

Earth, Life & Social Sciences
Kampweg 5
3769 DE Soesterberg
P.O. Box 23
3769 ZG Soesterberg
The Netherlands

www.tno.nl

T +31 88 866 15 00
F +31 34 635 39 77

TNO report

TNO 2015 R11582

Design Patterns for Transparency and Joint
Control of Highly Autonomous Adaptive
Systems

Date 16 december 2015

Author(s) Dr. G.M. te Brake

Dr. J. van Diggelen

Copy no
No. of copies
Number of pages 29 (incl. appendices)
Number of
appendices

Sponsor TNO
Project name ERP HE Adaptive Automation
Project number 060.14382

All rights reserved.
No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

In case this report was drafted on instructions, the rights and obligations of contracting
parties are subject to either the General Terms and Conditions for commissions to TNO, or
the relevant agreement concluded between the contracting parties. Submitting the report for
inspection to parties who have a direct interest is permitted.

© 2016 TNO

TNO report | TNO 2015 R11582 2 / 29

Contents

1 Introduction .. 3

2 Background knowledge .. 6
2.1 Supervisory control and adaptivity ... 6
2.2 Supervisory displays .. 8
2.3 Skills, Rules, Knowledge (SRK) Framework ... 9
2.4 Just-in-time-awareness.. 9

3 Ontology ... 10
3.1 What is an ontology? ... 10
3.2 Ontologies for adaptive automation ... 10

4 Concept Development and Experimentation .. 14
4.1 Situated Cognitive Engineering ... 14
4.2 Design patterns .. 14
4.3 Designing for adaptivity in human-automation systems .. 16
4.4 Experimental platform .. 16

5 Use case: Dynamic Positioning ... 17
5.1 Introduction .. 17
5.2 Maintaining minimal SA: the use of smart notifications ... 18
5.3 Just in time awareness .. 22
5.4 Demonstrator ... 22

6 Conclusions ... 26

7 References ... 27

TNO report | TNO 2015 R11582 3 / 29

1 Introduction

Human operators in control room settings face increasingly more automation in their
work environments. Not long ago, operators steered and controlled the systems,
understanding them in their nitty gritty details. Today, operators have turned into
information managers supervising complete plants or multiple complex systems that
to a large extent operate autonomously. This transition is taking place in many
different domains, ranging from traffic management, maritime & offshore tasks,
utility network management or naval operations. The role of supervisor of
automated systems and intervener in situations where automation is suboptimal or
fails, requires different competences, skills, and support systems to keep track of
the enormous amount of data available due to the increase in sensors and models.

Figure 1 shows the generic model of automation used in this study. An environment
(e.g. plant, ship, road infrastructure, UAV…) is controlled using a set of sensors and
actuators. Control software is installed and manages this process. In regular
circumstances this works fully autonomously. However, situations will occur that
were not foreseen in the design phase of the software, sensors or actuators will
break or malfunction, or the control software contains bugs. In these cases human
intervention is required to prevent the system from breaking down.

Figure 1: The model depicting the components of our generic human automation control system

An additional module of intelligent software, called an e-partner, could support the
operator with this task. The e-partner can monitor the control software, the
environment and the human operator. Based on internal models and the specifics of
the situation, it can inform or advise the operator, tell the operator what to do, or
could even adjust the control software itself. Although these developments started
in the eighties with expert systems that advised on specific topics, the previous

TNO report | TNO 2015 R11582 4 / 29

generation of support systems was not aware of the operator state and could not
function as a colleague of the operator with varying (adaptive) work agreements.
Joint control between human operator and intelligent e-partners in highly
autonomous settings requires other types of support and a clear design of locus of
control and transparency. Notice that this model consists of one operator and one
system. This environment will be extended to mimic more complex operational
environments in which teamwork is essential and multiple processes or
environments are under control.

Part of the Early Research Program (ERP) Human Enhancement is a project that
focusses on Adaptive Automation (AA). The ambition of this project is to develop a
transparent (human-in-the-loop) adaptive automation platform, based on a
computational human model to assess current and predicted human task load. The
environments we focus on contain highly autonomous systems and often multiple
processes under control (PuCs). Human supervision required is minimal, and great
cost reductions can be made if the operator can conduct other tasks during quiet
and predictable time periods. Hence, the aim of our adaptive automation concept is
to enable operators to conduct other activities during stable periods of low risk. Our
ambition is to lower the operational costs and increase efficiency, and to design a
more interesting task set for the operator. To keep minimal situation awareness
while conducting these other tasks, the operator receives status updates from the e-
partner, and when required can return to the desk and takes over active control. To
get the operator back in the loop as quickly as possible, the e-partner supports the
quick development of situation and option awareness. Collaboration and locus of
control is highly adaptive to the state of the system and the (task) environment, but
also to the state (and location) of the operator.

To design this adaptive automation concept we distinguish three research topics:
1. Shared supervisory control: How to design adaptivity in human-e-partner

collaboration for supervisory control tasks?
2. Minimal situation awareness (SA) levels: What is the minimal level of SA that

the operator must have at all times to remain in-the-loop sufficiently and
maintain safety, and which type of pro-active support should the e-partner
provide to accomplish this in the most efficient / least intrusive way?

3. Just-in-time-awareness: What is the best way for the e-partner to support the
operator to resume control, and how long does this take?

All three topics are related to each other, especially the latter two. When the
continuously maintained minimum level of SA is kept at a higher level, the operator
will be able take over control faster. However, a higher level of SA will imply more
interruptions. Hence, a trade-off between the minimal level of SA and the availability
for other tasks may have to be made. Or maybe in specific contexts the answer of
research question 2 will determine the required minimal level of SA.

