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STELLINGEN

Voor zover bekend is de koppeling tussen basepaar triplet en
aminozuur in alle levende wezens in principe identiek. Er zijn
echter mutaties mogelijk, die een andere koppeling veroorzaken.

Het feit dat de koppeling tussen basepaar volgorde en aminozuur
desondanks uniform is, zou veroorzaakt kunnen worden doordat
soorten met een andere koppeling niet in staat zijn via horizontale
gen overdracht functionele genen te verwerven.

Een solitaire sluipwesp verhoogt haar reproduktiesucces, als zij de
eerste gastheren, die zij in haar leven vindt, parasiteert, ongeacht
of deze al eerder zijn geparasiteerd, en indien zij later in haar
leven wel onderscheid maakt tussen wel en niet geparasiteerde
gastheren. Derhalve kan uit het feit dat de sluipwesp Leptopilina
heterotoma bij haar eerst gevonden gastheren geen onderscheid maakt
tussen wel en niet geparasiteerd, en later wel, niet worden gecon-—
cludeerd dat zij het discrimineren moet leren.

Inteelt depressie is alleen relevant bij soorten waarbij weinig of
geen inteelt voorkomt. Derhalve kan inteelt depressie niet gebruikt
worden als verklaring voor outbreeding.

Indien homosexualiteit een genetische basis heeft, hebben de kerken
door het tegengaan van homosexueel gedrag het voortbestaan van
homosexualiteit bevorderd.

Het gebruik van de term "incompatibel' om aan te geven dat plasmiden
bepaalde eigenschappen gemeen hebben, werkt verwarrend.

Het feit dan men ervoor gekozen heeft het Nederlandse equivalent voor
het Engelse woord plasmid, "plasmide', onzijdig te laten zijn, doet
vermoeden dat men een plasmide beschouwt als een soort chemische
verbinding. Immers, andere woorden op -ide plegen in het Nederlands
vrouwelijk te zijn.

De betekenis van de Latijnse oorsprong van het woord evolutie,
evolvere, doet vermoeden dat de eerste gebruikers van deze term
eerder dachten aan een gepredestineerde voortgang, die zich
slechts hoeft te ontrollen, dan aan door toevalsprocessen bepaalde
veranderingen in de loop van de tijd.



De huidige vorm van beoordeling van wetenschappelijk werk maakt
dat onderzoekers er tegenwoordig vaak minder waarde aan hechten
dat hun artikelen worden gelezen dan worden geteld.

De huidige onverhuurbaarheid van veel hoogbouw-flatwoningen toont
eens te meer aan, dat de stokpaardjes van de jaren zestig tot de
nachtmerries van de jaren tachtig kunnen worden.

. Het spreekwoord "Als het kalf verdronken is, dempt men de put"

getuigt van een vergaande vorm van optimisme.
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CHAPTER 1:

INTRODUCTION

In this thesis some mathematical models will be formulated
to analyse the effects of selection on the population
dynamics of conjugative plasmids. In the Introduction some
general properties of plasmids will be summarized. There-
after, the questions, investigated in this thesis are given.
In Chapter 7 some still unsolved problems about the influ-
ence of selection on the structure and function of plasmids

are considered.

PLASMIDS

The genetic information of bacteria is encoded in a
single circular chromosome. In addition to this chromosome
many bacteria also contain smaller autonomous circular DNA
molecules. These pieces consist, just as the bacterial chro-
mosome, out of two complementary DNA strands, and are called
plasmids (Novick et al., 1976). Sometimes, they can be in-
corporated into the bacterial chromosome, in which case they
are called episomes (Novick et al., 1976). On a plasmid sev-
eral genes may be situated. Some of these genes are plasmid
specific and encode for functions necessary for the plasmid,
like plasmid replication, whereas other genes are not necess-
ary for plasmid maintenance. Some plasmids have genes with
a clearly discernible phenotypic effect on their bacterial
bearer. Many plasmids for instance, encode for resistance
against antibiotics or against heavy metals. Plasmids of
which no phenotypic effect is discovered, are called cryptic
(Novick et al., 1976).

A particular plasmid type may be present with a number of
copies in a single bacterial cell. The number of copies
(copynumber) can range from one or two up to about 800
(Projan, Carleton & Novick, 1983). Large plasmids often have
a lower copynumber (mostly less than 10) than smaller plas-



mids.

Most plasmids are not limited to a single host species:
Plasmids, which are indistinguishable with the used
identification methods can be found in geographically
separated bacterial populations and in different bacterial
species (for instance, Grindley, Humphreys & Anderson, 1973b;
Roussel & Chabbart, 1978; Jdrgensen & Sérensen, 1979; Polak
& Novick, 1982). Some plasmids can be transferred to a wide
range of bacteria in mating experiments in the lab (for
instance, Datta & Hedges, 1972; Chandler & Krishnapillai,
1974; Appendix B of Bukhari, Shapiro & Adhya, 1977). Some
plasmids are not even restricted to prokaryotes, but can
also be successfully introduced into simple eukaryotes
(Goursot et al., 1982).

PLASMID REPLICATION AND SEGREGATION

In order to be maintained in a bacterial cell line,
plasmids have to replicate. Each plasmid copy has an origin
of replication at which the replication starts either uni-
directional or bidirectional (see for instance Scott, 1984).
The initiation of replication is in most cases plasmid-
regulated. For their replication plasmids may partly make
use of the replication enzymes of their bacterial host. The
rate of replication is mostly plasmid determined (Nordstrom,
Ingram & Lundb&dck, 1972; Timmis & Winkler, 1973), but prop-
erties of the bacterial host can also have some influence
(Macrina, Weatherly & Curtiss, 1974; Cress & Kline, 1976).
Each plasmid copy has to replicate on the average once per
cell cycle in order not to disappear from the cell line
(average <1) or to increase unlimited in number (average >1).
If this replication would be a random process with a mean of
exactly 1, the number of plasmid copies per bacterial cell
would vary considerably. However, plasmid copy numbers
appear to be very stable (Barth, Richards & Datta, 1978).
Besides, slight deviations from the mean value of 1 will
either lead to the disappearance of the plasmid or to an

unlimited growth in numbers. Therefore, there has to be



some control on the number of plasmid copies to prevent de-
viations from the average. It appears that this control
leads to a constant number of replications per unit of time,
independent of the number of copies already present (Gustafs-
son & Nordstr®dm, 1980; Pritchard & Grover, 1981). Replica-
tions occur during the whole cell cycle, independent of the
replication of the bacterial chromosome (Gustafsson, Nord-
strém & Perram, 1978; Steinberg & Helmstetter, 1981). For
each replication, the replication is initiated in a random
copy (Gustafsson & Nordstrdm, 1975). However, plasmids which
have just been replicated, cannot immediately start with an-
other round of replication (Gustafsson, Nordstrdm & Perram,
1978).

For a stable inheritance of plasmids in a bacterial cell
line, it is not only essential that the plasmids replicate,
but also that each daughter cell of a plasmid bearing bac-
terium contains at least one plasmid. For plasmids with a
high copy number, random segregation will already ensure
that almost all daughter cells have at least one plasmid
copy. For low copy number plasmids, random segregation will
result in a high percentage of plasmid-free daughter cells.
However, low copy number plasmids do not segregate at random
(Miki, Easton & Rownd, 1980; Nordstrdm, Molin & Aagaard-
Hansen, 1980; Austin & Abelis, 1983a, b). There are strong
indications that each daughter cell obtains half of the
number of the plasmid copies of the mother cell. Nordstr®m,
Molin & Aagaard-Hansen (1980) found that the rate of loss of
plasmids is even lower than should be expected if the initi-
ation of plasmid replication was distributed according to a
Poisson distribution (a constant probability of replication
initiation per unit of time and per plasmid-bearing cell)
and the partitioning was strictly even (in case of an odd
number of plasmid copies, one daughter cell obtains one plas-
mid copy more than the other one). This extreme stability
could be caused by a higher than usual replication rate in
case of very low number of plasmids (Nordstrdm & Aagaard-
Hansen, 1984). Ogura and Hiraga (1983) discovered that the

moment of cell division can be delayed if only one plasmid



is present. Such a delay will also reduce the plasmid loss
rate. A recent review of plasmid replication is given by
Nordstrdm, Molin & Light (1984).

PLASMID INCOMPATIBILITY

As mentioned in the previous section the number of

plasmid replications per cell cycle is regulated in a fairly
accurate way. However, if two different plasmids occur in

the same bacterial cell, both using the same mechanism of
regulating their replication, the total number of replication
initiations is regulated, but at each initiation each copy
has the same probability of being replicated. This will lead
to a random increase of the relative frequency of one of the

plasmids.
If both plasmid types use the same partitioning mechan-

ism, both daughter cells will obtain an equal number of
plasmid copies, but the two types will be distributed
randomly over the daughter cells. It may occur that one of
the daughter cells obtains only copies of one plasmid type.
Gradually, bacteria bearing both plasmid types will disap-
pear and more and more bacteria containing only one plasmid
type will arise.

Two plasmid types which use either the same mechanism to
regulate their replication or the same partitioning mechan-
ism, or both, cannot be maintained for several generations
in the same bacterial cell line (unless there is a selection
pressure for bacteria carrying both). Two such plasmids are
therefore called incompatible (for a review, see Timmis,
1979). The rate of segregation into different cell lines of
two incompatible plasmids starting in the same bacterium has
been calculated by Ishii, Hashimoto-Gotoh & Matsubara (1978),
Novick & Hoppensteadt (1978) and Cullum & Broda (1979). That
rate depends on the copy number of the plasmid. If two plas-
mids use the same replication and/or segregation mechanism,
there is a particular relationship between them. Their genes
coding for replication and segregation have, in that case,

almost the same nucleotide sequence (Grindley, Humphreys &
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& Anderson, 1973b; Broda, 1979a). The relation between two
incompatible plasmids may be asymmetric: Copies of one of
them may be preferentially replicated. Plasmids are ordered
according to this property into incompatibility groups
(Datta, 1979). A 1list of incompatibility groups, and the
plasmids belonging to them is given in Bukhari, Shapiro &
Adhya (1977) appendix B.

CONJUGATION

Some plasmids are capable of infectious transmission from
one bacterium to another. When a plasmid-bearing bacterium
collides with another bacterium, one strand of the DNA of a
plasmid copy can be transferred. This process is called con-
jugation, and plasmids, capable to induce their own transfer
are called conjugative plasmids. The first plasmid was dis-
covered by its ability to induce recombination. It was
called a Fertility factor (F-plasmid). Nowadays a wide range
of different conjugative plasmids is known (Bukhari, Shapiro
& Adhya, 1977, Appendix B). Several different conjugative
systems are known. Incompatible plasmids often use the same

transfer system (Bradley, 1980a, b).
Conjugative plasmids induce their bacterial host to form

plasmid specific pili, some kind of extracellular filamen-
tous organelles (Bradley, 1980a). These pili are one of the
characteristics of a transfer system. Plasmids using differ-
ent transfer systems encode for different pili. Pili play an
important role in the pair formation between donor cell and
recipient (Ou & Anderson, 1970; Tomoeda, Inuzuka & Date,
1975). They can also serve as an attachment site for pilus
specific bacteriophages (Brinton, Gemski & Carnahan, 196l
Caro & Schnds, 1966; Bradley, 1976, 1980a). In the presence
of such a bacteriophage, therefore, the possession of pili
is disadvantageous for a bacterium.

When pair formation between two bacteria has been success-
ful, one strand of the DNA of a plasmid copy will be trans-
ferred. This transfer always takes place in the same direc-

tion, starting with the origin of transfer, oriT. For the F
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plasmid, the order of transfer is such that directly after
oriT, the gene complex encoding for replication regulation
is transferred (Rowbury, 1977). The genes coding for trans-
fer themselves are transferred last (Walker & Pittard, 1972;
Broda et al., 1972; Guyer & Clark, 1977). After the strand
of plasmid DNA is transferred completely, the cell to cell
contact between donor and recipient will be dissolved. In
the recipient a complement to the transferred strand is syn-
thesized and the now double stranded DNA is recircularized
(Ohki & Tomizawa, 1968; Vapnek, Lipman & Rupp, 1971). The
recipient itself becomes a potential donor bacterium. How-
ever, if the contact is broken before the total plasmid
strand is transferred, the transfer region will not be
transmitted, and the recipient will not be able to induce
transfer itself (Guyer & Clark, 1977).

Sometimes, a plasmid which does not code for conjugation
itself can be transferred in case its bacterial host also
contains a conjugative plasmid. This may be the result of a
covalent union between both plasmids. In that case the non-
conjugative plasmid is as it were dragged along with the
conjugative one (e.g.: Hooykaas, Den Dulk-Ras & Schilper-
oort, 1980). In this way some conjugative plasmids can also
mobilize and carry along parts of the bacterial chromosome
(Holloway, 1979).

Some non-conjugative plasmids possess an oriT region on
their DNA. Such plasmids can use the transfer products en-
coded by a conjugative plasmid, to become mobilized and
transferred (Warren, Twigg & Sherratt, 1978). In that case
the non-conjugative plasmid is transferred alone. Such plas-
mids often do not need all transfer genes of the conjugative
plasmids (Van der Pol, Veltkamp & Nijkamp, 1978; Warren,
Saul & Sherratt, 1979; Willetts & Maule, 1979). Because
these plasmids can be mobilized by the transfer gene prod-
ucts of another plasmid, they are called mobilizable plas-
mids (Clark & Warren, 1979).

Levin, Stewart & Rice (1979) have investigated whether
the transfer rate of plasmids from donor to recipient sat-

isfies a simple mass action model. They experimentally ver-
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ified that the number of transfers per unit of time is in-
deed proportional to the product of the donor and recipient
concentration. Experiments of Cullum, Collins & Broda (1978a)
indicate, however, that the transfer rate per donor and per
recipient decreases with increasing bacterial concentration.
They explain this by the finding that the efficiency of pair
formation decreases in a crowded environment (Collins and
Broda, 1975) and by the finding that a plasmid-bearing bac-
terium can donate a plasmid only once per generation. In an
environment with a surplus of recipients, the transfer rate
can become almost one per donor generation.

The transfer rate appears to depend not only on the bac-
terial concentrations, but also on the number of generations
the plasmid-bearing bacterium already carries its plasmid
(Ozeki, Stocker & Smith, 1962; Stocker, Smith & Ozeki, 1963).
A newly infected host is not capable to donate a plasmid dur-
ing the first one or two generations. After this initial "in-
cubation time" the descendants of the infected bacterium be-
come very efficient donors. This lasts several generations,
but then the ability to induce transfer is repressed, and
transfer occurs only rarely. Finnegan & Willetts (1971,

1972, 1973) and Grindley et al. (1973a) have investigated
the genetics of transfer repression of F-like plasmids. In
order to enable transfer, the transfer gene complex (tra¥ to
traZ) has to be translated. The translation of this complex
is positively controlled by the product of the trad gene.
This gene in its turn, is negatively controlled by the ccm-
bination of the products of two other genes (fin0 and finP).
After infection of a fresh host, trad immediately gets trans-
lated. Its gene product enables the translation of the tra
gene complex, which, in its turn, makes conjugational trans-
fer possible. However, at the same time the finO and finP
gene products are synthesized, repressing the transcription
of trad. First trad and afterwards the other tra gene prod-
ucts are then gradually diluted by subsequent cell divi-
sions. (For a review, see Willetts & Skurray, 1980). Freter
et al. (1983) have estimated the transfer rate both from the
original host and from newly infected bacteria. It appears
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that for the transfer repressing plasmid R1 the transfer
rate from the newly infected host is 105 to 108 times as
high as from the original donor. After several generations,
the transfer rate drops to 10_1 to 10_4 times of that of the

newly infected bacterium.
SURFACE EXCLUSION

Bacteria already containing a plasmid are often much less
efficient recipients for other plasmids than plasmid-free
bacteria (Lederberg, Cavalli & Lederberg, 1952). This phe-
nomenon is called surface or entry exclusion. It is caused
by certain plasmid encoded proteins in the cell membrane of
the plasmid bearing cells (Achtman, Kennedy & Skurray, 1977;
Kennedy et al., 1977). Surface exclusion does not depend on
the presence or absence of pili (Achtman, Willetts & Clark,
1971) .

Not all plasmids exclude each other equally strongly. Ac-
cording to this property they can be ordered into groups of
plasmids excluding each other mutually strongly, the so
called surface exclusion groups. This classification has,
however, several disadvantages. One of them is that surface
exclusion is not necessarily mutual. It can only be detected
if it is directed against transferable plasmids, so that
only the conjugative plasmids can be classified in this way.
Besides, it is, of course, a quantitative property, and it
may therefore depend on the opinion of the investigator
whether surface exclusion is called strong or not.

It appears that surface exclusion is often strong when
the resident plasmid and the plasmid trying to enter are in-
compatible (Datta, 1979). The ordering of plasmids into sur-
face exclusion groups gives therefore often the same result
as the ordering into incompatibility groups. The latter
classification is, however, more universally applicable and
is more universally applied.

When several different plasmids with different surface ex-
clusion systems, are present together in a bacterium, their

exclusion systems may interact. Willetts & Maule (1974)
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discovered that if two different plasmids occur in one host,
sometimes only one and sometimes neither of the surface ex-
clusion systems function. When two compatible plasmids en-
coding the same type of surface exclusion coexist in one bac-
terium, the degree of surface exclusion is not affected
(Willetts & Maule, 1974).

The genes coding for surface exclusion in F-like plasmids
are situated in the transfer gene complex (Achtman, Kennedy
& Skurray, 1977; Willetts & Skurray, 1980). This implies
that in case the transfer is repressed, surface exclusion is
also repressed (Willetts & Skurray, 1980). The surface exclu-
sion genes of several other plasmids are also situated in
the transfer region (Alfaro & Willetts, 1972; Barth, 1979).

ANTIBIOTIC RESISTANCE

Since the introduction of antibiotics in medicine, there
exists a strong selective advantage for resistance to anti-
biotics in bacteria confronted with these antibiotics. The
origin of many antibiotic-resistant bacterial strains was
therefore to be expected. However, it appears that the mech-
anism of antibiotic-resistance found in nature differs great-
ly from that induced in the lab (Benveniste & Davies, 1973a).
The genes for resistance (R factors) found in nature are
mostly situated on plasmids and their mode of action is much
more sophisticated than that of chromosomal mutations
causing resistance in laboratory populations. These plasmid-
borne resistance genes can be transferred between bacteria
of the same and sometimes also of different species (Jones &
Sneath, 1970; Reanney, 1976). In this way, plasmids cause
natural genetic engineering.

The R-factors found in different parts of the world are
often very similar both in function and in structure (Datta
& Hedges, 1972; Heffron et al., 1975; Barth & Datta, 1977;
Farrar, 1981; Tietze, Prager & Tschipe, 1982). This suggests
a single origin of these factors. In many soil bacteria anti-
biotic resistance is already a favourable property for a

very long time, because many soil organisms, including
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several bacteria, produce antibiotics. The resistance genes
in several soil bacteria show a close resemblance to R-
factors on plasmids in gut bacteria and in bacteria causing
diseases (Benveniste & Davies, 1973a, b; Polak & Novick,
1982). Therefore, it has been suggested that antibiotic re-
sistance, nowadays common for many bacteria in the human gut,
originally evolved in bacteria in the soil, and has been
successfully transferred to gut bacteria at the time that
conditions changed (Benveniste & Davies, 1973a,b; Jones &
Sneath, 1970; Reanney, 1976; Polak & Novick, 1982).

The R-factors themselves are often situated on trans-
posable elements (Tn). These elements can transpose one site
to another leaving behind a copy at the original site. Trans-
position can occur inside a piece of DNA but also between
different DNA molecules (Kopecko, 1980; Shapiro, 1980). In
this way a plasmid can collect several R-factors laying on
transposable elements. This implies that if a particular
antibiotic is used, a resistance factor against that anti-
biotic, situated on a plasmid, may disseminate throughout
the bacterial population. That plasmid may take along resis-
tance against several other antibiotics. In this way, the
spread of antibiotic resistance is far more effective than

simple mutation towards resistance can be.
HORIZONTAL GENE TRANSFER

The fast spread of antibiotic resistance all over the
world following the introduction of antibiotics is an
example of gene transfer between different (bacterial)
species. This kind of gene transfer is called horizontal
gene transfer. There is little reason to suppose that the
observed spread of R-factors, caused by human interference,
is exceptional. The vehicles for this spread, the plasmids,
were already present before antibiotics were introduced
(Hughes & Datta, 1983), and sudden changes in the environ-
ment can also have a natural (i.e. non-human) origin. The
importance of horizontal gene transfer for bacterial evol-

ution is not yet clear. It may imply that almost every bac-
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terial species can obtain any gene of an arbitrary other
species (Reanney, 1976). In that case, a species is not a
reproductively isolated entity, and the species concept

becomes very ill-defined for bacteria.

GENETIC ENGINEERING

Plasmids are often used as tools in genetic engineering.
They are capable to introduce genes into a bacterium and
this property is used in bio-engineering. In order to pre-
vent the escape of artificially constructed bacteria into
nature, the employed bacteria often have a metabolic defi-
ciency. They can only survive when some nutrient is provided
which is scarce in nature. However, if the artificially in-
troduced genes are introduced into a plasmid, and that plas-
mid is capable of independent transfer or mobilization,
these genes may be able to escape from their crippled host
and may be transferred to a more healthy bacterium. In that
case, escape from the lab may not be impossible. Stewart &
Levin (1977) studied the theoretical possibility of the es-
tablishment of an unfavourable gene if that gene is situated
on a conjugative plasmid. This appears to be possible under
rather broad conditions. The conditions under which a mobi-
lizable, non-conjugative plasmid can be maintained are, how-
ever, far more restricted (Levin & Stewart, 1980), and es-
cape of such a plasmid from the laboratory is therefore not

very likely, although by no means impossible.

SELECTION ACTING ON PLASMIDS

Plasmids have an important impact on the evolution of
bacteria. They may propagate throughout the bacterial realm.
Bacteria can acquire new genes, which are already completely
evolved, by means of plasmid transfer. These genes will
sometimes be favourable or even necessary for the bacteria.
In this way, plasmids increase the adaptability of bacteria
(Jones & Sneath, 1970; Reanney, 1976). Plasmids themselves

are of course also subject to evolution. It is doubtful
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whether plasmids would ever have come into existence if
their sole selective advantage was increasing the bacterial
adaptability. In the first place, increasing the adaptabil-
ity of bacteria is a longterm advantage, whereas the costs

of the maintenance of plasmids and their transfer are immedi-
ate. Besides, the flexibility of the bacterial gene content
will only increase after conjugative plasmids have developed.
Moreover, plasmids make it possible for bacteria to acquire
new genes, but the acquired genes will often be useless and
burdensome for the bacteria as energy and nutrients for
transcription and translation are needed (Zind & Lebek,

1980; Godwin & Slater, 1979; Helling et al., 1981).

Conjugative plasmids can spread infectiously over a bac-
terial population. This may enable them to compensate for
their negative effects on the fitness of their bacterial
bearer (Stewart & Levin, 1977). In that case they can invade
a bacterial population by infection and stay in existence.
To see how non-conjugative plasmids maintain themselves is
more difficult. Some of these plasmids can be mobilized by
conjugative plasmids. Levin & Stewart (1980) have calculated
that these mobilizable plasmids can be maintained under
rather restricted conditions, even if they are slightly un-
favourable for their bacterial host. Non-conjugative, non-
mobilizable plasmids cannot spread infectiously. They do not
influence horizontal gene transfer. How they can maintain
themselves is a still unsolved problem.

In this thesis, the attention will be restricted to con-
jugative plasmids. For some properties it will be investi-
gated how selection affects them.

Chapter 2 & 3. One of the most important properties of
conjugative plasmids is clearly their ability to induce
transfer. To enable transfer several transfer products have
to be synthesized (Willetts & Wilkins, 1984). Plasmid-bear-
ing bacteria, able to transfer, have pili (Bradley, 1980a,
1981). These pili make the bacterium susceptible to infec-
tion by pilus-specific bacteriophages (Brinton, Gemski &
Carnahan, 1964; Caro & Schnds, 1966; Bradley, 1976, 1980a).
The ability to transfer will burden the energy budget and
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increase the nutrient consumption of a cell. The growth rate
of bacteria with transferable plasmids will, therefore, in
most cases be lower than the growth rate of bacteria with
non-conjugative plasmids, and each increase in transfer rate
will probably decrease the bacterial growth rate. As long as
transfer can only occur after an accidental collision between
the plasmid-bearing cell and another bacterium, there is a
maximum transfer rate: each collision results in transfer.
To exceed this maximum transfer rate, a new mechanism has to
be developed, for instance an increased mobility of the host
bacterium, a directed motion towards other bacteria or a
virus-like infection mechanism. Such a mechanism will prob-
ably be, in one way or another, disadvantageous for a bac-
terium, and decrease the growth rate. The question whether
there is an optimal transfer rate if an increase in transfer
rate decreases the growth rate of the bacterial host will be
answered in Chapter 2 for plasmids in a chemostat. In Chap-
ter 3 it is shown that the answer is qualitatively identical
if the host population is periodically transferred to a
fresh food supply. It is demonstrated in Chapters 2 and 3
that two incompatible plasmids excluding each other complete-
ly can sometimes coexist, it is shown, however, that three
such plasmids cannot coexist.

Chapter 4. Plasmids tend to exclude other, incompatible
plasmids from their host. Generally there is no entry bar-
rier against compatible plasmids (Datta, 1979; Finger &
Krishnapillai, 1980; Winans & Walker, 1985). Sometimes, how-
ever, a compatible plasmid is excluded, while an incompat-
ible plasmid can enter (Alfaro & Willetts, 1972; Hedges &
Datta, 1973). In order to exclude another plasmid, a plasmid
must contain exclusion genes (Achtman, Kennedy & Skurray,
1977; Barth, 1979), and synthesize the proteins responsible
for exclusion (Kennedy et al., 1977). These exclusion pro-
teins are situated somewhere in the cell membrane (Kennedy
et al., 1977; Hartskeerl, Tommassen & Hoekstra, 1985), and
change the properties of the membrane. This will influence
the bacterial fitness. Producing extra proteins creates prob-

ably extra costs. If the change in the cell membrane is so
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advantageous for the bacterium that the costs are more than
compensated for, bacteria would probably have arisen, en-
coding for these proteins themselves. Therefore, the pos-
session of surface exclusion genes probably is in some way
disadvantageous for a bacterium, and will reduce the overall
growth rate. Then why do plasmids exclude other incompatible
plasmids? This question is investigated in Chapter L.
Chapter 5. Ozeki, Stocker & Smith (1962) discovered that
a newly infected bacterium is a much more efficient plasmid
donor than a host infected many bacterial generations ago.
Since the ability to induce transfer is harmful for the bac-
terial host, an inefficient donor will have a higher fitness
than a very efficient one. Several investigators (Stocker,
Smith & Ozeki, 1963%; Broda, 1979b; Campbell, 1981) have sug-
gested that the ability to suppress transfer in "old" hosts
is of advantage for a plasmid. They reason that transfer
from a donor will occur more often if there is a surplus of
recipients, for in that case the probability of an acciden-
tal collision with a recipient is higher. Therefore, a newly
infected host will occur more often in an environment with
plenty of recipients. And in such an environment, it pays to
have a high transfer rate, because there are many potential
victims to infect. On the other hand, if recipients are
scarce, transfer will occur only rarely, and most plasmid-
bearing bacteria will have been infected many generations
ago. If these long ago infected bacteria are inefficient
donors, the bacterial fitness is higher. And even if the
transfer rate per donor and per recipient would be high, the
number of transfers would be small, since the concentration
of potential recipients is low. This seems to be a plausible
reasoning. A colony of bacteria bearing repressing plasmids
will grow faster than a colony bearing non-regulating, per-
manently derepressed, plasmids. Therefore, if most of the
bacteria in the colonies are plasmid-bearing, the number of
plasmid copies of the regulating type will increase faster,
since the colony with the regulating plasmids grows faster:
The colony of regulating plasmids has an advantage over the
colony of non-regulating, permanently derepressed plasmids,



as long as they are isolated from each other, and therefore
this reasoning is based on group selection. The theory of
group selection is mostly involved to explain the existence
of characteristics which are (slightly) unfavourable for an
individual, but which are in some way or another beneficial
for the population. For example, group selection arguments
have been used to explain why individuals restrict the number
of their offspring in case of overcrowding. This is clearly
disadvantageous for the individual, since it gets less des-
cendants, but it may increase the survival probability of
the population (Eshel, 1972; Boorman & Levitt, 1973). Ac-
cording to these arguments, unlimited population growth, re-
sulting in depletion, and maybe destruction, of their habi-
tat, is prevented by self imposed reproduction restrictions
of the individuals. In the case of regulating plasmids, the
advantage of regulation for the group is different: Popula-
tions of regulating plasmids can grow faster than popula-
tions of non-regulating, permanently derepressed plasmids.
However, the faster growth in number of a group of regu-
lating plasmids does not imply that such a group is secured
against the invasion of a non-regulating plasmid. What will
be the fate of a non-regulating mutant plasmid, which is per-
manently derepressed in a population of regulating plasmids?
Only in the case that such a mutant plasmid is not able to
invade and take over the plasmid population, transfer regu-
lation can be an evolutionarily stable strategy. (For a sur-
vey of the theory of evolutionarily stable strategies (ESS)
see Maynard Smith, 1982). This question will be investigated
in Chapter 5.

