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Abstract 

Background: The introduction of whole new foods in a population may lead to sensitization and food allergy. This 
constitutes a potential public health problem and a challenge to risk assessors and managers as the existing under‑
standing of the pathophysiological processes and the currently available biological tools for prediction of the risk for 
food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and 
in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events 
have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to chal‑
lenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic under‑
standing of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP).

Main body: The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms 
and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical 
skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respira‑
tory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell–cell interac‑
tions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in 
testing and assessment of proteins for their sensitizing potential.

Conclusion: The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made 
it possible to identify a number of methods, each addressing a specific KE, that provide information about the food 
allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may 
reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org 
platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations 
(KERs), and allow for the identification of new, or refinement of established KE and KERs.
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Background
Consumers are exposed to increasing numbers of novel 
proteins or protein-containing products (e.g. insect burg-
ers or proteins derived from bacteria grown on waste 
streams). These sustainable protein-rich food products 
are to solve the food insecurity problem but require a 
comprehensive risk assessment complying with the Euro-
pean ‘Novel Food’ law. Additional knowledge and biolog-
ical tools are needed to support the prediction of the risk 
for food allergy development and the potential severity of 
the reaction [1, 2]. This constitutes a major public health 
problem and a challenge to risk assessors and managers 
[3, 4].

Like other allergies, food allergy has a non-sympto-
matic sensitization phase and a symptomatic elicitation 
phase. Food-associated adverse reactions can be immu-
noglobulin E (IgE) mediated, non-IgE mediated or both 
[5]. This paper focusses on the current understanding of 
the cellular and molecular mechanisms driving sensitiza-
tion induction resulting in IgE-mediated allergy.

The mode of action (MOA) of sensitization and IgE 
mediated allergy to food proteins in predisposed individ-
uals is poorly understood [6]. It is recognized that food 
processing, oral uptake and digestion affect the charac-
teristics of food and food proteins [7]. Thus, acquiring a 
good understanding of the MOA requires well-character-
ized food and food protein samples for in vivo challenges 
in animals or preferentially humans. Such samples are 
now made available by the INFOGEST Cost Action [8].

There is a substantial body of in vivo and in vitro data 
describing molecular and cellular events potentially 
involved in food sensitization. However, these events 
have not been organized in a sequence of related events 
that is plausible to result in sensitization, and useful 
to challenge current hypotheses [9, 10]. The aim of this 
paper is to collect and structure the current mechanistic 
understanding of sensitization induction to food proteins 
by applying the concept of adverse outcome pathway 
(AOP).

Main text
AOPs for food sensitization: a proposal
The AOP concept is a framework for collecting and 
organizing information relevant to an adverse outcome 
at different levels of biological organization. It is believed 
that AOPs based on available information on substance–
response and response–response relationships allow 
the development of relevant predictive animal-free test 
methods and approaches, as well as the contextualiza-
tion of the results across a diverse range of biological 
mechanisms and toxicity endpoints. The Organisation for 
Economic Cooperation and Development (OECD) pro-
vides an international hub for constructing, reviewing, 

and using AOPs with the help of a suite of tools compris-
ing the AOP knowledge base, including the AOP Wiki 
(www.aopwiki.org). This AOP Wiki provides a collabora-
tive platform for constructing AOPs and can be used by 
groups that have a proposal for an AOP [11].

This manuscript proposes an AOP for food sensitiza-
tion (Fig. 1). The information on mechanisms and path-
ways evidenced to be involved in sensitization by food 
and food proteins is structured using the AOP for chemi-
cal skin sensitization [12] and respiratory sensitization 
[13] induction as templates. Available mechanistic data 
on protein respiratory sensitization [14] were considered 
to fill out gaps in the understanding of how proteins may 
affect cells, cell–cell interactions and tissue homeostasis. 
Figure 1 depicts a proposal for the AOP of food sensiti-
zation including all key events and cellular players with 
substantial (solid lines) or circumstantial (dashed lines) 
evidence for a role in the sensitization induction to food 
proteins. In this review, the successive sections describe 
events following the common structure of an AOP con-
sisting of a molecular initiating events (MIE) and a series 
of key events (KEs) that eventually lead to the occurrence 
of clinical symptoms upon repeated exposure in the elici-
tation phase.

Molecular processes in the AOP for food sensitization
Bioavailability: protein and protein fragments acquire access 
to the relevant immune cells
Acquiring access to the underlying immune system via the 
gastrointestinal tract The multiple facets of intestinal 
permeability and epithelial handling of dietary antigens 
were previously reviewed [15]. The following sections 
intend to capture the current understanding of the role of 
transport in sensitization induction as schematically out-
lined in Fig. 2.

Impairment of tight junctions may be implicated in 
sensitization induction. Paracellular transport is mainly 
determined by pore size in tight junction and only con-
cerns molecules of MW  <  600  Da [16, 17]. Proteins 
that are transported via this paracellular route are not 
exposed to lysosomes in the enterocyte and therefore are 
not degraded [18, 19]. Passage of intact protein may allow 
sensitization of immune cells in the subepithelial com-
partment (Fig. 2a).

Several in  vitro studies suggest that gluten (gliadin), 
kiwi (Act d 1) and peanut (Ara h 2) allergens facilitate 
absorption by modulating tight junctions [20–23]. Act d 
1, in analogy with house dust mite (HDM) Der p 1 [24], 
may cause a protease-dependent disruption of the tight 
junctions of the epithelial cell (EC) layer (Fig. 2a) For Ara 
h 2 the effect on the tight junctions and barrier integrity 
appears to involve endocytosis and downregulation of the 
zink finger protein A20, a crucial gatekeeper preserving 

http://www.aopwiki.org
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tissue homeostasis with ubiquitin-regulatory activities 
[21].

Among various intestinal innate immune cells, mast 
cells (MCs) play critical roles in maintaining gut immune 
homeostasis. Studies on sensitized individuals revealed 
that the integrity of the tight junctions is decreased 
by mast cell-derived mediators like tryptase and IL-4 
[25–30]. In murine models, the importance of MCs for 
the development of food allergies has also been clearly 
shown. Mice presensitized with alum and OVA develop 
allergic diarrhoea after oral OVA inoculation [31]. Inhibi-
tors of serotonin and histamine as well as depletion 
of MCs by an anti-c-kit monoclonal antibody reduce 
the occurrence of allergic diarrhoea. Therefore, MCs 
as well as serotonin and histamine derived from them 
are involved in the allergic diarrhoea in this model [31]. 
These murine and human data clearly show the impor-
tance of MCs in the gut homeostasis and the effect of MC 
activity by allergens resulting in inflammatory responses 
in mucosal compartments [32]. However, in the context 

of food allergy, the importance of MCs has only been 
described in already sensitized animals/individuals. 
To date there is no data available supporting the role of 
mast cells in sensitization induction to food proteins as 
depicted in Fig. 2b.