Chapter 2 will introduce the most relevant background knowledge on supervisory
control. In a previous study (Van der Kleij et al., 2015), an extensive search of
literature has been conducted. In this report, for ease of reading, the previously
described theories and concepts used in the following chapters will be introduced
shortly. In Chapter 3 an ontology is presented that contains the most important
terms in our research, and will simplify reuse of concepts in other projects. Further,
a generic Concept Development and Experimentation (CD&E) approach to develop

TNO report | TNO 2015 R11582 5 / 29

supervising and intervening concepts for intelligent and effective human-system
collaboration is presented. By embedding design patterns in a proven system
engineering approach, a method is created to build human-automation concepts for
the stated research questions. In Chapter 5 initial activities and concepts will be
presented for a dynamic positioning use case, with a focus on research question
number 2. A platform for demonstration and experimentation for this use case is
described. The report ends with conclusions and implications for further work.

TNO report | TNO 2015 R11582 6 / 29

2 Background knowledge

2.1 Supervisory control and adaptivity

Our generic operational environment is built upon the work by Sheridan (2011,
2012) on supervisory control (Figure 2). In his representation, the e-partner is called
the Pre-programmed Automatic Parameter Changer (PAPC), which can adjust the
control logic of the software, but also the control or display interface to the human
supervisor. The rules that define the allocation authority of the PAPC determine
which parameters the PAPC may change. Our e-partner can be seen as an evolved
version of the PAPC that also takes the operator and environment into account.

Figure 2: Sheridan's model of supervisory control

A key concept in our approach is adaptive automation. Adaptation in systems can
appear in different forms. We will adopt the taxonomy developed by Feigh,
Dorneich and Hayes (2012) presented in Figure 3. This taxonomy distinguishes four
different categories:

1. Modification of Function Allocation
2. Modification of Task Scheduling
3. Modification of Interaction
4. Modification of Content

Function allocation, dynamically shifting the locus of control of specific functions
between a human operator and an intelligent system, is what is typically meant in
studies of adaptive automation and relates to Sheridan’s Allocation authority.

TNO report | TNO 2015 R11582 7 / 29

However, in this study we will adopt a wider scope and include the other three types
of modification of adaptivity as well. Modification of interaction and modification of
content are common in adaptive or intelligent user interface concepts, and change
the control or display interface to the human operator. Modification of task
scheduling means altering the process that is being controlled, i.e. the control law in
Sheridan’s model.

Figure 3: Taxonomy of Adaptations (Feigh et al, 2012)

Besides what is being changed, the trigger that initiates adaptivity is another
essential part of adaptive systems. Feigh et al. (2012) developed a taxonomy of
triggers (Figure 4), and distinguish five main categories:

1. Operator
2. System
3. Environment
4. Task/Mission
5. Spatio-Temporal

In this taxonomy, system refers to the control software managing the environment
or plant, not to the e-partner. The environment represent the process(es) under
control, of which their state or occurring event could instigate a trigger. The e-
partner can use its models of the operator, system or environment to select
appropriate triggers and the appropriate type of adaptation.

Taxonomy of
Adaptations

Modification of
Function Allocation

Task Sharing

Task Offloading

Modification of
Task Scheduling

Timing

Duration

Prioritization

Modification of
Interaction

Style

Interface
features

Modality

Amount

Modification of
Content

Quality

Abstraction

Quantity

TNO report | TNO 2015 R11582 8 / 29

Figure 4: Taxonomy of Triggers (Feigh et al.,2012)

2.2 Supervisory displays

In our concept for the control of (semi-)autonomous systems, the ability for the
operator to leave the control desk is one of the main goals. When not actively
monitoring the systems, the operator can work on another desk, or could be walking
around. This provides two different operational settings with different support
opportunities.

In case the operator is sitting at a desk, supervisory information can still be
presented in an easy manner. Inspiration can be found in work done by St. John
and King (2010) on multi-tasking supervision and the development of the so-called
Janus display (St. John, 2013). Their focus is multi-tasking supervisory support,
where an operator has to monitor multiple highly-automated systems. They
developed the four-second supervisor that enables the operator to detect deviant
situations in one of its systems and turn to the primary task window in time.

Research conducted on peripheral displays could also provide concepts of interest,
although they are normally designed in such a way that they are non-intrusive.
Hence, they may be useful to signal non-urgent low risk changes in a situation
(Matthews, Rattenbury, and Carter, 2007).

When the operator is not sitting at a desk but walking around and maybe even
conducting physical tasks, opportunities for supervisory support are more limited.
Information can be provided on mobile displays, but alerts may need to be
generated to attract attention and the smaller screens have less space to provide
detailed information. However, supervisory concepts similar to desk work should be
usable.

Another field of research that may provide input to the development of supervisory
displays is change blindness, a topic extensively studied. For example,
Parasuraman, Cosenzo, and De Visser (2009) studied the monitoring and guiding
of multiple UAVs with different levels of automation, presenting promising results
on optimizing change detection for adaptive automation systems. A more thorough
literature search must be conducted, as these topics where not part of the literature
review in our previous report (Van der Kleij et al., 2015).