Population Dynamics of Compatible Plasmids, Chapter 6. In
Chapters 2, 3, 4 and 5 the result of selection on plasmid po-
pulations is investigated by considering the fate of a mu-
tant plasmid in the population. A plasmid and its mutants
are, of course, closely related, and will therefore be in
most cases incompatible. However, what will happen with com-
peting compatible plasmids?

In many natural bacterial populations, more than one

plasmid type coexist, in most cases belonging to different
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incompatibility groups (Christiansen et al., 1973; Datta et
al., 1979; Richards & Datta, 1982; Lee et al., 1984; Hedges,
Smith & Brazil, 1985). In Chapter 6 the restrictions on co-
existence of several compatible plasmids are investigated.
The hypothesis that several species can only coexist if they
use their environment in some way or another differently
(the one niche - one species hypothesis, Gause, 1934; Gil-
bert et al., 1952) suggests that several plasmids will only
be able to coexist if they employ their environment (which
is the population of their bacterial hosts) in different
ways, for instance if one possesses a high transfer rate,
and another a higher growth rate of its bacterial bearer.
Hedges, Smith & Brazil (1985) discovered three compatible
plasmids in some bacterial strains, and wondered how these
three plasmids could coexist considering the one niche - one
species hypothesis. They suggested that the coexistence of
the three plasmids is only a transient stage. However,
Hutchinson remarked in 1957 that the one niche - one species
principle will probably not hold in case competition is al-
most entirely intraspecific. It is therefore an interesting
problem whether competition between compatible plasmids is
mostly inter- or intra-specific. In the latter case competi-
tion between compatible plasmids might be an example contra-
dicting the one niche - one species principle, provided of
course that one is prepared to extend the species concept to
plasmids. This question is investigated in Chapter 6.

Some unsolved problems, Chapter 7. In this thesis some
questions concerning the population genetics and population
dynamics of plasmids are investigated. However, it is of
course not possible to deal with the whole scope of plasmid
evolution and population dynamics even restricting oneself
to mathematical modelling. Some interesting, still unsolved

problems are therefore shortly introduced in Chapter 7.
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A Mathematical Model for the Co-existence
of Incompatible, Conjugative Plasmids
in Individual Bacteria of a Bacterial Population
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Department of Genetics, Centre of Biological Sciences, University of
Groningen, PO Box 14,9750 AA Haren, The Netherlands

(Received 16 December 1983, and in revised form 23 March 1984)

A model is formulated to examine the possibility of coexistence of two or
more plasmids of the same surface exclusion group in a bacterial chemostat
culture. It appears that two plasmids are able to coexist. If two plasmids
can coexist they will follow different survival strategies, one with a high
conjugational transfer rate and a low fitness of its host, and the other with
a low transfer rate and a high host fitness. Coexistence of three plasmids
of the same surface exclusion group is impossible.

Introduction

Plasmids are pieces of extrachromosomal circular DNA. They occur
frequently in bacteria. Although plasmids are autonomous some of them
are capable of recombination with, and incorporation into, the chromosome
of their bacterial host. Other naturally occurring plasmids are known only
in an independent state. These plasmids encode a mechanism for their own
replication and an (almost) even distribution of their copies over the
daughter cells at cell division. Some of these independent plasmids are
capable of infectious transmissions to a bacterium without such a plasmid
in case of cell to cell contact between the plasmid-bearing (donor) bacterium
and a plasmid-free (recipient) bacterium. This transmission is called conju-
gation. A mathematical model describing the conditions for the maintenance
of such plasmids was formulated by Stewart & Levin (1977).

The cell membrane of bacteria containing a conjugational plasmid is
often changed in such a way that plasmids of the same type are no longer
able to infect these bacteria. Related plasmids are also excluded. This
phenomenon is called cell surface exclusion (Willets & Maule, 1974). The
combination of incompatibility and surface exclusion is called super infec-
tion immunity.

Plasmids can be ordered into incompatibility groups (inc. groups). An
inc. group is a group of related plasmids which use in some way or another
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the same replication and/or segregation mechanism. This implies that, if a
bacterium contains two different plasmid types of the same inc. group no
distinction is made between those types when choosing a plasmid copy for
replication. When such a bacterium divides both daughter cells will obtain
about the same number of plasmid copies, but the distribution of the two
different types over the daughter cells will be at random. The rate at which
bacteria, containing both types of plasmids, are lost in a population has been
calculated by Novick & Hoppensteadt (1978) and Cullum & Broda (1979)
among others.

On the other hand, plasmids can also be ordered into surface exclusion
groups. This ordering is in many instances the same, but unfortunately not
always. Besides, this ordering has the disadvantage that it is possible for
two plasmids to exist such that one excludes the other but the other does
not exclude the first (Willets & Maule, 1974).

Although surface exclusion is never absolute, it can be quite strong. Finger
& Krishnapillai (1980) found that the entry frequency in a recipient which
exhibits surface exclusion is 1000 to 100 000 times smaller than that in a
non-excluding recipient.

Clearly, two plasmids exhibiting super infection immunity cannot stably
co-exist in the same bacteria. If they start in different bacteria, they will
never be able to enter a bacterium containing the other plasmid, and if they
start in the same bacteria, they will segregate because they are incompatible
unless there is strong selection for bacteria carrying both (Cullum & Broda,
1979). However, another question is: can there be stable co-existence of
the two types in a bacterial culture? To solve this question a mathematical
model will be formulated. It will appear that two plasmids of the same
surface exclusion group can sometimes co-exist in one bacterial population.
The obvious next question, can three types of plasmids co-exist if two can,
will also be solved. The answer to this question provides a prediction about
the types of plasmids expected to exist.

Model for Two Competing Plasmids of the Same Surface Exclusion Group

Stewart & Levin (1977) have shown that a plasmid can be maintained
in a continuous culture, even if the fitness of the plasmid-bearing bacteria
is less than that of the plasmid-free bacteria. However, is it possible for
two plasmids, belonging to the same surface exclusion group to co-exist in
a chemostat? To answer this question the following model is formulated to
describe the behaviour of a two plasmid-one bacterium complex in a
continuous culture.
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BASIC ASSUMPTIONS

In formulating the model I have made, in addition to the usual chemos-
tat assumptions (see the next section) also the following suppositions.

It is assumed that there is only one limiting resource in the chemostat.
The growth rates of the bacteria without plasmids, of bacteria with plasmid
species P, and with plasmid species P, are proportional to the same function
of the limiting resource concentration s, f(s) - f(s) is an increasing function
of s. The proportionality parameters are measures of fitness of the three
different types of bacteria. They are respectively w,, w, and w,.

The consumption of the limiting resource is proportional to the increase
of the bacterial concentration. Per cell division a quantity e of the limiting
resource is needed. Plasmid-bearing bacteria lose their plasmid with constant
rate 7, independent of the plasmid type.

The conjugational transfer rate is proportional to the chance of an
accidental collision between a plasmid-bearing and a plasmid free bac-
terium. In other words, a simple mass-action model is assumed. The conjuga-
tional proportionality parameter differs for the two plasmid types, 7y, for
P, and vy, for P,. The surface exclusion is assumed to be absolute. All
symbols are listed in Table 1.

TABLE 1

List of parameters used in the model

by, by, b, Concentration of plasmid-free, P,-bearing and P,-bearing bacteria.
s Concentration of the limiting resource in the chemostat.

k Concentration of the limiting resource in the inflow.

P Turnover rate of the chemostat.

Y1, Y2 Conjugational transfer parameter of P, and P,.

T Rate of loss of plasmids from plasmid-bearing bacteria.

Wo, W, Wy Fitnesses of plasmid free, P,-bearing and P,-bearing bacteria.
f(s)w, Growth rate of bacteria b,.

e Quantity of resource needed for one cell division.

h(by+b, +b,)=wyf(k—e(by+b,+b,))

v =w /Wy

0= W/ wo

THE MATHEMATICAL MODEL

The inflow of the chemostat consists of a constant nutrient solution with
concentration k. In the chemostat the inflow is thoroughly mixed with the
chemostat content which can be considered homogeneous. The rate of
removal of the contents is equal to the inflow rate p. Therefore the rate of
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concentration changes in the chemostat is

ds )
E:p(kfS)Aej(s)(w,)bo+wlb|+wzb2) (la)
db,
d__ wof(5)bo—pbo—v1bob, — y,bob, + b, + b, (1b)
db
qp = WS ($)bi=pby+yiboby = 7b, (1c)
db
dt — = wof(5)b, — pby + y,bob, — Tb,. (1d)

It is obvious that an input-output equilibrium will rapidly be attained.
At this equilibrium s +e(b, + b, + b,) = k. Therefore one can replace f(s) by
a function h of (b, + b; +b,) such that

h(by+b,+b,)=wof(k—e(by+b,+b,)). (2)

Since f(s) is an increasing function of s, h(b) is decreasing. The fitness of
the plasmid containing bacteria can be taken relatively to the fitness of the
plasmid-free bacteria. The relative fitness w;/ w, is called v,

Rescaling system (1) yields

db
d° h(bo+ b, +b,)bo— pbo— y1bob, — y,bob, + b, + 7b, (3a)
db,
szlh(bo+b|+b2)b|“‘pb|+'ylb0bl_7bl (3b)
db,
. v,h(bo + by + by) b, — pby + y,boby — Th,. (3¢)

In order for plasmids P, and P, to be able to coexist in a chemostat culture,
system (2) has to have a stable internal equilibrium, i.e. a stable equilibrium
at which b0>0 bl>0 and b2>0

THE INTERNAL EQUILIBRIUM
At equilibrium the rates of concentration changes are zero. db,/dt=0
implies that
b, =0 (4a)
or
hv,—p—7+7150=0, (4b)
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db,/dt =0 implies that

by =0 (5a)
or
};vz—p—r+y25(,10 (5b)
and db,/dr =0 if
(h—p)bo+b,(1—y,bo) +b5(1 = y,b5) = 0. (6)

In case both plasmids coexist b, >0 as well as b,> 0.
Therefore at internal equilibrium equations (4b) and (5b) hold. Thus

h=(1+p)(y2= )/ (y20, = y103) (7)
and
bo=(7+p)(v,— 1)/ (Y20, = y,1,). (8)

Without loss of generality we take v, > v,.
Since h as well as b, have to be positive, y, must be greater than y,.
Combining equations (6), (7) and (8) results in

b= (Tvx()’z_')’l)_ﬂ')’x(v,—vz)>
2 pya(v, —0y) — T0,(y,— vy)

(T+P)(Ul_Uz)'(T'*’P)(')’z_‘Yl)_P(szl_'Ylvz) (9)
(%201 = 7102) (py2(vy = vy) = T02(y,— ¥1) )

If the fitness of the plasmid containing bacteria is lower than the fitness
of the plasmid-free bacteria, i.e. v,<v,<1 a necessary condition for
coexistence, since he (p, p/v,) is

T+p—up
n/y<—L—1F (10a)
T+p—Uyp
and
T+p—pv,/v
Yoy >—— 2 (10b)

If conditions (10a) and (10b) are satisfied, the existence will still depend
on the function h. Provided that h is a decreasing function, it can be proved
that the equilibrium, if existing, is stable (see Appendix).

If one of the types of plasmid-bearing bacteria has a higher fitness than
the plasmid-free bacteria, and the other type a lower fitness, i.e. v, <1<,

2
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a necessary condition for existence, since he (p/v,, p/v,), is

y1/73<—*zv'/—v2— (1

(ptrmiv/v,—p
while inequality (10b) also has to hold.
If 1<v,<v, inequality (11) has to hold for equilibrium and also, if
(p+7)—pv, >0

(1+p)—poy (12)

i/ v2>
YT (r4p)—pv,

since h e (p/vy, p).

Unfortunately, in the last two cases, the condition that h decreases is not
sufficient for the equilibrium to be stable. This is connected with the fact
that a negative relation between the growth rate and the population size is
not sufficient to secure the existence of only one equilibrium at which b,> 0,
b,>0 and b,=0 in case v,> 1.

1-05¢
v2
0-95
0-85
0-05 010 014 018
Y2
F1G. 1. Possibility of coexistence of two plasmids. Transfer rate y and hosts fitness v of

plasmid P, fixed. (a) y,=0-01, v, =0-99. (b) y,=0-075, v, =0-5. (¢) y,=0-15, v, =0-1. A
second plasmid P, can coexist with P, if (vy,, v,) is between the broken and the solid line. If
(,, vy) is above the solid line then P, will expell P,. If (7,, v,) is under the broken line then
P, will expell P,. p=0-1, 7=0-005, c=1-125.
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For a given function h the area in which P, and P, can coexist can be
computed. A reasonable choice is the hyperbolic relation between nutrient
supply and the growth rate, i.e. f(s)=as/(B +s) (Monod, 1949). Scaling
the time in units of generation time of plasmid-free bacteria and k/e at
unity h becomes
1-b
h(b)=——:. (13)
c-b
In Fig. 1 the values of v, and vy, for which P, can coexist with P, with given
v, and vy, are shown.

THE FATE OF A THIRD PLASMID

To investigate what will happen when a third plasmid P; tries to invade
a stable two plasmid-one bacterium equilibrium I will first extend system
(3) with the dynamics of the third plasmid. Let the fitness of the P;-bearing
bacteria be v; and the conjugational transfer rate parameter of P; be ;.
The extended form of system (3) becomes

db,
d—t"= h(bo+b, + b, +b,)b,

‘pbo— YIbObl == Yzbobz— ')’3b0b3 +Tb| + sz + Tb3 (14&)
db
d—t'= v h(by+b, +b,+by)b, — pb, + y,byb, — b, (14b)
E-=vzh(bo+b,+b2+b3)bz—pb2+72bob2—'rb2 (14¢)
db,
== 0sf(bo+ by + by +by) by — pby + y3bobs — b, (14d)

For coexistence of P, P, and P; equations (4b) and (5b) have to hold just
as in case of coexistence of only P, and P,.
Besides, in equilibrium db;/dt =0 and, when P; is not excluded,

};v3—p_7+7350=0. (15)
It is only possible for all three equations (4b), (5b) and (15) to hold together
if
(Ul_vz)+(72vl_7102) (16)
Y2— 7 Y2— "

U3=—Y;

which is very unlikely to be exactly true.
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Therefore, if P; can penetrate into an equilibrium of P, and P, at least
one of the plasmids P, and P, will be eliminated, and P; can invade if

’;UJ_P“T+7350>0 (17)
or if

(v,=1y) | (ya02— 7i02)
(ya— ") (v.—

V> —; (18)
This implies that for every combination (s, v;) above the line connecting
(y,, v;) and (7,, v,) in the (v, v) plane P; can invade an equilibrium of P,
and P, (Fig. 2).

| VN
7 72 Y

FIG. 2. Possibility for a third plasmid to invade a two plasmid equilibrium. A third plasmid
P, with transfer rate y; and hosts fitness v, can invade an equilibrium of P, and P, if (3, v3)
above the solid line P,P,. If v=g(7y) is convex (— —) then a plasmid P, with transfer rate
v; and host fitness vy =g(y;) can penetrate if (7, v;) is above the solid line P, P, so if
¥ < ¥3< ;. On the other hand if v=g(y) is concave (- - ) then a plasmid P; has a
combination of y; and v; = g(y;) above the solid line P, Py, if y; <7y, or y3> 7,.

COMPETITION BETWEEN MANY DIFFERENT PLASMIDS

Suppose that many different plasmlds may occur. Each plasmid P, has
glven conjugational transferrate y; and the fitness of a P, bearing bacterium
is 0. Which plasmids will finally survive? Obviously all plasmids P, i P; with
(¥, U;) will be eliminated if there ex1sts at least one plasmid P with 7> ¥
and v;> 0. Let {P} be the subset of {P}, the set of all plasmlds such that
iff P e{P} andforeveryP e{P/P} v,<v or ;< ¥; then P € { P}. In other

words there exists no plasmid P, € {P} so that it has both a hlgher conjuga-
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tional transferrate and a higher hosts fitness than a plasmid P, € { P}. Only
plasmids P;e{P} are candidates for final survival, and therefore I will
restrict my attention to plasmids of { P}.

One can describe the relation between y, and v; for all P.c{P} by a
decreasing function g: y > v, since if v, > vy, then v; <, (see Fig. 3). Suppose
g isconvex, i.e. d?g/dy* <0 (Fig.2). Then, if an equilibrium of two plasmids
exists, a third plasmid with host fitness v; and conjugational transferrate
v, somewhere in between the hosts fitnesses and the transferrates of the
two already established plasmids will always be able to invade and expell
at least one of the other plasmids. On the other hand, if y; <min (71, v2)
on y;>max (y,, v,), the third plasmid will not be able to penetrate.

FIG. 3. Collection of plasmids all with a different combination of y and v. O, plasmids for
which at least one other plasmid exists with higher transfer rate and higher host fitness
({P/{P}}); @, plasmids for which no other plasmid exists which has both a higher transfer rate
and a higher fitness ({P}). The solid line is an arbitrary decreasing function g: y - v through
all (9, v) of plasmids @.

After a new equilibrium is reached with the intermediate plasmid and
one of the originals, another plasmid in between these two can invade. This
can continue until only one plasmid survives. This finally surviving plasmid
will have y and v as near as possible to ¥ and ¢ such that v=g(y) and
the tangent to g at ¥y coincides with

_ptr=vb(9)
h(¥)
in which I;O(y) and i;(y) are the equilibrium values of b, and h for an

equilibrium with only one type of plasmid with transferrate y and host
fitness g(y).
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In other words, ¥ can be computed by solving

bu(3)/ () =~ 2] (19)
dyly

However since g is completely unknown, and h only approximately the

possibility to compute y exists for the time being only theoretically.

If, on the other hand, g is concave, i.e. d’g/dy>> 0 (see Fig. 2) a third
plasmid will be able to invade in a two plasmid equilibrium if and only if
its conjugational transferrate vy, is outside the interval between the transfer-
rates of the two established plasmids. In other words, a third plasmid can
invade if y;<min (y,, y,) or y;>max (y,, y,) and will be excluded if
min (y,, y;) < y;<max (y,, v,). The invading plasmid P; will expell the
plasmid with conjugational transferrate somewhere in between its own and
that of the other plasmid. This process can of course be repeated until only
plasmids with minimal and with maximal transferrate survive.

Discussion

In the previous section it is shown that two plasmids belonging to the
same Surface Exclusion group can co-exist in a chemostat. However three
plasmids can never be maintained together. To attain these results I have
made several assumptions. One would like to know how realistic those
assumptions are and if the conclusions are robust to change in them.

The possibility for two and the impossibility for three plasmids to co-exist
is based on the fact that equations (4b) and (5b) form a system of two
linear equations with two unknowns (b, and h) and are therefore solvable,
while for co-existence of three plasmids a third equation (15) is added to
the system without adding a third unknown. Therefore this system of three
equations has almost nowhere in the parameter space a solution. Consider-
ing this it is clear that the conclusions are independent of the assumption
of equal loss rate 7 for all plasmid types.

The assumption that the nutrient need per bacterium (e) does not depend
on the presence of a plasmid is reasonable as long as the limiting resource
is not needed solely or mostly to build DNA or to construct a plasmid-coded
product. However, the assumption itself is redundant because the nutrient
need e does not appear in equations (lc) and (1d).

It seems reasonable to assume that the dependence of the growth rate of
the different bacteria on the limiting resource has roughly the same configur-
ation. The assumption of proportionality is maybe too strong but offers the
possibility to define fitness parameters. If one drops the proportionality one
has to be content with ““fitness functions™ f;(s) instead of the fitness para-
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meters w, However, it can be shown that it is sufficient to assume that

[RVPRRY
v, ds vy, ds

for the conclusions to hold. On the other hand, if there is more than one
limiting resource and the efficiency of the resource utilization depends on
the plasmid types which are carried, it might be possible that more than
two plasmid types can co-exist. This would be an example of the one
niche—one species theory, while this model shows that in a chemostat with
only one niche for the bacteria at most two related plasmids can co-exist.

The assumption that the conjugational transfer rate is proportional to the
chance of accidental collision between a donor and a recipient bacterium
was checked by Levin, Stewart & Rice (1979) and found reasonably accurate.
Collins & Broda (1975), on the other hand, state that the transfer rate per
donor and per recipient decreases as the bacterial concentration increases.
It can be shown that the conclusions do not change as long as the transfer
rate is for all plasmid types P; proportional to the concentration of P-bearing
bacteria times a function I of all bacterial concentrations, which is the same
for all plasmid types. But even if the transfer rate is only approximately
proportional to such a function I, the subset of the parameter space for
which P,, P, and P; can co-exist, will be very small and can be safely
neglected. Of course, if the surface exclusion is not absolute an extra
equation should be added to describe the dynamics of bacteria carrying
two different plasmids. However, since surface exclusion is often quite
strong (Finger & Krishnapillai, 1980) this type of bacteria will only occur
in a non-neglectable quantity if its fitness is higher than that of the other
bacterial types. Consequently, the conclusions that sometimes two, but never
three plasmids of the same surface exclusion group can co-exist, is rather
robust.

Experiments in which incompatibility properties are tested are mainly
executed under exponential growth conditions and in absence of conjuga-
tional transfer. Under such conditions all plasmid types originally present
will stay in the population, because host death is scarce, but their ratio will
change. However, under limiting growth condition, selection pressure will
be expected to lead to the extinction of all but one or two plasmid types.
If two plasmid types survive, one of them will have low or zero conjugational
transfer rate. So selection pressure can explain the existence of non-conjuga-
tive plasmids, even if they reduce their hosts’ fitness.

The relation between transfer rate and hosts’ fitness is little studied. Such
studies are complicated by the fact that the host growth rate and the transfer
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rate depend on the type of bacteria and on the environment. Godwin &
Slater (1979) observed the arisal of new plasmid types while studying the
maintenance of a plasmid in a continuous culture. In most of their experi-
ments the plasmid population after several weeks continuous culture consists
almost entirely out of one or two types. Which types survive depends on
the limiting resource.

It is also conceivable that plasmids will arise which combine both survival
strategies (low fitness, high transfer rate and high fitness, low transfer rate).
This could be realized by sometimes suppressing the ability to transfer. This
phenomenon is described by Stocker, Smith & Ozeki (1963) among others.
They found that plasmid-bearing bacteria, which have acquired their
plasmids only a few generations ago are much more efficient donors than
those which carry that plasmid already for many generations. The evolution
of this phenomenon will be further investigated using an extension of the
present model.

The manuscript was typed by Mrs J. Poelstra-Hiddinga. The figures were prepared
by Mr H. Mulder. This investigation was supported by the Foundation for Funda-
mental Biological Research (BION), which is subsidized by the Netherlands
Organization for the Advancement of Pure Research (ZWO).

REFERENCES

COLLINS, J. F. & BRODA, P. (1975) Nature 258, 722.

CuLLUM, J. & BRODA, P. (1979). Genet. Res. 33, 61.

FINGER, J. & KRISHNAPILLAL, V. (1980). Plasmid 3, 332.

GODWIN, D. & SLATER, J. H. (1979). J. gen. Microbiol. 111, 201.

LEVIN, B. R,, STEWART, F. M. & RICE, V. A. (1979). Plasmid 2, 247.

MoNoOD, J. (1949). A. Rev. Microbiol. 3, 371.

Novick, R. P. & HOPPENSTEADT, F. C. (1978). Plasmid 1, 421.

STEWART F. M. & LEVIN, B. R. (1977). Genetics 87, 209.

STOCKER, B. A. D., SMITH, S. M. & OzEex1, H. (1963). J. gen. Microbiol. 30, 201.
WILLETS N. & MAULE, J. (1974). Genet. Res. 24, 81.

APPENDIX

The equilibrium of system (2) with positive l;o, b,, and 52 is locally
asymptotically stable if all eigenvalues of the jacobian matrix at equilibrium
have negative real parts. The first derivative of system (2) at internal
equilibrium (the jacobian matrix) is

. b +b . . 5 2
—aby— 1 L2 —aby—y,bo+7 —aby—y,by+1
0
—av, b, +vy,b, —av, b, —avll;,
‘_avzl;z"“"yZl;z _avzgz —avzgz
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CO-EXISTENCE OF BACTERIAL PLASMIDS
in which
dh

e >0
d(by+b, +b,) (bo+by+by)=(bo+6,+55)

’

since h is a decreasing function. Therefore, the eigenvalue equation is
0=A>+A%{a(by+v,b, +v,b,) + (b, +b,)/ by}
a(r(b, + [;2)/501(1),51%-0252) +7, b6y +7:6,6,
+A +(ij|b(l)v,b,+(T—Ay2b0A)v2b2)
+7101(v1bo—7) + ¥2b2(y2bo— 7)
+abob by(v2— 1) (v201 = y105)
=1 +(ap, +p)A > +(agq, +g,)A +ra

All eigenvalues have negative real parts if
ap,+p,>0, aq, +¢,>0, ar>0 and (ap, +p,)(aq,+q,)—ar>0.

We have p, and p,>0 since l;o, 5 and 52 are positive at the internal
equilibrium; r> 0, since ¥,> vy, and v, > v,; and ¢,> 0, since if v, <o <lI,
then y,bob(l—u)>0 (i=1,2), and if v,<1<vy, then T—y|b0>0 and
yzbob (1- vz)>0 while if 1<v,<V,, then 'r—ylbo>0 and —y2b0+7+
T(b, +b2)/b0— hv2 p +7'(b +b2)/b0— h(vz— 1) +'y,b1 +yzb2>0

However, g, is not always positive.

9= 7151(7150— T) +7252(')’250_ )
= Y1bo(h = p) + (2= 7)) ba(p — Fivy).

If v,<v,<1 then h—p>0 and p—hv,>0=>¢,>0. Finally we have
to show that (ap, +p,)(aq,+q.)—ar>0; (ap,+p))(aq,+q,)—ar=
a’piq, +a(p,q, + P14~ 1) +Pp2q,. p1q,> 0 since p, >0 and gq,> 0. It can be
proved after tedious calculation that p,q, +p,q,— r>0if g,> 0. So, if g,> 0
the internal equilibrium is stable. If g, <0 the condition for stability of the
equilibrium is

—P149>— P24, +‘/(P1(I| +Pl‘lz”’) _4P1P2(]|(12
2p.q,

a>
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CHAPTER 3:

COEXISTENCE OF INCOMPATIBLE PLASMIDS IN A BACTERTIAL
POPULATION LIVING UNDER A FEAST AND FAMINE REGIME

ABSTRACT

A model is formulated to examine the possibility of (co)existence of
plasmids of the same incompatibility and surface exclusion group in a
bacterial population living under a feast and famine regime. The condi-
tion is given under which a growth rate decreasing plasmid can invade a
bacterial population. It appears that in case only one plasmid type is
present, the frequency of plasmid bearers will tend to a stable equi-
librium if the food supply at each growth site gets exhausted and both
plasmid-free and plasmid-bearing bacteria need an equal quantity of
food per cell division. Otherwise the frequency of plasmid-bearers
might oscillate. Two plasmids will sometimes be able to coexist, but
only if they follow different survival strategies, one with a high con-
jugational transfer rate and a lower fitness of its host, and the other
with a low transfer rate, and a higher host fitness. Coexistence of

three plasmids of the same surface exclusion group is impossible.
INTRODUCTION

Plasmids are pieces of extrachromosomal circular DNA.
They occur frequently in bacteria. Most plasmids are repre-
sented with more than one copy in bacterial cells. The num-
ber of copies per cell depends both on the plasmid type and
on the bacterial species, and is called the copy number.
Plasmid replication is often regulated by the plasmid itself.
Plasmids encode also a mechanism to ensure an (almost) even
distribution of their copies over the daughter cells of
their host at cell division. Sometimes the correct segrega-
tion of the plasmids over the daughter cells fails, and one
of the new born cells is plasmid-free. This seems to occur
only rarely. Nordstrdm, Molin & Aagaard-Hansen (1980) and
Nordstrdm & Aagaard-Hansen (1984) estimated the loss rate to
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be less than 10_}4 and 3.10_6 respectively per cell division.

