. Briefly,
dialysate samples were directly used, lumen samples were centrifuged (12,000 rpm at 4 ◦C for 10 min).
A mixture of formic acid (20%), methanol, and 2-ethyl butyric acid (internal standard, 2 mg/mL in
methanol) was added to the supernatant. A 3 µL sample with a split ratio of 75.0 was injected on
a GC-column (ZB-5HT inferno, ID 0.52 mm, film thickness 0.10 um; Zebron; Phenomenex, Utrecht,
The Netherlands) in a Shimadzu GC-2014 gas chromatograph (Shimadzu Europe, Duisburg, Germany).

2.7. Lactate and Ammonia

Samples for lactate and ammonia analysis were centrifuged as described above. In the clear
supernatant, both L- and D-lactate were determined enzymatically (based on Boehringer, UV-method,
Cat. No. 1112821035, Roche Diagnostics, West Sussex, UK). Ammonia was determined based on
the Berthelot reaction [11] in which ammonia first reacts with alkaline phenol and then with sodium
hypochlorite to form indophenol blue. In the currently used method, due to its toxicity, phenol was
replaced with salicylic acid.
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2.8. 16S rDNA Amplicon Sequencing

The bacterial population in the TIM-2 samples was analyzed using Next Generation sequencing.
Total DNA from the collected TIM-2 lumen samples at the start (t = 0 h) and at the end (t = 120 h)
of the experiments was isolated as described [12] with some minor adjustments: The samples were
initially mixed with 250 µL lysis buffer (Agowa, Berlin, Germany), 250 µL zirconium beads (0.1 mm),
and 200 µL phenol, before being introduced to a Bead Beater (BioSpec Products, Bartlesville, OK,
USA) for twice 2 min. To determine the recovery of bacterial DNA from the samples, a quantitative
polymerase chain reaction (qPCR) using primers specific for the bacterial 16S rRNA gene was used.
Changes in the microbiota composition were analyzed by using mass V4 16S rDNA amplicon
sequencing. For 16S rDNA amplicon sequencing of the V4 hypervariable region, 100 pg of DNA
was amplified as described [13] using 30 amplification cycles, applying F533/R806 primers [14].
Primers included Illumina adapters and a unique 8-nt sample index sequence key [13]. Amplicon
yield, integrity and size was analyzed on a Fragment Analyzer (Advanced Analytical Technologies,
Inc., Heidelberg, Germany). The amplicon libraries were pooled in equimolar amounts and purified
using agarose gel electrophoresis and subsequent the QIAquick Gel Extraction Kit (QIAGEN, Hilden,
Germany). Paired-end sequencing of amplicons was conducted on the Illumina MiSeq platform
(Illumina, Eindhoven, The Netherlands).

Processing of the sequencing data was done using the Mothur pipeline. The differences between
the two bacterial community profiles were identified by using the LEfSe (Linear Discriminant Analysis
Effect Size) analysis [15]. The method is based on categorical non-parametric hypothesis test and
Linear Discriminant Analysis (LDA) which is a mathematical technique to characterize the difference
between classes. This is a method for metagenomic biomarker discovery and therefore it allows
finding organisms that significantly can describe the differences between two microbial communities.
For this a cut-off level of relative abundance of individual genera was included with 0.01% of total
sequences. In the analysis, the different test conditions were each (as replicate) compared to the control
experiments. This shows which genus became significantly more or less abundant as a consequence of
a test product condition compared to the control.

2.9. Statistical Analysis

Due to the amount of experimental replicates (n = 2), no statistics were performed. Instead, mean
values of the experiments were compared to mean values of the control experiments.

3. Results

3.1. Sodium Hydroxide Usage

During fermentation of carbohydrates the microbiota produces acidic metabolites (for example
SCFA and lactate), therefore the use of NaOH during the experiments indicates the activity of the
microbiota fermenting the SIEM plus the test product which were added to the TIM-2 system.

The addition of Lactulose in different doses in the test period showed an increased use of NaOH
during the TIM-2 experiments as compared to the control as shown in Figure 1. The dose effect was
clearly visible in the NaOH consumption as it was highest for the 5 g dose and decreasing per dose to
the 2 g dose. The usage of NaOH was 303 ± 28 mL, 250 ± 19 mL, 214 ± 7 mL and 154 ± 9 mL for the
experiments with 5 g, 4 g, 3 g and 2 g Lactulose, respectively.
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Figure 1. Sodium hydroxide cosumption during TIM-2 runs (mean of n = 2 (Lactulose dosages) or n = 
4 (control)) with different dosages of Lactulose. Values at the start of the test period are on average 
20.76 mL due to NaOH consumption during the pre-incubation period. All data points shown at the 
proximity of the individual time points indicated at the X-axis belong to these specific time points. 