Taxonomy of
Triggers

Operator

Operator
Initiated

Operator
Measurement

System

State

Mode

Environment

State

Event

Task/Mission

Task Status

Mission Event

Spatio-
Temporal

Location

Time

TNO report | TNO 2015 R11582 9 / 29

2.3 Skills, Rules, Knowledge (SRK) Framework

To understand the types of problems that are relevant for supervisory control
systems, it is useful to distinguish between different types of behaviours. The Skill
Rules Knowledge framework of Rasmussen (1983), distinguishes three categories:
 Skill-based behaviour represents behaviour that requires very little or no

conscious control once an intention is formed. This is also known as a
sensorimotor behaviour.

 Rule-based behaviour is characterized by the use of stored rules and
procedures to select a course of action in a familiar work situation

 Knowledge-based behaviour represents reasoning at a higher conceptual level
using an internal model of the system. This type of control must be employed
when the situation is novel and unexpected.

The SRK framework has not only been successful in studying and understanding
human behaviour, but also for understanding computer behaviours, and what they
are good at. In short, computers perform very well at skill-based tasks, are capable
of doing rule-based tasks, and have most difficulty at doing knowledge-based tasks.
However, as the field of Artificial Intelligence progresses, more and more
knowledge based tasks are also (partly) automated.

2.4 Just-in-time-awareness

Designing for SA is a topic extensively studied, for example by Endsley herself
(Endsley and Jones, 2011). Endsley and Jones provide fifty SA design principles of
which some may be useful for our work, but need further scrutinizing. For example,
design principle number 34: “Automate only if necessary”, clearly shows that in
Endsley’s model the operator is the holder of SA, whereas others propose a more
system oriented view on SA (Stanton et al., 2006). This topic has recently been
debated quite vigorously (Dekker, 2015; Endsley, 2015; Stanton, 2015). Because
our environment consists of a human operator, an e-partner, and a control system,
a distributed (system) perspective on SA is probably appropriate.

Most research addresses the maintenance of SA over prolonged periods. Little
work seems to have been done specifically on the topic of fast SA development ore
recovery (Gartenberg, Breslow, McCurry & Trafton, 2013; John & Smallman, 2008).
Probably, if little time is available, an intuitive, naturalistic decision-making kind of
approach will be taken, whereas when more time is available a rule-based or
analytical knowledge-based approach may be chosen (Klein, 1993). This may
provide indications of the type of support that is most beneficial to the operator.

TNO report | TNO 2015 R11582 10 / 29

3 Ontology

Before we can start implementing or specifying a prototype, the models as
described in the previous section must be formalized and made consistent with
each other. This section makes a step in this direction by defining an ontology: it
describes all concepts that are needed to represent knowledge in this domain, and
it does so in a uniform way. This ensures that knowledge can be shared between
the different components of the system (e.g. actors, user interfaces, reasoning
systems) because everybody speaks the same language.

3.1 What is an ontology?

An ontology is defined as a “formal specification of a shared conceptualization”
(Gruber, 1993). This definition reveals two aspects which are important for our
purposes. Firstly, as it is a formal specification, it can be used by a computer to
represent and reason with knowledge. Most of the models about human behaviour
lack that property, which means that they cannot be easily implemented, unless
they are developed further into an ontology. Secondly, an ontology models a shared
conceptualization. This means that they are used by multiple people and
computers, which facilitates knowledge sharing as everybody speaks the same
language. In this project, we aim to share the ontologies between the use cases for
dynamic positioning, and (semi-)autonomous driving. Furthermore, the developed
ontology will also be used within the defence research program Manning and
Automation.

3.2 Ontologies for adaptive automation

To develop systems for adaptive automation, we need an ontology to represent
knowledge in a computer and to be able to share information between different
actors (human or machine) in the system. The subsections below describe our
initial efforts in this area.

3.2.1 Top level ontology

The top level ontology is visualized in Figure 5. As this is only a top level ontology,
the structure behind these classes is not yet specified and will be part of a later
ontology-engineering effort. The important ontological commitment behind this
model is that the context of a task must be modelled in three separate models for
resources, environment and functions. For example the task check-weather-
forecast serves to fulfil the function Maintain-Situation-Awareness in the
environment Sea using the resources DP-operator and DP-System. Obviously this
representation is too shallow to be useful for establishing adaptive task support in
our domain. For example, it does not support reasoning over alternative resource
allocations. However, it can be used for a first requirements analysis which in turn
will help fleshing out this ontology in further depth.

TNO report | TNO 2015 R11582 11 / 29

Figure 5 Top level ontology

3.2.2 Resource ontology

A resource is defined as anything that can be required by a task to enable task
execution. This means that a resource can either be a consumable, a tool or a task
performer. Different types of task performers exist: humans, but also machines.
Humans can enact roles, which allow them to take tasks upon themselves. In the
case of machines, we do not speak of roles, but of services. The resource ontology
is depicted in Figure 6.

Figure 6: Resource ontology

3.2.3 Task ontology
The task ontology contains concepts that are required for specifying the demand of
work. We distinguish among three different tasks:

class Top lev el ontology

Task

Resource Env ironment

Function

fulfi l ls

isSituatedIn
Uses

class Resource

Human Resource

Resource

- CurrentCapacity: int
- InitialCapacity: int
- ManagedByException: boolean
- Renewable: boolean
- Status: [OK, Degraded, Faulted]

Tool

TaskPerformer

Machine

Consumable

ResourceRequirement RoleRequirement Serv iceRequirement

WorkRequirement Serv iceRole

Requires

Enacts Provides

TNO report | TNO 2015 R11582 12 / 29

1 tasks that have been observed in the past or in the present (descriptive tasks)
2 tasks that must occur according to regulations or plans (prescribed tasks)
3 tasks that are predicted to occur (predicted tasks).