Related plasmids often use the same mechanism for regu-
lating their replication and segregation. When a bacterium,
carrying copies of two related plasmids, divides, each daugh-
ter cell may contain only one of the two plasmid types with
non-zero probability. In the long run, the descendants of
such a bacterium will consist of bacteria carrying either
the first or the second of the two plasmid types, but never
both. Such related plasmids are called incompatible and the
phenomenon, that the descendants of a bacterium bearing two
incompatible plasmids will split up in bacteria carrying
only one type, is called incompatibility segregation. Plas-
mids are ordered according to this property into incompati-
bility groups. Novick & Hoppensteadt (1978), Ishii, Hashimo-
to-Gotoh & Matsubara (1978) and Cullum & Broda (1979) have
studied theoretical models for the rate of incompatibility
segregation.

Some plasmids are capable of infectious transmission from
their host bacterium (the donor) to a plasmid-free bacterium
(the recipient) in case of cell to cell contact between the
potential donor and recipient. This transmission is called
conjugation. The transfer rate often depends on the gener-
ation time of the donor with a limit of one transfer per gen-
eration (Cullum, Collins & Broda, 1978a, b).

Plasmids often prevent the entrance by conjugation of a
second, related, plasmid into their bacterial host. This
phenomenon is called Surface Exclusion or Entrance Exclusion.
In most cases, incompatible plasmids exclude each other
(Finger & Krishnapillai, 1980). Although surface exclusion
will never be absolute, it can be quite strong. Willetts &
Maule (1974) found that the entrance frequency can be reduced
with a factor of about 100, and Finger & Krishnapillai (1980)
found even reduction with a factor of 1O3 to 105. In a pre-
vious paper (van der Hoeven, in press: Chapter 4) I have in-
vestigated whether it is advantageous for a plasmid to ex-
clude other, incompatible plasmids from its host. This ap-
peared to be so for low copy number plasmids.

Plasmids often influence the growth rate of their bacter-
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ial pearers in one way or another. Some plasmids make their
host resistant against antibiotics, which is of course of
great advantage in the presence of antibiotics. Without anti-
biotics, however, resistance becomes a drawback. In most
cases, plasmids appear to be slightly growth rate reducing.
Stewart & Levin (1977) showed that even growth rate re-
ducing plasmids can sometimes maintain themselves by conju-
gation. They both investigated the case in which the bacter-
ial population lives in a chemostat and in a periodically
changing environment in which the bacteria consume their
food supply after which they are transferred to a fresh
supply (a feast and famine regime). In a previous paper
(van der Hoeven, 1984: Chapter 2) I showed under which con-
ditions a second plasmid can invade a plasmid-bearing bacter-
ial population in a chemostat, when both plasmids are incom-
patible and exclude each other completely. I also showed
that under chemostatic growth conditions two incompatible
plasmids can coexist, but three cannot. If an increase in
conjugational transfer rate causes a reduction of the growth
rate of the bacterial host, selection would lead to an opti-
mal transfer rate, or to the coexistence of two plasmids,
one with a very high transfer rate, and the other non-
conjugative. However, only part of the natural environments
of plasmids, such as animal guts, resembles chemostat condi-
tions. What will happen with plasmids, if their bacterial
hosts live under feast and famine conditions? Will two plas-
mids be able to coexist under that regime? And if two plas-
mids can coexist, can three also? To solve these questions a

mathematical model will be formulated.

BASIC ASSUMPTIONS

The growth of the bacterial population is assumed to be
food limited and the food supply gets exhausted. After a
fixed time T, or when all food is consumed, a fixed number
of bacteria is transferred to a fresh food supply. At the
new site the initial nutrient concentration is s (¢ is the

nutrient concentration). The bacterial population consists
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of plasmid-free bacteria (concentration ») and bacteria
carrying one plasmid species (pi denotes the concentration
of bacteria carrying plasmid Pi>' The whole bacterial popula-
tion is assumed to be homogeneously mixed. The growth rates
of all types of bacteria are assumed to be proportional to
the same function f(s) of the nutrient concentration. f(s)
is an increasing function, and f(0) = 0. The proportionality
parameters are denoted by v and can be considered as the
fitness of bacteria carrying plasmid P (the function f(s)
is chosen such that the proportionality parameter for plas-
mid-free bacteria is 1). A fixed amount of food is needed
for each cell division, e for plasmid-free bacteria and e
for bacteria carrying plasmid Pi'

The plasmids are able to induce conjugational transfer.
The probability of transfer of plasmid Pi is proportional to
the probability of an accidental collision between a Pi bear-
ing and a plasmid-free bacterium, and therefore proportional
to the product of the concentrations b and py- The transfer
rate is also assumed to be proportional to the growth rate
of the bacteria. The proportionality parameter is called the
transfer rate of plasmid Pi and denoted by Y- It is assumed
that plasmids cannot enter a bacterium already containing
another plasmid (complete surface exclusion).

Plasmid P, bearing bacteria can loose their plasmids at
cell division. Therefore, the loss rate is proportional to
the growth rate. The proportionality parameter is denoted by

T (A1l symbols are listed in table I).

MODEL FOR ONE PLASMID SPECIES

Stewart & Levin (1977) formulated a model for the case of
only one plasmid. Under a feast and famine regime, the bac-
terial population will, during its stay at one site, consume

its food supply and grow according to the following

equations:

¥ = —f(s)(eb+wlezp1) (1a)
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Table I
List of parameters

Pi: The 47 plasmid

B : Total bacterial concentration

b : Concentration of plasmid-free bacteria

p;: Concentration of bacteria carrying plasmid Pi

s : Concentration of the growth rate limiting resource

f(s): Growth rate of plasmid-free bacteria as a function of the limit-
ing resource

wif(S): Growth rate of Pi bearing bacteria

\EE Conjugational transfer rate parameter of plasmid Pi

Tt Loss rate parameter of plasmid Pi

e,e Quantity of resource needed for one cell division of respectively

plasmid-free, and plasmid Pi bearing bacteria

x = Ip./(b+Ip.)
Yy = py/(pstpy)
2 = pg/(pytps)
Bt(n), b,(n), st(n), xt(n), yt(n), zt(n): Respectively B, b, s, =, ¥y, 2

in site » at time t.

ab

az = f(s)(b=y;bp +1.p,) (1b)
dpl
g7 = f(8)(w;p #+Y,bp,-1,p,) (le)

After a fixed time T, or after exhausting the food (equival-
ent to T » =), a fixed number of bacteria is transferred to
0" This will lead
to an initial concentration of bacteria at the new site of

a new food supply with food concentration s

B, (B is the total bacterial concentration). The fraction of
P, bearing bacteria (x = pl/(p1+b)) in the transferred bac-
teria is the same as the end frequency at the former food

site. So x, at site n (xO(n)) is x, at site (n-1) (xT(n—Z)).

0
During the stay at a site,

T
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92 = 2f(s){(w,=1) (1-2)+y,b=1,} (2)

A plasmid will be able to penetrate in a plasmid-free

population if xO(n+1) = xT(n) > xO(n) for small values of x,

therefore if

T 7
dx 1 dzx
;azd““‘ggzzdt”-

So, a plasmid will be able to penetrate, if in absence of P

I
i
, f(s)(w1—1+Y1b-TI)dt > 0 (3)
In absence of P, %% = -ef(s)b and eB, + s, = eb + s = Db =

B, * (sO—s)/e. Therefore, inequality (3) implies that

S

T
g £s) (0 =14y, (b (5 ,=8,) /e) =T )
S

=eF (eI (B,+(5,-5]/e) e = 0
0
S S
50 (0,-1-1,) 50 ;
= ds + — ds > 0
eB0+50—s 2
7 T
= (w;~1-1,)In(B,/B,) + Y,;(By=B,) > 0 (4)

(see also Stewart & Levin (1977) for another derivation of
this result).

Successive transfer of the bacteria leads to the sequence
xo(l),x0(2),...,xo(n).... Since both B, and s, are fixed,

0 0
the whole course of z, B and s at a site is determined by =z

therefore the sequence is the solution of a first order reg
cursive relation. In case both plasmid-free and plasmid-
bearing bacteria need an equal amount of food per cell divi-
sion (e:el) and the food supply at each site gets exhausted,
the sequence {xo(n)} will converge to a stable equilibrium.

(Under these conditions, the system is at each moment com-
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pletely determined by « and B, %% = x{((w1—1)+y13)(1—x)—T1}/
{(1—x+w1x).B} and %% = 1. Since B, and B, will be the same

at each site, and the solution curves cannot intersect, the
sequence {xo(n)} will either be increasing or decreasing).

At that equilibrium

T T
50 I g1 =0 = g Fl8).{(w,=1) (I-x)+y b=t }dt = 0 (5)

However, if either the food supply does not get exhausted,

or the quantity of resource needed per cell division depends
on the plasmid content, the sequence {xa(n)} will not necess-
arily converge to a stable equilibrium. Fig. 1 shows examples
both of sequences, converging to an equilibrium, and of non-
converging sequences. However, even when the infinite se-
quence {xO(n)} does not converge to an equilibrium, it will

have one or more accumulation points since mo(n) e lo,1].
MODEL FOR TWO PLASMID SPECIES

Can a second plasmid P, invade a population, already con-

2

taining a plasmid P and can the two plasmids coexist? To

11
answer these questions, the model given in the previous sec-
tion, will be extended to a two-plasmid model. The growth

dynamics at one site now become

%% = -f(s)(eb+w e p +wge,p,) (6a)
9D = () (bY . bp =Y, bp o+ T D +T .0 ) (6b)
at = f(s Y7PP 1 Y gPP T P17 TP,

dpz

o5= f(8) (v p +y,bp;-T,p,) (6c)
dp2

T F(8) (woD g#Y 4bp o=T P ) (64d)

The dynamics at each site are completely determined by the

initial frequency of plasmid-bearing bacteria at that site
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and the initial frequency of P, in the plasmid population.
These initial frequencies are identical to the end fre-
quencies at the previous site. Let x be the frequency of
plasmid-bearing bacteria (x = (p1+p2)/(b+p1+p2)) and y the
frequency of P, bearing bacteria in the plasmid-bearing bac-
terial population (y = pZ/(p1+p2)), then, at a particular

Ly



site the dynamics of x and y are

dx

o = xf(s).{(z—m)(wz(J—y)+w2y)+yzb(1—y)+y2by—Tl(J—y)—Tgy}
(7a)
and % = y(1-y)f(s) L (wy=T,)=(w =T, )+ (Y=Y, )b} (7b)

P, will be able to penetrate if yO(n) increases for small

values of Yo+ In the case that the population without P2 is

at a transfer equilibrium (xa(n) = £0), the situation is

easy to analyse. y increases if

T

yo(n+1) > yO(n) = j f(s)((w2—T2)—(wl—T1)+(Y2—Y1)b)dt > 0
0 (8)

which implies that P, will certainly be able to invade if

2
both (w2—T2) > (wl—TZ) and Yo > Y In this case Yy will al-
ways increase and PZ will finally become expelled. If either
(wz—rg) > (wz—Tl) and Y; > Yy or vice versa, P, may or may
not be able to invade, depending on the relative magnitude
of the two terms in inequality (8). If no transfer equilib-
rium exists, the same conclusion holds, since for small

values of y

dy % i i = _
a2 v yf(s){(wy=1y)=(w -1, )+(y4=v,)b} (9)
so y can only increase if either (w2—T2) > (wz-T]) or y, >
Y- Only in case (wg—rg) > (w]—TZ) and Yy < Y; or vice versa,
coexistence of PZ and P2 may occur.

If two plasmids coexist, the whole course of B, s, x and

y at each site is completely determined by x, and Yy The

sequence {xg(n),ya(n)} gives therefore a comglete description
of the fate of both plasmids. In Fig. 2 some sequences of in-
itial frequences of coexisting plasmids are shown. Sometimes
a stable equilibrium of initial frequencies for coexisting
plasmids will be reached, in other cases a limit cycle will
be attained. The infinite sequence {xa(n),yO(n)} will have
one or more accumulation points. If PZ and P, coexist y

45



Py in plasmid population
o @ >
1 1 |

=
f

N}
|

Frequency of

Fig. 2.

cannot

an £ >

S AN
A
e

2 4 6 8 10 2 A 6 8 10
—  » Frequency of plasmids

Coexistence of two incompatible plasmids. W, = 093 Yy = 5.10_8;
1, =200 v, = 0.95; v, = 107 1, = 207 (as in Fig. 1:
fls) =s/(24s); e = e, = 1075; s, = 100; B, = 1000). a) T > .
The dotted line is the stable limit cycle. b) T = 12. A stable

equilibrium will be attained.

become arbitrarily close to 0 or I, so there exists

0 such that yt(n) € [eg,1-€] for each n (> mO). There-

fore, there exists for each § > 0 a subsequence

{mo(ni),yO(ni)} such that

IyO(ni+1)-y0(ni)] < 8e(1-g)

4e

T ,
- @ gy <oseae
Ji=n. p dt
n., ,—-17T
1+1
1 dy(4)
= ik gy(j)(l—y(j)) -l RS



n. =1T
241
> |((w2—T2)—(w1—rl)). jg”i ; fls(g))de -
gyt o
(Y;=Yq). jg”i g fls(F))b(jldt| < & (10)

Since § can be chosen arbitrarily small, a subsequence

{(xo(ni),yo(ni))} can be chosen such that

B qg—L T
1+1
((w2—12)-(w1—11)) jgni g f(s(j))dt is arbitrarily close
ni+1—1 r
to (v, =vy). j;n g b(j)f(s(j))dt. This result will be used
70

in the next section to determine whether a third plasmid
will be able to invade.

MODEL FOR THREE PLASMID SPECIES

In the last section it is shown that two plasmids may co-
exist, provided that one has a higher transfer rate (for in-
stance Pz:y1>y2) and the other has a higher net growth rate
(w2—r2>wz-11). Can three plasmids also coexist? In a previ-
ous paper (van der Hoeven, 1984: Chapter 2) I have shown
that three plasmids cannot coexist in a chemostat culture.

To answer these questions, the model is extended to three
plasmid species. At each site the growth dynamics are given

by the equations

d

Z% = -f(s)(eb+wzezp1+w262p2+w2e3p3) (11a)
GR = () (B bD =Y oBP =Y  bP T Bt T P +T 4P o) (11b)
dt = Y1PP 1 Y gPP oY gPPg#T P 1T P p* TP

dpy .

i f(S)(wipi+Yibpi_Tipi) for £ =z 1, 8, 3 (11¢)

Let x be the frequency of plasmid-bearers in the bacterial
population (m:(pz+p2+p3)/(b+p1+p2+p3)), y the frequency of
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P, carriers among P, and P, carriers (y:p2/(pl+p2)) and z

3 carriers among P, and PS carriers (z =

pg/(p2+p3)). The initial frequencies (xO,yO,z

the frequency of P
0) at one site
are identical to the end frequencies at the last site. These
initial frequencies completely determine the dynamics at a
site (provided that p2#0: in that case the variable
ps/(p2+p3) should be replaced by pS/(p1+p3)). At a site, the

dynamics of z, y and z are given by
(l-m)(wz(l—y)(1—z)+w2y(1—z)+w3yz)
- x.f(s). +Y1b(1—y)(l—z)+Y2by(1—z)+Y3byz /(1-3+yz)

—(Tl(l—y)(1—2)+T2y(1—z)+13yz)

(12a)
DY = y(1-y)f(e) ((0y=Ty)=(0,=T ) +(Y 4=y ;)b) (12b)
and é% = z(l—z).f(s)((wg—Tg)—(w2—12)+(y3—y2)b) (12¢)

P3 will be able to penetrate if zZ, increases for small

values of z. Since, however, x, and y, may differ at differ-

ent sites, it is possible that zo(n) > zo(n—l), while 20(n+1)

< zO(n). z, = 0 will be unstable, if the sequence {za(n)} be-

0
comes larger than some value e > 0 from some value m of n,
i.e. if there is an € > 0 such that if 20(0) = 6 > 0 then
zo(n) > ¢ for all n > m. For small values of z

%g N s f(e) LwgmT )~ (wy=T, )+ (Y=Y, )b} (13)

If PJ and P2 coexist, there will be some € > 0 such that

yt(n)e[e,l—e], i.e. neither the fraction of P,, nor the frac-
tion of P, in the total plasmid population decreases beneath
a certain threshold €. In the absence of PS’ the sequence
{(xo(n),yo(n))} has for each & > 0 at least one subsequence
{(x,(n,),y,(n,))} such that |y0(ni)—y0(ni+1)l < 8e(l-¢g),

which implies that
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n., -1

T
T+1 s
jé”i g Fls(g))b(gldt|- & <

(w2—r2)—(wZ—T1) ni+1_1 f
= L fls(g))dt <
(YZ Yq) isng
Cgag™ ¢ N
L f f(s(g))b(gldt| + 8, (1)
IThe 0

4493
where & = [8/(y,-v,)].
In that case Z(”i+1) > z(ni) if

ni+1~1 /i ni+1_1 T
.z gd(‘i;“ at > 0 = .z E L 22d) 4t 5 ¢ -
I 0 J=ny p Bl
Bipg™t &
= ((wS—Tg)—(wg—Tg)). jéni ; fls(glldt +
Bipg ™2 f
+ (YS—Y2). jéni ) fls(g))b(j)dt > 0; therefore always if
(YS Yo )
{(wa=1,)=(wy-T,)+ i _Yg) ((w, T2)—(w1—T1))}
nieq 1 f
. jgni ) fls(grdef - 8/|v;-v,| > 0 (15)
Yo = Y (W =T,)(Yo=Y,)
If vz > (wp-Tg). 4 d B Lot (16)

(MZ_TZ)—(wl_TZ) (w2-T2)(w]—T1)

it is always possible to find a & > 0 such that inequality
(15) holds. The same conditions hold for each accumulation
point. Therefore, if inequality (16) holds, the sequence

{zo(n)} has one or more increasing subsequences. Since only
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a finite number of elements of the sequence {(xo(n),yg(n))}
does not belong to a converging subsequence, and some mini-
mal value k > 0 will exist, such that z(n+1)>k.z(n) for all
n, the sequence {zo(n)} will always become larger than some
value e from some value of n if inequality (16) holds.

Therefore, if inequality (16) holds, a third plasmid P,
can invade a population already containing the plasmids P,
and P2. This is the same condition as that for a third plas-
mid to invade a bacterial population in a chemostat which
contains already two plasmids (van der Hoeven, 1984: Chapter
2). However, it is impossible that each plasmid can invade a
population containing the other two plasmids.

Can three plasmids coexist, although they cannot all
three invade a population already containg the other two? If
they can coexist, both Yy and 2, should remain in the inter-
val (0,1), therefore some value & > 0 exists, such that
ytE[e,l—e] and ztG[E,J—a] for all t. The sequence
{(xo(n),yo(n),zO(n))} has at least one accumulation point
(%0,30,20). Since (xO,yO,ZO)EV = {[0,1]x[e,1-€elx[e,I-€]l},
the accumulation point (xo,go,QO)EV, and there exist, for
each § > 0, an "y and g such that

d((z,(n ) yy(n,),z,(n)), (%,,5,,%,)) < ¥8c(1-e) for i =
1, 2,

SO
IyO(nz)—yO(nZ)l < 8e(1-g) (17a)

and |20(n1)—za(n2)| < 8e(1-€) (17b)

The first inequality leads to

n2—1 T
l((wg—Tg)—(wl-Tz)).j§n1 ; fls(g))dt -
ne~1 T
2
- (Yz_ng'jénJ I f(s(g))b(i)dt| < & (18a)

0

and the second to



n2—1 T
|((w3—r3)—(w2—r2))..§ g f(s(j))dt -
I="1 0
n2—1 7
(Yo=Y3). I gf(s(j))b(j)dt! < 8 (18b)
i=ng

Since § can be chosen arbitrarily small, both conditions can
only hold if

YZ_YZ _ Y3_Y2
(wZ—TZ)—(wZ—TZ) (w

—12)—(w3~r ) (1)

2 3

This condition is very unlikely to be fulfilled. (The
parameters should be in a subset of the parameter space with
measure 0). Therefore, it is impossible that the sequence
{(xa(n),yO(n),zg(n))} has an accumulation point in

V= {[0,11x[e,1-elx[e,I-e]l}. Since € > 0 can be taken
arbitrarily small and the sequence has to have at least one
accumulation point, it follows that at the accumulation

point either y = 0 (no PZ) or y = 1 (no Pl)’ or z = 0 (no P3)
or z = 1 (no P2), which implies that at least one plasmid
gets expelled. This proves that three plasmids cannot coexist
in a bacterial population subjected to a feast and famine

regime.
DISCUSSION

It is shown in this paper that a plasmid can be main-
tained in a bacterial population living under a feast and
famine regime, even if it reduces the growth rate of its bac-
terial host. This result was already obtained by Stewart &
Levin (1977). If plasmid-bearing bacteria need an equal
amount of resource per cell division as plasmid-free bac-
teria and the resource is exhausted, a stable initial plasmid
frequency will be reached. In other cases the frequency of
plasmid-bearers may oscillate. Two incompatible plasmids can

coexist, provided that one has a higher transfer rate and
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the other a higher intrinsic growth rate (hosts fitness
minus loss rate). When two plasmids coexist, they do not
have to occur in the same ratio at each bacterial transfer.
A great number of transfers may be needed before it becomes
clear which plasmid will win, or whether they can coexist.
Three plasmids can, however, never coexist. When a bacterial
population contains initially three plasmids, at least one
of them will be lost.

The qualitative results of this study strongly resemble
the conclusions, reached in an earlier paper (van der Hoeven,
1984: Chapter 2) for a bacterial population in a chemostat.
By sequential transfer as well as in a chemostat two plas-
mids can coexist, provided they pursue different strategies
(a higher transfer rate versus a higher intrinsic growth
rate). Under both conditions it is impossible for three plas-
mids to coexist in the bacterial population. An important
difference is, however, that with sequential transfer in
many cases no stable equilibria exist, while in a chemostat
stable equilibrium concentrations will be reached. The simi-
larity of the qualitative behaviour of competing incompat-
ible plasmids in a bacterial continuous culture and in a bac-
terial sequentially transferred population will not be pre-
served when plasmids, which can surpress their ability to
conjugate, are considered (Chapter 5).

In the model it is assumed that incompatible plasmids
exclude each other completely. When that assumption is re-
laxed, extra equations should be added to describe the dy-
namics of bacteria carrying two or more plasmids. Moreover,
since the plasmids are incompatible, an extra equation has
to be added for each ratio of two plasmids occupying the
same host. The bacteria carrying two incompatible plasmids
will disappear from the population but new ones will arise
continuously by conjugation. In a previous paper (van der
Hoeven, in press: Chapter 4) I have shown that, at least for
low copy number plasmids, plasmids inducing surface exclu-
sion, will have a selective advantage. For high copy number
plasmids the dilution in frequency of the just entered plas-

mid by all the plasmid copies, that are already present, has

\
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nearly the same effect as surface exclusion. Experimentally,
surface exclusion has been found to be often quite strong
(Finger & Krishnapillai, 1980).

The model studied in this paper is based on the wide-
spread use of sequential transfer of bacterial populations
in laboratories. It can, however, also be considered as a
model for "seasonal'" growth, in which only a fraction of the
bacteria survives to the next "season" with an ample food
supply. In that case, however, neither the initial food
supply, nor the initial bacterial concentration will be
constant. The time spent at each food site may also differ.
Will the qualitative result be influenced by a fluctuating
environment? In that case, the dynamical behaviour of the
different fractions z, y and z at site n are completely
determined by the initial frequencies Zs Yy and 2,5 the

initial bacterial density B the initial nutrient concen-

s
tration 8, and the durationaof the period T(n). As long as
BO’ s, and T(n) are elements of closed and bounded sets,
i.e. as long as they have an upper limit, the same conclu-
sions can be drawn, based again on the argument that the se-
quence {(xo,yO,ZO,BO,SO,T)} has to have at least one accumu-
lation point.

It appears that the conclusion that two incompatible,
excluding plasmids can coexist, but three cannot, has a

broad validity.






CHAPTER 4:

EVOLUTION OF BACTERIAL SURFACE EXCLUSION

AGAINST INCOMPATIBLE PLASMIDS+

ABSTRACT

Many conjugative transferable plasmids exhibit surface exclusion
against plasmids of the same incompatibility group. A mathematical
model is developed to calculate under which conditions surface exclusion
against incompatible plasmids can evolve. It appears that plasmids
inducing surface exclusion can evolve and even replace non excluding
plasmids if the copy number is low and the transfer rate high provided
that the cost of surface exclusion is small. They can more easily expel
the non excluding plasmids if the possession of a plasmid is not very
harmful for a bacterium and if the rate at which plasmids are lost is

small.

I. INTRODUCTION

Plasmids are pieces of extrachromosomal, circular DNA.
They occur abundantly in most bacterial species (Bukhari,
Shapiro & Adhya, 1977). Most plasmids encode a mechanism for
their own replication, independent of the replication mechan-
ism of the bacterial chromosome. The replication rate is
probably fixed, and not influenced by the number of plasmids
present. This implies that during each cell cycle the same
number of plasmid replications will occur (Gustafsson et al.,
1978; Pritchard & Grover, 1981). At cell division the plas-
mids are distributed evenly over the daughter cells
(Pritchard & Grover, 1981). The combination of these two
mechanisms will result in a fixed number of plasmids at the
start of each cell cycle. This number is called the copy
number of the plasmid.

Related plasmids often use the same mechanism to regulate

+Journal of Theoretical Biology (in press)
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the number of replications. When two related plasmids occur
in the same bacterial host, the number of replications is
the same as when only one of these plasmids is present. At
each replication, the plasmid which will be duplicated, is
chosen at random among all available plasmid copies. Related
plasmids also often use the same mechanism to ensure that
both daughter cells obtain the same number of plasmid copies
at bacterial cell division. In that case, however, no dis-
tinction will be made between plasmid copies of the differ-
ent types, so that both daughter cells will not necessarily
contain the same number of each plasmid type. As a result of
the inability to distinguish related plasmids at replication
and segregation, the descendants of a bacterium containing
two related plasmids will eventually consist of bacteria
with either the first or the second plasmid type, but never
with both. Plasmids are ordered according to this property
into incompatibility groups (Datta, 1979). Novick & Hoppen-
steadt (1978), Ishii, Hashimoto-Gotoh & Matsubara (1978) and
Cullum & Broda (1979) have developed a model to predict the
rate at which bacteria containing two different plasmids of

the same incompatibility group are lost in a population.
Some plasmids are capable of infectious transmission to

other bacteria in case of cell to cell contact between their
host and another bacterium. This process is called conjuga-
tion. Since only one strand of the plasmid DNA is trans-
ferred, the number of copies in the original host is kept
constant.

Many conjugationally transferable plasmids change the
cell membrane of their host in such a way that plasmids of
the same type cannot enter their host. This phenomenon is
called cell surface exclusion. In many cases not only plas-
mids of the same type are excluded, but also related plas-
mids (Willetts and Maule, 1974; Finger and Krishnapillai,
1980). As a result, plasmids belonging to the same incompat-
ibility group often exclude each other. However, in contrast
with incompatibility, surface exclusion is not always recip-
rocal.

Surface exclusion is produced by a change in the cell
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membrane of the bacterial host. This alteration will probably
decrease bacterial fitness, for if it were advantageous, bac-
teria would be expected to encode this property on their own
chromosome. However, among conjugationally transferable plas-
mids surface exclusion is a common property, which suggests
that it confers some advantage to a plasmid. This advantage
could stem from the fact that surface exclusion frees a plas-
mid from competition at segregation with related plasmids.

In this paper, a mathematical model is constructed to analyse
the evolutionary dynamics of surface exclusion. The model
predicts that, even if the avoidance of the loss of bacter-
ial hosts as a result of incompatibility segregation is the
only advantage of surface exclusion, surface exclusion will
be selected under broad conditions as long as the decrease

in fitness it causes is small, the copy number low and the

transfer rate sufficiently high.

II. DISCRETE MODEL

A. Basic assumptions

Suppose there are two types of plasmids, one type (P+)
which induces its host to prevent the entrance of related
plasmids, while the other type (P ) does not induce surface
exclusion.

The presence of surface exclusion is supposed to lower
the fitness of the bacterial host.

The plasmids are assumed to be closely related, belonging
to the same incompatibility group.

Since incompatibility segregation occurs only at cell di-
vision, it is a discrete process. Therefore a model with dis-
crete bacterial generations will be constructed. However,
since most bacterial populations are not synchronized, and
because a continuous time model is mathematically more tract-
able, a continuous version of the model will also be analysed.

During each bacterial generation the following events can
occur (and in this order):

1. conjugation
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2. plasmid replication

3. bacterial mortality

4, plasmid loss

5. bacterial division combined with plasmid segragation.
Both plasmid types have the same copy number ¥. For simplic-
ity it is assumed that plasmid replication continues until
twice the copy number is attained irrespective of the number
of plasmids at the beginning of the replication phase.

A bacterium will exhibit surface exclusion against both
plasmid types if it contains at least one P’ plasmid.