3.2. SCFA Production 

Figure 2a shows the cumulative total SCFA (acetate, propionate and butyrate) production over 
time during the 120 h test period in TIM-2. The different Lactulose doses all show a higher SCFA 
production as compared to the control, with the highest SCFA production for the highest Lactulose 
dose of 5 g per day. The mean amounts of total SCFA produced for the increasing dose of Lactulose 
is 451 ± 3 mmol (2 g), 399 ± 21 mmol (3 g), 427 ± 76 mmol (4 g), and 471 ± 12 mmol (5 g), for the 
respective daily doses of Lactulose, respectively, compared to 332 ± 34 mmol (control). 

The production profiles from each of the different SCFA measured (Figure 2b; acetate, Figure 2c; 
propionate and Figure 2d; butyrate), indicate that the acetate is the predominantly produced SCFA. 
The propionate production (Figure 2c) in the TIM-2 experiments with the higher doses (5, 4 and 3 g) 
of Lactulose was lower compared to the control. Whereas Lactulose tended to slightly increase 
butyrate production (Figure 2d) compared to the control as shown for the 3, 4 and 5 g dose (~80 mmol 
at t = 120 h).  
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Figure 1. Sodium hydroxide cosumption during TIM-2 runs (mean of n = 2 (Lactulose dosages) or
n = 4 (control)) with different dosages of Lactulose. Values at the start of the test period are on average
20.76 mL due to NaOH consumption during the pre-incubation period. All data points shown at the
proximity of the individual time points indicated at the X-axis belong to these specific time points.

3.2. SCFA Production

Figure 2a shows the cumulative total SCFA (acetate, propionate and butyrate) production over
time during the 120 h test period in TIM-2. The different Lactulose doses all show a higher SCFA
production as compared to the control, with the highest SCFA production for the highest Lactulose
dose of 5 g per day. The mean amounts of total SCFA produced for the increasing dose of Lactulose
is 451 ± 3 mmol (2 g), 399 ± 21 mmol (3 g), 427 ± 76 mmol (4 g), and 471 ± 12 mmol (5 g), for the
respective daily doses of Lactulose, respectively, compared to 332 ± 34 mmol (control).

The production profiles from each of the different SCFA measured (Figure 2b; acetate, Figure 2c;
propionate and Figure 2d; butyrate), indicate that the acetate is the predominantly produced SCFA. The
propionate production (Figure 2c) in the TIM-2 experiments with the higher doses (5, 4 and 3 g) of
Lactulose was lower compared to the control. Whereas Lactulose tended to slightly increase butyrate
production (Figure 2d) compared to the control as shown for the 3, 4 and 5 g dose (~80 mmol at t = 120 h).
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3.4. Lactate 

The cumulative amount of lactate (Figure 4) produced in the experiment with the lowest 
Lactulose dose (2 g per day, 3.8 ± 1.9 mmol) was similar to the control (5.8 ± 2.2 mmol). For the 
different doses of Lactulose, particularly at the highest dose, much higher amounts of lactate are 
formed during Lactulose fermentation. The amount of lactate produced appears to be dose-
dependent. The highest lactate production was observed for the two highest Lactulose doses of 4 and 
5 g per day. Lactate production was 17.9 ± 10.0 mmol (3 g), 60.7 ± 36.2 mmol (4 g), 55.7 ± 31.0 mmol 
(5 g) for the daily Lactulose dose, respectively. 

Figure 2. Production of (a) total short chain fatty acids (SCFA); (b) acetate; (c) propionate; and (d)
butyrate in TIM-2 runs (mean of n = 2 (Lactulose dosages) or n = 4 (control)) with different dosages of
Lactulose. Values at the start of the test period were set to zero. All data points shown at the proximity
of the individual time points indicated at the X-axis belong to these specific time points.