The internal structure of a task is specified using workflows (i.e. tasks occur
according to a specified control sequence, containing sequential composition,
parallel composition and XOR splits). A specific type of activity is the “human
activity”, which are activities performed by humans. Activities performed by non-
humans (e.g. agents) are described in the more general concept “Activity”. Figure 7
presents the task ontology.

Figure 7: Task ontology

3.2.4 Discussion
This chapter presents an initial version of an ontology for adaptive automation. It
focusses on four aspects that are considered important for adaptive automation, i.e.
resources, functions, environment and tasks. This ontology is a useful basis for
requirements engineering (which is the topic of the next section), as it adds
meaning. For example, when a requirement states that the status of a resource
must be monitored, this ontology defines that the status can be one of the values
OK, Degraded, Faulted. This not only makes the requirement more precise, it also
provides a basis for implementation, as the ontology can be translated
straightforwardly into data structures of the implementation.

Obviously, this ontology is not set in stone and will change and be enhanced as
research progresses. For example, during the implementation effort, it could turn
out that the ontology is insufficiently expressive to allow for the kind of reasoning
that is required. Therefore, this ontology should be regarded as a starting point

class Tasks

Task

PrescriptiveTask

Task

PredictiveTask

Process Activ ity

- Duration: int
- StartTime: int

Human Activ ity

Connector

Task

DescriptiveTask

CallActiv ity StartActiv ity EndActiv ity

PlannedTask

- Deadline: int
- Performance: float
- Priori ty: int
- StartTime: int

ProceduralizedTask

WorkRequirement

Sequence

has

TNO report | TNO 2015 R11582 13 / 29

which defines the concepts that are crucial for adaptive automation and which are
usually left implicit in automated systems.

TNO report | TNO 2015 R11582 14 / 29

4 Concept Development and Experimentation

4.1 Situated Cognitive Engineering

To develop effective interactive, human-centred automation, as is our aim in this
project, theory and empirical research should be built into the design process. To
support the design processes systematically, a situated Cognitive Engineering
(sCE) method was constructed. The sCE approach is based on the following
development principles (Neerincx, 2012):

1. Creating human-centred automation is a multi-disciplinary collaborative
activity

2. Functional modules are defined and tested incrementally in an iterative
refinement process

3. Design decisions are explicitly based on claims analyses, explicating the
up-downside trade-offs

4. Keeping and sharing the design rationale is key for progress and coherence
in automation development

At the highest level, the sCE method distinguishes the Foundation, Specification
and Evaluation phase (Figure 8). The Foundation contains the operational
demands, human factors knowledge and technological principles. These give input
to the Specification of a system at both the task and communication level of the
system. This represents the concept development phase. Concepts developed are
input for Evaluation, where experimentation takes place. The experimental results
of the Evaluation will contribute to the knowledge base of the Foundation. We
expect that part of this knowledge on adaptive automation concepts will be captured
in design patterns that will be added to the Foundation for re-use.

Figure 8: Three main components of the sCE method (based on Neerincx, 2012)

4.2 Design patterns

A design pattern is a general reusable solution to a commonly occurring problem
within a given context. Originally developed by an architect (Alexander, 1977) for

S
p

ec
ifi

ca
tio

n

 Foundation

Operational Demands, Human Factors, Technological Principles

Simulation
Prototype

Communication level
Interface design

Task level
User requirements, design rationale
(scenario’s, use cases, claims)

E
va

lu
at

io
n

TNO report | TNO 2015 R11582 15 / 29

urban planning and building design, the principle has become popular in software
engineering (Gamma et al, 1993) and user interface design.

A design patterns provides a generic structure that, depending on context details,
leads to a different but similar solution for different use cases. Many variations can
be found in literature, but a pattern typically contains the following fields:
 Pattern Name: Choosing a clear and descriptive name helps people find the

pattern and encourages clear communication between team members during
design discussions.

 Pattern Description: Because short names like "one-window drilldown" are
sometimes not sufficient to describe the pattern, a few additional lines of
explanation (or a canonical screenshot) will help explain how the pattern works.

 Problem Statement: Written in user-centred language, this communicates
what the user wants to achieve or what the challenge is to the end-user.

 Use When: "Context of use" is a critical component of the design pattern. This
element helps people understand situations when the design pattern applies
(and when it does not.)

 Solution: The solution should explain "how" to solve the problem, and may
include prescriptive checklists, screenshots, or even short videos demonstrating
the pattern in action.

 Rationale: Providing reasons "why" the pattern works will reinforce the solution,
though time-pressed developers may prefer to ignore this explanation.

 Examples: Each example shows how the pattern has been successfully
applied

 Comments: Including a place for team members to discuss the use of the
pattern helps maintain an active resource and keeps the team engaged.

Design patterns provide a powerful and practical method to capture knowledge
developed into reusable packages that can be tweaked to similar problems. Most
work on design patterns and adaptivity is focused on adaptation of the user
interface. For example, Peissner and Edlin-White (2013) have studied adaptation
based on personal characteristics, such as lower visual or auditory perception
recognition ability. Larger fonts or a different use of sounds are chosen
automatically by the system. Hence, referring to the taxonomy of Feigh et al.
(2012), this work focusses on the modification of interaction and the modification of
content.