 Transcellular transport mechanisms provide intact 
protein with free passage to the sub-epithelial compart-
ment. Transcellular transport of proteins and peptides 
can occur via different mechanisms as illustrated in 
Fig. 2a, b. Most dietary proteins or peptides are absorbed 
actively by ECs in non-sensitised persons by endocytosis 
at the apical membrane and undergo transcytosis toward 
the lamina propria (LP). An estimate of 70–90% of the 
transported protein is degraded by intracellular enzymes 
into amino acids and peptides [33, 34].

In vitro studies showed that intact soybean allergen P34 
and bovine β-lactoglobulin cross the epithelial barrier by 
transcytosis, while tryptic fragments of β-lactoglobulin 
followed para- and transcellular routes [35, 36]. Thus, 
protein resisting proteolysis in the gastrointestinal tract 

Fig. 1 A tentative MOA including an AOP describing the mechanistic events driving food sensitization induction. Solid boxes and arrows represent 
events and relationships with substantial evidence for a role in sensitization induction to food proteins. Dashed boxes and dashed arrows represent 
events, organs cellular components or relationships with circumstantial evidence for a role in the AOP. Ag antigen, GI gastro‑intestinal, ILC innate 
lymphoid cells, mφ macrophages, NKT natural killer cells, IEL intraepithelial lymphocytes. *Outside the scope of this manuscript
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is transported intact through the intestinal epithelial bar-
rier, and may enhance the risk for sensitisation induction.

In sensitized persons,  Th2 or innate lymphoid cells 
(ILC)-2-derived IL-13 with other inflammatory media-
tors (e.g. IFN-γ, TNF-α and IL1-β) stimulate transport 
via the CD23 receptor, which is overexpressed by entero-
cytes in sensitised persons. Antigen-IgE complexes are 
transcellularly transported by the CD23 receptor [18]. A 
role for CD23-mediated transport in sensitization induc-
tion must still be documented.

In other studies, receptor-mediated transcellular 
transport via the CD23 receptor appears to protect pro-
teins from lysosomal degradation [18, 19], however as 
explained above, CD23-mediated transport has only 
been described in already sensitized individuals.

M cells transport protein directly to the underlying 
immune cells. M cells are specialized ECs covering the 
Peyer’s, caecal and colonic patches. These cells deliver 
intact proteins and particles directly to the gut associ-
ated lymphoid tissues (GALT), and therefore may play an 

Fig. 2 Molecular initiating events (MIE) that initiate food sensitization. a Food allergen interaction with mucosal surfaces of the gut intestine may 
result in disruption of tight junctions, receptor mediated or unspecific transcellular transport of food allergens across the gut epithelium. These 
events can be the initiating events that results in the activation of epithelial and innate cells such as dendritic cells. b Mechanisms and cells involved 
in intestinal protein transport in non‑sensitized individuals. Solid boxes represent events with substantial evidence of being involved in food protein 
transport. Dashed boxes represent events that are possibly involved in food protein transport. Crosses indicate events and cell types of which there is 
no indication that they play a role in the transport of food proteins across the gut barrier in non‑sensitized individuals
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important role in the regulation of immunological reac-
tions to dietary antigens [37, 38].

The current perception is that particulate or aggre-
gated antigens are taken up by M cells, resulting in 
antigen-specific local or systemic immune responses 
[39, 40]. This perception is supported by a study in mice 
showing that pasteurization shifted the transport of 
soluble β-lactoglobulin and α-lactalbumin from tran-
scytosis through enterocytes to transport of protein 
aggregates by M cells to the Peyer’s patches, and higher 
IgE and cytokine (IL-5, IL-13, IFN-γ, IL-10) levels [41]. 
However, another study demonstrating the presence 
of soluble protein as well as protein bodies of digested 
peanut in the cytoplasm of M cells within intestinal 
Peyer’s patches in BALB/c mice [42] suggests that addi-
tional factors may contribute to the induction of adverse 
responses.

Monocytes and DCs sample protein directly from in 
the gut lumen. Both cells can sample the gut lumen using 
their pseudopodia. Tight junctions are opened and after 
sampling new tight junctional complexes between adja-
cent ECs are formed. Luminal sampling is upregulated 
in inflammatory conditions [43, 44]. However, informa-
tion is lacking whether protein transport occurs via these 
cells.

The role of goblet cells in protein up-take and sensiti-
zation induction seems limited. In healthy human ileum 
and jejunum goblet cells can transport small peptides 
(10  kDa) and particles across the intestinal wall [45]. A 
role for these cells in uptake of food proteins has not yet 
been documented, nor their role in sensitization induc-
tion to food proteins.

Acquiring access to  the underlying immune system 
after cutaneous and respiratory exposure There is grow-
ing evidence ascribing food proteins the capacity to 
induce sensitization when contacting the skin, and poten-
tially the respiratory tract. How these proteins acquire 
access to the cutaneous immune cells that drive sensitiza-
tion of the gastrointestinal tract is not sufficiently under-
stood yet. In contrast, the mechanistic understanding of 
protein-induced sensitization of the respiratory tract is 
growing [14].

Evidence for gastrointestinal tract sensitization follow-
ing cutaneous exposure exists. Mice exposed via differ-
ent routes (intragastrically, cutaneously, intranasally or 
sublingually) to α-lactalbumin in the presence of cholera 
toxin were all sensitized, however sensitization via the 
skin resulted in the highest IgE levels [46]. Supporting 
evidence emerged from studies using hazelnut protein 
[47] and ovalbumin [48] as model proteins. In each case, 
oral as well as intragastric challenge led to anaphylactic 
symptoms after skin sensitization.

Even though human skin appears to be less penetrable 
than murine skin, epidemiological studies in human pop-
ulations seem to confirm the skin as a relevant route for 
food sensitization induction and allergy in man.

High cutaneous exposure to peanut increases the 
risk of peanut allergy in human [49]. The use of pea-
nut-protein containing skin creams was found to cor-
relate with peanut allergy in children. These creams 
were mostly used to relieve eczema, i.e. damaged skin 
with increased permeability for e.g. proteins [50]. The 
importance of the quality of the skin barrier was dem-
onstrated by the impact of filaggrin mutation/expression 
on human skin integrity and permeability, and its corre-
lation with increased incidence of sensitization [51]. In 
Japan, at least 1800 individuals were sensitized following 
application of a facial soap containing hydrolysed wheat 
proteins (HWP). An epidemiological relationship was 
documented between wheat allergy and contact expo-
sure to HWP in Japanese women [52]. Cutaneous sensi-
tization to latex correlates with allergic symptoms upon 
ingestion of cross-reacting foods e.g. avocado, banana 
and kiwi. However, it cannot be excluded that oral expo-
sure to these foods may lead to allergic reactions to cuta-
neous latex exposure [53].