3.3. BCFA Production

The total production of BCFA in 120 h is shown in Figure 3. The BCFA production was reduced
in the experiment when a higher amount of Lactulose was added to the TIM-2 system. BCFA
production was 8.4 ± 4.2 mmol (control), 4.6 ± 2.2 mmol (2 g Lactulose), 2.8 ± 0.8 mmol (3 g Lactulose),
2.3 ± 0.7 mmol (4 g Lactulose), and 1.5 ± 0.2 mmol (5 g Lactulose).
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3.4. Lactate

The cumulative amount of lactate (Figure 4) produced in the experiment with the lowest Lactulose
dose (2 g per day, 3.8 ± 1.9 mmol) was similar to the control (5.8 ± 2.2 mmol). For the different doses
of Lactulose, particularly at the highest dose, much higher amounts of lactate are formed during
Lactulose fermentation. The amount of lactate produced appears to be dose-dependent. The highest
lactate production was observed for the two highest Lactulose doses of 4 and 5 g per day. Lactate
production was 17.9 ± 10.0 mmol (3 g), 60.7 ± 36.2 mmol (4 g), 55.7 ± 31.0 mmol (5 g) for the daily
Lactulose dose, respectively.
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Analysis with mass V4 16S rDNA amplicon sequencing resulted in an overview of the relative 
abundance of the different bacterial genera present in the microbiota lumen samples collected from 
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3.5. Ammonia

The cumulative (total) amount of ammonia was measured for each of the test condition as shown
in Figure 5. The mean ammonia production with the different Lactulose dosages decreased with rising
doses of Lactulose. Ammonia production for the different test conditions was 87.0 ± 27.9 mmol
(control), 68.8 ± 4.7 mmol (2 g Lactulose), 54.5 ± 5.8 mmol (3 g Lactulose), 28.3 ± 12.6 mmol
(4 g Lactulose), and 30.5 ± 5.1 mmol (5 g Lactulose).
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3.6. Microbiota Composition

Analysis with mass V4 16S rDNA amplicon sequencing resulted in an overview of the relative
abundance of the different bacterial genera present in the microbiota lumen samples collected from the
TIM-2 experiments after 120 h exposure to the different test conditions. The genus level abundance
change for the control and test conditions after 120 h in TIM-2 is shown in Table 1.
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Table 1. Relative change of bacterial genera after 120 h fermentation experiments in TIM-2 (n = 2).

Genus Relative Abundance (%) Lactulose 2 g Lactulose 3 g Lactulose 4 g Lactulose 5 g

Growth enhancement

Bifidobacterium 19.8 0.5 2.62 2.37 7.96
Lactobacillus 6.7 0.86 1.86 2.84 1.98
Blautia 6.1 1.61 1.99 1.89 1.52
unclassified_Ruminococcaceae 1.6 0.54 1.88 1.23 1.11
Collinsella 0.8 0.71 5.26 7.41 3.11
Allisonella 0.3 0.66 1.38 1.46 1.06
unclassified_Clostridiales 0.3 0.74 1.01 1.27 1.14
unclassified_Erysipelotrichaceae 0.2 12 372 352 323
Clostridium_XI 0.1 0.8 1.2 1.6 2.4
unclassified_Bacteria 0.08 0 2 2 2
Methanobrevibacter 0.07 0.31 3.13 4.46 1.05
Ruminococcus2 0.06 1.36 8.36 14.73 6.18
Anaerostipes 0.03 >6 >5.5 >37 >39.5
Butyricococcus 0.02 0 2.8 2.2 9.8
Olsenella 0.01 4.86 6 11.43 7.71
unclassified_Coriobacteriaceae 0.01 1 6 3 9

Growth reduction

Prevotella 25.9 1.35 0.95 0.84 0.25
Clostridium sensu stricto 3.9 0.14 0.33 0.62 2.05
Ruminococcus 2.7 0.18 0.11 0.03 0.03
Bacteroides 1.6 0 0.01 0.01 0.03
Weissella 1.3 0.99 0.38 0.24 1.4
Dialister 1.2 0.76 0.35 0.23 0.25
Acinetobacter 0.6 0 0 0 0
Escherichia/Shigella 0.5 0 0 0.55 2.18
Enterobacter 0.3 0.32 0.31 0.78 0.45
Peptoniphilus 0.3 0.19 0.15 0.3 0.55
Paraprevotella 0.3 0 0.09 0.1 0.4
unclassified_Enterobacteriaceae 0.2 0.58 0.12 0.62 0.16
Oscillobacter 0.2 0.12 0.05 0.04 0.21
Clostridium XIVa 0.2 0.14 0.22 0.71 0.63
Sutterella 0.2 0.09 0.32 0.53 0.28
Parabacteroides 0.1 0 0 0 0
unclassified_Prevotellaceae 0.1 0.26 0.58 0.76 0.64
Methanosphera 0.08 0.49 0.23 0.3 0.19
Succiniclasticum 0.06 0.06 0.02 0.13 0.03
Shewanella 0.06 0.15 0.31 0.92 6.62
unclassified_Clostridiales 0.05 0.03 0.23 0.03 0.56
unclassified_Firmicutes 0.05 0 0 0 0
Pseudomonas 0.04 0 0 0 0
Atopobium 0.02 0.05 0.18 0.36 0.32
Clostridium_IV 0.01 0.33 0 0 0
Alistipes 0.01 0 0 0 0
Finegoldia 0.01 0 0 0.27 2.53