Peissner and Edlin-White (2013) also defined two adaptation dialogue patterns. In
the first, the operator is informed about the adaptation, and has the option to undo
this process. The second pattern describes an explicit conformation pattern, which
means the operator has to accept the adaptation explicitly before or after the
adaptation is executed. The patterns are evaluated based on controllability and
transparency. It was concluded that complex systems will need both, as each has
its own advantages and costs.

Design patterns developed will be added to the Foundation as described in the
previous section on sCE.

TNO report | TNO 2015 R11582 16 / 29

4.3 Designing for adaptivity in human-automation systems

Johnson, Bradshaw, Feltovich, Jonker, Riemsdijk and van Sierhuis (2011) present a
method called Coactive Design that can be used by developers to translate high-
level teamwork concepts into control algorithms, interface elements, and behaviours
that enable robots to fulfil their envisioned role as teammates. They developed a
human-robot system model that supports collaboration through attention to
requirements for observability, predictability, and directability. These categories can
be traced to the 10 “automation as a team player” principles put forth by Klein et al.
(2004) and are defined as follows (Johnson et al., 2011):
 Observability means making pertinent aspects of one’s status, as well as one’s

knowledge of the team, task, and environment observable to others. Since
interdependence is about complementary relations, observability also involves
the ability to observe and interpret pertinent signals. Observability plays a role in
many teamwork patterns e.g., monitoring progress and providing backup
behaviour.

 Predictability means one’s actions should be predictable enough that others can
reasonably rely on them when considering their own actions. The
complementary relationship is considering others’ actions when developing
one’s own. Predictability is also essential to many teamwork patterns such as
synchronizing actions and achieving efficiency in team performance.

 Directability means one’s ability to direct the behaviour of others and
complementarily be directed by others (others can be human or machine
actors). Directability includes explicit commands such as task allocation and
role assignment as well as subtler influences, such as providing guidance or
suggestions or even providing salient information that is anticipated to alter
behaviour, such as a warning. Teamwork patterns that involve directability
include such things as requesting assistance and querying for input during
decision making.

Design patterns developed in this study will take these three dimensions into
account to optimize for transparency in joint-control.

4.4 Experimental platform

An experimental platform will be developed that facilitates the experimentation and
validation of automation concepts developed in this project. This platform will be
described in more detail in the next chapter..

TNO report | TNO 2015 R11582 17 / 29

5 Use case: Dynamic Positioning

5.1 Introduction

Our use case focuses on the stationary dynamic positioning (DP) operator at
Floating Production, Storage and Offloading (FPSO) platforms (see Figure 9). For
more information on FPSOs, please refer to Van der Kleij et al. (2015). Stationary
DP operations are a typical example of a control task that is highly automated but
does require human supervision. Most of the time, the operator monitors the system
but does not have to take action. It is quite rare that system failure or environmental
circumstances require human intervention. However, when an intervention is
required the operator has to be fast, as generally very little time is available before
dangerous situations occur. Quickly understanding what is going on followed by
appropriate action taking is a complex task that operators sometimes fail at,
resulting in environmental spills, life-threatening situations, or large economic
damage.

Figure 9: FPSO on DP during offloading

Figure 10 shows the future DP control environment we envision. An FPSO is
managed by a DP system consisting of control software, sensors and thrusters. The
DP software can be monitored and managed by either the DP operator or by an e-
partner. This is an addition to current practice, where this type of support is non-
existent.

As described in paragraph 2.2, the aim of our support concept is to enable the
operator to leave the DP desk during stable periods of low risk to conduct other
activities. He may get regular status updates (notifications) by the e-partner, and
when required can return to the desk and take over active control. In this case, the
e-partner supports the quick development of situation and option awareness.
Hence, the e-partner has two main tasks:

TNO report | TNO 2015 R11582 18 / 29

 Proactively support the roaming operator with updates whenever relevant, to
keep the operator at a minimally required level of SA.

 When required, actively support the DPO with just-in-time awareness when he
has to take over control immediately

Figure 10: The high level concept of a control environment for future DP operators

The next two paragraphs will address the research questions and propose solutions
that will be implemented and evaluated.

5.2 Maintaining minimal SA: the use of smart notifications

Modern SCADA (Supervisory Control And Data Acquisition) systems, such as DP
systems, can be regarded as having two control loops. The first loop is a fully
autonomous loop where the system responds to triggers in the environment. As an
(oversimplified) example, if the ship on DP is drifting eastwards, the power on the
thrusters facing eastwards is increased. The second control loop serves to deal with
those situations in which the computer cannot establish a solution autonomously. In
this case, the computer recognizes a problem, alarms the user, and then passes full
control to the user. If we map these control loops to the Skill-Rule-Knowledge
framework discussed in Section 2.3, we observe that the computer is applied to
perform skill-based and rule-based behaviours. The skill-based behaviours are
implemented in the first control loop, where sensor data are immediately mapped to
action. Rule-based behaviours are implemented in the second control loop, where
rules are used to trigger alarms that are followed up by users who follow procedures
to deal with these alarms.

Currently, the knowledge-based control loop is not supported in SCADA
applications. The reason for this is not that Artificial Intelligence is not capable to
reason or assist with those types of problems. Today, many examples exist of

TNO report | TNO 2015 R11582 19 / 29

operational systems that assist in knowledge based solutions using advanced
symbolic reasoning systems, machine learning, and big data analytics techniques
(e.g. Neerincx, 2011). (One of) the reasons that these solutions are not frequently
applied in SCADA systems, is that the current HMI paradigm, which is based on
alarms, does not suffice. Alarms are a very shallow way of communicating
information to the user. This works well when the alarm is triggered by a simple and
non-controversial fact (for example, when a threshold is exceeded), as in skill-
based and rule-based problems. In knowledge-based problems, the trigger may be
less concrete (e.g., a weak signal), and it may be unclear what the proper response
should be: who should resolve the problem (computer or human or both)?, is it a
problem at all (the computer may be wrong, or the operator may be wrong)?, when
does the problem require a response (now, or can it be postponed)? For this
reason, we believe that an additional layer of communication should be introduced
that supports knowledge-based problem solving. We call this type of communication
‘smart notification’ (Figure 11).