Against the evidence in favor of the skin being a route 
for sensitization to food and food proteins stand data 
from studies in mice and humans showing that desen-
sitization can be achieved to food and aero-allergens by 
applying antigen cutaneously [46].

Evidence for gastrointestinal tract sensitization follow-
ing respiratory exposureis more ambiguous. The contri-
bution of the respiratory tract to sensitization induction 
of the gastrointestinal tract is less clear, despite a grow-
ing understanding of how proteins may acquire access to 
immune cells and trigger inflammation [14].

Dunkin et al. [46] presented data suggesting that mice 
are sensitized by exposure of the respiratory tract to 
α-lactalbumin in the presence of cholera toxin. However, 
respiratory sensitization was less effective than cutane-
ous sensitization as judged from the IgE levels induced by 
subsequent oral challenges.

In humans, the second most significant risk factor 
associated with life-threatening asthma is a history of an 
asthma attack precipitated by food. A clear link between 
the pathophysiology of food and respiratory allergy is 
not yet established, but two hypotheses are currently 
pursued: (i) effector cells resulting from gastral sensiti-
zation populate the respiratory tract; (ii) chronic inhala-
tion of food particles results in direct sensitization of the 
respiratory tract [54]. These hypotheses are not mutually 
exclusive. The oral allergy syndrome is currently believed 
to result from respiratory sensitization to pollen (e.g. Bet 
v 1 protein) in conjunction with oral exposure to apple 
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or carrot, containing cross-reactive Bet v 1 homologues. 
However, it cannot be excluded that oral ingestion of 
apple or carrot, results in sensitization and subsequent 
cross-reactivity to inhaled pollen [55]. There is also evi-
dence suggesting that respiratory sensitization to food 
proteins not necessarily develops into food allergy. 
Indeed, to it has been reported that bakers with occu-
pational asthma following exposure to wheat flower can 
safely consume wheat products [56].

The molecular initiation event (MIE): lessons learned 
from respiratory sensitization
The innate immune system is an evolutionary conserved 
system equipped with a range of pattern recognition 
receptors (PRRs) with specificity for pathogen-associated 
molecular patterns (PAMPs) on microorganisms, para-
sites and fungi, and danger-associated molecular patterns 
(DAMPs). These interactions trigger an inflammatory 
response driving an adaptive immune response [57].

The molecular basis for the propensity of specific pro-
teins to induce sensitization and subsequent allergic 
responses is still poorly defined. Studies addressing sen-
sitization of the respiratory tract revealed that the ability 
of proteins to trigger sensitization and allergy is a func-
tion of their ability to interact with pathways of innate 
immune recognition and activation at mucosal surfaces. 
Potential MIEs relate to proteolytic activity, engagement 
of PRRs, molecular mimicry of Toll-like receptor (TLR) 
signalling complex molecules, lipid binding activity, and 
oxidant potential [14].

The relevance of these pathways for food sensitization 
induction in general remains to be fully established. The 
current understanding of the mechanisms applied by 
food and food proteins (e.g. gluten, kiwi, peanut aller-
gens) suggest that interaction with tight junctions may 
represent a MIE (MIE-1). Receptor-mediated transcel-
lular transport via e.g. the CD23 receptor may be an 
alternative route (MIE-2) although its relevance for sen-
sitization induction is not fully established. Endocytosis 
by either ECs or M cells may be a less well defined MIE 
(MIE-3) resulting in regulation of gene expression and 
disturbance of tissue homeostasis or induction of inflam-
mation by direct contact of the potential allergen (e.g. 
peanut allergens) with antigen presenting cells (APC)s.

Animal experimentation has clearly presented evidence 
that matrix components are relevant in the sensitisation 
process. For instance, Van Wijk et al. [58] showed that, in the 
popliteal lymph node assay in C3H/HeOuJ-mice, purified 
peanut allergens were unable to induce immune activation, 
opposed to immunisation with whole peanut extract. In line 
with this, Wavrin et  al. [59] demonstrated a much higher 
Th2-like response to whole milk in BALB/cJ mice, than to 
purified β-lactoglobulin. Matrix-derived (poly-)saccharides 

are involved, via heat-induced glycation, in sensitisation for 
peanut allergen in BALB/c-mice [60]. Heat-induced glyca-
tion of ovalbumin led to the induction of a Th2-skewing 
milieu in a human DC/T cell co-culture model, in which a 
role for the mannose receptor is suggested [61].

Similarly, c-type lectins receptors (CLRs) have been 
highlighted as important factors in initiating and modu-
lation allergic responses [62]. For example, Dectin-1 rec-
ognizes β-glucans, a carbohydrate present in cells walls 
of many, if not all fungal species, and thereby promotes 
lung immunopathology during fungal allergy [63]. Dec-
tin-1 has also been shown to limit gut mucosal inflam-
mation induced by fungi [64]. In HDM allergy, Dectin-2 
can recognize HDM and induce the release of cysteinyl 
leukotriene, which is, as well as IL-33, essential for the 
initiation of airway inflammation and promotion of sub-
sequent Th2 immunity in response to HDM [65, 66]. In 
murine models, Dectin-2 is involved in the development 
of HDM-allergy during both the sensitization and chal-
lenge stages [66, 67]. Likewise, the mannose receptor has 
been shown to act on human DCs as receptor for HDM 
(Der p 1 and Der p 2), cockroach (Bla g 2), dog (Can f 1) 
and peanut (Ara h 1) and shown in mice to play a cru-
cial role in Th2 cell polarization (reviewed by [62]). Sev-
eral DC-SIGN—binding glycoproteins were identified in 
common allergenic foods at the difference of food that 
less frequently induce allergy [68]. Also lipids are claimed 
to be involved in the sensitization process [69]. Recently, 
an adjuvant role for the peanut allergen Ara h 1 in sensiti-
sation for Ara h 6 was suggested [70].

Details on the molecular mechanisms of the adjuvant 
effects that can be exerted by matrix components are 
mostly still lacking, but this does not preclude their rel-
evance and importance. Additional knowledge into the 
identification of such matrix components is required and 
will help to develop tools to incorporate such adjuvancy 
into model systems. Specific PRRs, such as the mannose 
receptor, appear to be involved and (co-)activation of e.g. 
other CLRs, TLRs or G-protein coupled receptors may 
turn out to be involved.