No clear dose-dependent effect

Enterococcus 14.0 0.27 0.7 1.53 4.51
Faecalibacterium 5.9 1.15 0.91 1.26 0.86
Dorea 0.9 0.41 0.94 1.24 0.61
unclassified_Lachnospiraceae 0.5 0.45 0.39 1.79 0.51
Staphylococcus 0.4 n/d n/d >0.5 n/d
Streptococcus 0.3 n/d n/d >0.5 >8
Moraxella 0.3 n/d n/d n/d n/d
Anaerococcus 0.3 0.05 0.89 3.07 31.96
Roseburia 0.3 3.08 0.08 12.85 5.31
Gemmiger 0.3 0.13 0.39 2.08 0.18
Coprococcus 0.1 0.45 0.27 3.19 4.39
Halomonas 0.1 0.17 0.67 1.08 7
Corynebacterium 0.1 n/d n/d >0.5 n/d
Subdoligranulum 0.06 0.26 1.13 0.65 0
Lachnospira 0.06 1.38 0.03 0.74 1.69
Clostridium_XIVb 0.03 2 0 0.1 1.14
Catenibacterium 0.02 n/d n/d >2.5 >84
unclassified_Bacteroides 0.02 2 0 10 24
Sporobacter 0.01 n/d n/d n/d n/d
Slackia 0.01 >0.5 n/d >3 >2
Akkermansia 0.01 n/d n/d n/d n/d

The ratio between the mean of the two runs of each Lactulose dosage and the control mean was calculated. Depicted
are genera with a relative abundance of ≥0.01%. A value equal to 1 indicates no change, a value of >1 indicates an
increase, a value of <1 indicates a decrease of the microbial genera. If the respective bacterial genus was not detected
in control, but in the Lactulose groups, this is indicated with the prefix “>” in front of the value, whereas a value of
zero states that the respective bacterium was below the detection limit in the Lactulose, but not in the control group.
Bacterial genera below the detection limit in both the control and the Lactulose group are indicated with “n/d” for
“not detected”. “Growth enhancement” and “growth reduction” refers to values > or <1, respectively, in at least
3 consecutive dosages of the 4 dose groups.
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The increase in the absolute bacterial count of the two genera Bifidobacterium and Lactobacillus
is represented in form of a detailed heat map in Figure 6, in addition to the heat map for all analyzed
species (Table 2) and the diagram for phylum shifting (Figure 7).
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Figure 6. Heat map depicting fold changes of the increase in Bifidobacterium and Lactobacillus at
different Lactulose doses compared to control after the 120 h test period in TIM-2 runs. A value equal
to 1 (white) indicates no change, a value of >1 (green) indicates an increase, a value of <1 (red) indicates
a decrease of the microbial genera.

Table 2. The heatmap indicates the average relative number n of the different bacterial genera in the
microbiota in the 5 different lactulose conditions 0 g, 2 g, 3 g, 4 g, and 5 g, respectively, after 120 h of
exposure in TIM-2. The increasing reddish gradient color indicates the increase in the dominant genera
in a particular sample (n > 1000), the yellowish gradient color indicates the genera that are present at
an intermediate level (9 < n < 1000) while the increasing greenish gradient color represents the genera
that are becoming more marginally present in the microbiota (n < 10).