Figure 11: Introducing an additional control loop “smart notifications” in SCADA applications

5.2.1 Difference between alarms and smart notifications

To understand to concept of smart notifications, it is useful to distinguish them from
alarms. The definition of an alarm is as follows (according to ISA 2009):
An audible and/or visible means of indicating to the operator an equipment
malfunction, process deviation, or abnormal condition requiring a response.

This definition defines four important characteristics of alarms (DeltaV 2013):
1 There must be an indication of the alarm (audible or visible). An alarm limit can

be configured to generate control actions or log data without it being an alarm.
2 The indication must be targeted to the operator to be an alarm, not to provide

information to an engineer, maintenance technician, or manager.
3 The alarm must indicate a problem, not a normal process condition.
4 There must be a defined operator response to correct the condition. If there is

no operator response necessary, then there should not be an alarm.

TNO report | TNO 2015 R11582 20 / 29

The main reason why alarms are not suitable to use as a basis for smart
notifications, is that knowledge-based decisions (by definition) have no predefined
operator response to correct the condition.

The ISA standard also defines another concept, called an alert, which is similar to
an alarm, but which has a somewhat weaker definition:
An audible and/or visible means of indicating to the operator an equipment or
process condition that requires awareness, that is indicated separately from alarm
indications, and which does not meet the criteria for an alarm.

However, the definition of an alert is still not sufficient to use as a basis for applying
smart notifications, because the responsibility for dealing with the alarm or alert is
still transferred to the operator. In the human-machine team paradigm, many more
options exist, such as shared responsibility or collective obligations (Van Diggelen,
2010). To capture these aspects, smart notifications can be applied, which do not
simply push problems to the operator, but builds up mutual collaborations and are
dedicated to solve problems that arise. The differences between alarms, alerts, and
smart notifications are outlined in Table 1.

Table 1: Alarms, alerts and smart notifications

 Alarms Alerts Smart Notification

Responsibility
for handling the
alarm or
notification

Operator - Operator and
Intelligent Operator
Support System

Trigger Simple (e.g.
threshold, or
rule-based)

Simple Complex (e.g.,
resulting from ML or
data fusion of
heterogeneous
sources)

Communication
type

One shot One shot Dialogue

Modality Short text Short text Text, pictures,
graphs, movies,
sounds.

Content Facts Facts Facts, judgements,
predictions (which
may be unreliable),
contextual
information.

Intended effect Action by
operator

Awareness by
operator

1) Action by
operator-SOS team.
2) Negotiation to
reach consensus on
how to proceed

TNO report | TNO 2015 R11582 21 / 29

Whereas the concept of Smart notifications allows for establishing a more advanced
human computer interaction within SCADA systems, it still requires very good
design practices to actually realize them. These design practices will be laid down
in design patterns.

5.2.2 Proposed Design patterns

To design a good smart notification, many decisions must be made on aspects such
as:
 What is the modality? If pictures are used, what do these look like? If

sonification is used, what type of signal should be chosen?
 How is the dialogue structured? What are the response options for the

operator? What are the answers of the computer?
 Who takes the initiative? Does the system proactively start communications with

the operator, or is it only reactive? If so, when does it do so?
 How does operator/system state affect the smart notifications? If the operator is

busy, does the smart notification respond to that and become less occupying?
 How do the different smart notifications behave with respect to each other? Are

the most important ones shown more prominently? What happens to smart
notifications that are no longer relevant?

Much work remains to be done to design these in a proper way, and to evaluate
them. The current project has just scratched the surface. Below, two proposals for
design patterns are shown that describe two types of smart notifications. Note that
this format is more light-weight than the format we originally proposed in Section
4.2.The remaining pattern fields can be described after evaluation.

The first design pattern (Table 2) aims at overcoming a problem present in most
modern SCADA systems (Supervisory Control And Data Acquisition), where either
the computer has full autonomy, or where the full control is passed to the human via
an alarm. Using this design pattern, a novel way of interaction is introduced which is
a combination of alarming and supervisory controlled automation.

Table 2 Design pattern for Request approval for corrective action

Pattern Name Request approval for corrective action
Pattern Description The computer notices a problem (could be an alarm)

and suggests a solution that it will execute if the human
approves.

Problem Statement - Operator needs sufficient understanding of the
problem to be able to judge the solution.

- Explaining the solution should not take too much
time

Use When An automated solution exists, but is too unreliable to be
implemented without human supervision.

Solution description Popup window with short explanation of the problem
and proposed system solution. The user can ask the
system for more explanation, and decide to approve or
disapprove the proposed solution.

The second design pattern aims at providing a solution for the problem that human
control has some context requirements which must be fulfilled before control can be

TNO report | TNO 2015 R11582 22 / 29

passed to the human (Table 3). One of these context requirements is spatial
location. For example, when the system operates in fully autonomous mode, and a
problem occurs, the human operator should be able to make it back to the
workstation within a certain time limit.