Finally, the population size is assumed to be constant;
therefore half of the bacterial population will die before

cell division.
1. Conjugation

Each cell cycle is assumed to start with a period during
which conjugation can occur after an accidental collision
between a plasmid-bearing bacterium and a potential recipi-
ent. Both plasmid-free bacteria and bacteria carrying only
P~ plasmids are potential recipients.

The probability per unit of time of such a collision is
proportional to the concentrations of both the potential
donor cells and the potential recipients. Therefore, the
transfer rate is assumed to be proportional to the product
of these concentrations. The proportionality parameter is
called ?. Levin, Stewart & Rice (1979) have shown that this
assumption is fairly accurate.

It is assumed that, if a donor bacterium contains both =
and P’ plasmids, each plasmid copy has an equal chance to be
transferred. However, a plasmid, which has just been trans-
ferred into a new host will not be transferred again during
that generation.

It is assumed that each potential recipient can receive
at most one plasmid by means of conjugation in one transfer
period. This assumption has several advantages. First, if
each bacterium receives at most one plasmid, no bacterium

will contain more than twice the copy number NV after a
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transfer period. In the second place, one does not have to
make awkward assumptions about the immediate effect of a ol
plasmid on the surface exclusion of its new host. Besides,
if the transfer period is short, the probability of acquiring
more than one plasmid will be small anyhow.

On the other hand, I have assumed that the ability of a
bacterium to serve as a donor during one transfer period is
unrestricted. However, as long as the transfer period is

short, multiple conjugations will be extremely rare.
These assumptions will lead to the following dynamics of

the potential recipients (concentration £), the potential
donors (concentration ¢) and the bacteria which have re-

ceived a plasmid (concentration w) during the transfer period

& = Ve (1a)
do _

8E = 0 (1b)
4o = Yeo (1c)

in which ? is a measure for the transfer rate. At the begin-
ning of a transfer period £ is equal to £(0), ¢ = ¢(0) and w
= w(0) = 0. At the end of a transfer period of length T the

concentrations are therefore

n,
£(r) = £(0)e YTO(0) (2a)
O(T) = ¢(0) (2b)
Y7o (0)
w(T) = £(0){1-¢ YT®(0/)y (2¢)

Therefore, the probability that a potential recipient%will

—YT¢(0)]-

acquire a plasmid during the transfer period is [ 1-e
Let the probability that a new-acquired plasmid is P~ be
f~ and that it is P* be f+ = 1-f . Since both plasmid types

have equal probability of being transferred, it follows that
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_ number of P plasmids at the start of the transfer period
total number of plasmids at the start of the transfer period

After the transfer period the number of plasmids in a bac-
terium can be 0, 1, N or N + 1. The bacteria carrying 1 or
¥ + 1 plasmids have acquired a plasmid by means of conjuga-
tion. Bacteria containing ¥ + I plasmids after the transfer
period, have been plasmid-bearing as well as potential re-
cipients at the start of the transfer period, carrying ¥ of
the P~ plasmids at that time. If ¥ = I, not all bacteria
with one plasmid have obtained that plasmid during the trans-

fer period.
2. Plasmid replication

After the transfer period the plasmids in the bacteria
are assumed to replicate. This replication will continue un-
til the cells contain 2N plasmids each.

It is assumed that the plasmid replications occur success-
ively and that for each duplication a plasmid is chosen at
random among all available plasmids. Newly made plasmids can
also duplicate. The same replication model has been used by
Novick & Hoppensteadt (1978) and by Cullum & Broda (1979) in
calculating the rate at which incompatible plasmids will
separate. In fact the replication model is a special case of
Polya's urn scheme (Feller, 1968).

Thus the probability of a bacterium to end up with 28 - J
of the P~ and 4 of the P’ plasmids when it start with k of
the P~ and » of the P' plasmids is

oN-5-1\ [5-1
plk,r,j) = k-1 r-1

0 otherwise.

2n-1 ) if k < 2N-§

r+k-1 and r < g (3)

When the concentration of bacteria carrying 28 - j of the P~
and § of the pt plasmids after plasmid replication is denoted
as XJ(ZN—j,j) and the concentration of bacteria carrying k

of the P~ and r of the p* plasmids before replication is
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denoted as X(k,r) then

N
xl(on-3,3) = L p(N-pr,r,J)X(N-r,r)+p(N,1,4)X(N,1), (ba)
w=y

for 0 < g < 2N,
xl(2w,0) = X(N,0)+X(N+1,0)+X(1,0), and (4b)
Xl(o,zzv) = X(0,N)+X(0,1) (4e)
3. Bacterial mortality

After plasmid replication, some of the bacteria will die.
The probability of dying depends on bacterial fitness, which
is determined by the presence or absence of plasmids and of
surface exclusion.

To keep the model as simple as possible I have assumed
the population size to be constant.

Since all surviving bacteria will divide, the population
size will remain constant if half of the bacterial population
survives.

Let the relative fitness of bacteria with at least one P’
plasmid, with only P  plasmids, and without plasmids be re-
and w+s

spectively w, w+s Then the surviving fraction of

1° 0°
these three types will be respectively %[ w/V], H (w+s,)/V]
and %[(w+30)/V] in which V is the mean fitness of the po-

pulation.
4, Plasmid loss

At cell division some bacteria may lose their plasmids.
However, to simplify the model I assume plasmid loss to be a
separate step just before cell division. The probability
that a plasmid-bearing bacterium loses all its plasmids is
equal to 1. After losing all its plasmids a bacterium will

become a normal plasmid-free bacterium.
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5. Bacterial division combined with plasmid segregation

At the end of each cell cycle the bacteria will divide.
All plasmid-bearing bacteria contain 2¥ plasmids prior to
cell division. At cell division the plasmids are distributed
equally over the daughter cells. No discrimination is made
between the two types of plasmid. Given these assumptions,
the distribution of the two plasmid types over the daughter
cells will be hypergeometric (see also Novick & Hoppensteadt,
1978 and Cullum & Broda, 1979).Thus the probability that a
particular daughter cell of a bacterium, carrying (2N-k) of
the P~ plasmids and k of the p* plasmids contains (N-4) of
the P~ and j of the p plasmids, is

a(k,q) :(f;) (Zg:’;)/(zxj (5)

All symbols used in this model are listed in table I.

B. The special case of copy number N = I

In fig. 1 the most simple case (copy number N¥=1) is shown
schematically. In the first period of the cell cycle poten-
tial recipients receive a plasmid with probability I - oa.
(1-0) = (J—pr(—wT.[conc. plasmid-bearing bacterial ), as de-
rived in section II-A-1. After the transfer period the plas-
mid will replicate until each plasmid-bearing bacterium con-
tains 2 plasmids (2W).

Half of the bacteria will die. The survival probability
of a bacterium, depending on its plasmid content, is defined
in section II-A-3.

Some plasmid-bearing bacteria will loose their plasmids
and become again normal plasmid-free bacteria. At the end of
the cell cycle all bacteria will divide and the plasmids are
equally distributed over the daughter cells of their host
bacterium.

Let the frequency at the start of the mth cell cycle of
P~ bearing bacteria be denoted by Zm(O) and of P bearing
bacteria by Zm(l).
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TABLE I

List of Parameters

P, P : plasmids without/with surface exclusion.
N : copy number of a plasmid.
Zm(i) : discrete frequency of bacteria carrying (N-7) copies of P and ©

. +
copies of P .

yi (continuous) a linear combination of Z(j)'s,
Vo v
Yy = jgo ~ET-Z(J); Yy = j§0 (5/N).2(7).
w : fitness of bacteria bearing at least one P’ plasmid.

wts, ot fitness of bacteria bearing only P plasmids.

wte, : fitness of plasmid-free bacteria.
Kﬂ : mean fitness during the mth generation.
T : (discrete) probability of plasmid loss per generation;

(continuous) plasmid loss rate per generation time.
? : (discrete) transfer rate during the transfer period (in volume x
b4 cell_1 x time _]).
A : (discrete) lengthe of the transfer period.
(discrete) = %.T.total bacterial concentration;
(continuous) transfer rate per generation time.
o : the probability that a potential recipient will not receive a

m
plasmid during the transfer period of the mth generation.

f;,f; : frequency of P_,P+ plasmids in the mth generation (f;+f;:Z).

p(k,r,j): the probability that a bacterium which contains before plas-
mid replication k copies of P and r of P will contain after
plasmid replication (2N-j) copies of P and J of P+.

q(k,J): the probability that a daughter cell of a bacterium containing
(2N-k) copies of P and k copies of P’ will contain (N-j) copies
of P~ and 7 of P'.

The probability that a potential recipient will not re-
i s . . . th . .
ceive a plasmid by conjugation during the m generation 1s

equal to

am = e—Y(Zm(O)‘/‘Zm(.Z)) (6)
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cell division and ;
plasmid segregation conjugation

plasmid
loss | (1-m)

plasmid
replication

(1-7)

AL
bacterial death

Fig. 1. A diagram of the successive events in a cell cycle of the model.
The arrows indicate possible transitions, and at each arrow the

expectation of that transition is given.

where y = ?T.[total bacterial concentration] .

Let f; and f; denote the fractions of all plasmids which

are respectively P~ and P+ at the start of the m"" gener-

ation:
fm = 2,00)/(2 (0)+2 (1)) (7a)
+
fn = z, (1)/(z (0)+2 (1)) (7b)

The mean fitness of the bacterial population in the mth gen-

eration is equal to

v, = wts {1-2 (0)-2 (1)}o +s {2 (0)a +f, (1-0 ) (1-2 (1))}
(8)
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So the relation between the frequencies of P and P’ bearing

bacteria at the start of two successive generations is

(sz+w) _
z ,,(0) = (J—T)——ﬁzr—n[Zm(O)um+(1—Zm(1))(J—um)fm] +
# ¥(1-1)% (2 (0)(1-0 )1 (92)
and n
2 (1) =222 Ny (1)eti-z (0)-2 (1)) (1-a_)F"
m+1 Vm ' m m m m°'m
+

+.2,(0) (1-0 ) 7 (9b)

C. Only one plasmid type present

If only one plasmid type is present - P+, say - equation
(9b) reduces to

_w(l-1) _ _
Z,.1(1) = —T.[zm(zﬁ(z a ) (1-2 (1))] (10)
with a = e—YZm(z)
m

and V. = w + s,(1-2_(1))a
m 0 m m

P? can invade a plasmid-free bacterial population if Zm+1(1)
> Zm(Z) for small values of Zm(l), so if
Y > (s +ww)/w(1-1) (11)

If inequality (11) is satisfied the frequency of P’ bearing
bacteria will tend to a stable equilibrium Z(1), which is
implicitly given by the equation

eV 2 u(1-n-2(20) /1 (8 )2(1) 40 (1-1)) (1-2(1))) (12)
with 0 < 2(1) < 1-t.
If, however, P’ cannot invade a plasmid-free population
(Y<(30+Tw)/w(1—r)), Pt might still be able to maintain itself
as long as Yy exceeds a certain minimum value Ymin(Z)’ an ex-

pression for which is derived in appendix A. In that case

equation (12) has two solutions Z,(1) and z,(1), with
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0 < 2,01) <2, (1) < Z,(1) < 1-t (2. (1) is the equilib-
rium frequency of Z2(1) if y = Ymin)' If the initial frequency
1s beneath Z4 [P p’ will disappear, while if it is above
Z (1) the frequency of P bearing bacteria will tend to the
equlllbrlum frequency Zg(l)
The case in which only P plasmids are present is exactly
analogous, with w replaced by w + 8 and sy by 8§, " 81-
Equation (10) is derived from the special case of V¥ = I.
However, since the copy number only influences the competi-
tion between incompatible plasmids equation (10) is indepen-

dent of copy number.

D. Evolution of surface exclusion in the special case N = 1

+ . s s ; - .
Can P’ invade an equilibrium with only P present, or in
other words, can surface exclusion establish itself. The

answer 1s yes; P’ can penetrate an equilibrium of p-if
e VIO (5 +50)2(0)-5 ) < FwI(0)-s, (13)

where 5(0) is the equilibrium frequency of P~ prior to intro-
duction of PT. (For a derivation of inequality (13), as well
as (14) and (15), see appendix B). It follows, that the ex-
cluding plasmid can always penetrate in a population with
only non-excluding plasmids if s, 2 0, that is, if surface
exclusion has no negative effect on bacterial fitness. If
surface exclusion reduces the fitness of bacteria, a surface

exclusion inducing plasmid can still penetrate provided

20) >
g, (w+s )+9w[(s -8, )+T(w+s )]l -
- /({sz(w+30)+9w[(so— )+T(w+s )]} —2wsz(so—sz)(w+so))//

{w(sg—sl)} =0 (14)
It 0 > 2 min (0) (the minimum of the stable equilibrium fre-
quencies of P~ in absence of P ) then surface exclusion will

become established if
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y > é—{ln[ (1-0) ((s,=5,)0+(w+s ) (1-1))] =Lnl (w+e ) (1-1-0)1}
(15)

In fig. 2 the relation between 5 (the difference in fit-
ness induced by surface exclusion) and y is given for which
P’ can invade an equilibrium with P~ . For some parameter
values, it is possible for P’ to invade a P~ equilibrium al-
though neither P~ nor P’ can penetrate in a plasmid-free po-
pulation. In that case the invasion of a P~ equilibrium by a
pf plasmid may lead to the extinction of both plasmids (fig.
3). So, surface exclusion can become established under broad
conditions and it becomes more profitable if the transfer

rate is high.

x 0.25q 0.25 T ©
T ® g
/ /
/ /
/
0.20 / 0.20 0.04+
/
0.154 0.15 0.034
0.0 0.101 0.02
0.05 0.05 0.01
T 1 T - T 1
0.00 0.05 0.0 0.00 0.05 0.10 0.00 0.00S 0.010
— S
i o i + = . .
Fig. 2. Competition between P and P plasmids, discrete model. For
given ) and T (2a: sy = 0.1, T = 0.001; 2b: sy = 0.1, T = 0.01;

2ec: 5, = 0.01, T = 0.01) a P+ plasmid can intrude into an equi-
librium of P plasmids if the combination of the values of 8
and Y are above the broken line in the (SZ,Y) plane. A P plas-
mid can invade an equilibrium of P+ plasmids if (SJ,Y) is be-

neath the solid line. Below the dotted line a P plasmid cannot
invade in a plasmid-free situation. In all cases the copy number

N =1,
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Fig. 3. Some examples of the dynamics of competition between Pt and P
plasmids, discrete model. In all figures a P’ plasmid invades a
bacterial population at equilibrium, carrying plasmid r.

s, =0.1; 8, = 0.01 and T = 0.001. The equilibrium frequencies
of (P+,P—) are indicated by @. In all examples a P’ mutant can
invade the equilibrium with P plasmids. 3a: y = 0.09. The P
plasmid expels the P plasmid, but as a consequence becomes ex—
tinct itself. Neither P+ nor P can invade a plasmid-free bac-
terial population. 3b: y = 0.095. The P’ plasmid almost expels
the P~ plasmid, and as a consequence becomes almost extinct it-—
self. The few remaining P plasmids can increase in frequency
when P* plasmids are rare. This interaction results in a limit
cycle. 3c: vy = 0.1. The P+ plasmid expels the P plasmid and an
equilibrium with only P+ plasmids is reached. However, the P+
plasmid is not able to invade a plasmid-free population. 3d: Yy =
0.105. The P* plasmid expels the P plasmid. The P plasmid can

now also intrude into a plasmid-free population.

Can the loss of surface exclusion ever be advantageous?
Yes, it might, in case
e—yZ(l)

((hw+2s,)2(1)-a) > (Ju+e )2 (1)~s (16)

1

68



The derivation of the inequality i1s analogous to that of in-
equality (13). Inequality (16) can only hold if s, > 0, that
is, if surface exclusion confers a selective disadvantage.

Inequality (16) combined with equation (12) implies that P~

can invade an equilibrium with pt ir
2(1) < m, (17)
where n = sl(w+80)+(%w+sl)(30+wr)-
~/({s, (uts )+ (hu+rs ) (s yrwT) Y2=ds o (huts ) (wts )| /
/230(s]+%w)
It follows, that P~ can invade a p* equilibrium if

y < Ain (1-n) (s n+w(1-1)) -ln(w(I-t-n))} (18)

Sl

provided that n > Zmin(Z)' In fig. 2 the relation between 8

and y for some values of Wy, 8 and T is given for which P

can invade an equilibrium with0P+. Thus a non-excluding plas-
mid may be able to invade a bacterial population in which
only excluding plasmids are present, and may even expel that
plasmid, but only if surface exclusion is sufficiently harm-

ful for a bacterium and if the transfer rate is small.

E. The general discrete model with copy number N

For an arbitrary copy number N the model can be derived
in exactly the same way as was done for N = 1. The various
transition probabilities are given in section II-A. Let Zm(i)
be the frequency of bacteria carrying < of the P’ and (w-7)
of the P~ plasmids in the mth generation. The frequencies of
P and P’ plasmids at the start of the mth generation are

respectively,
N

N
£= Ry (=82 (5)/ L0 2, (%) (19a)
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i i
Fu T gLpt,(2)/ EpN.2 (2) = 1-f, (19p)

The probability that a potential recipient will not receive
a plasmid by conjugation in the mth generation is given by
N
a = o~ Vol g 15 (20)
The mean fitness of the bacterial population in the mth gen-

eration is equal to

N
Vm = w+30(1—i§02m(¢))um+
N -—
+ sZ{Zm(O)am+(l—i§JZm(1))(Z—Qm)f m} (21)
Let
(2N—j—1)(j—1)
plk,r,g) ={ ML LTI e g < an-j (22)
(r+k—z) and r < j
0 otherwise
and
. k) [ev-k 2N
wodr ={5)(525) (%) e
as defined respectively in section A2 and A5.
Then, v
_w(l-T)
Zm+1(0) = = v kglq(k,o).

N-1
-+
.[rgz{p(N—r,r,k).Zm(r)}+p(N,1,k)Zm(0)(1—am)fm] +

(sz+w)(1—T) n =
+ ~———7§;—————.[Zm(O)am+(1—j§1Zm(J))(Z—um)fm] (2ha)
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w(l-1)

Zm+1(N) = 7

m
2N-1 N-1 "
ng q(k,N).[Péz(p(N—r,r,k)Zm(r))+p(N,l,k)Zm(O)(l—um)fm]

N
3 P
+Zm(N)+(1-j§02m(J))(l—am)fm (24p)
o _w(l-t)

Imer (3 = =g

m
N+g N-1

v q(k,j).[rgz(p(N—r,r,k).Zm(r))+p(N,1,k).Zm(O)(Z—am)f;]

for g = 2, 2, «wsy -1 (2kc)

Unfortunately, the model is in its general form rather un-
tractable. However, the continuous equivalent of model (24)

is easier to handle.
III. THE CONTINUOUS TIME MODEL

In this section a continuous version of model (24) will
be developed. First, we replace the variables Z(<) by new
variables Yo given by

N

¥y; = j§0 eijZ(J) (25)
This linear transformation is chosen such that
la..] = [e..]_lA[eij], in which

d 1d
[a..] is the ((N+1)x(N+1)) matrix with elements

an
ii pLpa(ks i) p(N-k,k,3),
and A is a diagonal matrix with diagonal elements XO’XJ""’
ANLZThereforei2 if the elements of [eij] k are denoted by
eij , then e is an eigenvector of [aij] with corresponding

eigenvalue Xi. The matrix [aij] has two identical largest
eigenvalues, XO and XN’ both equal to 1. The variables Yy
and Yy denote respectively the frequency of P~ and P’ plas-
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mids multiplied by the frequency of plasmid bearing bacteria,
SO

¥ ow-4
Yo = L —2(i) (26a)
._, N
1=0
and v ;
yy = T a3 (26b)
1=0
Furthermore, e., = e. = 0 for © = 1,2,...,N-1, therefore
—7 0 TN ~7
oy = 1 and oy = 0, and
il o §=I _g
200) = T e,y ¥, Ty, t Ieyy
=0 1=1
Let My o= Znyi, then My = 0 and My = 0, since AO = AN = 1 and
My < 0 for 2 = 1,2,...,N-1. Putting
N 1 N
ék = ;L 1 e JZ q(g,2)p(N,1,4) for k = 1,2,...,0-1 and
denoting the continuous equivalents of the parameters vy, T,
gy and 8 also by v, T, Sy and 875 the continuous version of

model (24) becomes

Yo = "Wy * (Y=sp)y(1-ypmyy) +
B=T _q
+ (y0+j5160jyj)(SZ(I_HO)_YyN/(N+1))’ (27a)
Yy = “Tyy * (y—so)yN(l—yO—yN) +
B~ _,
+ (y0+j§120jyj)(_SlyN+YyN/(N+1))’ (27p)
and -1
Y T TTYtHYLT8, (1- Y, yN)+(y0+ z 90 y L) (- szyk+y6ky ),
g=1 (27¢)
for k = 1,2,...,N-1.
If only one of the plasmid types 1s present y; = 0 for
7 = 1,2,...,N-1. A P (p") plasmid will increase in frequency

when introduced in a plasmid-free bacterial population if
QN > 0 (90 > 0) for small values of Yy (yO), therefore if

Y > s,+1 (y>s,-s,+1). In other words a plasmid will increase

0 0 "1
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in frequency if its transfer rate compensates both the de-
crease in bacterial fitness caused by the plasmid and the
loss rate of the plasmid. In absence of the other plasmid,
the frequency of p? (P7) pbearing bacteria will tend to a
stable equilibrium of Z—T/(Y-SO) (Z—T/(Y—SO+SJ)), provided
P* (P7) can invade a plasmid-free population. If P (P7) can-
not invade a plasmid-free population, no (stable) equilibrium
exists with only P27 (P7).

Can an excluding plasmid mutant invade a plasmid popula-
tion consisting entirely of non-excluding plasmids? Yes it
will, if the Jacobian matrix of system (27) at the equilib-
rium point with P~ and without P? nas at last one positive
eigenvalue. It appears that the largest eigenvalue of that

Jacobian matrix is
—T+(Y—80)(1—y0)+y0(—31+y/(N+1)).

Therefore, since Yy = J—T/(Y—50+sz), an excluding plasmid
can invade a bacterial population containing already non-

excluding plasmids if
Y > (30—81)+T+(N+])Sz+
/(s yma )ete(it1)e )P-a(ms1)e (5= )| / 2 (28)

or s, < 0. (see fig. U4 and 5)
Many plasmid species have a very small loss rate.
Nordstrdm & Aagaard-Hansen (1984), for instance estimated
the probability of plasmid loss to be less then 3.10_6 per
cell and per generation. If T can be neglected, condition

(28) for P’ to be able to invade a P~ equilibrium reduce to

Y/8, > 1-s,/s, for s,/s, < 1/(N+2) (29a)
and

Y/SO > (N+J)sl/s for SZ/SO > 1/(N+2) (29b)

0

Tnequality (29a) is exactly the condition for P~ to invade a
plasmid-free bacterial population. Therefore, if T is
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0 05 10 0 05 w0 05 10
SYSo

Fig. 4. Competition between P’ and P plasmids, continuous model. For
given T/sO and N (4a: T/éO = 0.1, N = 1; bb: T/SO = 0.01, N = 1;
4ot T/SO = 0.01, ¥ = 5) a P plasmid can intrude into an equilib-
rium of P plasmids if the combination of the values of SZ/SO
and Y/SO is above the broken line in the (SJ/SO,Y/SO) plane.

A P plasmid can invade an equilibrium of P plasmids if
(SZ/SO,Y/SO) is beneath the solid line. Below the dotted line a

P plasmid cannot invade a plasmid-free population.

negligible, the P’ plasmid can always invade an equilibrium
with P~ plasmids if s,/8, < 1/(0+2). Since PT can only in-
vade a plasmid-free population if y/so > 1 (t=0), it follows
from condition (29a) that if SZ/SO < 1/(N+2) then P* can
easier be established in a population with P than in a
plasmid-free population.

On the other hand, the condition for a P~ mutant to be
able to invade a P population, is that the Jacobian matrix
of system (27) has at least one positive eigenvalue at equi-

librium with P+ and without P . This condition reduces to
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Fig. 5. Competition between

X/;o 2V20=°5 51/ N P" and P~ plasmids,
T 50 " Subﬁ continuous model. For

-~ /5, = 0.01 and both
&2 for 31/30 = 0.1 and
o® 81/80 = 0.5 the mini-
o] EJF mal value+of Y/SO for
&8 which a P plasmid
P can invade an equilib-
o rium of P plasmids
o (both plasmids with

copy number V) is

marked with a @ and

T — .
0 25 50 the maximal value of

— =N Y/SO for which a P
plasmid can invade an
equilibrium of P
plasmids is marked with a O. P’ can only invade a plasmid-free popula-
tion if Y/e, > 1.01 and P if Y/s, > 0.91 (s,/5,=0.1) or Y/s, > 0.51
(31/30=O.5).

—T+(Y—80)(l—yN)+sz—YyN/(N+1) > 0 (30)

Since = I1-1t/(y-s,), it follows from inequality (30) that
Yy 0

a non-excluding plasmid can establish itself if

SO+T+(1V+1)SJ+'/ (SO+T+(N+1)SJ)2—4([V+1)8081
v < 5 (31)

and s, > 0 (see fig. 4 and 5)
This implies that if 1 is negligible P~ can only invade a P’

bearing bacterial population if
Y/s, < (N+1)s;/s, and s,/s, > 1/(N+1) (32)
If e,/8, < 1/(N+1), P’ will expel P~ plasmids from the

population, provided P’ can establish itself in a plasmid-
free bacterial population (fig. 4). But even if T is not
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negligible, P’ will expel P if surface exclusion is not
harmful for the bacterial host. Moreover, the presence of p
will facilitate the invasion of P’ if surface exclusion is
only slightly disadvantageous, provided T < 8y

In general, the selective advantage for a plasmid to in-
duce surface exclusion increases with decreasing fitness loss
of the bacterial host due to the exclusion, with increasing

transfer rate, and with decreasing copy number.
IV. DISCUSSION

In the previous sections conditions were derived for the
evolution of plasmid-induced surface exclusion. How likely
are these conditions to be fulfilled? For a number of par-
ameters used in this study, it is possible to obtain realis-
tic estimates based on empirical evidence. The influence of
a plasmid on bacterial fitness appears to be very variable.
Ziind & Lebek (1980), for instance, found that the generation
time of bacteria carrying different plasmids might vary be-
tween 29 and 58 min. (mean (and median) 36 min.; s.d. 6.6
min.), compared to a generation time of the plasmid-free bac-
teria of 30 min. This is equivalent with values of s, between
-0.03 and 0.93 (mean 0.2; s.d. 0.22).

The plasmid loss rate is in most cases very small. Nord-
strdm, Molin & Aagaard-Hansen (1980) and Nordstrdm & Aagaard-
Hansen (1984) could detect no loss of respectively R1 and
R1-drd-19 plasmids in an E. coli strain, which implied a loss
rate of less then 107" and 3.10_6 respectively.

The copy number of plasmids can vary greatly (from 1 to
over 800 (Projan, Carleton & Novick, 1983)). However, most
conjugative plasmids have a relatively low copy number
(somewhere between 1 and 10).

The transfer rate appears to be rather small in most ex-
periments. Levin, Stewart & Rice (1979) found the transfer
rate per donor and per recipient to be almost independent of
the recipient concentration. Their estimates of the transfer
12 £6 2.0.1077 m1/

(cell x hour) in an exponentially growing population. This

rate per donor are in the range of 1.5.10
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would lead to values of Yy somewhere between 5.10_5 and 10_1

if the bacterial population density is in the order of 108/m1.
The estimates of Freter, Freter & Brickner (1983) are of
about the same magnitude.

Cullum, Collins & Broda (1978a) state that the transfer
rate per donor reaches a maximum for high recipient concen-

74

trations (above 2.10' cells/ml). According to them, the maxi-
mum transfer rate is almost 1 per donor generation (corre-
sponding to values of Yy of almost 1). Stocker, Smith & Ozeki
(1963) found that donors with newly acquired plasmids are

far more efficient. They lose their efficiency after 3 to 7
generations. The above mentioned estimates of the transfer
rate are, however, all based on in vitro experiments. Esti-
mating the natural transfer rate is much more difficult.
Caugant, Levin & Selander (1981) have looked for evidence of
plasmid transfer between human gut bacteria without, however,
finding convincing evidence of transfer. On the other hand,
Freter, Freter & Brickner (1983) state that the transfer rate
per donor and per recipient is about the same in vivo and in
vitro, but that transfer cannot be easily detected in vivo,
because the bacterial density is much lower.

To my knowledge no research has been done on the cost of
surface exclusion for a bacterium. If that property were ad-
vantageous for a bacterium, one would expect the evolution
of bacterial gene(s) for surface exclusion, which might lead
to plasmids developing another transfer mechanism. However,
it is not clear how harmful surface exclusion is to bacteria,
and to what extent the bacterial fitness loss caused by a
plasmid is due to the induction of it.