Genus Lactulose 0 g Lactulose 2 g Lactulose 3 g Lactulose 4 g Lactulose 5 g

Prevotella 12,069 16,305 11,493 10,138 3072
Bifidobacterium 1468 733 3842 3474 11,689
Enterococcus 272 75 191 416 1225
Lactobacillus 135 116 251 384 267
Blautia 1934 3112 3849 3654 2940
Faecalibacterium 1941 2227 1766 2448 1660
Clostridium_sensu_stricto 50 7 17 31 103
Ruminococcus 2535 457 267 80 65
Bacteroides 660 3 7 7 17
unclassified_Ruminococcaceae 581 315 1094 715 647
Weissella 40 40 15 10 56
Dialister 740 566 256 167 184
Dorea 415 169 390 515 251
Collinsella 70 50 368 519 218
Acinetobacter 1 0 0 0 0
unclassified_Lachnospiraceae 298 134 117 534 151
Escherichia/Shigella 3 0 0 2 6
Staphylococcus 0 0 0 1 0
Moraxella 0 0 0 0 0
Enterobacter 43 14 13 33 19
Anaerococcus 29 2 26 88 911
Peptoniphilus 178 35 28 54 99
Paraprevotella 43 0 4 5 17
Roseburia 7 20 1 84 35
Allisonella 53 35 73 77 56
Streptococcus 0 0 0 1 8
Gemmiger 162 21 63 338 29
unclassified_Clostridiales 128 95 129 163 147
unclassified_Enterobacteriaceae 63 36 8 39 10
Oscillibacter 286 34 15 11 60
Clostridium_XlVa 153 22 34 109 96
Sutterella 47 4 15 25 13
unclassified_Erysipelotrichaceae 1 6 186 176 162
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Table 2. Cont.

Genus Lactulose 0 g Lactulose 2 g Lactulose 3 g Lactulose 4 g Lactulose 5 g

Coprococcus 30 14 8 95 131
Parabacteroides 4 0 0 0 0
Halomonas 6 1 4 7 42
Corynebacterium 0 0 0 1 0
Clostridium_XI 1 1 2 2 3
unclassified_Prevotellaceae 69 18 41 53 44
Methanosphaera 13 7 3 4 3
unclassified_Bacteria 0 0 1 1 1
Methanobrevibacter 20 6 61 87 21
Ruminococcus2 6 8 46 81 34
Subdoligranulum 29 8 33 19 0
Lachnospira 20 27 1 15 33
Succiniclasticum 79 5 2 11 2
Shewanella 3 1 1 3 22
unclassified_Clostridia 15 1 4 1 9
unclassified_Firmicutes 3 0 0 0 0
Pseudomonas 0 0 0 0 0
Anaerostipes 0 6 6 37 40
Clostridium_XlVb 5 11 0 1 6
Butyricicoccus 3 0 7 6 25
Catenibacterium 0 0 0 3 84
unclassified_Bacteroidetes 0 1 0 3 6
Atopobium 11 1 2 4 4
Sporobacter 0 0 0 0 0
Clostridium_IV 2 1 0 0 0
Olsenella 2 9 11 20 14
unclassified_Coriobacteriaceae 1 1 3 2 5
Alistipes 0 0 0 0 0
Finegoldia 4 0 0 1 10
Slackia 0 1 0 3 2
Akkermansia 0 0 0 0 0
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Figure 7. Column diagram of the bacterial distribution in percentage at the phylum level in control
(0 g Lactulose) and different Lactulose dosages, 2 g, 3 g, 4 g and 5 g respectively. Apart from the 2 g
lactulose data, an increase is observed with respect to the phylum Actinobacteria while a decrease is
observed with respect to the phylum Bacteroidetes. The relative abundance of the Firmicutes is affected
to a lesser extent.
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4. Discussion

This study showed that low dosages of Lactulose have an effect on the gut microbiota after 5 days
of treatment in an in vitro model of the human proximal colon depicted by an increase in NaOH
consumption suggesting a decrease in pH, decreased production of ammonia and BCFA as well as an
increase in acetate, butyrate and lactate. With regard to dose-dependency, even dosages as low as 2 g
Lactulose lead to a rise in SCFA, mainly acetate, and a correlating acidification of the intestinal content.
At this dose, however, a slight decrease rather than an increase in the bifidobacteria or lactobacilli
was observed with our methods compared to the control, indicating that the rise in SCFA is based on
bacteria other than Bifidobacterium and Lactobacillus here.