Key events (KE): cellular ‘innate’ events at epithelial (KE 1) 
and DC (KE 2 and 3) level—setting the scene for inflammation
The intestinal epithelium is a cell monolayer (with diverse 
cells: enterocytes, Goblet cells, Paneth cells, endocrine 
cells, M cells) between the lumen and the immune com-
partment with inductive Peyer’s and colonic patches, 
draining mesenteric lymph nodes (MLN) and the scat-
tered immune cells in the LP [71]. The role of intestinal 
epithelium in allergic sensitization induction is recog-
nized but the mechanistic understanding of the processes 
involved is limited when compared to skin and respira-
tory sensitization.
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KE 1: Sensitizer‑related inflammatory responses at epithe‑
lial level It is widely accepted that sensitization involves 
factors from gut epithelium which are activated during 
cellular stress. Such factors include radical oxygen spe-
cies (ROS), Th2 driving mediators (e.g. IL-1, IL-18, IL-25, 
IL-33, TSLP) and mucus. There is limited availability of 
mechanistic data on pathways driving the allergic sensi-
tization via the intestinal mucosa, however, much can be 
learned from pathways involved in skin and lung sensiti-
zation.

The role of ROS in allergen-induced skin sensitization 
was reviewed [72]. Evidence for a role of ROS in respira-
tory sensitization induction is provided by allergens with 
proteolytic activity (e.g. HDM allergen Der p 1). There 
is evidence that cysteine proteases may induce stress 
and elevated ROS levels e.g. through cleavage and acti-
vation of the Protease-Activated Receptor (PAR) 2 [24], 
and inactivation of lung surfactant proteins (e.g. SP-A, 
SP-D). Consequently, tight junction proteins (e.g. ZO-1 
and occluding) become accessible for protease activity, 
leading to increased transepithelial access of allergens to 
immune cells [73, 74]. If and how this information can be 
translated to gastrointestinal tract is not yet clear, but it is 
clear that its epithelial lining is used to deal with protease 
activity involved in digestion.

ROS activation is also implicated in the sensitization 
to pollen allergens exerting [NAD(P)H] oxidase activ-
ity, an enzyme activity also found in mitochondria and 
driving intracellular ROS production [75]. Endocytosis 
of this pollen-derived enzyme increases ROS produc-
tion and results in degradation of endogenous hyaluronic 
acid (HA), and TLR2 and TLR4 activation. This may be of 
relevance as a variety of studies implicate MyD88-medi-
ated TLR2 and TLR4 signalling in the induction of  Th2 
immune responses leading to allergic respiratory inflam-
mation and promotion of  Th17 responses [14, 76].

ROS production may be induced directly via TLR acti-
vation. The HDM allergen Der p 2 reveals sequential 
homology to the MD-2-related lipid-recognition (ML) 
domain family, which is a well-characterized member of 
the TLR4 signalling complex. There is compelling evi-
dence demonstrating that Der p 2 exhibits the same func-
tion as ML. Thus, the intrinsic adjuvant activity of MD-2 
homologous allergens and their lipid cargo is likely to 
have wide generality as a mechanism underlying sensiti-
zation induction [77].

Activation of TLR requires phosphorylation by c-Src 
signals and activation of phosphoinositide 3-kinase and 
phospholipase C γ for activating NF-κB and chemokine 
expression leading to lymphocyte recruitment to the 
lung and increase in mucus production. Subsequently, 
 Ca2+-dependent proteases cleave the transmembrane 
proteins occludin and e-cadherin on ECs promoting 

transmigration of leukocytes [78]. NFкB activation is 
causally related to increased release by ECs of IL-33, 
IL-25 and TSLP, endogenous danger factors (e.g. high-
mobility group box-1 (HMGB-1), uric acid and ATP, DC 
activation and migration, and the induction of ovalbumin 
and Der p 2 sensitization [79]. The release of ATP and 
uric acid drives the activation of the NLRP3 inflammas-
ome complex resulting in cleavage of pro-IL-1β to mature 
IL-1β through caspase 1. IL-1β creates a pro-inflamma-
tory micro-environment with the production of IL-6 and 
chemokines that mobilize neutrophils and enhance  Th17 
cell differentiation [80]. Uric acid may play an important 
role in  Th2 skewing [81].

The limited mechanistic data suggest that similar 
TLR-dependent and -independent pathways may drive 
allergic sensitization via the intestinal mucosa. Epithe-
lium-derived factors (IL-33, TSLP, IL-25) identified in 
studies focusing on HDM-induced sensitization were 
observed during\ intestinal peanut sensitization in mice, 
of which it was shown that IL-33 is important for OX40L 
expression on DC and the development of peanut allergy 
(see KE 2) [82]. Furthermore, α-amylase inhibitor from 
cereals activates TLR4 mediated processes [83]. Kong 
et  al. demonstrated that uric acid is a critical signal for 
the induction of peanut allergy [84].

KE 2: Sensitizer‑related inflammatory responses at  DC 
level PRR, TLR and ROS signalling pathways are also 
active in endothelial cells, macrophages, fibroblasts as well 
as DCs. These cell types may therefore contribute to the 
induction of inflammation and sensitization by employing 
the same mechanisms as described for ECs.

In vitro data revealed that the allergen Pru p 3, but not 
the non-allergenic LPT 1 variant, crosses the epithe-
lial barrier and induces production of the  Th2 skewing 
cytokines TSLP, IL-25, and IL-33. In addition, Pru p 3, 
but not LPT 1, triggered the expression of inflammatory 
cytokines such as IL1β, IL6, and IL10 in a co-culture of 
Caco-2 cells and human peripheral blood mononuclear 
cells. The highest induction was observed for IL1β, which 
is related to a  Th2 response and antibody production [85, 
86].

The importance of EC-derived IL-33 for in  vivo DC 
activation was demonstrated using a murine model for 
intragastric induced peanut allergy. It was observed that 
peanut administered in the presence of cholera toxin 
increased the expression of OX40L, a co-signaling mol-
ecule required for proper T cell activation [82]. In IL-33 
receptor knock out mice this increase was not observed. 
TSLP and IL-25 protein levels were increased in duo-
denal tissue of peanut allergic mice, but TSLP or IL-25 
receptor (IL-17-RB) knock out (KO) mice revealed no 
driving role for IL-25 or TSLP in peanut sensitization. 
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These data show that IL-33 is sufficient for the observed 
increase in OX40L expression, expansion of ILCs and the 
development of peanut allergy [82].

DCs, among other cells, can sample food protein 
directly from the gut lumen using pseudopodia. Alterna-
tively, they can come in direct contact with intact protein 
after paracellular or transcellular transport through the 
ECs, or by M cell mediated transport. Driven by micro-
environment changes and contact with the protein, DCs 
upregulate the expression of MHC II, costimulatory mol-
ecules such as CD54, CD80, and CD86, and receptors 
that are essential for migration (e.g. CCR7) [87].

While proteins are recognized to drive the activation of 
DCs in an inflammatory context, the observed suppres-
sion of LPS-induced IL-12 production suggest that HDM 
and peanut allergens may be capable of suppressing  Th1 
driving DC responses [82].

Eosinophils constitute about 20% of the leukocytes 
in the LP and appear to be required for the induction 
of CCR7 and CD86 expression on  CD103+DC. Hence 
eosinophils may contribute to activation and instructed 
migration of DCs from the LP to the MLN [88, 89]. Upon 
eosinophil depletion  Th2 priming and induction of pea-
nut allergy was abolished in an IL-4 independent fashion 
[89]. While supporting data were presented, these data 
need to be further substantiated to strengthen the case 
for eosinophils playing a key role in the induction of food 
sensitization.

