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Personalised, genotype-based nutrition is a concept that links genotyping with specific nutritional advice in order to improve the prevention of

nutrition-associated, chronic diseases. This review describes the current scientific basis of the concept and discusses its problems. There is con-

vincing evidence that variant genes may indeed determine the biological response to nutrients. The effects of single-gene variants on risk or risk

factor levels of a complex disease are, however, usually small and sometimes inconsistent. Thus, information on the effects of combinations of

relevant gene variants appears to be required in order to improve the predictive precision of the genetic information. Furthermore, very few associ-

ations between genotype and response have been tested for causality in human intervention studies, and little is known about potential adverse

effects of a genotype-derived intervention. These issues need to be addressed before genotyping can become an acceptable method to guide nutri-

tional recommendations.

Nutrigenetics: Nutrigenomics: Nutritional recommendations: Genotype: Disease risk

The role of nutrition as a major factor in the development and
prevention of chronic diseases has received increasing attention
on the part of the media, the public, industry and the regulatory
agencies in most countries (Joint WHO/Food & Agriculture
Association Expert Consultation, 2003). The food industry has
responded to this growing awareness by creating new products,
in particular functional foods, that promise a reduction in the
level of risk factors for chronic disease.

More recently, this development has converged with rapid
progress in the field of genome research. The concept of a per-
sonalised, genotype-based nutrition that might provide individ-
uals with a high risk of diseases such as diabetes, atherosclerosis
and cancer with specific nutritional advice, thereby maximising
the efficacy of preventive intervention, has been discussed

(Davis & Milner, 2004; Kaput & Rodriguez, 2004; Ordovas &
Corella, 2004). Moreover, companies have been founded that
offer nutritional advice based on the genotyping of polymorph-
isms in a limited number of genes such asMTHFR,CYP3A4 and
PPARg. As this development has received controversial
responses from both the media and the scientific community,
we believe that an expert statement is required on the validity
of the concept of health-targeted, personalised nutrition and on
its present status and future perspectives.

The concept of a personalised nutrition

It has to be noted that the concept of a nutrition adapted to
specific personal parameters is not new. Persons distinguished
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by age or by a particular physiological status – for example,
infants or pregnant women – have different nutritional
needs. Moreover, patients with allergies or chronic diseases,
such as diabetes, dyslipoproteinaemia or liver disease, require
special diets. It follows that nutritional recommendations for
the general population need further differentiation for specific
subgroups. A new development, however, is the possibility of
genetic testing linked with nutritional advice as a result of a
risk–benefit analysis of dietary components on an individual
basis (Hesketh et al. 2006).

Chronic diseases represent the phenotype of altered gene
expression, as a result of interactions between environmental
factors and genetic make-up (i.e. the inherited collection of ‘sus-
ceptibility’ and ‘protective’ genes). These interactions are con-
ceptualised in the ‘health pendulum’ (Fig. 1), which attempts
to summarise the major influences, including genetic make-up,
that determine health outcomes. It is therefore a reasonable
assumption that a knowledge of the interactions between geno-
type and diet (and other lifestyle factors) will be of major help
when assessing disease risk and when initiating preventive
measures. In addition, available data suggest that the complex
disease-promoting or disease-preventing effects of a specific
diet may depend on genetic make-up (Davis & Milner, 2004;
Kaput & Rodriguez, 2004). Thus, in theory, the concept of per-
sonalised nutritional recommendations that are based on genetic
data should help to fine-tune the prevention of nutrition-associ-
ated diseases. Whether this will work in practice is, however,
unknown and will depend on the predictive precision of the gen-
etic information for phenotypic outcome, on the robustness of
gene–diet–disease relationships and on the public’s acceptance
of the concept.