Not knowing how much of the decrease in bacterial growth
rate 1s caused by surface exclusion makes it difficult to
predict when surface exclusion will become established. How-
ever, as long as surface exclusion is only responsible for a
small part of the fitness decrease, say about 10%, low copy
number plasmids, i.e. most conjugative plasmids, will devel-

op surface exclusion against other, incompatible plasmids.
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APPENDIX-A

+
MINIMUM VALUE OF y FOR WHICH A P~ PLASMID CAN BE MAINTAINED IN ABSENCE
OF P PLASMIDS

The relation between the frequency of plasmid-bearing bacteria in
generation m and m + 1 is given by equation (10). A shorthand notation

for it is
7 +1(1) = f(Zm(Z)) (A-1)

In the interval [0,1] f(Z) is an 1ncrea31ng functlon which has at most
one point of inflection. At equilibrium f(Z) = Z the trivial equilibrium
Z = 0 always exists. Since f(I) = 1 - T < I, exactly one non-trivial
equilibrium value exists in case §Z|Z:0 < 1.

If two different non-trivial equilibrium values exist, one will be
stable (the largest) and one instable (the smallest). For given w, )
and T the two equilibrium values will approach each other if Yy de-
creases. They will coincide on the boundary of the area in which there

are no and two non-trivial equilibria. In that case Zmin is a solution

of equation (12) and

'?ZJZ:IE , B (A-2)
min

~

which implies that Z . 1is a solution of
min

- ~2
(WT+s ) (1-1) —230 (1-1) Zmin+802min
(2~ Zmi ) -
+ ——Z——~——-{(1—T) w+(s —w)(l T)Z 1n—SOZmin}'
min

LIn{w(i-t- Z )/ [ (1-T)w+(s,, —(J—T)w)Z 1} =0 (A-3)

in 0 min

The stable non-trivial equilibrium value of (A-1) will, if existing,
always be larger then Z_ . .
min

For given values of w, s, and T the lower bound of Y’Ymin for which a

0
stable equilibrium with P’ exist is
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_ 1 Z v _ g .
Vo = 2 .Zn{(SOme»“w(l 1=z . )/ w(1-T Zm.n)} (A-4)

min

in which Z . 1is the solution of (A-3) with 0 < Z . < I-T.
min min

APPENDIX-B

+ -
CAN A P PLASMID INVADE AN EQUILIBRIUM WITH P AND VICE VERSA IN CASE
COPY NUMBER N = 1

The discrete model for ¥ = 1 is given by equations (9). A shorthand

notation for them is

(0) = f(Zm(O),Zm(J)) (B-1a)

Zm+1

Zm+1(1) = g(Zm(O),Zm(l)) (B-1b)

P can invade an equilibirum with P if the matrix

of | 2 | =
92(0) (z(0),0) 3z(1) (2(0),0)

9 (B-2)

g . ~
9z2(0) | (z2(0),0)  3z(1) | (z(0),0)

has at least one eigenvalue A with Re()A) < -1 or Re(A) > 1 (with corre-

B
sponding eigenvector (ez,eg)T, 62*0). Since 32 i [(2(0) py 0, P can

invade an equilibrium with P if
82(1) I (2(0) 0) > 1, therefore if
8 5000 = D) A (1=2(0)+52(0)) (1-0) /(2(0)}/V > 1 (B=3)

with o = e_YZ(O)

In equilibrium Z(0) = £(Z(0),0), therefore

200) = (1) (s ) (2(0)a+(1=0)) / V (B-4)
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(B-3) combined with (B-4) lead to
eTV2(0) (o +30)2(0)-6,) < WiZ(0)-s, (B-5)

. s + . - . .
as condition for P to be able to invade a P equilibrium. This condi-

tion can only be satisfied if
2(0) > s,/(s +0) (8-6)
According to equation (12) (replacing w by wts and ) by SO_SJ)

VO = (ors ) (1-1-2(0))/ [((30-31)2(0)+(w+31)(z-r))(z—E(O)X

(B8-7)

Combining condition (B-5) with equation (B-7) leads to the condition

z(0) >
sz(w+30)+%W[(so-sl)+1(w+31)] -

/ w(so—sz)
—//{sz(w+30)+%w[(30—31)+T(w+31)]}2—2wsz(30-31)(w+saif (B-8)

1
@

Since O > sl/(sz+%w) condition (B-6) is superfluous. O does not depend
on Y. For each combination of the parameters w, 8p0 € and T there
exists a value Zmin(O)’ given implicitly by equation (A-3) after re-

. - +
placing w by w*s; and s, by 8,76, so that z(0) > Zmin(O)' Therefore P
can always penetrate if O < Zmin(a)' The, in the one plasmid situation

stable, equilibrium Z(0) increases if Y increases, therefore Z(0) > O if
Y > é{ln[(l—e)((so—sl)@ + (w+81)(1—T))]—Zn[(w+81)(1—T—®)]} (B-9)
(The right-hand side of this inequality is the solution for Yy of equa-

tion (B-7) in which Z(0) is replaced by ©). In an analogous way the con-

v - . o .
ditions for P to be able to invade a P equilibrium can be derived.
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CHAPTER 5:

WHY DO PLASMIDS REPRESS THEIR TRANSFER RATE?

ABSTRACT

A model is presented of the population dynamics of a transfer repres-—
sing plasmid, which is derepressed in newly infected hosts. Using this
model, it is analysed whether individual selection on plasmids can ex-—
plain the occurrence of conjugation repression, both in a chemostat and
in a periodically transferred bacterial population. It appears that in a
chemostat regulation has no advantage, while in a periodically trans-
ferred population regulation is in itself advantageous. However, if the
growth rate of the bacterial plasmid host diminishes when a plasmid syn-
thesizes regulation products, the dynamical advantage of regulation will

not always be able to overcome its costs.
INTRODUCTION

Plasmids are pieces of extrachromosomal circular DNA which
occur abundantly in most bacterial species (Bukhari, Shapiro
& Adhya, 1977). They are mostly autonomous, regulating their
own replication and the distribution of their copies over
the daughter cells of their bacterial host.

Many plasmids encode for a mechanism for transferring a
strand of their own DNA to another bacterium which has acci-
dentally collided with their host. This process is called
conjugation. A competent donor, i.e. a plasmid bearing bac-
terium which is able to transfer a strand of plasmid DNA,
has pili. A pilus is a kind of extracellular filamentous
organelle. Pili play a role in the pair formation between
donor and recipient (Ou & Anderson, 1970; Tomoeda, Inuzuka &
Oates, 1975). They can also serve as attachment sites for
some pilus-specific bacteriophages (Caro & Schnds, 1966;
Bradley, 1976, 1980). In most cases, the growth rate of a
plasmid-bearing bacterium will be reduced by being competent,

both because several kinds of transfer products have to be
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synthesized, and because a competent donor is more liable to
infection by particular bacteriophages.

Ozeki et al. (1962) and Stocker et al. (1963) discovered
that a newly infected host is a much more efficient donor
than a bacterium infected a long time ago. It has been sug-
gested that this phenomenon is an adaptation which enables a
plasmid to spread fast by infection after the first transfer,
without hampering its host too much when the plasmid is al-
ready spread throughout the bacterial population (Stocker et
al., 1963; Broda, 1979; Campbell, 1981). This seems a plaus-
ible explanation, although the ability to repress conjugation

probably also has some costs.
The genetical mechanism of conjugation repression of

F-like plasmids has bteen extensively investigated (for a
review, see Willetts & Skurray, 1980). It is established
that the combination of the products of two different plas-
mid genes, f<nO and finP, is necessary for repression. The
two products interact in some way and repress together the
expression of another gene, trad. The trad gene product
positively controls the "transfer operon". This operon con-
tains most of the genes directly involved in plasmid transfer
(the tra genes, other than traJ). The disappearance of trad
gene products and of these products directly responsible for
transfer is supposed to be caused mainly by dilution in a
growing population. The transcription of the t¢radJ gene can
either be derepressed, enabling the plasmid to synthesize
its transfer products, or repressed, in which case it is not
possible to transcribe the other transfer genes (at least not
after the remainder of the traJ gene products has dis-
appeared). Although the repression will occur some time be-
fore the plasmid host stops being a competent donor, plasmids
in an incompetent donor will be loosely indicated as re-
pressed and in a competent donor as derepressed.

In this paper, I will investigate by mathematical
modelling, whether repression of the ability to conjugate is
advantageous for a plasmid, both for a chemostat population

and for a sequential transferred bacterial population.



MODELS FOR THE POPULATION DYNAMICS OF TRANSFER REPRESSING
PLASMIDS

Assumptions

Stewart & Levin (1977), Freter, Freter & Brickner (1983)
and van der Hoeven (1984: Chapter 2 and 3) have modelled the
population dynamics of derepressed plasmids. Transfer re-
pression will, however, influence these dynamics. The trans-
fer rate depends on the amount of time (w) elapsed since in-
fection.

The growth rate of the plasmid carrying bacteria will de-
pend among other things on the transfer rate and possibly on
the concentrations of the different transfer inducing and re-
pressing products. Since these concentrations and the trans-
fer rate depend on the time since infection (w), the growth
rate will also depend on w. The most straightforward way to
model the population dynamics of a transfer repressing plas-
mid is therefore to assume that the transfer rate and the
growth rate of a plasmid-bearing bacterium are functions of
that time w. The growth rate will also depend on the nutrient
concentration s in the bacterial environment. For simplicity
it will be assumed that the growth rate of all bacteria
(plasmid-free and plasmid-bearing, infected time w ago) is
proportional to the same function of the nutrient concentra-
tion, f(s). f(s) will be chosen such that the growth rate of
plasmid-free bacteria is I1.f(s). The proportionality par-
amater for plasmid bearing bacteria w depends on w.

The transfer rate depends on the growth rate of their
hosts. This will be modelled by assuming proportionality:

The probability of transfer per donor and per recipient per
unit of time is yv'(w)w(w)f(s) = y(w)f(s). vy will be loosely
indicated at the transfer rate.

It is supposed that only one nutrient is growth limiting,
and both plasmid-free and plasmid-bearing bacteria need an
equal amount of that nutrient per cell division (3). After
cell division, one of the daughter cells of a plasmid-bearing
bacterium might end up without plasmids (with probability T).
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These assumptions will lead to a model with partial dif-
ferential equations. The disadvantages of such a model are
that it is mathematically difficult, not easy to simulate and
employs an infinite number of parameters (y(w) and w(w) for
each value of w). If it is assumed that plasmid-bearing bac-
teria can only occur in two states, either able to conjugate
(derepressed), or not (repressed), and that the transition
rates between the two states are independent of the time
since infection, a much more simple model can be constructed.
It will be assumed that a just infected host is always dere-
pressed. In such a model, transfer rate regulation can be
captured in only two parameters, the rate of repression (¢R)
and of derepression (¢D). For reference all symbols are
listed in table I.

MODEL FOR PLASMIDS IN A CHEMOSTAT

Let the concentration at time ¢ of plasmid-free bacteria
be b(t) and of bacteria, carrying a plasmid, infected time
w ago, p(t,w). If the bacteria live in a chemostat with con-
stant turnover rate p and a fixed nutrient concentration s

in the inflow, the model of the dynamics is

%% = p(so—s)—gf(s){b+ g wlw)p(t,w)dw} (1a)
db _
5 = f(s)b-pb- g Y(w)f(s)bp(t,w)duwt
0
- (1b)
+ § w(w)Ttf(s)p(t,w)dw
0
% = - 2B ps,w) () w) (1-T)-p) (1c)
with %9
p(t,0) = 5 Y(w)f(s)b(t) plt,w)dw (14)
0
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TABLE I

1.IST OF THE PARAMETERS

W W, W

e’r’n’

f(s):

h(b):

YW,y

Y(w),y:

concentration of plasmid-free bacteria

concentration of plasmid-bearing bacteria at time ¢ infected
time w ago

concentration of bacteria carrying the ith regulating plasmid
resp. derepressed (conjugative) and repressed

concentration of bacteria carrying non-regulating plasmids
total bacterial concentration

relative growth rate of plasmid-bearing bacteria infected time
w ago

relative growth rate of bacteria carrying respectively dere-
pressed regulating, repressed regulating and non-regulating
plasmids

wnwc

nutrient concentration

growth rate of plasmid-free bacteria at nutrient concentration
8

growth rate of plasmid-free bacteria at total bacterial con-
centration b

quantity of nutrient needed for one cell division

transfer rate per recipient per generation time of the donor
resp. per donor infected time w ago and per competent donor
transfer rate per recipient per generation time of the recipi-
ent resp. per donor infected time w ago and per competent donor
plasmid loss rate per generation

repression/derepression rate of the ith regulating plasmid
length of each period in the sequential transfer model

frequency of plasmid-bearers in the bacterial population

7 7.1

pr/(pc+pr)
2. 2 1,1,2, 2
(pc+pr)/(pc+pr+pc+pr)

pTL/(pC+pZ’+pn)
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After a relatively short time an input-output equilibrium
will be reached in the chemostat. In that case the amount of
nutrient in the inflow is identical to the quantity of nu-
trient, either free or in a bacterium, in the outflow, in

mathematical terms,

s+ (bt | p(t,u)de) = s, (2)
0

b + p(t,w)dw is the total bacterial concentration and will
be Odenoted by b. At that equilibrium the function f(s) can
be replaced by a function %(h), such that

h(B) = f(sO—QE)

At the input-output equilibrium the system of differential

equations can be reduced to

o5} ©

g% = h(b)b-pb-h(b)b § Y(w)p (t,w)dwtth(b) S wlw)p(t,w)dw
0 0
(3a)
2= - 2By p(n(BIwlw) (1-t)-p} (3b)
with o
p(t,0) = b(t)h(b) S Y(w)p(t,w)dw (3c)
0

This model will be referred to as regulation model I.

A mathematically more simple model can be constructed if
it is supposed that the conjugation system in a plasmid-
bearing bacterium can either be derepressed or repressed,
and (de)repression occurs with a fixed probability per unit
of time (or per generation). The conjugation system in a just
infected host is derepressed. Let p, be the concentration of
plasmid-bearing bacteria which can induce transfer, and P
the concentration of repressed plasmid-bearers. If ¢y is the
repression rate and ¢D the derepression rate, the model (at

input-output equilibrium) becomes
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ab

%= h(E)b—pb-Yh(E)bpc+Th(5)(wcpc+wrpr) (L4a)
dp,, _ -

o5 = w, (1-1)(b)p ~pp #Yh(B)bp ,~4pp *¢ D, (4p)
dp,, -

7= = w, (1-1)3(B)p,=0p,+4pp =0 P, (he)

This model will be referred to as regulation model TII.
CAN A REGULATING PLASMID INVADE A PLASMID-FREE POPULATION?
In the absence of plasmids the equilibrium value of b is

b and h(b) = p. In the neighbourhood of that equilibrium the

equations of regulation model I can be approximated by

%% = - %% + p{plw(w)(1-1)- 11} (ba)
with %
p(t,0) = bp g Y(w)lp(t,w)dw (5b)
0

A solution of this equation is

W
( {ol (1-T)w(x)-1] -r}dx

plt,0) = plosole™e ¢ (6a)

with r the solution of
W
i { {ol (1-T)w(x)- 1]1-r}d=
pb g Y(we @ dw = 1 (6Db)
0

In case r > 0 the concentration of p will increase and the

plasmid will be able to invade. Three cases will be con-

sidered:

1) wlw) = w
and for all w > 0.
Y(w) = vy
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Then

w
o S {pl (1-T)w(xz)-1] -r}dx -
. 0 = -pby _
ob é Y(w)e dw = ol (1-1t)w-11 -7 1
(7)
> p = p{(]—T)w—1+Y£} (8)

Therefore, a non-regulating plasmid can invade if

PN

yb > 1 - w(l-1) (9)
2) wlw) = wy; and y(w) = v, for w < a
wiw) = W, and yv(w) = Yy for a < w < «

(with Y; > Yy and wy < wz).

In the case r is the solution of

% Jlel (1-T)w =11 -r}a_, e{p[(l—T)w]—Z]—r}d
Pb. Y Yo =

ol (I-t)w,-1]-r ol (1-t)w, -1]-r
1 2 Jio)

For which value of a the fastest invasion rate is obtained?
In other words, what is for an invading plasmid the optimal
time for switching from fast conjugating to repression of
conjugation? Denote the left hand side of equation (10) with
g(r,a). r is maximal if dr/da = 0 or if a = 0 or a »+ «. For

the first of these conditions holds

dr _ g3 -y

da da ~ °
and
3 & {pl (1-T)w,-1]1-r} {o[ (1-T)w_.-1]1-rl}a
39 - o3 a ) - 1 = g
da B2s Y1~ Vg {p[(l—r)wg—ll—r} :
(11)
if » = -p + (Z‘T)p(Yzwg'ngz)/(Yz"Yz)' (12)

This condition is independent of a. If equation (12) holds
glr,a) = g.(YJ—YZ)/{(J—T)(Q2-w1)}. Since g(r,a) = 1, this
equation can only hold if b = (J—T)(w2—w1)/(Y1—Y2), in which
case all values of a give the same invasion rate. In all
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other cases the invasion rate is either maximal if a = 0 (in
case b > (1- T)(w wl)/(YJ Y2)) or if a - « (in case b <

(1- T)(w2 wz)/(Yz YZ)). Therefore, in all but some very excep-
tional cases, a plasmid which either does not repress its
conjugation or which immediately represses conjugation can
invade more rapidly in a plasmid-free bacterial population

than a regulating plasmid.

3) w and Yy are stepfunctions: w(w) = v, and y(w) = Y for
%=1 Z n
.z a. <w<.X,a., for < =1,2,...,n, and.l,a. > «,
J=17g — J=1"g J=17g

In this case, » is the solution of

et

-~ 7 ;L {ol (1- T)w —1]-r}a

pb.j§1yje {ol (1-1t)w .-1]1-r} = 4
d (13)

e{pl(l—T)wj—l]—r}aj

Again, the invasion rate is maximal if the optimal combina-
tion of y and w is reached as fast as possible and is never
abandoned.

Regulation model IT gives the same quantitative result.
A regulating plasmid can invade a plasmid-free population if
the jacobian matrix of system (4) at the plasmid-free equi-
librium has at least one positive eigenvalue, i.e. if the

matrix

ol (1-T)w =1+vb] - ¢ 4
(14)

bp ol (1-T)w -11 - ¢,
has at least one positive eigenvalue. A necessary condition
is that either wc(l—T) -1 + yg > 0 (an always derepressed
plasmid can invade) or (Z—T)wr - 1 > 0 (an always repressed
plasmid can invade).

The largest elgenvalue of matrix (14) is maximal 1f
either ¢, = 0 (if yb>(1 ) (w,~w,)), or ¢, = 0 (if yb <
(J—T)(wr—wc)). Therefore, regulating the conjugation rate

will not increase the invasion rate of a plasmid in a
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chemostat.

Since regulation is not supposed to be particularly ad-
vantageous in a plasmid-free population, this conclusion is
not really surprising. However, in an almost entirely plas-
mid infected bacterial population, regulation is supposed to
be advantageous because it will increase the mean fitness of
the bacterial population. In the next sections it will be in-
vestigated whether regulation is really advantageous for the

maintenance of a plasmid in a chemostat.
EQUILIBRIUM WITH ONE REGULATING PLASMID

What is the fate of a regulating plasmid once it has in-
vaded a bacterial population in a chemostat? Some elaborate
calculations show that, provided that %(b) is a decreasing
function of » there exists one stable non-trivial equilib-

rium. This equilibrium will be attained. At equilibrium

w, (I-T)h = p = ¢, = ¢p D,/P, (15a)
and

w,(1=T)h = o + Yhb = ¢p = ¢, D/, (15b)
In fig. 1 the equilibrium frequencies of plasmid bearing bac-

teria and repressed plasmids as function of ¢, are shown.
COMPETITION BETWEEN TWO REGULATING PLASMIDS (MODEL II)

Can a second regulating plasmid invade a bacterial popula-
tion, already containing a plasmid if both plasmids only dif-
fer in their regulation parameter? Model II for the dynamics

of a two plasmid competition becomes

db = o .

a7 < h(b)b—pb—yh(b)b(p;+p2)+rh(b){wcpé+wrp;+wcp;+wpp;}
(16a)

dpi

-2 = w, (1-T)h(B)p,, - pp, + YA(B)bp, - ¢pp. + épp. (16b)
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Fig. 1. Equilibrium frequency of transfer regulating plasmids in a bac-
terial population in a chemostat (drawn line) and frequency of
repressed plasmids in the plasmid population (broken line) as a
function of the repression rate ¢R. The dotted line gives
(¢R+¢D) - ¢, (freq. of repressed plasmids) (scaled at the left
side of the figure). If this term is negative a regulating plas—
mid with a higher repression rate and/or a lower derepression
rate can invade and vice versa. Derepression rate ¢D = 0.1

= BB @ = 0,058 v =BG ot = 167
a) w, = 0.5; w, = 0.95; Y = 0.6; T =10 .

0.98; Yy = 0.2; T = 1074,
h(b) = (1-b)/(1.125-h) and the turnover rate of the chemostat

p = 0.1.

b) w, = 0.9; w =
e r

In both figures the growth function

dpi o ; ; ;
T = w,(1-T)h(B)p] = ppy + ¢ppo = épp. (16¢)

for 4 = 15 2.
The second plasmid can invade an equilibrium of the first if

the matrix

he(w, (1-1)+Yb)=p=¢2 97
A (17)
92 hw, (1-1)-p=¢3

has at least one positive eigenvalue. Since at the
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equilibrium with only the first regulating plasmid

- B ey — a1 alal jal

ho(w (1 T)+Yb)-p = ¢p d)Dpr/pc (18a)
and

. _ _ Y D P s |

hwr(z T) p = ¢D ¢Rpc/pr (18b)
the second plasmid can invade in case ¢§ﬁé - ¢$ﬁ; < 0 if it

represses conjugation stronger and/or has a lower derepres-
1al _ 4141
Rpc ¢Dpr
gation less and/or has higher derepression rate. In fig. 1

sion rate, and in case ¢ > 0 if it represses conju-
the relation between ¢, and ¢ép; - ¢5p; is shown. A plasmid
with both repression and derepression rate sufficiently

close to zero can always invade.

If the second plasmid can invade it will either expel the
first plasmid, or they can coexist. They can only coexist in
case the first plasmid is also able to invade a bacterial po-
pulation already carrying the second. If the two plasmids co-

exist, their concentrations will tend to an equilibrium at

which

Lol o LT

$p/0p = P, /P> (18)
therefore, w (I-T)h - p = 0 (20a)
and (v, (1-1)#Yb)h = p = 0 (20b)

If two regulating plasmids coexist, the total frequency of
respectively derepressed and repressed plasmids is the same
as in the case of two coexisting non-regulating plasmids,

one able to transfer (parameters W, and y), and the other un-
able to transfer (parameters v, and 0). Two regulating plas-
mids with identical W, W, and y can only coexist if the cor-
responding non-regulating plasmids can coexist. Otherwise,

if of the non-regulating plasmids the conjugative would ex-
pel the non-conjugative, selection will favor a regulating
plasmid with repression rate as small as possible and dere-
pression rate going to infinity. Conversely, if, of the non-
regulating plasmids, the non-conjugative would expel the
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conjugative plasmid, selection will favor a regulating plas-
mid which represses conjugation as effective as possible.
The second situation can only occur when bacteria carrying
conjugation repressed plasmids have a higher growth rate
than plasmid-free bacteria.

Therefore, selection on regulation rates will lead to a
situation in which either a regulating plasmid will prevail
which behaves as a non-regulating plasmid, or a non-regu-
lating plasmid with the same growth parameters is neutral.
However, a regulating plasmid has extra genes to make conju-
gation repressors. It seems likely that the production of
these gene products will reduce the growth rate of the bac-
terial host. A non-regulating plasmid will then be able to
invade a population of regulating plasmids, if that popula-
tion is stable against invasion by other regulating plasmids.
In competition with such a non-regulating plasmid the regu-
lating plasmid will only be able to survive if its host
grows fast enough in the repressed state, and regulating
plasmids with high repression rate and slow derepression

rate will be favored.

Concluding, one can state that in the constant environment
of a chemostat, regulation is not an advantageous property
for a plasmid. The model leads to the prediction that plas-
mids, which are cultivated during a long period in a chemo-

stat will lose their ability to repress conjugation.

PLASMIDS IN A PERIODICALLY TRANSFERRED BACTERIAL POPULATION,
THE MODEL

If the bacterial host lives under a "feast and famine"
regime, i.e. the bacteria exhaust their food, after which

they are transferred to a fresh food supply, the growth dy-

namics at each food site are

g% = —f(s)g(b+wcpc+wrpr) (21a)
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db

F% = f(s)b = Yf(s)bp + Tf(e) (w, p +v,p ) (21p)
dpc
g5 = w,(1-T)f(s)p, + Yf(s)bp, = épp, + épp, (21c)
dpr
Iz < w, (1-T)f(s)p, + ¢pp, = ¢pp, (214d)

When the repression and derepression rates are fixed per
unit of time, ¢R and ¢D are constants. When they depend on
the growth rate, ¢R and ¢D are proportional to f(s) (¢R:
0pf(s); ¢D:¢5f(s)). Since both plasmid-free and plasmid-
bearing bacteria use an equal amount of nutrients, s is at
each moment determined by the initial nutrient concentration
the initial total bacterial concentration 5, and the

0

total bacterial concentration at that moment, Et: s, = 8,

(Et-bo)g‘ Therefore, the first equation of system (22) can

80,

be eliminated and the function f(s) can be replaced by a
function % (b).

After a fixed time T or after exhausting the food (T-+)
the bacteria are transferred to a new food-site with initial
nutrient concentration 5, The frequency of bacteria carry-
ing a plasmid (x:(pc+pr)/(b+pc+pr)) and of repressed bac-
teria (@:pr/(pc+pr)) at the start of the growth at the new
site are the same as at the end of the growth at the previous

site. The changes of x and 0 at a site are

gﬁ-: n(B)a. (1-2) .1 (w,-u_)(1-0)+(w_~1)+Yb(1-0)]
- T(wc(l—@)+wr@) (22a)
and
g% = 0(1-0)h(B) . {(1-1) (w v ) ~yB(I-x)}+6,(1-6) -6 ,0 (22b)

The dynamics of plasmid bearers and repressed plasmids
are completely determined by the sequence of initial fre-
quencies of plasmid bearers (xo) and of conjugation repressed

plasmids (@0) at successive sites.
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CAN A REGULATING PLASMID INVADE A PLASMID-FREE POPULATION?

A regulating plasmid is able to invade a plasmid-free

bacterial population if its initial frequency x, increases

for small values of z,. For small values of =z

0
%% ¥ ow h (B (wmu ) (1-0)+(w ~1)+YE(1-0) =T (v (1-0) +u,0)}
(23a)
and
46

= N 0(1-0)r(B){(1-1) (v -w_)-Yb} + $5(1-0) = $,0  (23b)

(and E%b).

As long as x is small, the dynamics of 0 are independent
of z, and @t will converge to a function 6t with 60 = éT'
The plasmid can invade if

xo(n+1) = mT(n) > xO(n) when Ot = @ therefore if

t’
/i T S
dx 1 dx
gfz?dt>0=f3cd7dt>0
0

T —_ ol —
= [ A(B).{(1-0).1 (w,~v,) (1-1)+Yb] + w (1-T)-1}dt > 0 (24)

0
Since 60 = éT’

T s _ T b
g R(B)(1-0).[ (v, -w_) (1-T)+ybldt = g bprop =

dt (25)
(if @t #Z 0 and @t # 1), and since
T

(wr(J—T)—Z)h(E)dt does not depend on the regulation par-
0

ameters, the invasion rate is maximal if ¢R and ¢D are chosen
so that
T

; ¢p * ¢, = ¢5/0 dt is maximal.
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The maximum is not always reached for (¢R+O and ¢D*w) or for
(¢E+w and ¢D+O), as in a chemostat. In fig. 2 the dependence
of the invasion rate of a plasmid on the regulation parameter

J Initial bacterial con-
2

is shown.
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Fig. 2. The invasion rate of a regulating plasmid in a periodically
transferred bacterial population (plasmid frequency at the new
site/frequency at the previous site for low plasmid frequencies).

w = 0.5; w
e r

centration bO
Nutrient/bact. e

0.99;
107. Initial nutrient concentration )

v=107;s = 107®
= 10°.

107%. Growth function f(s) = s/(2+s). The

invasion rate is maximal if ¢R = 0.14 and ¢D =0.13.