KE 3: Dendritic cell and macrophage migration: translating 
innate responses into specific T and B cell responses
DCs and macrophages are the major APCs in the intes-
tine, and play both a role in the induction of immune 
responses. However, only DCs determine the balance 
between tolerance and sensitization guided by local 
intestinal co-players e.g. ECs and ILCs. These co-players 
stimulate the expression of chemokine receptors facilitat-
ing sampling of antigens from the lumen (e.g. CX3CR1) 
and migration (e.g. CCR7, CXCR4) of  CD103+DC from 
the epithelial lining or in Peyer’s patches to draining 
lymph nodes [71].

Intestinal DCs and macrophages, as well as of indi-
vidual intestinal DC subsets are poorly defined. In 
the murine intestine, CD103, CD11b, and CX3CR1 
expression identifies three major populations of 
 CD11c+MHCII+ DCs.  CD103+CD11b+CX3CR1− and 
 CD103+CD11b−CX3CR1− DCs arise from a non-
monocytic origin and are considered classical DCs. They 
express CCR7 and migrate to MLN under steady-state 
and inflammatory conditions where they affect T cell 
homeostasis.  CD103−CD11b+CX3CR-1+/int DCs arise 
from monocytes and resemble macrophages despite lack-
ing F4/80 or CD64 [90, 91]. They do not express CCR7 

in the steady state and their ability to migrate to MLN 
remains controversial. Mice treated with cytokine Fms-
related tyrosine kinase 3 ligand (Flt3L), a hematopoietic 
growth factor, increase the numbers of these DC sub-
sets and a plasmacytoid  CD11c+B220+mPDCA+ subset 
(pDC). The increase correlates with a decrease in IgE 
response to peanut extract and is reversed by depletion of 
pDC using e.g. monoclonal antibody 120G8. Thus, pDCs 
may control food allergic responses and possibly toler-
ance development [92].

Under basal conditions,  CD103+CCR7+ DCs are 
known to instruct oral tolerance via the induction of 
 Treg in the MLN. However, CCR7 KO mice lacking 
 CD103+MHCII+CD86+ migratory DCs in the MLN do 
not develop sensitization and allergy after intragastric 
exposure to peanut, suggesting this subset may instruct 
immunity [84, 93–98].

Macrophages may also play a role in food allergic 
reactions [99], either by exhibiting regulatory or pro-
inflammatory processes [100, 101]. To date compre-
hensive investigations deciphering the precise role of 
macrophages in food allergy is lacking.

KE 4 and 5: Organ responses: initiation and amplification 
of specific responses
KE 4: T cell priming, proliferation and  polariza‑
tion Molecular profiling of human T cell pathways indi-
cate that the signal supplied by the T cell receptor (TCR) 
(Fig. 3, event 1) only participates in the development of 
the  Th1 cell phenotype, whereas formation of the  Th2 
phenotype depends on the CD28 signalling, even in the 
absence of specific TCR activation [102] (Fig. 3, events 2). 
Stimulation of CD28 activates NF-κB signalling and the 
expression of GATA3, a signal favouring  Th2 differentia-
tion [103] (Fig. 3, event 3).

In the process of  Th1/Th2 polarization also CTLA-4 
(CD152) appears important. CTLA-4 mediated dephos-
phorylation of ‘linker for activation of T cells’ (LAT) 
results in TCR signal inhibition, decreased GATA3 
expression, and inhibition of CD28 mediated  Th2 dif-
ferentiation [104, 105] (Fig.  3). During sensitization, 
both CD28 and CTLA-4 molecules may interact with 
either CD80 or CD86 on the surface of APCs [106, 107] 
(Fig. 3, events 2). Following exposure to an allergen CD86 
expression increases faster than for CD80, suggesting 
that CD86 is required for initiating the immune response, 
whereas CD80 has a more regulatory function [106]. 
Kuchroo et  al. [108] showed that CD28–CD86 interac-
tion relates to  Th2 cell responses, whereas CD28–CD80 
interaction favours  Th1 cells responses. Thus, compounds 
(e.g. allergens) affecting the kinetics of CD86 and CD80 
expression on APCs and CD28 and CTLA-4 expression 
on T cells, may favour a  Th2 response.
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The abundance of GATA3 in  Th2 cells (Fig. 3, event 3) 
triggered the hypothesized that naïve  CD4+T cells are 
“naturally” programmed for switching into  Th2 cells and 
that  Th2 cell differentiation is repressed by T-bet dur-
ing  Th1 cell differentiation in healthy individuals [109] 
(Fig. 3, event 4). The importance of GATA3 for the  Th2 
cell phenotype is well established [110]. It promotes the 
IL-4/IL-5/IL-13 gene translation (Fig. 3, event 5) by reg-
ulating methylation of histones which grants access for 
transcription factors (e.g. c-Maf) that activate IL-4 gene 
expression. GATA3 also binds specific DNA sites con-
trolling activation (e.g. IL-5 and IL-13) or inhibition (e.g. 
T-bet, IFN-γ and IL-12Rβ2) of cytokine expression [110, 
111].

IL-2 from activated  CD4+T cell plays a crucial role in 
the  Th2 cell polarization [112] (Fig. 3, event 6). Activa-
tion of the IL-2 signalling via STAT5 results in an early 
and IL-4-independent induction of the IL-4Rα subu-
nit with formation of a functional IL-4 type I receptor, 
the signalling pathway for IL-4 [113]. IL-2/STAT5 may 
also participate in the early initiation of the IL-4 gene 
expression [114]. The mechanisms driving the estab-
lishment of IL-4 signalling by activated  CD4+T cells 
resembles OX40L/OX40 signalling [115]. OX40 (CD134) 

expression is induced on the surface of naïve T cells 
hours after exposure to antigen [116]. Allergen-induced 
 Th2 polarization requires only endogenous IL-4 and 
is controlled by the OX40L/OX40 signalling pathway 
[115]. OX40 signalling sustains TCR, CD28 and IL-2R 
expression [116].