Genotype-dependent effects of nutrients in monogenic
diseases

There are several examples of monogenic disorders that require
dietary intervention. Perhaps the most common and best known
example is lactose intolerance. Most mammals lose the ability to
hydrolyse lactose in adulthood. In Northern Europe, however, a
variant allele of the lactase gene, which results in a continued
expression of lactase into adulthood, originated about 9000
years ago (Enattah et al. 2002). Another well-known example
is phenylketonuria, which is caused by loss-of-function
mutations in the gene encoding the enzyme phenylalanine-4-
monooxygenase (Levy, 1999). If newborn infants homozygous
for this genotype do not adhere to a phenylalanine-reduced
diet, the amino acid is converted to a ketone that interferes
with neural development and causes mental retardation. Other
examples of genotype-dependent dietary effects are the familial
hyperlipidaemias, in which the dyslipoproteinaemia may be
diet-sensitive or diet-insensitive, depending on the genotype
(Loktionov et al. 2000; Ordovas, 2004).

These examples provide proof of the concept that nutri-
tional effects may depend on a certain genotype. It needs to
be emphasised, however, that they do not prove the need to
know the genotype: in monogenic disorders, knowledge of
the phenotype is usually sufficient for dietary intervention.
This is in contrast to complex diseases, in which multiple life-
style and genetic factors cause a high degree of heterogeneity
in the pathophysiology, course and secondary complications
of the disease.

Status of the concept of personalised nutrition in complex
diseases

There are three aspects from which this topic can be viewed.
The first focuses on the associations of particular genetic vari-
ation with the risk of diet-related chronic disease. In contrast
with monogenic disorders, the genetic basis of polygenic,
complex diseases such as diabetes, hypertension or hypercho-
lesterolaemia remains poorly understood. There are numerous
single-nucleotide polymorphisms (SNP) that have been found
to be associated with an increased disease risk, and are there-
fore thought to be involved in its pathogenesis. These associ-
ations have, however, often been inconsistent and are rarely
supported by data on the functional consequence of the SNP
(Hirschhorn et al. 2002). In some instances, the same genotype
shows opposing effects on a biological parameter in different
populations, for example the vitamin D receptor genotype on
bone mass (Cusack & Cashman, 2003). Furthermore, SNP
identified to date each explain only a small portion of the gen-
etic basis of complex diseases, and the number of genes mod-
ulating disease risk in a single individual appears to be higher
than initially thought.

A second aspect from which to view the issue of personal-
ised nutrition is to extend the SNP–disease link to include a
dietary factor. In a few instances, a specific interaction
between a gene variant and nutritional parameters has already
been described. Variants of genes involved in the metabolism
of xenobiotics, such as N-acetyltransferase and glutathione-S-
transferase, have been found to be associated with higher or
lower cancer risks in individuals with a higher consumption
of well-done meat or cruciferous vegetables, respectively
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Fig. 1. For a given individual, the position along the health-disease conti-

nuum from which the pendulum is suspended depends on genetic make-up

(indicated by the inherited collection of ‘susceptibility’ and ‘protective’ genes).

Nutrition in utero and postnatal lifestyle interacts with genetic make-up to

further modify the risk; i.e. each of these factors pushes the individual’s pen-

dulum to the right or the left. The net effect of these ‘forces’ will determine

whether an individual is, or is not, healthy. Factors that enhance risk are

shown in red, whereas those reducing risk appear in green. For emphasis,

time is shown in a black box and has an arrow pointing to the right to indicate

that, for most common non-communicable diseases, risk increases with age.

SNP, single-nucleotide polymorphism. (Adapted from Mathers, 2002.)
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(Deitz et al. 2000; Seow et al. 2002; Joseph et al. 2004).
A variant of the manganese-dependent superoxide dismutase
gene has been reported to be associated with an increased
risk of breast cancer in women with a low intake of fruits
and vegetables (Ambrosone et al. 1999; Cai et al. 2004),
and of aggressive prostate cancer in men with low plasma
antioxidant status (Li et al. 2005).

Much stronger evidence that genetic make-up can deter-
mine the biological response to nutrients is provided by
inbred mouse strains. Here, the sensitivity to a high-fat diet
is very strain-specific (Nishina et al. 1993). Moreover, in
obese mouse strains, chromosomal regions have been ident-
ified that confer dietary fat-dependent susceptibility for dia-
betes (Plum et al. 2002). This finding – if applicable to the
human situation – suggests that it is possible to identify indi-
viduals with a high risk of developing diabetes who might
benefit specifically from a fat-reduced diet.