An increase in the relative amount of bifidobacteria and lactobacilli started at a dose of 3 g/day
Lactulose. Moreover, at this dose, elevated levels of butyrate and a decrease in branched-chain
fatty acids was observed after five days of treatment. Similar results have been described before,
when healthy individuals treated with 3 g/day Lactulose for 2 weeks showed an enhanced growth
of Bifidobacterium, but not Lactobacillus [5]. Neither short-chain or branched-chain fatty acids nor
Anaerostipes were investigated in this trial [5].

When the TIM-2 system was inoculated with 4 g Lactulose per day, an additional increase in
lactate and a marked decrease in ammonia levels were detected. When this dose was applied for
three weeks to healthy humans, the increase in Bifidobacterium as observed with 3 g/day was again
confirmed [4]. In addition, these volunteers showed a non-significant trend to higher levels of acetate,
butyrate and lactate as well as a decrease in propionate and ammonia [4]. Anaerostipes was not analysed
in this trial.

In our study, the growth support of Bifidobacterium was most prominent at 5 g Lactulose per day,
as was the increase in acetate levels, while the other effects like increase in butyrate were comparable
to the 4 g dose. Bifidobacteria produce acetate and thus may be the basis for the high acetate levels
observed in this dose group. A dose of 5 g Lactulose per day was administered for 10 days to healthy
volunteers [4], however, neither the production of SCFA or ammonia nor the microbiota were analyzed
in this dose groups. Therefore for the time being clinical trials administering 5 g Lactulose per day to
healthy human volunteers are still missing for a comparison of these results to the in vivo situation.

In the TIM-2 system, a dose of 10 g Lactulose led to lower butyrate levels after 48 h of treatment [2],
suggesting a shift in bacteria to non-butyrate producing microbiota with accelerating dose of Lactulose.
In healthy volunteers treated with 10 g/day Lactulose for 6 weeks, an increase in fecal Bifidobacterium
was observed, while SCFA were not analyzed [3]. In another study, a higher dose of 20 g/day Lactulose
for 4 weeks indeed led to decreased fecal butyrate levels [16].

These results indicate that 5 g/day Lactulose after 5 days of treatment leads to a balanced
growth enhancement of Bifidobacterium, Lactobacillus and Anaerostipes, resulting in an increase in the
metabolites acetate, butyrate and lactate as well as higher NaOH consumption, while ammonia and
BCFA decrease. Although higher levels of butyrate and lactate as well as the decreased levels of
ammonia are comparable to the 4 g/day dose, due to the most prominent increase in Bifidobacterium
accompanied with a further increase in acetate the 5 g/day dose is considered superior to the lower
Lactulose dosages. Higher dosages of Lactulose than 5 g/day bear the risk of decreased butyrate levels
due to a one-sided increase in non-butyrate producing bacteria.

The effect of high dosages of Lactulose on butyrate levels has been the subject of recent
debate [1,2,16]. In our experimental setting 3, 4 and 5 g of Lactulose led to higher butyrate levels after
96 and 120 h. This is most probably due to an increase in butyrate producing Anaerostipes [17] at these
dosages of Lactulose. Consistent with these high butyrate levels, lactate, which can be fermented
to butyrate [18], was increased as well. In contrast, a decrease in butyrate was observed in another
study with the TIM-2 system [2]. These studies investigated a higher dosage of Lactulose (10 g/day)
for a different time period (7 days in vivo followed by 48 h in vitro or 48 h in vitro without in vivo
pre-treatment). Interestingly, the butyrate levels of healthy volunteers treated for 7 days with 10 g/day
Lactulose in this trial did not differ when analyzed directly after sampling, as did the samples from
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individuals without Lactulose pre-treatment after in vitro incubation with Lactulose for 48 h [2]. The
fecal samples of the group pre-treated with Lactulose for 7 days, however, showed decreased levels
of butyrate after 48 h in vitro incubation [2], indicating a dose and time dependency of this butyrate
reducing effect of Lactulose. This is in line with the study of Ballongue and coworkers showing that
10 g/day of Lactulose lead to a decrease in butyrate levels in healthy individuals after 4 weeks [16].
In constipated patients, however, where this dose of Lactulose is mainly administered, no decrease
in fecal butyrate levels was observed in patients treated for 4 weeks [19]. The reduction of butyrate
levels seems therefore to occur mainly in healthy individuals, but not in constipated patients. In our
study, focusing on evaluating the prebiotic effect of subclinical dosages of Lactulose, an increase and
no decrease in butyrate levels was observed after 5 days of treatment, which is corroborated by a
clinical trial investigating a low dose (4 g/day) of Lactulose for 3 weeks still leading to an increase in
butyrate levels [4]. We therefore conclude that the administration of 5 g/day Lactulose is prebiotically
beneficial in healthy individuals for up to 3 weeks, while a longer period of application will have to be
evaluated in clinical trials in the future.