The contribution of TSLP, IL-25 and IL-33 to  Th2 
polarization is recognized in a murine asthma model. 
Influence of TSLP on the  Th2 response development is 
indirect and occurs by inhibiting IL-12 secretion and by 
inducing OX40L co-signalling in DCs. The presence of 
IL-25R and IL-33R on  CD4+T cells suggests that IL-25 
and IL-33 exert a direct effect on these cells. In  vitro 
IL-25 promotes  Th2 differentiation and IL-4 expression 
through NFATc1 and IL-4/STAT6-dependent mecha-
nisms [117]. This observation was not confirmed by a 
murine model for HDM allergy [82]. Epithelial IL-33 
affects OX40L expression by DCs and activates signalling 
pathways that are relevant for the  Th2 polarization (e.g. 
ERK, MAPKs and NF-κB) via IL-33R. Abolishing IL-33 
signalling in allergic mice decreased the production of 
specific IgE with 50% [82, 118]. However, whether IL-33 
is inducing or maintaining a  Th2 phenotype cytokine 
remains to be clarified.
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Activation and differentiation of naïve  CD4+T cells 
may be under hormonal and metabolic control. A key 
event for both immune and metabolic signalling is mTOR 
protein kinase (PK) activity. A HDM/OVA mouse model 
for asthma showed that mTORC1 activity relates to  Th1 
and  Th17, while mTORC2 relates to  Th2 differentiation 
[119]. A role of mTOR PK, if any, in sensitization seems 
plausible. Inhibition of mTOR PK prevents activation 
of STATs and T-bet expression, known to be involved 
in sensitization, and drives  iTreg cell differentiation by 
blocking polarization signals even in the presence of the 
 Th1 and  Th2 polarization cytokines. A leptin-dependent 
increase of the mTOR signalling is one of the causes of 
 iTreg cell developmental disturbances resulting in food 
allergies [119, 120].

KE 5: B cell activation and  class switching Synthesis 
of specific IgE requires two different levels of qualita-
tive changes in the DNA of immunoglobulin (Ig) genes. 

Somatic hypermutation (SHM) in the variable regions 
of heavy and light chain leads to changes in the affinity 
to antigen. Direct or sequential Ig class-switch recom-
bination (CSR) constitutes strictly controlled intrachro-
mosomal DNA fragment deletion (class segments) in 
the constant region of heavy chain (IGH) locus [121]. 
In atopic dermatitis patients the CSR for IgE antibodies 
may occur in a direct way (IgM > IgE) or an indirect one 
(IgM > IgG > IgE) [122–124].

The surface B cell antigen-recognizing receptor (BCR) 
identifies the antigen in its native form. BCR stimula-
tion triggers a complex cascade of signalling events 
leading to B cell activation [125] (Fig.  4). The CD19/
CD81/CD21 complex on B-cells is important for B cell 
activation with CD81 playing a crucial role in B-cell/T-
cell communication through the MHCII-TCR (Fig.  4). 
Activated B cells establish contact with  Th2 cells by 
interaction of the CD80/86–CD28 and CD40–CD40L 
molecules (Fig. 4).
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Effective induction of the activation-induced cyti-
dine deaminase (AID) expression requires a cooperation 
between the CD40/TRAFs/NFκB signalling pathway, IL-4 
and IL-13 as well as CD40 and IL-4 activation of HoxC4 
in the B cell nucleus (Fig. 4). CD40 signalling in combina-
tion with IL-4 and IL-13 activates the synthesis of GLTɛ. 
Activation of the Iɛ promoter by transcription factors 
Pax5, PU.1, C/EBP, AP1, and E-box for E2A enhances 
GLTɛ transcription. GLTɛ synthesis is regulated by 
IL-4 only, since IL-4 depletion is sufficient to block Ig 
CSR to IgE [126–128]. Ig CSR to IgE may occur also in 
the absence of CD40 signalling [122–124]. BAFF and 
APRIL molecules on DCs activate surface BAFFR and 
TACI molecules on B cells, and stimulate NFκB through 
a pathway involving NIK (NFκB-inducing kinase) and 
p52 activation (Fig. 4). IL-4-secreting mast cells, eosino-
phils, basophils, and γδ T cells, are alternative inducers of 
CD40 independent IgE synthesis [104, 128].

That IgE synthesis is tightly regulated is suggested by 
the minute amounts of serum IgE as compared to IgG, 
even in allergy or parasitic diseases. One regulatory 
mechanism involves rapid capturing and subsequent 
endocytosis by cells expressing a high affinity receptor 
FcɛRI (e.g. on mast cells, basophils or eosinophils), and 
to a lesser extent by the cells expressing a low affinity 
receptor FcɛRII/CD23 (e.g. intraepithelial cells (IECs) 
or B cells). Due to technical challenges the mechanistic 
understanding of IgE synthesis regulation and Ig class 
switch at cellular level is limited, especially in humans 
[122, 129]. IgE switching may result in suboptimal poly-
adenylation of 3′-untranslated region of membrane IgE 
resulting in less stable mRNA for membrane IgE (mIgE) 
and lower expression of mIgE BCRs [129]. A plasma 
membrane molecule specifically involved in the nega-
tive feedback regulation of IgE-CSR is CD23 (FcεRII), 
which plays a role in in  vivo sensitization induction 
by cysteine proteases (e.g. HDM Der p 1) [130]. In the 
presence of high levels of IgE or IgE-antigen complexes 
membrane-bound CD23 (mCD23) suppresses the pro-
duction of IgE. Endogenous or exogenous (e.g. by Der 
p 1) proteolytic cleavage of mCD23 renders CD23 solu-
ble (sCD23) which reinforces the production of IgE by 
inhibiting binding of IgE to mCD23. In combination 
with CD21 mediated signalling, sCD23 enhances B cell 
proliferation and transformation into IgE  +  plasma 
cells. Three cytokines may also be involved in down-
regulation of IgE synthesis. IL-21 represses IL-4 stimu-
lated GLTɛ synthesis in a STAT6-independent manner. 
IFN-γ increases IgG1-CSR over IgE-CSR, whereas 
TGF-β induces transcriptional factor ID2 (inhibitor of 
DNA binding-2) that suppresses the E2A binding with 
Iɛ promoter [131, 132].

Defining sensitization induction mechanisms by getting a 
grip on tolerance
The current perception is that soluble antigens are pre-
dominantly absorbed by EC and suppress the immune 
response, while particulate or aggregated antigens 
are taken up by M cells and activate local or systemic 
immune responses [39, 40]. Nonetheless, divergent 
results exist on the contribution of these two main routes 
of intestinal transport for food proteins and on influ-
ence of the protein physico-chemical properties [37, 41]. 
Linking entry route of food proteins and elicited immune 
response deserves thus further investigation [133].

Oral tolerance to food proteins is the result of anergy 
and/or deletion of antigen-responsive  Th2 cells (high-
dose tolerance), and differentiation of regulatory T 
 (Treg) cells (low-dose tolerance) [134]. The best charac-
terized  Treg cells in terms of induction of oral tolerance 
are  FOXP3+  Treg. Among human  FOXP3+ cells, thymus-
derived  CD25+FOXP3+ natural  Treg  (nTreg) and periph-
eral induced  CD25brightFOXP3+CD127−  Treg  (iTreg) exist. 
Both employ several mechanisms to inhibit the activity of 
allergen-specific  Th2 cells and promote the synthesis of 
allergen-specific IgG4 by B cells [135, 136].