The available data indicate two major problems for the con-
cept of genotype-based intervention. First, the consequences
for health of carriage of a particular SNP may be complex,
with both beneficial and detrimental effects on different dis-
eases. For example, homozygosity for the TT variant of the
C677T SNP in the methylenetetrahydrofolate reductase
(MTHFR) gene results in reduced activity of the encoded
enzyme, raised plasma homocysteine concentrations and an
elevated risk of neural tube defects, cardiovascular disease
(Strain et al. 2004) and possibly osteoporosis (Cashman,
2005). Conversely, individuals carrying the TT version of
MTHFR appear to have a lower risk of bowel cancer,
especially if their folate intake is high and they abstain from
high alcohol intake (Sharp & Little, 2004).

Second, the contribution of single SNP to total disease risk is
small, usually much smaller than that of conventional risk fac-
tors, and can be dependent on the presence of other gene variants
(epistasis). For example, the diabetogenic haplotype of the cal-
pain-10 gene increases disease risk by approximately 20 %
(Song et al. 2004), whereas a family history of diabetes increases
the disease risk by a factor of four, and being overweight adds a
factor of 4–30-fold (Colditz et al. 1995). Associations between
plasma triacylglycerol levels and genotype were found only for
multisite SNP in the APOA1/C3/A4/A5 cluster but not for single
SNP in this region (Payseur et al. 2006). Furthermore, the HapK
allele of leukotriene A4 hydrolase causes a threefold higher
increase in the risk of cardiovascular disease in African Ameri-
cans than in European Americans, indicating a marked epistatic
interaction of HapK with other alleles prevalent in African popu-
lations (Helgadottir et al. 2006).

Thus, on the basis of the present data, it is concluded that, in
complex diseases, the predictive value of a single genotype is
small compared with that of the family history of a person or
with that of other known risk factors. In addition, evidence of
interactions between dietary factors and genotype on disease
risk is fragmentary. Nevertheless, it is reasonable to assume
that the effects of single diet–gene interactions are largely
modified by epistatic interactions, like the effects of single
SNP on a disease risk. Consequently, current attempts to
derive dietary recommendations based on the genotypes of
the few single SNP presently known to be associated with par-
ticular complex diseases appear largely experimental.
Recently, such tests have, provocatively, been called ‘genetic
horoscopes’ (Russo, 2006).

A third aspect from which to view the subject is, however,
to move back from the complex disease itself to specific
risk factors for the disease that have a well-established
responsiveness to dietary intervention. A simple example
would be the higher risk of those carrying the T allele of
MTHFR for elevated levels of plasma homocysteine when
intakes of folic acid are very low (Strain et al. 2004). Another
example is the higher sensitivity of HDL cholesterol to intake
of PUFA in women carrying the 275A allele of APOA1
(Ordovas et al. 2002).

Thus, the three perspectives from which this area can be
viewed go from gene–chronic disease links to gene–diet–
chronic disease links to gene–diet–risk factor links, each
having their own particular challenges. It seems reasonable
to assume that the number of genes involved in gene–diet–
risk factor links is lower than in gene–diet–disease links
(Fig. 2). A focus on gene–diet links with predominant risk
factors might therefore be the preferable strategy to introduce
genotype-based nutritional advice. Thus, for the time being,
personalised nutrition may focus on relatively few genes that
regulate key risk factors and that are highly sensitive to diet.

What are the requirements for valid genotype-based
nutritional recommendations?

In order to derive recommendations from an individual’s gen-
etic profile, the genetic information should predict a robust
increase or decrease in disease risk in relation to a specific
dietary pattern, food or nutrient intake. In addition, it should
be established by solid evidence that the genotype-based inter-
vention indeed reduces disease risk or risk factor levels. Both
criteria are difficult to meet, as has become apparent in the last
few years.

The genetic basis of complex diseases comprises an
unknown number of gene variants. In mouse strains, in
which the identification of susceptibility loci by breeding tech-
niques is easier, as many as sixty loci may determine body
weight and adiposity in different strains, and as many as
10–20 may be present in a single inbred strain (Wuschke
et al. 2006). In a worst-case scenario, therefore, it can be esti-
mated that the total number of gene variants responsible for a
certain disease may lie in the hundreds, and that of these per-
haps 5–20 would have to be present in one individual to
modify risk substantially. As high numbers of different com-
binations of haplotypes are possible, very large study popu-
lations are required to investigate the effects of the
individual haplotype (Cardon & Bell, 2001). It appears reason-
able to predict that only a few genotypes that exert a major
influence on disease risk will thus be suitable for genetic
testing.