Inequality (24) can be rewritten as

T
j {(wc—1)+yg—Twc}h

0
can invade (wril—T;
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T
(b)dt + [ ol (w,~w_ ) (1-1)~ybl h(b)dt > 0
(26)

0

T

{

0

If neither non-regulating, in parameters equivalent plasmids

{(wc—1)+yg—rwc}h(5)50), the regulating



plasmid can sometimes invade, in case

T
{ el (w,-w,)(1-1)-yE1 h(B)dt
0

is sufficiently larger than 0. In other words, the maximum
invasion rate is not always reached when the regulating plas-
mid behaves as a non-regulating plasmid, and sometimes a
regulating plasmid will be able to invade whereas a non-

regulating plasmid cannot establish itself.
CAN A MUTANT PLASMID ENTER THE PLASMID POPULATION?

System (21) can easily be extended for a second regulating
plasmid. Let the second plasmid only differ from the first
in regulation parameters, then the model of the growth dy-

namics at one site becomes

db = . -

57 = h(b)b=Yh(b)b(p +p2)+Th(b) (v p +w p, +w pi+w p2)
(27a)

de, ¢ _—_ -4 ii, i

o5 = w (1-T)h(b)p, + Yh(b)bp, = ¢gp_ + é,p (27b)

dpi . o .. . @

T = wo(1-T)h(B)p] + ¢7p" - ¢ D" (27¢)

for & = 1; &

Denoting the relative frequency of plasmids by x =
(pé+p;+pé+p;)/(b+pé+p;+p;+p;), the relative frequency of the
second plasmid by y = (p;+p;)/(pé+p;+pé+p;), and the relative
frequencies of the repressed plasmid of the first/second
types by Oi = pi/(pi+pi); (Z=1,2), the frequency changes at

a site are given by

= = h(b)a. (J—x)((wc—wr)((J—y)(1—@1)+y(1—02))+wr—i/
+ yb((1-y)(1-0Y)+y(1-062))
—T[wc((l—y)(1~@1)+y(1-@2))+wr((1—y)®1+y®2H
(28a)
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Q,

—% = y(1-y).h(B)(0'=0%)[ (1-1) (v ~v ) +Yb(1-z)] (28b)

%%i = 0% (1-0%)R(F) .1 (1-1) (w ) =B (1-2)] +0%(1-67) -4 70"
(28c)
for 7 = 1,2.

For very low frequencies of the second plasmid, the change
in frequency of repressed plasmids of the second type is dic-
tated by the dynamics of the first plasmid. The frequency
@i will tend to an equilibrium function éi. The second plas-
mid will be able to invade a population containing the first

plasmid, if y increases when sufficiently small, i.e. 1.8

/4

g h(Et)(G;—éi)[(1~T)(wc—wr)+y(1—xt)5t]dt > 0 (29)
Unfortunately, this equation can only be solved numerically.
It appears by simulation that two regulating plasmids with
identical growth parameters, but different regulation par-
ameters can sometimes coexist. At least under some condi-
tions, a combination of regulation parameters op and ¢D
exists such that no second regulating plasmid can invade. In
that case regulation gives a plasmid an advantage over non-
regulating plasmids.

A plasmid, which cannot repress the transcription of its
transfer products can do without the genes coding for the
repressors (in F-like plasmids the gens fin0 and finP). A
plasmid, missing these genes, and therefore not synthesizing
their gene products, will probably reduce the growth rate of
its host less than a regulating plasmid in the derepressed
phase. Let the growth rate of the bacteria carrying a non-
regulating plasmid be w, =W, tw and denote the concentra-
tion of these bacteria by P, then the competition between a
regulating and a non-regulating plasmid leads at each site

to the following growth dynamics.

&I&
o o

= h(E)b—yh(z)b(pc+pn(wn/wc))+Th(5).(wcpc+wrpr+wnpn)
(30a)
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5> = w,(1-1)h(B)p #Yh(b)bp ~¢.p +é,p (30b)
ap, -

g5 = Wl I~ Ihlblp, * b0, ~ Yo, (30¢)
dp, - i

o5 = wn(l—r)h(b)pn + Y(wn/wc)h(b)bpn (304)

(The transfer rate is supposed to be proportional to the
growth rate). The dynamics at each site are completely de-
termined by the initial frequency of plasmid bearers z =
(pc+pp+pn)/(b+pc+pr+pn); the relative frequency of non-regu-
lating plasmids z = pn/(pc+pr+pn), and the relative frequency
of repressed plasmids in the regulating plasmid population

0 = pr/(pc+pr). These initial frequencies are the same as

the end frequencies at the previous site. At each site the

changes of the frequencies are given by

2 = n(B)af (1-a) (Lw = 1#w _a+(1-3)8(w,=u )] +

+ Ybla(1+(w_/w, ))+(1-2)(1-0)]1} - (31a)

- T{(wr~wc)(1—z)®+wc+wez}
99 _ 9(1-0)n(B)1(1-1) (v —w )—yB(1-2)} + ¢_(1-0)-¢ 0
dz = Tlw,mw, /=Y x Op ¢p
(31b)

gg = a(1-2)h(B) A (1=0)u Y (v /v,) (1-2) B+

+ 0l (w,-w ) (1-1)+Y(1-2) 5]} (31c)

A non-regulating plasmid will be able to invade a bacter-

ial population containing a regulating plasmid if

T
g h(z){(l—T)w€+Y(wE/wc)(1—x)5+®[(wc—wr)(Z—T)+Y(1—x)E]dt
> 0 (32)

in absence of the non-regulating plasmid. In table II some

numerical examples are given of the minimal value of W for
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TABLE II

The optimal repression and derepression rates of a plasmid in a period-
ically transferred bacterial population. At each site the growth func-
tion is f(s) = s/(2+s) and the food supply becomes depleted. A non-regu-
lating plasmid can invade in a population of regulating plasmids with
optimal regulation rates if the growth rate of its bearers is more than
W (min) higher than the growth rate of bearers of derepressed regu-

lating plasmids.

w, w, Y T sa/g' b0 ¢R(opt) ¢D(0pt) we(min)
0.9 0.99 5.10°° 107° 10 10 0.359  0.00923  0.0154
0.9 0.98 5.10°° 107° 108 10° 0.335  0.0175 0.0121
0.9 0.98 2.10°° 107° 108 10® 0.2908  0.0619 0.00971
0.9 0.98 5.10°% 107 s.10” 10° 0.325 0.0414  0.00998
0.9 0.98 5.10°° 107° 108 10° 0.359  0.00923 0.0154
0.9 0.98 5.107° 1073 108 10° 0.328 o0.0229 0.0117
0.9 0.98 5.10°° 1072 108 10° 0.272  0.0686  0.00869
0.9 0.98 5.10°° 1073 108 10° 0.328 0.0229  0.0117
0.9 0.98 5.10°° 1072 108 10%  0.395 0.0229  0.00889
0.9 0.98 5.10°° 107> 108 10> 0.501  0.0231 0.00580
0.9 0.98 5.10°° 1073 108 10° 0.716  0.0247 0.00274
0.5 0.99 5.10°7 107° 108 10° 0.339  0.000712 0.163
0.5 0.95 5.107 107° 108 10® 0.321 0.00317  o0.147
0.5 0.95 1077 1073 108 10° 0.302  0.0209 0.138
0.5 0.95 1077 1073 108 10* 0.367 0.0212 0.112
0.5 0.95 1077 107>  10® 10° 0.475 0.0214  0.0811
0.5 0.95 1077 1073 108 10° 0.690 0.0214  0.0438

which a non-regulating plasmid is able to invade a bacterial
population bearing a regulating plasmid in case no second
regulating plasmid can invade. It appears that under this
growth condition the ability to regulate the conjugation
rate is in itself advantageous for a plasmid. However, since

the ability to regulate will probably not be acquired with-

100



out some costs, it depends on the magnitude of these costs,
i.e. how severely the growth rate of the bacterial host is
reduced by regulation, whether regulation will overall be
profitable. If the growth rate reduction caused by regulation
is considerably less than the reduction caused by being a
competent donor, a regulating donor with optimal regulation
rates will in most cases be able to prevent the invasion of
a non-regulating plasmid. However, these optimal regulation
rates will not be easily reached. Deviations can easily lead
to a situation in which the non-regulating plasmid can in-
vade, even if non-regulating does not increase the bacterial

growth rate (w€ =0).
DISCUSSION

It is shown in this paper that the ability to regulate
the conjugation rate is disadvantageous in the very constant
environment of a chemostat. In a growing bacterial popula-
tion, which is periodically transferred, repression may be

advantageous.
Some aspects of the model used require some additional

discussion. First, the model does not take into account that
competent donors are easy victims to bacteriophage infection.
However, when a virus, which can only infect bacteria carry-
ing derepressed plasmids, is introduced into the chemostat
model, selection on regulation parameters will lead to the
same result (¢Rpc_¢Dpr:0 and a non-regulating plasmid is
neutral if the growth rate of its host is the same as that
of bacteria carrying derepressed plasmids). However, the in-
troduction of a virus may destabilize the population because
of the time-delay between virus infection and the release of
new viruses at cell lysis.

Furthermore, it is assumed that a plasmid cannot enter a
bacterium already carrying another plasmid. This is a reason-
able assumption, since related plasmids exclude each other
in most cases very effectively from their host (Finger &
Krishnapillai, 1980). Since a regulating plasmid is assumed

to arise by mutation from a non-regulating plasmid, the
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competing plasmids are closely related.

The fact that there seems to be a maximum conjugation
rate per donor is not taken into account. When that maximum
is reached, the addition of extra recipients will not in-
crease the conjugation rate per donor (Cullum, Collins &
Broda, 1978a). This will lead to a lower transfer rate in
case a surplus of recipients is present. The alleged advan-
tage of transfer regulation is that there will be many newly
infected, and therefore competent, donors in case of an abun-
dance of recipients, leading to an overall high transfer
rate, and only few competent donors in case recipients are
scarce, leading to a higher growth rate but a lower overall
transfer rate. However, if the transfer rate per recipient
decreases when the number of recipients increases, the ef-
fect of transfer regulation is lessened.

Model II in this paper assumes that the transfer ability
of a plasmid can either be on or off. Occasionally a plasmid,
repressing transfer, can become derepressed. Of course, it
might also be that plasmids have initially a high transfer
rate and fall back after some generations in their host on a
much lower transfer rate. This assumption leads to exactly
the same results, the low transfer rate, achieved after some
bacterial generations, is the mean transfer rate after sev-
eral generations according to model II. Freter, Freter &
Brickner (1983) have estimated the transfer rates for two
plasmids, R1, a transfer repressing plasmid, and Rid»rd-19, a
non-regulating plasmid, both in the original host and in
transconjugants. For R1 the estimated transfer rate of the
newly infected donors is in the order of 105 to 108 higher
than that of the original hosts, corresponding to a ratio
between repression and derepression rate of about 105:1 to
107:1. This ratio departs considerably from the ratios of
the optimum regulation rates in the numerical examples of
table II. They also estimated the transfer rate in the newly
infected hosts and a number of hours after the start of their
experiment, using their model "SWITCH", comparable with model
I in this paper. In that case the transfer rate of plasmid
R1 in the newly infected host is about 101 to 10u higher than
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the transfer rate after the switch, corresponding to a ratio
between repression and derepression rate of 10:1 to 10 :1.

The estimates of Freter, Freter & Brickner (1983%) of the
transfer rate of newly infected hosts is in the order of ‘_IO_7
to 10-9 ml/(cells x hours). The values of Yy chosen in the
numerical examples are in reasonal accordance with these
experimental data, provided that the bacterial concentration
is scaled correspondingly in cells/ml.

Nordstrém, Molin & Aagaard-Hansen (1980) and Nordstrdm &
Aagaard-Hansen (1984) estimated the loss rate of plasmids
and arrived at values in the order of 10_u to 10_6 per cell
per generation. However, under less favorable growth condi-
tions the loss rate may be much higher.

7Ziind & Lebek (1984) have investigated the effect of the
presence of a plasmid on the growth rate of the plasmid
bearing bacteria. The generation time of bacteria bearing
plasmids varied in their experiments between 29 and 58 min
(mean 36 min) compared with a generation time of plasmid-free
bacteria of 30 min. As far as I know, no systematic research
is done to establish the difference in effect on the bacter-
ial growth rate of being a competent donor and an incompetent

one.
The effect of the ability to repress conjugation on the

growth rate of its host, has, to my knowledge, never been
investigated. Finnegan & Willetts (1971, 1972) and Grindley
et al. (1973%) have shown that at least two genes are needed,
fin0 and finP, to repress conjugation in an F-like plasmid.
Tt seems likely that the presence of these genes and their
transcription and translation is at the expense of the bac-
terial host, i.e. of its growth rate. The knowledge of trans-
fer regulation of other plasmid types is less detailed. How-
ever, also in those cases presumably extra gene products are
involved. Therefore, one would expect the growth rate of bac-
teria bearing derepressed regulating plasmids to be less
than that of bacteria bearing non-regulating mutants of that
plasmid.

Stewart & Levin (1977) have investigated whether a conju-

gative plasmid can maintain itself although it decreases the
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growth rate of its host. They concluded that under a rather
broad range of parameters the plasmid can survive. In vivo,
the conjugation rate might, however, be too small to satisfy
even these broad conditions. One of the reasons why the
transfer rate in a natural population is often that small,

is that most plasmids are long-time residents in their host
and therefore transfer repressed. However, the model in this
paper suggests that a high transfer rate of derepressed plas-
mids might be a sufficient condition for a plasmid to be able
to invade a plasmid-free bacterial population. Only esti-
mating the transfer rate in a long time ago infected bacter-
ial population will, therefore, lead to a too optimistic idea
about the improbability of the successful spread of artifi-
cially constructed plasmids.

We have seen that the question whether transfer regulation
is favourable for a plasmid depends on the growth condition
of the bacterial host population. In a chemostat regulation
will never be favoured. Regulating plasmids are, therefore,
not optimally adapted for living in a chemostat. Prolonged
cultivation of regulating plasmids in a chemostat will
either lead to their extinction or to the loss of their abil-
ity to repress conjugation. For plasmids in a serial trans-
ferred bacterial population, the situation is different. In
a very stable long time serial transfer the repression and
derepression rate will evolve towards an optimum if the regu-
lation has no severe effect on the growth rate of the bacter-
ial host. The advantage of regulation will, of course, be
greater if the difference between the growth rates of bac-
teria bearing repressed and derepressed plasmids increases.
The advantage also increases if the difference between in-
itial and end bacterial concentration increases, i.e. if the
conditions fluctuate more at each site. Especially if the
difference is small, the advantage of regulation is small,
and it might be doubted if it could abolish the cost of regu-
lation, i.e. the cost of having extra genes and synthesizing
extra gene products.

The advantage of transfer repression, which several inves-
tigators said to be obvious (Ozeki et al., 1962; Broda, 1979;
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Campbell, 1981, among others) is at the level of individual
selection on plasmids dubious. The advantage which these
authors probably had in mind, is based on group selection:
If several colonies of bacteria exist and larger colonies
have a higher probability of contributing to the foundation
of new colonies, it might pay for a plasmid to live in a
fast growing colony, instead of maximizing its frequency in
the colony. Since in many laboratory situations no "inter-
colony" competition exists selection will there be against

transfer regulation.
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CHAPTER 6:

A MODEL FOR THE COEXISTENCE OF MULTIPLE SPECIES OF PLASMIDS
IN CONTINUOUS CULTURE POPULATIONS OF BACTERIA

ABSTRACT

A model is formulated to describe the dynamics of coexistence of sev-
eral compatible plasmids in a bacterial continuous-flow culture. The
model leads to some surprising conclusions. It appears not only that
compatible plasmids can easily coexist, but that the presence of one
plasmid may facilitate the establishment of a second plasmid. Sometimes
two plasmids can coexist in a population although neither of them can
be maintained separately and although the two plasmids together reduce
the fitness of their host more than each of them separately. Two plas-
mids, of which one is in every respect inferior (lower transfer rate,
lower fitness of the bacterial host, higher rate of loss), can coexist,
and sometimes the inferior plasmid can even predominate. It does not
seem very profitable for a plasmid to exclude other, compatible, plas-
mids from its bacterial host. Three plasmids are also able to coexist.
It may occur that, although all three plasmids are identical in par-
ameter value, one of them reaches another equilibrium concentration than
the other two. Sometimes even the final concentrations of all three plas-

mids will differ.

INTRODUCTION

Plasmids are pieces of extrachromosomal DNA. They occur
abundantly in many bacterial populations (Christiansen et al.,
197%; Datta et al., 1979; Lee, Gerding & Cleary, 1984). They
are autonomous replicons that are stably inherited in their
extrachromosomal state. Naturally occurring plasmids of pro-
karyotes are generally dispensable (Novick et al., 1976).
Plasmids regulate their own replication and the distribution
of their copies among the daughter cells of their bacterial
host. Some related plasmid types use an identical mechanism

for the regulation of both replication and segragation. This
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implies that at replication no distinction is made between
the copies of the two plasmid types. No more is discriminated
between the two plasmid types at partitioning among the
daughter cells. This leads to a gradual disappearance of bac-
teria carrying two or more related plasmids (Novick & Hoppen-
steadt, 1978). Because for two related plasmid types stable
coexistence in a bacterial clone is impossible, they are
called Zncompatible. Plasmids are ordered according to this
property into incompatibility groups (Datta, 1979). A 1list

of all known incompatibility groups and the plasmids belong-
ing to them is given in Appendix B of Bukhari, Shapiro &
Adhya, 1977.

Unrelated plasmids, belonging to different incompatibility
groups, use different mechanisms for duplication and segre-
gation. Therefore, one of them does not necessarily disap-
pear from a bacterial clone as a result of drift caused by
random replication and segregation.

Several factors influence the population dynamics of plas-
mids. If a bacterium bearing a plasmid divides, two new bac-
teria arise, both containing copies of the plasmid. There-
fore, the higher the growth rate of the plasmid-bearing bac-
teria, the faster the growth of the plasmid population. Many
plasmids, however, have a negative effect on the growth rate
of their bearers (see for example Ziind & Lebek, 1980; Hel-
ling, Kinney & Adams, 1981). If that is the case, selection
will lead to a decrease in the frequency of plasmid-bearing
bacteria. Sometimes plasmid segregation is imperfect, re-
sulting in a plasmid-free daughter cell. Many plasmids encode
a mechanism for transferring a strand of their own DNA to an-
other bacterium with which their host has accidentally col-
lided. This process is called conjugation. Conjugation is
also a factor influencing the population dynamics of plasmids.
There are, therefore, at least three factors with an effect
on this population dynamics: plasmid loss, conjugation and
effect on bacterial fitness.

Plasmid loss will always decrease the frequency of plas-
mid bearers, and conjugation will always increase that fre-

quency. Whether selection will enlarge or decrease the fre-
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quency of plasmid-bearers depends on whether the presence of
a plasmid in a bacterium increases or decreases the bacterial
fitness. Stewart & Levin (1977) have calculated under which
circumstances a conjugationally transmissable plasmid impair-
ing the fitness of its bearer can be maintained.

It is often more difficult for a plasmid to be transmitted
to a bacterium already carrying another plasmid than to a
plasmid-free cell, a phenomenon called cell surface exclusion.
The extent of exclusion depends both on the plasmid already
present and on the type of plasmid entering the bacterium.
Surface exclusion can be especially strong between incompat-
ible plasmids. According to Finger & Krishnapillai (1980),
the entry frequency can be reduced by as much as a factor of
105. Between compatible plasmids, however, exclusion is, in
most cases, not very strong (Hedges & Datta, 1973; Finger &
Krishnapillai, 1980).

In a previous theoretical study I have shown that, in the
case of complete surface exclusion, at most two different
plasmid species can coexist in a bacterial population (van
der Hoeven, 198L4: Chapter 2 and 3).

In many bacterial strains, when screened on plasmid con-
tent, several compatible plasmids were discovered (Christian-
sen et al., 1973; Datta et al., 1979; Richards & Datta, 1982;
Lee, Gerding & Cleary, 1984). In most studies it is not inves-
tigated whether the plasmids coexist in the same bacterial
cell or only in different bacteria of the same strain. In
laboratory experiments, however, plasmids are readily trans-
ferred to bacteria already carrying another plasmid. And, if
both plasmids are compatible, the two plasmids will remain
together in the descendants of that bacterium (e.g., Finger
& Krishnapillai, 1980). Hedges, Smith & Brazil (1985) have
discovered plasmids of three different incompatibility
groups in some Aderomonads populations. They remarked that
the one-niche - one-species-hypothesis (Gause, 1934; Gilbert,
Reynoldsen & Hobart, 1952) suggests that several plasmids can
coexist only if they employ different niches. According to
them, the coexistence of different compatible plasmids in one

bacterial population implies either that these plasmids use
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different niches or that this coexistence is a transient
stage. In this chapter this hypothesis is investigated. It
is analysed whether different compatible plasmids with com-
parable population dynamics are theoretically able to co-
exist. It will be shown that two or three plasmids can
easily coexist, even if they exclude each other slightly,
and if the growth rate of bacteria bearing both plasmids is
considerably lower than that of bacteria bearing only one
plasmid. Moreover, two plasmids can coexist if one of them is
in every respect less fit than the other.

In a previous study (van der Hoeven, in press: Chapter 4)
I have shown that surface exclusion directed against incom-
patible plasmids will be profitable in case of low copy num-
ber and a high transfer rate. The question whether surface
exclusion directed against compatible plasmids can be advan-
tageous for a plasmid, although it reduces the growth rate
of the bacterial host, is also investigated. The conditions

under which this 1s the case seem to be more restrictive.

THE MODEL
To analyse the dynamics of the competition between differ-
ent compatible plasmids in a chemostat, a mathematical model

is formulated.

Basic assumptions of the model and a survey of the parameters

First a model will be formulated for the competition be-

tween two compatible plasmids, P] and Py, in a chemostat. An

individual bacterium can be plasmid-free (concentration bo),

carry only plasmid P, (concentration b;), carry only plasmid

1
P, (concentration b,) or carry both P, and P,
bl.sZ)-

The bacteria are supposed to grow in a chemostat with a

(concentration

constant turnover rate p. There is only one limiting resource
in the chemostat (concentration s) and the growth rate of
plasmid-free and plasmid-bearing bacteria is proportional to

the same function of the limiting resource, f(s). f(s) is an
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increasing function of s, i.e. the bacteria grow faster if
the concentration of the limiting resource is higher. The
proportionality parameter, indicating the relative growth
rate, depends on the plasmid content of the bacteria. The
relative growth rate of plasmid-free bacteria is set equal

to 1, for bacteria carrying only plasmid P it is W (£=21,2) 4
and for bacteria carrying both P, and P, it is w1, 2.

A quantity e of the limiting resource is supposed to be
needed per cell division, independent of the plasmid content
of the bacterium. Then, the consumption of the limiting re-
source is proportional to the increase of the bacterial con-
centration.

A plasmid-bearing bacterium may lose one of its plasmids.
It is assumed that the rate at which bacteria lose their
plasmid is constant, only depending on the plasmid type and
whether or not the other plasmid is present. The rate of loss
of plasmid P from bacteria carrying only that plasmid, is
., and from bacteria carrying also the other plasmid type
é (g=1;2);

Plasmids can be infectiously transferred through conjuga-

o

T
T

tion from a plasmid-bearing bacterium to another bacterium.
The conjugational transfer rate is assumed to be propor-
tional to the probability of an accidental collision between
a potential donor bacterium and a recipient. This assumption
has been experimentally tested by Levin, Stewart & Rice
(1978) and was found to be reasonable. For very high bacter-
ial concentrations this assumption is, however, no longer
tenable (Collins & Broda, 1975; Cullum, Collins & Broda,
1978a) .

The transfer rate is assumed to depend both on the abil-
ity of the plasmid-bearer to donate a plasmid and on the
ability of the recipient to receive it. More precisely, it
is assumed to be the product of the donor efficiency and the
recipient competence. The recipient competence is scaled to
1 for a plasmid-free recipient. A bacterium only carrying
plasmid Pi may have a reduced recipient abili@y for the
other plasmid. This ability is indicated by ai, and called

the recipient competence. Its inverse is the degree of
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surface exclusion of the plasmid. A bacterium may or may not
be able to receive a copy of a plasmid, which it already
contains. This will, however, not change the plasmid content
of the bacterial cell, and is therefore irrelevant for the
model. The transfer rate of plasmid Pi from a donor bacterium
only carrying that plasmid to a plasmid-free bacterium is Yis
and from a donor bacterium carrying also the other plasmid
type yé (2=1,2). And, for example, the transfer rate of

plasmid P, from a donor carrying P, and P, to a recipient,

1 2
is aly,. The transfer rate to a plasmid-free

carrying inly PZ
bacterium will be referred to as "the transfer rate". For
reference, all symbols are listed in table I.

The model for two competing compatible plasmids can
straightforwardly be extended to a more general model for
competition between N different compatible plasmids, only

the notation becomes much more complicated.

Model for two plasmid species

In fig. 1 a diagram is given of the interactions between
plasmid-free bacteria, bacteria with one plasmid and bac-
teria containing both plasmids. The assumptions in the pre-
vious section, rendered in that diagram, lead to the follow-
ing model of the dynamics of the different bacterial concen-
trations in a chemostat with a constant inflow of nutrient

solution with concentration s ..

0
22 = o(s,ms) = ef(s) (b #wibr+wzbatwr, 2b1, o) (1a)
dbo i
T = f(S)bo‘Dbo—(Ylb1+Yzbz+(Y1+Y2)b1,z)bo+lel+szz
(1p)

db, _ ' 1 '
I - wlf(S)bl“pbl-le1+Ylbobl+Y1bOb1,2-d (YobotYob1,2)b1

* Tobiiso (1c)
dba _ ba-T2b2#Y2b ba+yib b 2(y1b1+y1iby, 2)b
v R wof(s)br=pba-T2batYs ob2ty2b b1, 2-a (yibi1+v1b1,2)Db2

+ Tib1,2 (1d)
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TABLE I
LIST OF PARAMETERS USED IN THE TWO PLASMID MODEL

Pi: the ith plasmid

bo,bl,bz,bljz: concentration of bacteria, which are plasmid-free,
contain only P]’ contain only P2 or contain Pz and P2
respectively (cells x volume_l)

b: total bacterial concentration (cells x volume _])

W1,Wr,W1,2: growth rate of bacteria bearing respectively only PJ, only
P2, and P] and Pg’ relative to the growth rate of plasmid-
free bacteria

Yi,Yé: transfer rate of plasmid Pi from a donor bearing only Pi’

respectively bearing also the other plasmid to a plasmid-free
recipient (volume x cell..1 b'q time_])

ui: the efficiency of a bacterium carrying plasmid Pi as recipient for

the other plasmid

Ti’Té: the rate of loss of plasmid Pi from a bacterium carrying only Pi’

respectively carrying also the other plasmid (time_l)

s: concentration of limiting resource in the chemostat (mass x volume_])

8,: concentration of limiting resource in the inflow of the chemostat

’ (mass x volume—l)

f(s): growth rate of plasmid-free bacteria at resource concentration s
(time_l)

e: quantity of resource needed for one cell division (mass/cell)

h(b) = f(s,~eb)

p: turnover rate of the chemostat (time_l)

c: parameter of the function % in the numerical examples

h(b) = (1-b)/(c-b)

&A_&. = wl,zf(S)bl,z—pbl,z—(T{+T2')b1,2+0L1('Yzbz'*‘Yz,bl,z)bl"'

dt
+ az(Ylb1+Y{bl,2)b2 (1e)

In a chemostat an input-output equilibrium will rapidly be
attained. At the equilibrium the amount of free nutrient
plus the amount of nutrient converted to bacteria flowing

out of the chemostat is equal to the amount of free nutrient
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Fig. 1. A diagram of the possible interactions when two compatible plas-

mids compete. Drawn arrows indicate a possible transition of one
bacterial type into another. The transition rates are shown

along the arrows. Broken arrows indicate the donation of a plas-
mid by a bacterial type. The donor bacterium does not change in

that case.

in the inflow, i.e. s + e(bo+b1+b2+b1,z) = 8, Therefore the
function f(s) can be replaced by a function % of the total
bacterial concentration b, viz. h(b) = f(sO-eE), and equation
(1a) can be eliminated. In all numerical examples a hyper-
bolic growth function is assumed (Monod, 1949). The variables
can be scaled in such a fashion that h(b) = (1-b)/(e-b).

This model can be considered as an extension of the model
of Stewart & Levin (1977) for the dynamics of one plasmid in
a chemostat. The general conclusions for the single plasmid
model are (Stewart & Levin, 1977):

1) A plasmid-free bacterial population can establish itself
in a formerly bacteria-free chemostat, if f(sO) > p, i.e. if

the bacterial growth rate at low bacterial density is higher
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than the dilution rate. In that case a stable equilibrium
will be attained with h(go) = p, in other words at the ecui-
librium the bacterial growth rate is identical to the dilu-
tion rate.