Oral tolerance depends on the ability of  CD103+ DCs 
to induce  FoxP3+α4β7hi  CCR9hi  iTreg in the MLN. The 
molecular conditions for tolerance to develop include 
conversion of vitamin A into retinoic acid (RA), upregu-
lation of TGF-β, enzyme indoleamine 2,3-dioxygenase 
(IDO), intestinal Muc2, GM-CSF and co-signalling mole-
cule 4-IBB [137–139]. This micro-environment facilitates 
gut-homing receptors CCR9 and α4β7 mediated migra-
tion of primed  Treg cells from the MLN to the LP of the 
small intestine [140]. In the LP  Treg cells are expanded 
and maintained by IL-10 producing  CD103−CX3CR1+ 
macrophages resulting in oral tolerance development 
[141, 142]. IL-10 and IL-27 producing  CD11b+DCs 
enhance the secretion of IL-10 by  Treg cells [143].

Induction of  iTreg cells depends on a low density of 
high-affinity ligands on DCs, sub-optimally activation 
of TCR signalling, induction of CD28, and lack of the 
CTLA-4 signalling. These cells synthesize IL-2 and their 
transient CD25 expression coincides with CD25 expres-
sion by  Th2 cells [144, 145]. Both in  vitro and in  vivo 
 iTreg cells require the presence of the GATA3 for main-
taining FOXP3 expression and accumulation in inflam-
matory sites. In contrast to  Th2 cells, GATA3 expression 
on  iTreg cells regulation is IL-4/STAT6-independent but 
controlled by IL-2/STAT5 [146]. Extracellular adeno-
sine reinforces CD25, CTLA-4 and FOXP3 expression 
by increasing the cAMP concentration in naïve  CD4+T 
cells and, at the same time, preventing ZAP70 phospho-
rylation, and the AKT and ERK1/2 activation, which 
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inhibits stimulation, differentiation and proliferation of 
the remaining T cell subsets [147].

Regulatory B cells  (Breg) with tolerogenic functions 
exist in human and mice. These  Breg also express FoxP3 
and produce IL-10, TGF-β and IL-35 [148]. In humans 
with cow’s milk allergy the frequency of specific IL-
10-producing B cells is higher than in healthy individu-
als [149, 150]. Studies using mouse models of food allergy 
revealed that allergen-specific  CX3CR1+  Breg cells pro-
ducing TGF-β and IL-10 are expanded in response to 
high-dose allergen exposure [151].

The currently most substantiated building blocks of the 
AOP for food sensitization
This proposed AOP used the one outlined for skin sensi-
tization [12] and the AOP suggested for sensitization of 
the respiratory tract [13] to capture data that are available 
for proteins in general, and supplemented it with data on 
sensitizing food and food proteins in particular. Available 
mechanistic data on protein respiratory sensitization [14] 
were included to fill out gaps in the understanding of how 
proteins may affect cells, cell–cell interactions and tissue 
homeostasis. Therefore, caution should be considered 
since the skin and the respiratory tract may differ in view 
of food intake, tolerance, microbiome, presence of diges-
tive enzymes, hormones etc.

Efforts to discern the mechanisms involved in food 
sensitization are motivated by the need for test meth-
ods and strategies to identify novel food with sensitiz-
ing potential. An AOP approach allows to transparently 
gather all available and relevant information following 
recognized criteria [11]. This assessment subsequently 
informs potential regulatory applications, which may 
include support for grouping and read-across of food and 
food proteins, identification of relevant and biologically 
plausible test methods, support for the development of 
integrated approaches to testing and assessment (IATA), 
identification or characterization of hazard, or quantita-
tive risk assessment.

The potential regulatory applicability of any AOP is 
informed by the degree of confidence in the biological 
plausibility of each of the key event relations (KERs), and 
the identified KEs, and the empirical support for each of 
the KERs and the overall AOP [11].

KER 1: MIE triggers innate responses and inflammation 
at epithelial level (KE 1)
The MIEs for food sensitization induction by food and 
food proteins are poorly understood. The knowledge 
and understanding acquired for proteins sensitizing the 
respiratory tract provides insight into MIEs potentially 
triggered by proteins: modification of tight junctions 
(MIE-1), receptor-mediated effects (MIE-2) (e.g. PAR and 

TLR signalling) and endocytosis facilitating modification 
of intracellular processes (MIE-3) [14].

The scarce data on food proteins suggest that, in anal-
ogy with respiratory sensitizing proteins, cellular danger 
signals, induction of oxidative stress and pro-inflamma-
tory cytokines and chemokines are involved in sensiti-
zation induction. The proposed MIEs for food proteins 
include modification of tight junctions (MIE-1) by pro-
teolytic (e.g. kiwi Act d 1) but also non-proteolytic (e.g. 
gluten gliadin and peanut Ara h 2) allergens, receptor 
mediated induction of inflammation (MIE-2) (e.g. CD23 
mediated) and unspecific endocytosis with impact on 
intracellular events (MIE-3). The proposed MIE-2 for 
food proteins involves CD23-mediated uptake by the 
exposed cells. Whether this event occurs also during sen-
sitization induction by food proteins and not only dur-
ing elicitation remains to be substantiated. Alternative 
MIE-2 mechanisms for proteolytic food allergens (e.g. 
kiwi Act d 1) may exist. CD23 was reported to play a role 
in sensitization induction in the respiratory tract, but not 
as a carrier for endocytosis. HDM Der p 1 and Der f 1, 
both cysteine proteases, release CD23 from the mem-
brane and increase the concentration of sCD23, resulting 
in a disturbance of the negative control of IgE production 
[130]. A role of PAR-2 in receptor mediated induction of 
sensitization by proteolytic allergens is not established 
yet. However, an analogy with Der p 1 and Der f 1 cannot 
be excluded [24].

The causal relation between these MIEs and the induc-
tion of ROS,  Th2-driving cytokines (e.g. IL-33, TSLP and 
IL-25) and eventually inflammation is well established. 
Especially epithelial IL-33 is a major player both in the 
induction of sensitization, and the activation of e.g. DCs, 
basophils, mast cells and eosinophils [152]. IL-33 acti-
vates signalling pathways (e.g. ERK, MAPKs, NF-κB) 
with relevance for inflammation and  Th2 polarization. 
TSLP inhibits IL-12 secretion while stimulating OX40L 
co-signalling on DCs. The presence of IL-25R on  CD4+ 
T cells suggests that IL-25 exerts a direct effect on these 
cells [117].

KER 2: MIE 2–3 trigger innate responses and inflammation 
at DC level (KE 2)
Except MIE-1 (tight-junction modification), the identi-
fied MIEs may also have relevance for DCs since these 
cells share the innate mechanisms (e.g. PRRs, TLRs) 
reacting with e.g. PAMPs and DAMPs.