Most of the associations between diet, risk factors for
chronic disease and genetics have come from epidemiological
studies and, as with conventional nutrition research, such
observations need to be verified by dietary intervention studies
to provide evidence of causality. At present, no internationally
agreed standard exists for the design and interpretation of such
studies, and there is thus an urgent need to develop such norms
(Kaput et al. 2005). A number of issues need to be taken on
board. In selecting the sample, a similar number of those car-
rying the reference sequence and those homozygous or hetero-
zygous for the variant allele will need to be recruited. Each
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genetic group should be rotated across each of the dietary
interventions. Quite how the data from such intervention
studies should be interpreted needs serious consideration.
Take a hypothetical example in which a certain genotype in
combination with a particular diet leads to a reduction in
some undesirable risk factor. If the variation in this reduction
is high, due to other genetic and non-genetic biases, one
cannot counsel at an individual level with any certainty. One
might, however, be able to counsel at a population genetic
level. On the other hand, if the variation around the reduction
is small, personalised counselling on this diet–gene inter-
action becomes realistic.

There are, however, two key issues that still need to be
addressed. The first is whether the diet in question has adverse
effects if certain SNP are present in other genes. Thus, for
some individuals, a given dietary lipid profile might have
beneficial effects on cholesterol metabolism with SNPx in
gene A but bad effects for T-cell function with SNPy on
gene B. Furthermore, a certain risk factor for chronic disease
might be significantly improved by dietary pattern A but be
adversely affected if some other nutritional change were sim-
ultaneously introduced. In effect, we need to be aware that the
net benefit of a given nutritional intervention will depend on
the sum of several diet–gene–risk factor interactions. It is
not safe to assume that an intervention based on a particular
genotype–risk factor association will produce a net beneficial
response in everyone with that polymorphism.

What future research directions are needed?

Future research will have to provide solid evidence for associ-
ations between genotype, diet and disease or risk factor.
In addition, it is very important that the benefit of a dietary
intervention in carriers of a certain genotype is demonstrated

in intervention studies. In that respect, there are some unre-
solved issues over the set-up of such studies, for example
whether assessment of the benefit requires changes in disease
outcome or whether surrogate end points or risk factor levels
suffice.

Current methodological and conceptual developments in
determining genotype–phenotype associations are promising.
First, genome-wide genotyping in large cohort studies is becom-
ing feasible (Hinds et al. 2005). Furthermore, there is emerging
evidence that other variations in the genome, for example epige-
netic modifications (Jaenisch & Bird, 2003) and copy-number
polymorphisms (Feuk et al. 2006; Redon et al. 2006), are as
important risk predictors as SNP, and that effects of diet may
be recorded and remembered through changes in epigenomic
markings, resulting in altered gene expression and cell function
(Dolinoy et al. 2006).

Second, there are expectations that the ‘omics’ technologies
(mRNA expression profiling, proteomics, metabolomics) will
identify specific alterations that predict disease risks or the inter-
action of genetic variation with diet with acceptable accuracy
(van Ommen & Stierum, 2002; German et al. 2004). These tech-
nologies are not, however, without some serious technical and
conceptual challenges. mRNA profiling and proteomics are lim-
ited by difficulties in obtaining samples from the tissues of inter-
est for studies carried out in human subjects. The metabolomics
technologies may eventually provide complete metabolic pro-
files that will help to more precisely assess the effects of nutri-
ents in a study population, but they are currently still limited
in their capacity to identity less abundant metabolites precisely.