2) A plasmid, say P, can invade a plasmid-free bacterial po-

pulation if !
(wl-l)e - T + Yléo > 0
in which bo is the equilibrium concentration of plasmid-free
bacteria in absence of plasmids (Stewart & Levin, 1977).
This implies that a plasmid can invade although it reduces
the growth rate of its bacterial host, as long as its trans-
fer rate is high enough to compensate the lower growth rate
with its infecteous spread. If the plasmid can invade, it
will be maintained, and a stable equilibrium will be reached

with both plasmid-free and plasmid-bearing bacteria.

Results of the analysis of the two plasmid model

Analysis of the two plasmid model leads to the following
resultis.

If the bacterial populatlon contalnlng the first plasmid
P, is at equilibrium (b b ) (and h—h(bo+b1)) the second

1
plasmid P, can invade 1f either

g
(wz—wl)i + (Yz‘Yl)go + (Tr—Tg) = azYlgl > 0 (2a)
or
{(wz—wl)i+(Y2—Y1)gO+(T1—Tz)} (w1iz—w1)2i(T1—(T{+T£))
—Y150+G1Y5b1
(2p)
= g Ylbl{(wl,z wx)h+(T1 To)+(Y3s- Y:)b +a Yzb1}
- o Yzbl(T1+Yzb ) <0

provided either a! > 0 or a? > 0 (see appendix A).
Inequality (2a) can only be true if either the growth rate
of a P2

carrier, or the transfer rate of P

carrying bacterium is greater than that of a P]

P is greater than that of

P,, or P, is less easily lost from a bacterial cell line,

in other words if P, is "fitter" than P

2 z°



Condition (2b) is, however, far less restrictive. If, for
instance, both plasmids have equal transfer rate, rate of
loss and degree of surface exclusion, while both plasmids
have the same effect on the bacterial growth rate (yi1=v23Y;
yl=yssy'; T1=12.3T; Ti=T337'; al=a®za; wi=w,Zw) the second
plasmid P, can invade an equilibrium with the first plasmid
P, if

wi,2 > w -~ (TH(2y'-y)b +oy'by) / K (3)

provided that the plasmids do not exclude each other com-
pletely (a>0). This implies that even if the growth rate of
a bacterium carrying both plasmids is considerably lower
than the growth rate of bacteria carrying only one plasmid,

the second plasmid will still be able to invade!

e 1 1-
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T
=
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e
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Fig. 2. Dynamics of the invasion of plasmid P2 in the equilibrium with

only plasmid P, (Y1=Y2=Y1=Y2=0.05; T1=To=T}=14=10""; al=a2=0.5;

1

0=0.1; ¢=1.125). The initial concentration of bz is 10_6.
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In fig. 2 some examples of such an invasion are given. In
these examples the second plasmid in a bacterium carrying al-
ready one plasmid, reduces the fitness even more than the
first plasmid does reduce the fitness of a plasmid-free bac-
terium (wi, 2<w?). Computer simulations show that if the sec-
ond plasmid can invade, the bacterial concentrations will
converge to a stable equilibrium value. This process can, how=-
ever, be quite slow (fig. 2). If the growth rate of bacteria
carrying both plasmids (wi,2) is not much smaller than the
growth rate of bacteria bearing only one plasmid (w), there
exists only one stable combination of equilibrium concentra-
tions (fig. 2a). At that equilibrium both plasmids occur in
equal densities. However, if wi . becomes smaller, this equi-
librium becomes unstable. Two new equilibrium points appear,
one in which the first, and one in which the second plasmid
predominates (see Appendix B). In fig. 3 an example of these

equilibrium values is shown.

<_‘r3\‘ 07— 61 or 52

Fig. 3. Equilibrium values of
) R b, and b, when P_ and
_ _ _bjand by 3 1

I N P2 coexist and are
identical in par-

Conc. 51cnd
4

51 and 52
ameters.
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librium; — ——: in-
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0.001 e wi,2 > 0.718 only one

0.67 0.69 M k .75 .77 55 @ 5
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— W12 = =

exists with b1 = ba.
If wi,2 < 0.718 the stable equilibrium values of b1 and b, differ. Which
plasmid attains the highest equilibrium concentration depends on the in-

itial conditions. The equilibrium with by = b, is in this case instable.

——— U . ! -4 1.2
(w1=w2=0.9; Y1=Y2=Y1=Y2=0.05; T1=T2=T1=T2=10 ; o =0"=0.5; p=0.1; c=

=1.125).
For large values of wi,2 (w1,2>0.718) b1 = b, at equilibrium.
For smaller values of wi,. the equilibrium with b1 = b2
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becomes unstable and two equilibria arise, one with b1 > b,
and the other vice versa. It depends on the initial condi-
tions which equilibrium will be reached. In this case, if

the second plasmid P, invades a population at equilibrium

2

containing the first plasmid, P, will always remain in a

minority position. ’
The second plasmid may also be able to invade and maintain
itself if it is in every respect less fit than the first
plasmid, i.e. when P2 induces a stronger reduction of the
growth rate of its host (w2<w:), when it has a lower transfer
rate (y2<y:1), when it is more easily lost (t2>1;) and when it
has a lower degree of surface exclusion (a?>a'). Such a less
fit plasmid may even maintain itself if the fitness reduction
caused by two plasmids together is more than the product of
the fitness reductions caused by each of the two plasmids
alone (wi,2<wiwz). This is in sharp contrast with the condi-
tions for coexistence of two incompatible plasmids (van der
Hoeven, 1984: Chapter 2). Besides, the more disadvantageous
plasmid (smaller w and Yy, greater 1) may reach a higher fre-
quency in the bacterial population than the more advantageous

plasmid, depending on the initial concentrations (fig. 4).
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Even if neither PJ nor PZ can invade a plasmid-free bac-
terial population, the combination of P, and P, may be able
to do so if the growth rate of bacteria bearing both plasmids

is high, i.e. if
(wl_,z—])p - (T1’+T£) > 0 (“)

However, even if neither P, nor P,

and P, can invade a plasmid-free bacterial population, there

nor a combination of PZ

may exist a stable equilibrium with both plasmids present
(fig. 5). Simulation shows that such an equilibrium can exist
even if a bacterium carrying both plasmids has a lower fitness
than a bacterium with only one plasmid, although the fitness
of bacteria bearing both plasmids may not be as low as the
product of the fitness of bacteria carrying only one of the

plasmid types (wiwz).

Fig. 5. Dynamics of the competition be-

G 1.0—}
g— \/—— tween two plasmids. A case in
U_ which both plasmids can co-
et -
S ,>'\_"“\\ exist, while neither of them
N T . .
CT 01 7 \ can be maintained separately.
\ o oo e oEm e by:
Sy — T e 3 4 1 3
\ e o
\ T veveeest bpy ——: b1,2 (n1=
— \\ 12=0.9; w1, 2=0.89; Y1=Y2=Y1=Y2=
\ =0.01; T1=T2=T{=T;=10_4; al=a2=
A\ =0.5; p=0.1; c=1.125).
N
Y
N
0.001 T T 1
0 1 2 3

— . Time.d®

Surface exclusion

The recipient competence of a bacterium carrying P, for

; is given by a?. If o? = 1 plasmid P, does not ex-

clude PZ at all, if a? = 0 the surface exclusion of Py

against P

plasmid P

7 is complete. It can be asked if it is advantageous

for a plasmid (PZ) to increase its surface exclusion against
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another compatible plasmid (Pz). To increase surface exclu-
sion the cell membrane of the bacterial host has to be
changed. This change will probably be disadvantageous for
the bacterium, for otherwise bacterial mutants, encoding for
that property themselves, will arise.

Strong surface exclusion against compatible plasmids will
only evolve if a mutant with a higher degree of surface ex-
clusion can successfully invade a plasmid population. Sup-

pose, for instance, that a mutant of P, arises, say P and

2 2m?
that P, and Py only differ from each other in their degree
2m>

of surface exclusion against P_. (respectively a? and o

>

i
and in their influence on the growth rate of their hosts
(respectively w, and Wopms wi,2 and wl,zm). Under what condi-
tions will the mutant P2m be able to invade the original

P is a mutant of P therefore,

e
a° am 22
P, and P2m will be incompatible. It will be supposed that

plasmid population of P

they are also mutually exclusive. Assume furthermore that the
relative growth rate of bacteria bearing two plasmids is the
product of the relative growth rates of bacteria bearing
either of them alone (w.,.=wiw. and wi,:m=wiwom) and that
both the transfer rate and the rate of loss of a plasmid do
not depend on the presence of a second plasmid in the bac-

terium (Yi:yé; Ti:Té), the mutant P can invade under the

following conditions (see Appendix gmfor the mathematical de-

rivations).

- In case the mutant has the same degree of surface exclusion
(a?=a?™) it can invade if its bacterial host has a higher
growth rate (wap,>w2).

- In case the mutant has the same effect on the growth rate
of its bacterial host (wy=w,p), it depends on the effect

of the other plasmid, P on the bacterial growth rate

1’

whether a mutant of P, with a higher or with a lower degree

2
of surface exclusion can invade. If Pl decreases the bac-

terial growth rate (wi<I) a mutant P with a higher degree

am
of surface exclusion (a2?™<a?) can invade, and if P, in-

creases the growth rate of the bacteria (w;>7) a mutant P2
2ms,

m
with a lower degree of surface exclusion can invade (o

>02).
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- If the mutant differs both in degree of surface exclusion
and in the costs for its host, it is most likely that an
increase in surface exclusion will cause a decrease in the
bacterial growth rate. In that case, and if the other com-
patible plasmid P] increases the bacterial growth rate (w;
>1), only mutants with a higher growth rate (and a lower
degree of surface exclusion) can invade (fig. 6b). If P,

decreases the bacterial growth rate (wi<1) a mutant with a

higher degree of surface exclusion may be able to invade,

although it reduces the bacterial growth rate. However,
this can only occur if the mutant has a considerably higher
degree of surface exclusion (fig. 6a). Slight increases in
surface exclusion will not be able to compensate for a de-
crease in growth rate. And even if a mutant with a higher
degree of surface exclusion can invade, it will not be able

to expel the original plasmid P,. As soon as the plasmid P

2
disappears from the environment of P

4

9 and 1ts mutant P2m’

the mutant, with the higher degree of surface exclusion,

will be selected against.

oc2m ® ®

05 0.5

T
09505 09510
— Wonm

T
085 090 095 096 0.9495 0.9500

Fig. 6. The combination of growth rate (wzpy) and recipient competence
(azm) for which a mutant P2m of P2 can invade an equilibrium
with PZ and PZ (hatched area). P2 and its mutant P2m are incom-
patible and mutually exclusive. The transfer and rate of loss of
P2 and P2m are identical. The effects on the bacterial growth
rate of P1 and P2 or P2m are multiplicative, i.e. Wi,2 = W12
and w1, 2, = wiway (Y1=Y1=0.05; Y2=Y2=0.02; T1=T2=T;=T§=10_4; al=
=a?=0.5; p=0.1; e=1.125).

6a: w1=0.9; w2=0.95; w1’2=0.855

6b: wi=1.1; w2=0.95; w1, 2=1.045.
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The general model

The model will now be extended to the general form of com-
petition between N different competing compatible plasmids in
a chemostat. In that case, the notation of the model becomes
much more cumbersome. A bacterium can contain any combination
of the N different plasmids. Therefore, there are oV airfer-
ent possible plasmid combinations in a bacterium, ranging
from plasmid-free to all NV plasmids. The plasmid content of
a bacterium can be represented by a vector & = (51,52,...£N)
in which Ei = 1 if the bacterium carries Pi and Ei = 0 if the
bacterium does not bear Pi; the vector & indicates a combina-
tion of plasmids. Now the concentration of bacteria carrying
plasmid combination £ can be indicated by bE and the relative
growth rate of bacteria carrying that combination by wg, the

rate of loss of plasmid Pi by TE, the transfer rate of plas-
€
%

mid Pi by Yy
carrying plasmid combination & for plasmid P, by u%. It

and the recipient competence of a bacterium

should be noted that a bacterium can neither lose nor donate
€
z
= 0 and Y; F 0. By definition the recipient competence of a

a plasmid it does not contain, therefore if gi = 0, then 7t

bacterium for any plasmid is 1 if the recipient is plasmid-
free, so ai = 1 if £ is the zero-vector. Since the entrance
of a plasmid into a bacterium already containing that plas-
mid, does not change the plasmid content of the bacterium,
and therefore has no influence on the dynamics in the model,
surface exclusion can be considered to be absolute against
plasmids already present in the bacterium, so ai = 0 if gi =
= 1. Let E, be the set of the numbers of the plasmid types

in combination &, and Q, the set of the numbers of the plas-

mid types not present ii combination & (for example: N=5 and
£=(0,1,1,0,0), then EE={2,3} and ng{l,u,B}). If the plasmid
combination indicated by vector & does not contain plasmid
Pi, that combination with the addition of plasmid Pi can be
indicated by £ P On the other hand, if the plasmid combi-
nation indicated by vector & does contain plasmid P:s the
otherwise identical combination without P, can be indicated

by & - p; (for example, if £=(0,1,1,0,0) then & + Py,
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=(0,1,1,1,0) and E—p2=(0,0,1,0,0)). A general model for the

dynamics of N plasmids in a chemostat becomes in this notation

ds

IF = 0(80-8) = ef(s)éiwgbg (5a)
B = _ncbp - E3v0 L(E+p )
I - wgf(s)bg pbE ET bg bgiu i Lb®+ iég . b(g+pi)
£
+ £ uig_pi)b(g_p ) IYobg (5b)
ieEg 77 0

Three compatible plasmids

Using the general model the result of competition between
three compatible plasmids has been examined by means of com-
puter simulation. It appears that three plasmids can coexist.
However, the dynamics of the model become very complicated.
Even if the three plasmids do not differ in their parameters,
the model gives rise to 23 different dynamical solutions
listed in table II. In fig. 7 a diagram is shown of the sol-
utions for the case that two plasmids can coexist and the
equilibrium concentrations of both plasmids differ.

The general conclusions which can be derived from the
three plasmid model resemble the conclusions of the two plas-
mid model.

- Three plasmids can coexist, even if one of them has a more
negative effect on its host than the others, In fig. 8 an

example is given of the dynamics of three competing plasmids,

where the growth rate of P, bearers is lower than that of PZ

bearers, which in its turn is again smaller than the growth

rate of P. bearers (w while the

1 (0,0,1)%(0,1,0)%%(1,0,0))>
effect of the plasmids on the relative growth rates of their

hosts are multiplicative (for instance, Yer.1,0)07

Y1,0,0)%(0,1,0) (1,1,1)7(1,0,00%(0,1,0)%(0,0,1) "
Even under these conditions coexistence of three plasmids ap-

and w

pears possible.

- Sometimes three plasmids are able to coexist, although a
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TABLE II
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TABLE IT

TYPES OF QUALITATIVELY DIFFERENT DYNAMICAL BEHAVIOUR OF THE MODEL OF
COMPETITION BETWEEN THREE, IN PARAMETERS IDENTICAL, COMPATIBLE PLASMIDS

[Pi] is the concentration of bacteria carrying plasmid Pi' Since the
plasmids have identical parameter values, the indices in the result can
be interchanged. For example, if an equilibrium with [PJ] = [PZ] > [PS]
is described, the corresponding equilibria [Pz] = [PS] > [P2] and [P2]
= [PS] > [P]] also exist. Each different dynamical behaviour has been
given a number of the form Z.j.k., where k, or both J and k may be
absent; < refers to the situation with only one plasmid, j refers to
the situation when a second plasmid is added, while k refers to the
situation when a third plasmid is also present. An increase in one of
the indices 7, J and k, while the other two indices remain constant,
indicates a decrease in the growth rate of bacteria carrying one, two

or three plasmids.
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Fig. 7. Diagram of the different possible equilibrium situations of the
three plasmid model in case that two plasmids can coexist while
they have different equilibrium concentrations. All three plas-—
mids are identical in parameter values. At the angular points
only one plasmid is present, on the sides two, and on the per-
pendiculars two plasmids are present in equal concentration
while the third may occur in another concentration. o: unstable
equilibrium; e: stable equilibrium. The corresponding situ-
ations described in table II are a: 1.2.1; b: 1.2.2; c: 1.2.3;
d: 1.2,45 er 1.2.55 £: 1,2.6,

combination of two of them cannot coexist, or when a single
plasmid cannot be maintained.

- Plasmids, identical in parameters will not necessarily
reach equal concentrations. Sometimes two plasmids will have
the same concentration at equilibrium, whereas the third has
a higher, or lower concentration, and sometimes each plasmid
will have a different concentration at equilibrium (fig. 7e).
Which plasmid will predominate in the population depends on
the initial concentrations.

- Contrary to the two-plasmid case, stable coexistence of
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/ J— Fig. 8. Dynamics of the competition
of three compatible plasmids.
The growth rate of bacteria

bearing the third plasmid P3

Concentration

. is lower than that of bac-
101 ;ﬂ teria bearing P, which is in
its turn lower than the growth
rate of bacteria bearing P]'
The effects on the bacterial
growth rate of the three plas-

mids are multiplicative.

W pu) = BB Ve gy =

| = 0193 vy o gy = 0.85;
0 2 L 6 8 Wpg, 4,00 ™ 04895 Uy p g3y ©
Time«"10" = 0.80755 w ;) = 0.765;

Yer.1.1) T 0.72675. The transfer and rates of loss of all three plasmids
) Bl
are identical, independent of the presence of other plasmids (y=0.05; T=

=10_4). The plasmids do not exclude each other (a%=1 for all £ and 7).

3 bo; —— ——: concentration of bacteria bearing PZ; ~~~~~~
concentration of bacteria bearing P2; vee....: concentration of bacteria
bearing P3'

three plasmids may be possible in cases, where neither of
them can enter a bacterium carrying the other two plasmids.
This can occur irrespective of the growth rate of bacteria

bearing all three plasmids.

DISCUSSION

The model analysed in this paper shows that two or three
compatible plasmids can easily coexist in one bacterial po-
pulation. There are no indications that this result is
limited to three plasmids. Not only is it possible for two
or more plasmids to coexist, but the presence of one plasmid
species can even facilitate the entrance of a second plasmid
in a bacterial population. Exclusion of compatible plasmids

does not seem very profitable, especially not when it brings
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along a decrease in the bacterial growth rate.

Some special cases of the two plasmid model have already
been analysed previously. The case of complete surface exclu-
sion (a'=a?=0) was investigated (van der Hoeven, 1984: Chap-
ter 2) with special reference to incompatible plasmids. In
that case bacteria carrying both plasmids P, and P, will not
occur. It was shown that P, and P, can only coexist in a bac-
terial population if the plasmid with the highest transfer
rate reduces the fitness of its bearer more than the plasmid
with the lower transfer rate. It appeared to be impossible
for three plasmids to coexist under these circumstances.

Levin & Stewart (1980) have studied a model for the main-
tenance of a mobilizable non-conjugative plasmid. In their
model one of the plasmids, say Py, is mobilizable by the
other plasmid (Pz), but cannot induce transfer itself (y.=0,
whereas y;>0). Their model is a special case of the model
presented in this paper with one exception. In their model
the mobilizing (P1> and mobilizable (P2) plasmid can be
transferred together, converting a plasmid-free bacterium

into a bacterium carrying both plasmids in one step.
Levin & Stewart showed that a mobilizable non-conjugative

plasmid will not only be maintained if it is advantageous

for its bacterial bearer, but can even be maintained if it

is disadvantageous, although only for a very narrow parameter
range.

Surprisingly, if two plasmids differ only slightly in par-
ameter values, the predominant plasmid in the population does
not have to be the fittest. When one of the plasmids was fa-
voured in the past, for instance by resistance to anti-
biotics, that plasmid may remain predominant in the popula-
tion although at present it is almost neutral compared with
the other plasmids.

Plasmids are found in many natural bacterial populations,
and the coexistence of several different plasmids is no ex-
ception (Christiansen et al., 1973%; Datta et al., 1979;
Richards & Datta, 1982; Hedges, Smith & Brazil, 1985; among
many others). However, it is often not clear whether all of

these plasmids are conjugative. Some authors claim that the
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conjugation rate in vivo is negligible (for instance Ander-
son, 1975), although Anderson leaves open the possibility
that conjugational transfer of resistance plasmids may occur
if antibiotics are used. In vitro, however, the transfer rate
can be reasonably high. (Bennet & Richmond, 1978, between
6.107° and 2.107° transfers per donor per hour; Cullum,
Collins & Broda, 1978b, about 0.2 transfers per efficient
donor per hour). Besides, the fact that a mechanism to pro-
mote transfer has been developed, suggests that it will at
least sometimes be used in nature. One of the reasons why
plasmid transfer cannot easily be detected in vivo is that
the natural bacterial population density is often much lower
than in vitro. Freter, Freter & Brickner (1983) state that
transfer rate of a plasmid in a mouse gut is about the same
as in a chemostat, but that the resulting population of bac-
teria, which have acquired a plasmid by means of conjugation
is too small to be detected with the normal culture methods.
It is well established that the presence of a plasmid in
a bacterium affects its growth rate (e.g. Zind & Lebek, 1980).
What the effect will be of a second or even a third plasmid
in a bacterium is not known. It could be that the growth rate
reduction, caused by both plasmids together, is the product
of the reductions caused by each plasmid separately (wi,2=
=wiwz). This assumption is made in some of the examples in
this chapter, for instance in the example of coexistence of
three compatible plasmids (fig. 8). Given this assumption,
two plasmids are not able to coexist if neither of them can
become established on its own. Another reasonable assumption
for the effect of two plasmids together on the bacterial
growth is that each plasmid increases the generation time of
the bacterial host with a certain length. In that case, wi,.,
> wiw2. The real effect of plasmid interaction in a bacterium
will, however, probably be more complicated. It might be
either that the effect for the bacterium of two plasmids to-
gether is worse than multiplicative (wi,2<wiw2), as is as-
sumed in the examples in this chapter of the coexistence of
two compatible plasmids (fig. 2 and 4), or that this effect
is less than multiplicative (wi,2%>wiw2) (fig. 5).
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The conclusion that several plasmid species can coexist
is not in accordance with the one-niche-one-species principle
(Gause, 1934; Gilbert, Reynoldsen & Hobart, 1952). Of course,
one could argue that, since the usage by one plasmid species
of a bacterium does not prevent that bacterium to serve as a
host for another plasmid, a niche includes more for a plas-
mid than a well defined bacterial species in a well defined
bacterial environment. It should also include the direct
plasmid environment, i.e. the content of the bacterial cell,
and the way a plasmid uses that environment to regulate its
replication and segregation mechanism. If the replication
and segregation regulation of a plasmid are considered as
part of that plasmid's niche, two compatible plasmids employ,
by definition, never the same niche. However, this argument
has two major drawbacks. In the first place refining the
definition of a niche with properties of the inhabiting
species holds the danger of making the differences between
niches coincide with the differences between the inhabiting
species. In terms of Rescigno & Richardson (1965) this would
imply that each additional species adds a new niche (niche
function) to the total number of niches (niche functions),
since the reaction of each individual of that species to con-
specifics differs from that to individuals of any of the
other species. In this way the one-niche-one-species prin-
ciple becomes a tautology. In the second place, the fact that
different compatible plasmids use different mechanisms to
regulate their replication and segregation is not used in
the model. And, according to the model, two plasmid species,
which are in every respect identical, can stably coexist (of
course, a model is the only place where two species can be
exactly identical). Therefore, it seems more sensible to con-
sider the model developed in this paper as an illustration
of the idea that the one-species-one-niche principle does
not hold if the density of one species is restricted by the
number of territories (bacteria) instead of the food supply,
in which case competition might be (almost) exclusively

intraspecific (Hutchinson, 1957).
A great deal of plasmid ecology both in vivo and in vitro
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is still unknown. The model in this paper is a first theor-
etical exploration of the behaviour of coexisting compatible
plasmids. It indicates that many different compatible conju-
gative plasmids can, at least theoretically, coexist without
periodic selection for the different species, cooperation be-
tween different species or different bacterial hosts as ref-

uges for the different plasmids.
APPENDIX A

CONDITIONS FOR THE INVASION OF A SECOND COMPATIBLE PLASMID P2 IN

AN EQUILIBRIUM WITH PLASMID P]

P2 can invade an equilibrium of PZ if the jacobian matrix, in which

b = db/dt,
Bbo/abo Sbo/abl BbO/Bbz abo/ab1,2

abl/abo db1/9b1  9b1/db,  9b1/3b1, 2
(A-1)
abz/Bbo 8ba/3b1  db2/9b;  3b2/3b1,2

351,2/550 db1,2/9b1 9b1,2/3b2 351,2/351,2

at equilibrium with P] has at least one eigenvalue with positive real
part (and corresponding eigenvector (al,a2,a3,a4)T with either a3¢0 or
a4¢0).

AF the equi}ibrium wiFh PZ .

Bbz/abo = 3ba2/0by = Blez/BbO = 3b1,2/3by = 0,
therefore, the eigenvalues of the matrix A-1 are the combined eigen-

values of the matrices
Bbo/abo 8b0/8b1
(A-2)

82.91/8270 9b1/3b1

and
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dby/3b> 3bz/ab1,2
(A-3)
3b1,2/3bs  9bi1,2/3b1 2

The sign of the real parts of the eigenvalues of matrix A-2 determines
the stability of an equilibrium with plasmid P] in absence of plasmid P2,
and are irrelevant for the ability of P2 to invade the equilibrium with

PZ'
At that equilibrium

%;é—i: wih - p - Ty + YzZ;O - aPyyby =
= (wamw)h + (yay1)by + (T1=T2) = &®Yiby (A-4a)
since at the equilibrium
wlé = P ~Ta # Ylgo =0,

P2 = 1] + vyib , (A-4b)
J2 O

(UZY1+W1Y2)£1 (A-4c)

.F

= wi,2h - p - (Ti+12) + alysby =

~

(W1, 2=w1)h + T1 = (T1#75) - Yib, + alysby (A-4d)

At least one of the eigenvalues of matrix A-3 has a positive real
part if either the trace of the matrix is positive or its determinant
negative. Since both 8b»/9b1,2 > 0 and Bbl,z/abz > 0 this condition im-

plies that either
(wo-w1)h + (yz—yl)bo + (T1-T2) - a®yi1by > 0 (A-5a)
or

(W1, 2~wi)h + Ty - (T{+T3) - ylbo + alysby > 0 (A-5b)

or
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{(W2—w1)h+(Y2“Y1)bo+(T1—Tz)} {(MIJZ_UI)h+T1_(T{+Té)_YlbO+ulY£b1}

- uZbel.((wl,z—wl)h+(T1—T£)+(Y£—Y1)bo+a1y£b1) - alyzbl(T{+y£bo) <0
(A-5c)

Provided that at least one of the two plasmids does not induce complete
surface exclusion (either a'>0 or a?>0), inequality A-5c is true if omly
one of the other two inequalities A-5a and A-5b holds, therefore one of
these inequalities is redundant.

If both plasmids are identical in parameters (wi1=w2=w; Y1=Y23Ys Y{:Yé
=Y’ T1ST2ETS T;:TQET'; a'=a?=Za) the conditions of inequalities A-5 for

invasion of the second plasmid reduce to
wi,2 > W - {(2y'—y)bo+ocy'b1+r} / h (A-6)
APPENDIX B

EQUILIBRIUM CONCENTRATIONS OF TWO COEXISTING PLASMIDS WHICH ARE
IDENTICAL IN PARAMETERS

If the two plasmids PZ and P2 are identical in parameters (W1=w2=w;
Y1=Y2=Ys Y{:YéEY'; TiSTy=13 Ti=14=1" and al=c?za) the equilibrium values

of system (1) with both plasmids are given by the solutions of

(h—O—Y(b1+bz)—2Y'b1,2)bo + T(b1+b2) = 0 (B-1a)

(wh—p—T+ybO—owb2)b1 + (Y’bo+'r'—ocy’b1)b132 = 0 (B-1b)

(wh—o—wybo-owbl)Z;Z + (Y'Z;O+T’—'OLY’b2)Z;1J2 = (B-1c)
and

(w1, 2h=p=21"+ay ' (b1+b2))b1,2 + 2aybibs = 0 (B-1d)

Equation (B-1d) leads to

bl,z = ZdYblbz/{p+2T'-w1’22—dY'(b1+£2)} (B-2)

and this equation, combined with equation (B-lc) leads to



br? () 2y = byba (@) vy ! + gl{ay'(p+T—w2—y£O)+uy(w1}22—o+2Y’5O)}

+ gzay’(p+T—w2—Ygo) + (wi—p—r+y£o)(p+2T’—w1,2£) =0 (B-3)
The combination of equation (B-2) with equation (B-1b) gives of course
the same result, with gl and 52 interchanged. Therefore, the combination
of B-1b, B-lc and B-1d gives

{(2oy! (w;z—p—r)my(o—wl, 22) )y-(wé-p—wvzgo) (p+2T"-w1, 2;;) k.

