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ABSTRACT   

Optical components with scattering properties, so-called diffusers, are core elements of calibration units in earth 
observation instruments. Their performance influences significantly the achievable accuracy of scientific observations. It 
is of high importance however to characterize the scattering properties of such a diffuser with minimum uncertainty on-
ground before launched into orbit and before being utilized in its calibration purpose. Over the past decades TNO has 
operated an “Absolute Radiometric Calibration Facility (ARCF)” to ensure such accurate characterization of space 
components.  In the recent past TNO has put increased efforts in upgrading and modernizing its facility into a modern 
high class facility (ARCF 2.0) to measure scattering properties of a variety of materials and components to meet the 
growing demands for accurate measurements for space applications. This paper describes the above mentioned facility 
ARCF 2.0 with its unique measurement capabilities and outlies several examples.     
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1. INTRODUCTION  

Earth observation instruments have emerged rapidly in the past decades and have greatly improved our understanding of 
our planet. Significant progress in various technologies has allowed scientific observations from space with a high level 
of accuracy. Accuracy demands will remain or be even more stringent for future missions. On-board calibration units are 
highly important elements of an earth observation instrument, ensuring through its calibrating and monitoring 
functionality accurate performances and thus accurate scientific observations of an instrument during its lifetime in orbit. 
For example, instruments for spectroscopic analysis of the earth atmosphere take the sun as an illumination 
and calibration source and compare the sun observations with the backscattered radiance of the earth 
atmosphere. In very simple terms it can be stated that the earth radiance is compared to the sun irradiance, 
thus the "Bi-Directional Scattering Function" BSDF of the earth (BSDFearth = radiance_earth / irradiance_sun) is 
determined. Figure 1-1  illustrates this procedure: 

 
Figure 1-1: Illustration of measuring the sun irradiance and earth radiance by an earth observation instrument (credits 
image: ESA). The small image on the right shows a solar diffuser (credits: TNO) 
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measurements. This important feature ensures a characterization of the diffuser component under representative 
illumination conditions in orbit.   

 
Figure 2-2 Image of the ARCF 2.0 setup with characteristics of key components 
 

 
Figure 2-3 Sample and detector motion system of the ARCF 2.0 
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2.1 UNCERTAINTY CONTRIBUTIONS  

To achieve the best possible BSDF measurement, it is essential to fully know the setup, identify all its error contributions 
and apply according corrective procedures if necessary. TNO invests a large amount of time and effort to identify these 
contributions and thus to ensure accurate measurements. A detailed description of each potential error source, its 
determination and correction would be out of scope of this manuscript. For details the reader is encouraged to contact the 
author. The following table lists some of the setup related error contributions. 
 

 
Figure 2.1-1 List of potential error contributions 
 
The characterization of the setup itself occurs in regular intervals, but some high accuracy measurements require 
additional characterization measurements. As mentioned above the table lists setup related error sources. For the overall 
error budget the noise needs to be considered as well. Overall the system has the capability of acquiring data with an 
accuracy of 0.0015/sr. For example, for a spectralon based component with a potential BSDF of 0.3/sr this value relates 
to an error of 0.5% (1σ).  

2.1.1 UNCERTAINTY CONTRIBUTIONS – EXAMPLE  

The criticality of the accurate identification of potential error sources is described in an example, in this case with 
regards to the beam homogeneity determination.  
The aperture of the (in-house designed) detector is “overfilled”, i.e. the emitting diffuser spot size is larger than the 
aperture of the detector.  This is partly based on the history of TNO being involved with space applications. For these 
applications a full representative test of a flight component is desired, including boundary effects of the diffuser mount, 
meaning that the same illumination conditions should be used as to be expected in orbit. Furthermore, the detector design 
is optimized for a small FoV of 1.2°. The overfilled approach makes the setup less sensitive to environmental straylight.  
This is most important for a so-called “Quasi Volume Diffusers (QVD’s)”. TNO has a heritage on the design, 
manufacturing and characterization of these particular components for calibration units of earth observation instruments.   
A QVD is basically a (mostly) fused silica component with 2 or more roughened surfaces and possibly a coating, if used 
as a reflective QVD (see fFigure 2.1.1-1). Due to its multiple surfaces and strong scattering properties it becomes more 
preferable to have an overfilled configuration. 
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Thus, despite of the advantages an overfilled aperture provides, it is required to have a very good knowledge of the beam 
profile. Characterizing the beam homogeneity is therefore a standard procedure before any diffuser measurement (Figure 
2.1.1-4).     

 
Figure 2.1.1-4 Beam profile measurement within ARCF 2.0 characterization procedures 

3. MEASUREMENTS WITH QVD  

As mentioned above the main application of the ARCF is the accurate characterization of diffusers. However, it is worth 
to mention that TNO is not only involved in the characterization of diffusers, but also in the design of such components.  
As mentioned before, in the recent years TNO has tended increasingly towards QVD’s. The reason is twofold: First, less 
degradation in orbit compared to other diffuser types such as spectralon or aluminum diffusers, second, smaller non-
uniformities in the recorded spectra in terms of spectral features.  
One drawback of QVD’s however is the still existing lack of knowledge of the interaction between diffuser properties 
and performance. The performance of a QVD depends on several parameters, such as angle of incidence and detection, 
wavelength range, material, surface properties and further. 
Out of the variety of these conditions, a design of a component is needed that is most suitable for the individual mission. 
The image below illustrates this matter. 
 

 
Figure 3-1 Combination of parameters for required diffuser performance 
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In the recent past the ARCF has thus been a valuable research tool in the investigation of diffuser properties and 
according scattering behavior. For example, the following graphics shows various BSDF measurements of diffusers with 
varying surface roughness [1].  
 

 
Figure 3-2 BSDF of a transmission and reflection QVD in dependence of surface roughness  
 
Please note that this image is exemplary. For a detailed discussion please refer to [1]. The numbers in the graphics relate 
to the surface roughness in terms of Rq in µm. In the right image it can be seen, how a surface defect or incomplete 
grinding process can be detected through a BSDF analysis.  
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