Table 3: Design pattern for Demand operator to stay in vicinity

Pattern Name Demand operator to stay in vicinity of workstation.
Pattern Description The computer that autonomously executes a task

predicts that human intervention might be necessary
soon, which cannot be done from a mobile device. It
asks the operator to stay in the vicinity of the
workstation.

Problem Statement - Operator needs understanding why this is
necessary.

- Computer needs feedback if the operator approved.
- Computer needs to know operator location

Use When Computer expects to switch from autonomous mode to
a semi-autonomous mode which requires a stationary
operator.

Solution description Popup window with short explanation of the type of
expected problems and time frame. The user can ask
the system for more explanation, and decide to agree or
disagree to stay in the vicinity.

5.3 Just in time awareness

Whereas initial solutions have been developed for smart notification, work has yet
to start on just-in-time-awareness concepts. Based on the lines of research
introduced in this document, various concepts will be developed, implemented in
our demonstrating environment and evaluated in line with the sCE method.

5.4 Demonstrator

We have developed a simple demonstrator to demonstrate the idea of smart
notifications. The architecture of this demonstrator is shown below:

TNO report | TNO 2015 R11582 23 / 29

Figure 12: System architecture of the Demonstrator

The backbone (i.e., the components of the system that are not visible for the human
operator) of this architecture are made up of:
 The DP simulator. This component is developed by RH Marine (formerly known

as IMTECH), and simulates the ship. In operational conditions, this component
would be absent, and be replaced by a real vessel.

 The DP control system is the system that reads sensor data, computes what the
proper response should be, and subsequently controls the actuators. This
component is also developed by RH Marine. It comes with a front end interface
called Conning.

 OASYS is a layer on top of the control system that generates additional alarms,
and allows for easy prototyping of alarm-based systems. In this demonstrator,
only the alarm-generation functionality was used, the user interface functionality
of this component was not used. This component is developed by the company
UReason.

The front end (i.e. the components of the system that are visible to the user) are the
Conning user interface and the Smart Notifications interface. Both of these
interfaces will be described in more detail below.

5.4.1.1 Conning interface
The conning interface is developed by RH marine, and is the interface as it is
currently used by DP operators to monitor sensor values, to direct actuators, and to
set the inputs for the control system (such as positioning location). Figure 13 shows
the main view of this interface.

TNO report | TNO 2015 R11582 24 / 29

Figure 13: Conning DP interface

Figure 14 shows the alarm screen of the Conning DP interface, showing the alarms
as a long list which in case of incidents or failure easily overwhelms operators
without providing structured information that helps to develop a deeper
understanding of what is going on.

Figure 14: The alarm screen of the Conning interface.

5.4.1.2 The smart notification screen
The smart notifications screen is shown in Figure 15. The coloured tiles/windows
contain active smart notifications. The grey windows contain inactive smart
notifications. We will briefly describe the active notifications below

TNO report | TNO 2015 R11582 25 / 29

Figure 15: Smart Notifications screen

The green notification at the upper left corner contains a warning that the user
should stay in the proximity. After the user had asked “why?”, the system has given
more information. If the user would choose to resolve the issue, the window would
turn grey.

The green notification at the lower left corner contains a notification that stems from
a machine learning algorithm. This means that the system has derived that the
probability of a drift is high, using, for example, an artificial neural network. This
means that the system cannot explain why this is the case (it can just give a
probability of its error rate). Depending on the trust that the operator has in this
system, he/she can choose to ignore this advice or to follow it. This is also one of
the reasons why such a separate smart notification screen is important: to allow the
user to distinguish between factual information on the conning information, and
judgemental information on the smart notification screen (i.e., information which
may be wrong).

The yellow window contains a smart notification that uses a graph to communicate
information. In this case, the graph contains the wind speed. Based on the trends
observed by the user, the user can decide if he/she finds the situation alarming or
not.

To be able to evaluate the ideas described above, we will formulate them as design
patterns, and evaluate them in an experiment with test subjects.

TNO report | TNO 2015 R11582 26 / 29

6 Conclusions

Next generation human-automation collaboration will incorporate flexible and
adaptive collaboration styles, especially when highly autonomous systems are
involved. Smart notification concepts combined with just-in-time awareness support
can provide new types of work agreements that enable operators to conduct other
tasks during quiet or safe periods, and engage the operator when things get
difficult. Intelligent e-partners with a thought understanding of the processes under
control, the automated controlling system, and the operator, play a central role in
these new concepts.

A CD&E research framework consisting of a design methodology (sCE), novel
concepts to support operators of highly autonomous systems with multi-tasking
(smart notifications and just-in-time awareness), and a platform for experimentation
and demonstration (DP simulator with Conning interface and OASIS software) was
presented. First ideas on smart notifications have been implemented and
demonstrated, giving us hands-on experience with the different parts of the platform
and its viability for experimentation and demonstration purposes.

In 2016, innovative smart notifications and solutions to quickly bring operators back
in the loop will be developed and evaluated on the experimentation platform. In an
iterative manner, more sophistication will be added and validated.

We expect the concepts developed and validated on the DP experimentation
platform to be easily transferable to other domains, as the problems tackled are
generic by nature. Autonomous sailing is an obvious candidate in the maritime
domain, but highly automated processes in other domains (navy, mobility, utility
management) are likely to provide ample opportunities for application of our
concepts.