In contrast to the butyrate levels the propionate production with Lactulose only showed an
increase after addition of 2 g Lactulose, while 3 and 4 g Lactulose reduced the amount of propionate.
A reduction, though not as extensive as with 3 and 4 g Lactulose, was also seen after addition of 5 g
Lactulose. As for the butyrate levels, which may be based on the higher levels of Anaerostipes, this
notion might be explained by the composition of the respective microbiota. For example, Prevotella,
a propionate producing bacterium [20] with a relative abundance of more than 25% in our study, is
slightly increased in abundance in the 2 g Lactulose groups, while the addition of 3 to 5 g Lactulose
led to decreased levels of Prevotella. The slight increase in propionate in the 5 g Lactulose group
compared to the 3 and 4 g Lactulose group might be accounted for by a strong increase in levels of
other propionate producing bacteria in this dose group, like Halomonas [21], compensating for the
propionate loss due to lower numbers of Prevotella.

Similarly, the increase in lactate, which is most prominent in the 4 and 5 g dose groups and
surprisingly less extensive in the 5 g dose group compared to the 4 g dose group on day 5, can be
explained by the composition of the microbiota. Lactate is the major product of lactic acid bacteria,
including lactobacilli, bifidobacteria, enterococci, and streptococci [22]. Some of the lactate producing
bacteria like lactobacilli slightly decreased in abundance in the 5 g group compared to the 4 g group and
could account for the slight drop in lactate levels observed in this group at the fifth day of treatment.
In addition some lactate-utilizing bacteria like Shewanella [23] or Escherichia [24] increased in the 5 g
group and could contribute to this phenomenon.

BCFA are the product of protein degradation by proteolytic bacteria [25]. Relative abundance
of such bacteria like Bacteroides is reduced after administration of Lactulose, a notion which might
account for the lower levels of BCFA in the Lactulose groups.

In addition to healthy volunteers and constipated patients both benefiting from the prebiotic
effect of Lactulose, this compound is also administered to patients with hepatic encephalopathy.
The rationale for the treatment is the reduction of intestinal absorbable ammonia levels in order to
decrease the total ammonia burden in these patients. Control of ammonia levels, is, however, also
important for healthy individuals, as excess ammonia has been shown to change the morphology and
metabolism of intestinal cells and reduce their lifespan [26]. In our study, the reduction of intestinal
ammonia load was most prominent at dosages of 4 or 5 g Lactulose after 72, 96, and 120 h. In another
experiment using the TIM-2 system, 7.5 g Lactulose for 3 days led to the lower ammonia levels
(36 mmol) compared to apple fiber (65 mmol), sugar beet pectin (74 mmol) or galacto-oligosaccharides
(44 mmol) in the stool of lean subjects [1]. These values are comparable to those observed in our
study after 120 h with 4 or 5 g Lactulose, indicating that at least in the TIM-2 system an increase in
Lactulose above 4 g/day does not lead to further improvement of the ammonia levels. In human
healthy volunteers a daily dose of 3 g Lactulose for 14 days did not lead to significant improvement of
total fecal ammonia [5]. This study, however, did not use the determination of a shift from urinary
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to fecal 15N-excretion, the current state of the art method [27]. Such a shift was observed in healthy
individuals treated with a daily dose of 20 g Lactulose for 4 weeks [28], but lower dosages have not
yet been investigated. Thus, the ammonia lowering effect of a lower dose of Lactulose like 4 or 5 g
remains to be determined in a clinical trial.

In conclusion, the results of this study clearly demonstrate a dose-dependent increasing positive
effect of 2 to 5 g Lactulose on the intestinal flora and its metabolic activity. Starting with elevated levels
of SCFA at low dosages (2 to 3 g), Lactulose further expands its beneficial impact on microbial
composition and metabolism at higher dosages (4 up to 5 g). According to this experimental
setting a dose of 5 g Lactulose per day is supposed to exert beneficial clinical effects like increase in
Bifidobacterium, Lactobacillus, Anaerostipes, butyrate, acetate and lactate after 5 days of treatment. These
results remain to be confirmed in a human study with healthy volunteers.
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