{(Q)ZYY'y2+dY(w112£—p+2Y'go)y+(w2—p—1+ygo)(T+Y'£O)} =0 (B-4)
with either y = 51 or y = 52. This implies that at equilibrium either

by = by = (wé—p—T+Ygo)(O+2T'—w1’2£) / {ZaY’(wé-p—T)+aY(p~w1,22)},

(B-5)

in which case

a 2(wh-p—T+Ybo)2(p+21'—w1,zh)
b1j2 =

= = = = (B-6)
(207 " (wh=p=T)+ay (p=w1, 27) ) (p=w1 2h=2Y'D )

and (equation B-la), bo is the solution of
b02 2Y" (h=p) (20 " (wh—p~T) +ary (p=w1, 2h))
+2Y (p+2T " =w1 2h) (2Y' (Wh—p)+Y(p-w1, 2h))
wx F

-b (p—wljzh)(z—p)(2uy’(wh—p—r)+ay(p—w1,zh))

—2(2y " (whp)+v 0=y, 2h) ) (wh=p=T) (p+2T "=y 1)

+21Y (p+21'-w1 2h) (p=w1 2h) J

+ 21(wh=p=1) (p#21 =01, 2h) (1 2h=p) = 0 (8-7)

or gl and 52 differ, in which case one of gl and gz is equal to
(B:8a)‘
{Y(p—lezi—Zy'go)+ //yz(p—wl,22—2y’50)2—4yy'(y'§0+T’)(wi—p—T+ybo)}
20y
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and the other equals

- ~ = = = T = = 1
{y(p=w1, 27=2Y"b )~ V/Yz(p—wx,zh~2Y'bO)2—4YY’(Y'bo+r ) (Wh—p~T+YD ) }

2oy !
(B-8b)
In this case,
bi,2 = (wh=p=T#Yb ) / oy’ (B-9)
and (equation B-la)
b, = Tlpmwr,2k) / {ay! (0=h)#y(pmin, 2h)+2Y " (wh=p)} (8-10)

The asymmetrical equilibria (B-8) exist only if both
w1, 2k < p = 2y'D
and wh > p + T - ybo

As long as the presence of the second plasmid does not diminish the
capacity of the bacterium to donate any plasmid (Y'>%Y), this implies
that these asymmetric equilibria can only occur if the growth rate of
bacteria bearing both plasmids is (considerably) less than the growth

rate of bacteria with only one plasmid (w1,2<<w).
APPENDIX C

THE FATE OF A MUTANT P2m OF P2
Can a mutant P2m of P2 invade if the plasmid P2 and its mutant are
mutually exclusive, and the mutant only differs from the original in the
recipient competence of its host (a®™ instead of a?) and in the relative
growth rate of its host (w2 instead of wz; Wi, 2m instead of wl,z)? The
dynamics of bacteria carrying only P2m (concentration bz;) and of bac-
teria carrying both PZ and PZm (concentration b1’2m) in the neighbour-

hood of the equilibrium with P] and P2 but without P2m are



dbap

o (meh(E)—Q—Tz—dzm(Ylb1+Y{b1,2+Y{b1,2m))b2m

1

+ bo(Yzbzm+Y£b1,2m) * T{bl,zm

{wzmh-p-T2+Y2bo—a2m(Y1b1+Y{b1,2)}bzm + {Y5b0+T{}b1:zm

= Azzbzm * A12le 2m (C-1a)
o z 11, om ! 1,
—dt— = (101, 2mh(b)—p—'r1—‘r2+ot Y1b2m+oc Yzb])b1,2m
+ bom(a?™ (y1b1#Y1b1, 2)#aly2b1) & {027 (Yab1#Y1b1, 2)#a y2b1 Ybom

~ , P -
+ {wl,zmh—p—("f]‘l‘"fg)‘f‘(lezbl}bl,zm = A21b2m + A22b1, om

(C-1b)
The mutant P2m can invade if the matrix
AZZ A12
(c-2)
AZZ A22

has at least one eigenvalue with positive real part. At the equilibrium

with P, and P

1 2
~ - e - , o~ ~
Ay; = (wogrwz)h + (02=a®™) (Yiba#yaby,2) = (Y2b #T1)by 2/b1  (C-3a)
and
-~ 2 - ~ -~ A
A22 = (w112m—wljz)h - {a Y{b1,2+(a2Y1+alY2)b1}bz / bi,2 (C-3b)
Both 4,, and A_, are positive, therefore a necessary and sufficient con-

12 21
dition for P2m to be able to invade is that either A11 > 0 and A22 >0

or A11A22 = A12A21 < 0. A22 can only be positive if w1,y is consider-—
ably larger than wi,2, therefore, the interesting condition for the ef-
fect of surface exclusion on the ability to invade is A11A22 = A]ZAEJ <
<0

A119s ~ Arghay = (Wamwa2) (w1, amw1, 2)R* -

= (woprwa)h. {la®yiby, o+ (a?y1#0ly2)b1}by / b1,2 -
& B g R
= (wl)Zm_wljz)h{Y2b0+T1}bl’2 / by +
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o~ A 2 ~ !
+ (a2-a2M). (Y1b1#Y1b1,2). (wl,zm-wl,z)h+Y£bo+T1—

[a?yiby p#(a’y1talyo)bilbo/br,s  (C-4)

If the mutant P2m has the same effect on the growth rate of the bacterial

host as P2 (w2=Wapms w132:w1,2m), it depends on the sign of
(el ’ ! g 2~ =
Vb, # T1 = [o?y1b1, 2+ (@®y1#+0lY2) b1l by / b1,s = D (C-5)

whether the mutant can invade when it has stronger surface exclusion
(a?M<q?) or weaker surface exclusion (a®™>a2). If D > 0 the mutant can
invade if a®™ > a?, whereas if D < 0 the mutant can invade if a?m < 2.

Some elaborate calculations show that

D< 0= w12 <waYs/y2 * 0(1=Y2/Y2) / h + (1a=T2)ys / (Y2h)
(C-6)

If neither the transfer rate nor the rate of loss of the second plasmid
P2 is influenced by the presence of the first plasmid PZ in its host

’ r
(Y2=Y2; T2=T2), a mutant of P2 with a higher degree of surface exclusion

than P,, but with the same effect on the bacterial growth rate as P2,

2’
can invade if wi,2 < w2, in other words if P] has a negative effect on

the growth rate of bacteria already carrying P2.
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CHAPTER 7:

SOME GENERAL CONSIDERATIONS

The results of the analyses reported in this thesis are
discussed in the previous chapters. In this chapter some of
the links between the different chapters will be discussed
while also some still unanswered questions concerning selec-

tion on plasmids will be formulated.

COEXISTENCE OF INCOMPATIBLE PLASMIDS WITH INCOMPLETE SURFACE
EXCLUSION

In Chapters 2 and 3 it is shown that two plasmid types ex-
hibiting complete surface exclusion can only coexist if one
plasmid type has a higher transfer rate and the other is more
beneficial or less harmful to its bacterial bearer. However,
surface exclusion is never absolute. What will happen if two
incompatible plasmids only partly exclude each other?

In Chapter 6 it was shown that two or three compatible
plasmids can coexist, if exclusion is ineffective. Two com-
patible plasmids can even coexist if one of them has a lower
transfer rate and its host has a lower growth rate, or, in
other words, if one of the plasmids is less fit than the
other. Can two incompatible plasmids, which exclude each
other incompletely, coexist if one of them is less fit?

As long as two incompatible plasmids exclude each other
equally well and have equal transfer rates their ratio will
not change by infecting once in a while bacteria already
bearing a plasmid. This holds only if, as supposed in Chap-
ter 4, the transfer rate of a plasmid from a donor is propor-
tional to the number of copies of that plasmid in the donor.
It should therefore be expected that for two incompatible
plasmids with equal exclusion and transfer rates the one
whose host possesses the highest growth rate will be able to
expel the other. On the other hand, if the growth rates are
equal, the plasmid with the highest transfer rate will sur-
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vive. Some preliminary calculations show that this is indeed
the case. Two incompatible plasmids with an equal degree of
surface exclusion appear only to be able to coexist if one
has a higher transfer rate and if the bacterial host of the
other has a higher growth rate. Of course, this conclusion
will no longer hold if bacteria bearing both plasmids have a
higher growth rate than bacteria carrying only one. Three in-
compatible plasmids probably can not coexist if they exhibit
an equal degree of surface exclusion.

In Chapter U it was demonstrated that a high degree of
exclusion against incompatible plasmids may compensate for a
lower growth rate of the plasmid's host. Sometimes two incom-
patible plasmids with equal transfer rates can coexist if one
of them has a higher degree of exclusion whereas the growth
rate of the bacterial host of the other is higher. Therefore,
there are two cases in which two incompatible plasmids can
coexist. The first case is when both plasmids only differ in
their transfer rate and in the growth rate of their bacter-
ial host (Chapters 2 and 3). In the second case both plasmids
only differ in their degree of surface exclusion and also in
the growth rate of their bacterial host (Chapter 4). What
will happen if plasmids differ in all these three properties
(transfer rate, surface exclusion, bacterial growth rate)?

Can three incompatible plasmids coexist in that case?

WHY ARE THE EXCLUSION GENES LOCATED ON THE TRANSFER GENE
COMPLEX?

In Chapter 4 it is shown that surface exclusion against
incompatible plasmids will be advantageous for low copy num-
ber plasmids with a high transfer rate. It appears that the
genes, responsible for exclusion are often situated in the
gene complex encoding for conjugative transfer (Alfaro &
Willetts, 1972; Achtman, Kennedy & Skurray, 1977; Barth,
1979). The expression of the transfer (tra) gene complex of
many conjugative plasmids can be repressed (Willetts &
Skurray, 1980). In that case the exclusion genes will also

be repressed, and other, incompatible plasmids may enter. If
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an incompatible plasmid enters such a bacterium, its trans-
fer genes will immediately be repressed by the repression
products of the plasmid already present. Both the resident
plasmid and the invading plasmid will therefore have a low
(re)transfer rate. In Chapter 5 it is demonstrated that under
some growth conditions, regulation of transfer rate can be
advantageous. In that case, the transfer from most of the
plasmid bearing bacteria will be repressed, and the overall
transfer rate will be low. Since exclusion is not very advan-
tageous if the transfer rate is low, it might be advantageous
to repress exclusion together with transfer. Close linkage
between both genes would then facilitate regulation of both
characters. Whether selection will really favour such a close
linkage between transfer and exclusion genes is, however,

still an open question.

THE MAP LOCATION OF THE TRANSFER GENES

When plasmid transfer is interrupted, only part of the
plasmid DNA reaches the recipient cell. Only those genes,
which have been transferred already, can become expressed in
the recipient cell. The order of transfer is therefore of
great importance for a plasmid. It appears that most conju-
gative plasmids transfer their replication genes first
(Guyer & Clark, 1977; Al-Doori, Watson & Scaife, 1982) and
their transfer genes only at last (Walker & Pittard, 1972;
Guyer & Clark, 1977; Al-Doori, Watson & Scaife, 1982; Guiney
& Yakobson, 1983). Between the replication region and the
transfer region several genes of less importance for the
maintenance of the plasmid may be situated (Barth, 1979;
Willetts & Skurray, 1980). Sometimes these genes are situated
inside the transfer gene complex, dividing it into two separ-
ate regions (Barth, Richards & Datta, 1978). Can this order
be determined by selection or is 1t just an arbitrary one?

It seems reasonable that the replication genes, being the
most essential genes for the maintenance of a plasmid, are
transferred first. But then it can be asked why the transfer

genes are not transferred immediately afterwards?
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GENES SITUATED ON PLASMIDS

On plasmids several genes can be located. Some of these
genes are necessary for the maintenance of the plasmid, such
as replication and partitioning genes. Other genes encode
for special plasmid properties, such as transfer and surface
exclusion. Many plasmids also possess genes which may influ-
ence the fitness of the bacterial host, but do not affect
the plasmid dynamics in any other way. Examples of such genes
are genes encoding for resistance to antibiotics, and for re-
sistance against heavy metals (Foster, 1983). These genes
could probably function equally well when they had been situ-
ated on the bacterial chromosome. Many of these genes are
situated on transposable elements, enabling them to switch
from the plasmid genome to the bacterial chromosome and vice
versa (Cohen, 1976; Campbell, 1981). Which specific prop-
erties of these genes determine their frequent location on
plasmids? It is remarkable that many of these plasmid borne
genes encoding, for instance, for resistance to antibiotics,
are only once in a while favourable for the bacterial host.
Several investigators have argued that this is not accidental
since plasmids enable bacteria to acquire their genes quickly
when needed, and lose them easily afterwards (Clowes, 1972;
Koch, 1981). However, this argument is questionable, since
it implies that a few bacteria should sacrifice themselves
and keep plasmids under unfavourable circumstances, in order
to let other bacteria profit from their altruism in periods
when the plasmid genes are needed. It can also be imagined
that all kinds of bacterial genes have a nearly equal prob-
ability of being transposed to a plasmid and vice versa.
Plasmids, adding a favourable property to their bacterial
carriers, will tend to predominate in the plasmid population.
Genes which had been already necessary for a long time, may
have entered the bacterium on a plasmid. However, after some
time, the gene will have been transposed to the bacterial
chromosome, whereafter the plasmid can be dispensed with.
Therefore, the genes discovered on plasmids will be mainly

genes which have become useful for the bacterium only
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recently or genes which are only once in a while favourable.
On the other hand, the discovery of genes, occurring on many
plasmids, that are only occasionally useful could be an arti-
fact resulting from a bias of investigators to search for
antibiotic resistance genes, which are easily detected and
have medical importance. The question, therefore, whether in-
dividual selection on plasmids and bacteria can explain the
presence of genes on plasmids that are only once in a while

useful for the bacteria cannot yet be answered conclusively.

THE SPREAD OF GROWTH RATE REDUCING PLASMIDS IN NATURE

Stewart & Levin (1977) have calculated under which circum-
stances a growth rate reducing plasmid can invade a bacterial
population. They have analysed the most simple cases of only
one plasmid with a constant transfer rate. They concluded
that there exists a broad range of parameter values for
which conjugative plasmids can become established and for
which plasmid-bearing bacteria will maintain high fre-
quencies, even when these factors considerably reduce the
fitness of their host cells. This implies that antibiotic re-
sistance factors may be maintained on plasmids in the bacter-
ial population, even when no antibiotics are used. This means
that even a severe reduction in the use of antibiotics will
not necessarily lead to a lower frequency of antibiotic re-
sistance. Attempts to estimate the transfer rate in natural
bacterial populations indicate, however, that this rate may
be even too low to satisfy the broad conditions for plasmid
maintenance (Anderson, 1975; Caugant, Levin & Selander,
1981). This may be due to the fact that most plasmid-bearing
bacteria in nature did acquire that plasmid many generations
ago, and are therefore transfer-repressed. However, in Chap-
ter 5 it is shown that transfer regulating plasmids can,
under some growth conditions, become established and be main-
tained at an even broader range of parameter values than non-
regulating plasmids. In Chapter 6 it is demonstrated that in
a bacterial population, already containing several plasmids,

a new compatible plasmid can invade more easily. Therefore,
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the maintenance of plasmids, which are undesirable from an
human point of view because they confer antibiotic resistance
may be even more easy than the models of Stewart & Levin
(1977) indicate.
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SUMMARY AND GENERAL CONCLUSIONS

In this thesis several mathematical models are formulated
to analyse the population dynamics of plasmids. Furthermore
it is investigated how selection affects the characteristics
of the population dynamics of plasmids. In the Introduction
(Chapter 1) a survey is given of the principal properties of
plasmids. In the Chapters 2, 3, 4 and 5 the fate of a mutant
plasmid in a plasmid population is investigated. A mutant
will in most cases be incompatible to the corresponding wild-
type plasmid, because a plasmid and its mutant mostly use the
same mechanism to regulate their replication and partition-
ing.

First the question is answered whether one, two or three
incompatible plasmids, which exclude each other completely,
can coexist. In Chapter 2 this is done for plasmids in a bac-
terial population kept in a chemostat and in Chapter 3 for
the case that the bacterial population is periodically trans-
ferred to fresh medium. It appears that under both growth
conditions two plasmids may be able to coexist if one of them
has a higher transfer rate, whereas bacteria bearing the
other plasmid possess a higher growth rate. In a chemostat
the concentrations of both plasmids will converge to stable
equilibria concentrations. In a periodically transferred bac-
terial population the frequency of plasmids may oscillate,
both when one plasmid type is present and when two plasmid
types are competing. Three plasmids are able to coexist under
neither growth conditions.

Occasionally plasmid mutants with a different transfer
rate will arise. It is assumed that as the transfer rate of
the plasmid mutant is the higher, the more negative the ef-
fect of the plasmid on the growth rate of its bearer will be.
In that case selection will ultimately lead to the establish-
ment of a plasmid with an optimal transfer rate, or to a
situation in which two plasmids, one with a high transfer
rate and the other non-conjugative, will coexist. The first
situation will occur if the relation between the transfer

rate and the bacterial growth rate is convex, and the second
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if this relation is concave (see fig. 2, p. 30).

Plasmids often exclude other incompatible plasmids from
their hosts by changing some of the bacterial membrane prop-
erties. This change has probably a negative effect on the
bacterium. Since survival and growth of the bacterial host
are of great importance for the survival and spread of the
plasmid, a property disadvantageous for the bacterial host
tends also to be detrimental to the plasmid. So it can be
asked why plasmids exclude other incompatible plasmids. This
question is dealt with in Chapter 4. It appears that exclu-
sion is advantageous for a plasmid if its transfer rate is
high and its copy number low. For plasmids with a high copy
number exclusion does not seem to be profitable since the
entering plasmid will probably disappear out of the majority
of the descendants of the invaded bacterium by incompatibil-
ity segregation.

Many plasmids regulate their ability to induce transfer.
Plasmids have only an efficient transfer in newly infected
hosts. After several generations in a bacterial cell line,
the ability to transfer becomes repressed. In Chapter 5 the
dynamics of transfer regulation is modelled, both in a chemo-
stat and in a bacterial population with serial transfer. It
appears that competition between a transfer regulating plas-
mid and its mutants in a chemostat will lead to a situation
of neutrality for a non-regulating plasmid, provided that
the ability to regulate transfer has no costs. In the case
where bacteria, bearing non-regulating plasmids, have a
slightly higher growth rate than bacteria bearing derepressed
regulating plasmids (i.e. if regulation has some costs), the
non-regulating plasmid will eventually win. In a serially
transferred bacterial population optimal regulation dynamics
exist. A regulating plasmid with optimal regulation is able
to compete successfully with a non-regulating plasmid, even
if regulation has some costs. How great the costs of regula-
tion may become without regulation becoming disadvantageous,
depends on several factors. One of these is the extent of
the environmental differences the plasmid has to cope with

during its stay at each growth site. More particularly, how
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much the bacterial concentration differs between the start
and the end of each growth period. A greater difference
leads to a higher advantage for transfer regulation.

The dynamics of competition between compatible plasmids
differs from those of incompatible plasmids. Compatible plas-
mids often do not exclude each other and from the moment they
are combined in a bacterium they stay together in that bac-
terial cell line. In Chapter 6 the competition between com-
patible plasmids is analysed. It appears that it is possible
for at least three compatible plasmids to coexist; this prob-
ably also holds for higher numbers. Two (or three) plasmids
can coexist, although one of them is superior to the other,
i.e. when it has a higher transfer rate and its bacterial
host has a higher growth rate. Sometimes it depends on the
initial plasmid concentrations which equilibrium concentra-
tion will be reached. When a bacterial population carrying a
plasmid is invaded by a second compatible plasmid, which is
slightly superior to the resident plasmid, it may occur that
the less fit plasmid, which was present first, remains pre-
dominant. The competition between two (or three) compatible
plasmids can be considered as an example of the possibility
of stable coexistence of two (or three) species in the same
niche.

In Chapter 7 some unanswered questions about plasmid dy-
namics are discussed:

- How are the population dynamics of competing incompatible
plasmids affected by incomplete surface exclusion?

- Is the structure of the plasmid genome arbitrary or influ-
enced by selection?

- Why do plasmids carry so often genes coding for properties
which are only once in a while favourable for bacteria?

- How are the (theoretical) conditions for plasmid spread in
nature affected by the ability of a plasmid to regulate

its transfer rate?
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SAMENVATTING EN ALGEMENE CONCLUSIES

In dit proefschrift zijn verscheidene mathematische model-
len opgesteld om de populatiedynamica van plasmiden te analy-
seren. Tevens is onderzocht wat het effect van selectie is
op de populatiedynamische eigenschappen van plasmiden. In de
Inleiding (Hoofdstuk 1) wordt een overzicht gegeven van de
voornaamste kenmerken van plasmiden. In de Hoofdstukken 2, 3,
4 en 5 is onderzocht wat het lot is van een gemuteerd plasmi-
de in een plasmidepopulatie. Zo'n mutant zal doorgaans incom-
patibel zijn met het oorspronkelijke plasmide, aangezien een
plasmide en zijn mutant meestal over dezelfde mechanismen be-
schikken voor het reguleren van hun replicatie en segregatie.

In de eerste plaats wordt de vraag beantwoord hoeveel
incompatibele plasmiden samen voor kunnen komen in een bacte-
riepopulatie, indien ieder van deze plasmiden verhindert dat
een van de andere in hun gastheer binnendringt. In Hoofdstuk
2 is dit onderzocht voor plasmiden in een bacteriepopulatie
die zich in een chemostaat bevindt en in Hoofdstuk 3 voor
het geval dat eens in de zoveel tijd een (random) fractie
van de gastheren wordt overgeént naar een nieuw voedingsmedi-
um. In beide gevallen blijken twee plasmiden samen voor te
kunnen komen. Dit is alleen mogelijk indien één van de twee
een hogere (infectieuze) transfer snelheid heeft, terwijl de
groeisnelheid van de drager van het andere plasmide hoger is.
De concentraties van beide plasmiden zullen in een chemostaat
naar stabiele evenwichtconcentraties convergeren. Bij perio-
dieke overenting kunnen de frequenties van de plasmiden ook
gaan oscilleren. Dit kan optreden zowel indien er maar één
plasmide aanwezig is, als in het geval waarin twee plasmiden
met elkaar concurreren. Noch in een chemostaat, noch bij pe-
riodieke overenting kunnen drie plasmiden samen voorkomen.

Zo nu en dan zullen er mutanten van plasmiden ontstaan met
een andere transfersnelheid. Indien wordt verondersteld dat
een toename in de transfersnelheid gepaard gaat met een ver-
laging van de groeisnelheid van de bacteriéle gastheer, kan
selectie tot twee verschillende eindtoestanden leiden. Er

kan een toestand ontstaan waarin maar é&n plasmide met opti-
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male transfersnelheid overblijft. Anderzijds kan selectie

ook leiden tot het samen voorkomen van twee plasmiden, één
met een maximale transfersnelheid, en de andere met een mini-
male. De eerste situatie zal ontstaan als de relatie tussen
de transfersnelheid en de bacteriéle groeisnelheid convex is,
en de tweede als die relatie concaaf is (zie fig. 2, blz. 30).

Plasmiden voorkomen vaak dat andere, incompatibele plasmi-
den in hun gastheer binnendringen. Hiertoe veranderen zij
enige membraaneigenschappen van hun gastheer. Zo'n veran-
dering zal vermoedelijk ongunstig zijn voor de bacterie. Im-
mers, indien deze verandering gunstig zou zijn voor de bacte-
rie, dan zou een bacteriemutant, die zelf voor deze veran-
dering codeert, spoedig de oorspronkelijke bacteriepopulatie
verdringen. Aangezien het voor de verspreiding van plasmiden
van groot belang is dat hun bacteriéle gastheren overleven
en groeien, zal een eigenschap die nadelig is voor de gast-
heer ook ongunstig zijn voor het plasmide. In Hoofdstuk 4
wordt onderzocht waarom plasmiden desalniettemin verhinderen
dat andere, incompatibele, plasmiden hun gastheer binnen
gaan. Het blijkt dat deze buitensluiting voordelig is voor
plasmiden met een hoge transfersnelheid en een laag aantal
kopieén per gastheercel. Buitensluiting is niet erg voorde-
lig voor plasmiden met een groot aantal kopieén per cel. In
dat geval immers zal een plasmide dat net is binnengedrongen
in een bacterie, daar sterk in de minderheid zijn. Daarom
zal het binnengedrongen plasmide, als gevolg van incompatibi-
liteits-segregatie, in het merendeel van de nakomelingen van
die bacterie afwezig zijn.

Veel plasmiden reguleren het vermogen om hun eigen trans-
fer te bewerkstelligen. De transfersnelheid uit pas gelInfec-
teerde bacterién is hoog. Na enkele generaties in een bacte-
rié&le cellijn wordt het vermogen om transfer te induceren
onderdrukt. In Hoofdstuk 5 1s een model opgesteld dat de po-
pulatiedynamica beschrijft van een plasmide dat zijn trans-
fersnelheid reguleert. Dit is zowel gedaan voor het geval
dat de bacteriéle gastheerpopulatie in een chemostaat groeit,
als voor het geval waarin deze periodiek wordt overgeént.

Wanneer een plasmide, dat zijn transfersnelheid reguleert,
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moet concurreren met mutanten, die een andere regulatiedyna-
mica hebben, dan zal in een chemostaat een toestand ontstaan,
waarin een niet-regulerend plasmide selectief neutraal is.
Dit alles indien het vermogen om de transfersnelheid te regu-
leren geen extra kosten in de vorm van een verlaging van de
fitness van de gastheer met zich meebrengt. Als bacterién met
een niet-regulerend plasmide een iets hogere groeisnelheid
hebben dan bacterién met een regulerend plasmide met dezelf-
de transfersnelheid (dus als regulatie kosten met zich mee-
brengt), dan zal het niet-regulerende plasmide uiteindelijk
"winnen". In een periodiek overgeénte bacteriepopulatie
blijkt er een optimale regulatiedynamica voor het plasmide

te bestaan. Een regulerend plasmide met optimale regulatie
kan succesvol concurreren met een niet-regulerend plasmide.
Dit is zelfs mogelijk als het vermogen de transfersnelheid

te reguleren enige kosten met zich meebrengt. Hoe groot die
kosten moeten worden, wil niet-reguleren voordeliger zijn,
hangt af van verscheidene factoren. Een daarvan is hoe varia-
bel het milieu van de plasmiden is gedurende iedere groeipe-
riode. Als de totale bacterieconcentratie aan het begin en
het einde van de groeiperiode zeer verschillend is, hebben

de plasmiden te maken met een sterk variérend milieu. Naar-
mate het verschil groter wordt, wordt regulatie van de trans-
fersnelheid voordeliger.

De dynamica van de competitie tussen compatibele typen
plasmiden verschilt van die tussen incompatibele plasmiden.
Het binnendringen van een plasmide in een bacterie wordt vaak
niet gehinderd door de aanwezigheid van een ander compatibel
plasmide in die bacterie. Als twee compatibele plasmiden een-
maal samen voorkomen in een bacterie, blijven zij ook samen
aanwezig in de nakomelingen van die bacterie. In Hoofdstuk 6
wordt de competitie tussen compatibele plasmiden onderzocht.
Het blijkt mogelijk te zijn dat tenminste drie compatibele
plasmiden samen voorkomen in é&n bacteriepopulatie. Waar-
schijnlijk kunnen ook meer dan drie compatibele plasmiden
samen voorkomen. Twee (of drie) compatibele plasmiden kunnen
ook samen voorkomen als é&n superieur is aan de andere, dus

de hoogste transfersnelheid heeft, terwijl de groeisnelheid
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van zijn drager eveneens hoger is. Soms bestaan er meerdere

verschillende stabiele evenwichtconcentraties van de bacteri-

en. Welke van die evenwichten wordt bereikt, hangt af van de
beginconcentraties. Als er reeds een plasmide aanwezig is in
een bacteriepopulatie, kan het voorkomen dat een tweede plas-
mide, dat in de bacteriepopulatie binnendringt, in de minder-
heid blijft, zelfs als het tweede plasmide superieur is aan
het eerste. Competitie tussen twee (of drie)compatibele plas-
miden kan worden opgevat als een voorbeeld van stabiele co-
existentie van twee (of drie) soorten in dezelfde niche.

In Hoofdstuk 7 worden enkele nog te beantwoorden vragen
betreffende de dynamica van plasmiden uitgewerkt:

- Wat is het effect van het verschijnsel, dat incompatibele
plasmiden elkaar niet volledig uit hun gastheer buiten kun-
nen sluiten, op hun populatiedynamica?

- Ts de structuur van het plasmidegenoom willekeurig, of is
die structuur ontstaan onder invloed van selectie?

- Waarom bevatten plasmiden zo vaak genen, die coderen voor
eigenschappen die slechts zo nu en dan nuttig zijn voor
een bacterie?

- Welke zijn de (theoretische) voorwaarden voor de versprei-
ding van plasmiden in natuurlijke bacteriepopulaties, ge-
zien het vermogen van het plasmide om de transfersnelheid

te reguleren?
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