TNO report | TNO 2015 R11582 27 / 29

7 References

International Society of Automation (2009), Management of alarm systems for the
process industries, ANSI/ISA–18.2–2009, https://www.isa.org/templates/one-
column.aspx?pageid=111294&productId=116626

Alexander, C. (1977). A pattern language: towns, buildings, construction. Oxford
University Press, USA. p. 1216. ISBN 0-19-501919-9.

Dekker, S.W.A. (2015) The danger of losing situation awareness. Cogn Tech Work
17:159–161

DeltaV, Alarm Rationalization (2013), DeltaV Whitepaper,
http://www2.emersonprocess.com/siteadmincenter/PM%20DeltaV%20Documents/
Whitepapers/WP_Alarm_Rationalization.pdf

Van Diggelen, J., Bradshaw, J. M., Johnson, M., Uszok, A., & Feltovich, P. J.
(2010). Implementing collective obligations in human-agent teams using KAoS
policies. In Coordination, Organizations, Institutions and Norms in Agent Systems
V (pp. 36-52). Springer Berlin Heidelberg.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems.
Human Factors, 37, 32–64.

Endsley, M. R. (2015). Situation awareness misconceptions and
misunderstandings. Journal of Cognitive Engineering and Decision Making, 9(1), 4–
32.

Endsley, M. R., & Jones, D. G. (2012). Designing for situation awareness: an
approach to human-centered design (2nd ed.). London: Taylor & Francis.

Feigh K.M., Dorneich, M.C. and Hayes, C.C. (2012) Toward a characterization of
adaptive systems: a framework for researchers and system designers. Human
Factors, 54(6):1008-24.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns:
abstraction and reuse of object-oriented design (pp. 406-431). Springer Berlin
Heidelberg.

Gartenberg, D., Breslow, L., McCurry, J. M., & Trafton, J. G. (2013). Situation
awareness recovery. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 0018720813506223

Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2), 199-220.

John, M. S., & Smallman, H. S. (2008). Staying up to speed: Four design principles
for maintaining and recovering situation awareness. Journal of cognitive
engineering and decision making, 2(2), 118-139.

TNO report | TNO 2015 R11582 28 / 29

Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., Riemsdijk, M. B. van
and Sierhuis, M., (2014) Coactive design: designing support for
interdependence in joint activity. Journal of Human-Robot Interaction,
Vol. 3, No. 1, 2014, pp. 43-69.

Kleij, R. van der, Broek, H. van den, Brake, G.M. te, Rypkema, J., Schilder, C.
(2015) ERP-HE AMA Progress Report: Use Case and Computational Model for
Adaptive Automation. TNO report.

Klein, G. A. (1993). A recognition-primed decision (RPD) model of rapid decision
making (pp. 138-147). Ablex Publishing Corporation.

Klein, Gary, David D. Woods, J. M. Bradshaw, Robert Hoffman, and Paul Feltovich.
(2004) “Ten challenges for making automation a “team player” in joint human-agent
activity.” IEEE Intelligent Systems 19, no. 6: 91-95.

Matthews, T., Rattenbury, T., & Carter, S. (2007). Defining, designing, and
evaluating peripheral displays: An analysis using activity theory. Human–Computer
Interaction, 22(1-2), 221-261.

Neerincx, M.A. (2011) Situated cognitive engineering for crew support in space.
Personal and Ubiquitous Computing. Volume 15, Issue 5, pp. 445-456.

Parasuraman, R., Cosenzo, K.A. and De Visser, E. (2009) Adaptive Automation for
Human Supervision of Multiple Uninhabited Vehicles: Effects on Change Detection,
Situation Awareness, and Mental Workload, Military Psychology,21:2,270 — 297

Peissner, M., Edlin-White, R. (2013) User control in adaptive user interfaces for
accessibility, Human-Computer Interaction – INTERACT 2013. Volume 8117 of the
series Lecture Notes in Computer Science, pp 623-640

Rasmussen, J. (1983). Skills, rules, and knowledge; signals, signs, and symbols,
and other distinctions in human performance models. Systems, Man and
Cybernetics, IEEE Transactions on, (3), 257-266.

Sheridan, T. B. (2011). Adaptive automation, level of automation, allocation
authority, supervisory control, and adaptive control: Distinctions and modes of
adaptation. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 41(4), 662-667.

Sheridan, T. B. (2012). Human supervisory control, in Handbook of Human Factors
and Ergonomics, Fourth Edition (ed G. Salvendy), John Wiley & Sons, Inc.,
Hoboken, NJ, USA. doi: 10.1002/9781118131350.ch34

Stanton N.A., Stewart R, Harris D, Houghton R.J., Baber C, McMaster, R, Salmon
P.M., Hoyle G., Walker G.H., Young M.S., Linsell M., Dymott R, Green, D. (2006)
Distributed situation awareness in dynamic systems: theoretical development and
application of an ergonomics methodology. Ergonomics 49:1288–1311

TNO report | TNO 2015 R11582 29 / 29

Stanton, N. A., Salmon, P. M., & Walker, G. H. (2014). Let the reader decide: a
paradigm shift for situation awareness in sociotechnical systems. Journal of
Cognitive Engineering and Decision Making, 1555343414552297.

St. John, M.F. (2013). Janus Design Principles and the Acquisition Process for a
Supervisory Situation Awareness Display. In Proceedings of the Human Factors
and Ergonomics Society Annual Meeting (Vol. 57, No. 1, pp. 2002-2006). SAGE
Publications.

St. John, M. F. S., & King, M. A. (2010, September). The four-second supervisor:
multi-tasking supervision and its support. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting (Vol. 54, No. 4, pp. 468-472). SAGE
Publications.