A third approach that is currently being developed is the
mathematical modelling of the effect of multiple SNP on a
biological parameter, such as the modification of plasma
cholesterol levels by thirteen SNP (Knoblauch et al. 2004).
Finally, mouse strains with defined gene variants (congenic

Fig. 2. A simplified model of the complex interaction between nutrition, gene variants, risk factors and disease risk. Risk factors are phenotypic effects of the inter-

action between nutrition and gene variants, i.e. alterations in serum parameters such as LDL-cholesterol, adiponectin or postprandial glucose level. According to

the model, disease risk equals the sum of the numerous effects of variant genes. Monitoring the effects of the variant genes on intermediate risk factors may

reduce the complexity of the gene–nutrient interaction, and represents the most realistic option for guiding personalised nutrition.
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inbred strains or lines with multiple targeted gene variants)
that are currently being generated will be useful tools for un-
ravelling the complex genotype–nutrient interactions.

What are the benefits of genotype-based personalised
nutrition?

Given that the interaction between a particular allele and a
specific dietary exposure leads to some beneficial effect on a
risk factor for chronic disease, there are three potential ben-
efits. First, genotyping offers the prospect of starting early in
the prevention of the disease, earlier than with non-genetic
biomarkers related to disease risk. This is particularly import-
ant for diseases in which the development of the pathology
and its complications has long latency periods and is essen-
tially irreversible, such as in type 2 diabetes or osteoporosis.
Second, the success of a specific and early dietary intervention
would save resources by targetting advice and help towards
those who would be most likely to benefit. Finally, a potential
benefit is that an individual with an elevated disease risk may,
once he or she has obtained the genetic information, have a
higher motivation to comply with the dietary intervention
than when given general advice. It should be noted that this
potential advantage is as yet untested and debatable. The
possibility cannot be excluded that, in some individuals,
knowledge of a genetic predisposition might lead to a fatalistic
attitude and a reduced compliance with any intervention.

What are the risks?

In our opinion, the main risk related to genetic testing is that
recommendations and decisions may be based on insufficient
or even inadequate data, and that other, for example medical
history or phenotypic, data receive too low a priority. Genetic
data, when obtained with standard procedures, are unambigu-
ous, but the functional consequences are not. For example, if a
certain genotype were to predict a particular strong beneficial
effect of alcohol consumption on coronary heart disease,
would that lead to a recommendation to increase alcohol
intake for that individual? Probably not, because such a rec-
ommendation would enhance the risk of other diseases such
as liver disease, alcoholism and cancer, and may have other
adverse social consequences. In this example, the risks of
the recommendation are well recognised. In others, however,
there is limited information, and it is conceivable that a
specific recommendation – or the individual’s response to
the recommendation – would increase an unknown risk.

Other risks relate to the intrinsic sensitivity of personal data
that may be used by ‘interested third parties’ such as employ-
ers, insurance companies and others. These risks can be con-
tained by laws preventing the disclosure of information to
third parties and regulating other uses of data and of ‘residual’
biological samples. Finally, we consider it a risk that tests may
be introduced too early, lead to disappointment and have
adverse effects on society’s view of this emerging, and poten-
tially very exciting, new science.

Will the concept be accepted by society?

The status of plant biotechnology and stem cell research in
Europe has taught us that it is becoming increasingly difficult

to convince the public of the benefits of new products and pro-
cedures that are somehow connected with genes and/or clon-
ing. Resistance towards these techniques has been strong
and appears to be growing. The attitude of consumers to
genetic testing seems, however, to be at variance with their
attitudes to plant biotechnology. According to data from the
Eurobarometer survey of 2002 involving 16 500 subjects in
the then member states of the European Union, the majority
of respondents supported genetic testing for disease (Gaskell
et al. 2003). To date, no studies have been published that
probe differences between genetic testing for a disease and
genotyping to predict the probability of response to some diet-
ary intervention.

A final issue to be considered is the capacity of society to
deliver ‘customised solutions’ to personalised nutrition. Even
if we could some day identify the ideal diet for a particular
individual, effective strategies to deliver this diet remain to
be developed. With appropriate help and information, the indi-
vidual consumer could choose his or her ‘personalised’ food
products at the grocery store, but how to provide families
and deliver the personalised food through canteens would be
a complicated issue. It is conceivable that, for practical
reasons, the customised solutions will be less precisely titrated
to the full, individual genomic information, and targetted at
families rather than individuals. Thus, personalised nutrition
may have a long road ahead of it.
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