Differences between MIE-2 (receptor-mediated) 
effects on ECs (expressing PAR-1, 2, 3 and 4) and DCs 
(expressing primarily PAR-1) may exist. In  vitro studies 
using human primary ECs and cell lines revealed that 
the cysteine protease Der p 1 activates PAR-2 but inacti-
vates PAR-1 [153]. Since PAR-1 is the dominant PAR on 
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the surface of DCs, it may be anticipated that DC activa-
tion is reduced by allergens that engage PAR-1. While it 
remains to be substantiated mechanistically, the available 
data suggest that e.g. HDM may directly suppress  Th1 
driving DC responses [82].

In vitro and in vivo data underscore the importance of 
IL-33 for proper activation of DCs as determined by e.g. 
increased OX40L expression. Allergenic proteins in the 
presence of IL-33 drive activated DCs to release IL-1β, 
IL-6 and IL-10, with IL-1β known to be involved in  Th2 
cell stimulation and antibody production [82, 86].

KER 3: KE 1–2 drive DC migration (KE 3)
The ECs (IL-33, TSLP, IL-25),  OX40L+ DCs (IL-1β, IL-6 
and IL-10) and eosinophils (EPO) derived signals con-
stitute an allergen-induced inflammatory microenviron-
ment that triggers DCs maturation and migration.

Among the currently identified DC subsets, 
 CD103+CD11b−CX3CR1− and  CD103+CD11b+CX3CR1− 
DCs appear to be the most relevant for sensitization induc-
tion. Informed by changes in the microenvironment at 
epithelial level,  CD103+ DCs express chemokine recep-
tors facilitating sampling of protein from the lumen (e.g. 
CX3CR1), MHC II, co-stimulatory molecules (e.g. CD54, 
CD80, CD86 and OX40L)) as well as receptors that are 
required for migration to the LP and MNL (e.g. CCR7 and 
CXCR4).

Especially  CD103+MHCII+CD86+ DCs expressing 
CCR7 seem to be important for sensitization induction.

KER 4: KE 3 leads to T and B cell activation in the lymphoid 
organs (KE 4–5)
It is well documented that epithelial TSLP, IL-25 and 
IL-33 play an important role also in  Th2 polarization, by 
inhibiting IL-12 secretion while stimulating OX40L co-
signalling on DCs (TSLP) and IL-33R mediated activa-
tion of DCs and  CD4+ T cells (IL-33). The mechanism 
by which IL-25 contributes to  Th2 polarization is not 
clear, but the presence of IL-25R on  CD4+ T cells sug-
gests that IL-25 exerts a direct effect on these cells [117] 
[82, 118].

Polarization of the T cell response towards  Th2 requires 
GATA3 which promotes the expression of IL-4, IL-5 and 
IL-13 while inhibiting T-bet, IFN-γ and IL-12Rβ2 [110, 
111]. Furthermore, activation of autocrine IL-2 signalling 
drives the establishment of the IL-4 signalling pathway by 
an IL-4 independent induction of the IL-4R subunit and 
formation of a functional IL-4 type I receptor [113].

Proper  Th2 activation requires the expression by T cells 
of CD28, OX40 (CD134) and CTLA-4 (CD152) and bind-
ing of these marker proteins to CD80, CD86 and OX40L 
on the surface of the activated DCs [104, 105]. In this 
context, CD86 seems to be most relevant for induction 

of sensitization [106]. Indeed, CD28–CD86 interaction 
relates to  Th2 cell responses, whereas CD28–CD80 inter-
action favours  Th1 cells responses [108]. It is suggested 
that the allergenic potential of proteins is defined by their 
capacity to affect the kinetics of the CD86/CD80 expres-
sion on DCs and CD28/CTLA-4 expression on T cells, in 
the context of MHCII-peptide-TCR interaction.

The ultimate marker for sensitization to protein is the 
production of specific IgE. The CD19/CD81/CD21 com-
plex on B-cells is important CD81 playing a crucial role 
in B-cell/T-cell communication through the MHCII-
TCR. Interaction between  Th2 cells and activated B cells 
requires functional CD86–CD28 and CD40–CD40L 
interactions [125].

IL-4 appears to be sufficient for Ig CSR to IgE to occur. 
This cytokine may originate from activated  Th2 cells 
(CD40 dependent) or mast cells, eosinophils, basophils 
and γδ T cells (CD40 independent). CD40 signalling 
in combination with IL-4 and IL-13 activates the syn-
thesis of GLTɛ [126–128]. CD40 independent mecha-
nisms involve the interaction between BAFF and APRIL 
on DCs, and BAFFR and TACI on the surface of B cells 
[122–124]. This interaction stimulates NFκB signal-
ling through a pathway involving NIK (NFκB-inducing 
kinase) and p52 activation [104, 128].

Tolerance
Developing AOPs for sensitization induction by foods 
and food proteins requires sufficient understanding of 
the mechanisms behind tolerance development.

Overall, tolerance induction seems to be the result of 
 CD103+ DCs mediated stimulation of  FoxP3+α4β7hi 
 CCR9hi  iTreg in the context of complex RA-rich envi-
ronment in the MLN. Establishment of  iTreg in the LP 
requires IL-10 from  CD103−CX3CR1+ macrophages.

Despite  iTreg cells believed to be involved in tolerance 
development, food antigen-specific  iTreg cells have been 
detected in both allergic patients and healthy people. It is 
hypothesized that the equilibrium between allergen-spe-
cific  Th2 cells and  iTreg cells, which recognize the same 
epitope, predisposes to an allergic response  (Th2) or a 
healthy tolerogenic response [154].

In contrast to  iTreg,  nTreg cells constitutively express 
CTLA-4 and are believed to limit the access to and acti-
vation of naïve  CD4+ T cells by aggregation with DCs, by 
IL-10 and TGF-β mediated inhibition of MHC-II expres-
sion on DCs, and effector functions and migration of 
activated T and B cells, while promoting  iTreg cell differ-
entiation [154].

Although the mechanisms underlying these effects 
remain unclear, the identification of new  Breg subsets and 
functions encourages intensifying the research into their 
share in tolerization versus sensitization to food proteins.
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Conclusion
This manuscript has collected, structured and evaluated 
molecular and cellular information on protein sensitiza-
tion in general, and food sensitization in particular with 
the aim to build AOPs for food sensitization. Analysis 
revealed several KEs and biomarkers (Fig.  1) that may 
have potential use in testing and assessment of proteins 
for their sensitizing potential. In the future, this may 
help to identify a number of methods, each addressing 
a specific KE, that provide information about the food 
allergenic potential of new proteins. When applied in 
the context of an integrated strategy these methods may 
reduce, if not replace, current animal testing approaches.

The proposed AOPs will be shared at the www.aopwiki.
org platform to expand the mechanistic data, improve 
the confidence in each of the proposed KEs and KERs, 
and allow for the identification of new, or refinement of 
established, KEs and KERs.
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