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1 Introduction 

Human operators in control room settings face increasingly more automation in their 
work environments. Not long ago, operators steered and controlled the systems, 
understanding them in their nitty gritty details. Today, operators have turned into 
information managers supervising complete plants or multiple complex systems that 
to a large extent operate autonomously. This transition is taking place in many 
different domains, ranging from traffic management, maritime & offshore tasks, 
utility network management or naval operations. The role of supervisor of 
automated systems and intervener in situations where automation is suboptimal or 
fails, requires different competences, skills, and support systems to keep track of 
the enormous amount of data available due to the increase in sensors and models. 
 
Figure 1 shows the generic model of automation used in this study. An environment 
(e.g. plant, ship, road infrastructure, UAV…) is controlled using a set of sensors and 
actuators. Control software is installed and manages this process. In regular 
circumstances this works fully autonomously. However, situations will occur that 
were not foreseen in the design phase of the software, sensors or actuators will 
break or malfunction, or the control software contains bugs. In these cases human 
intervention is required to prevent the system from breaking down.  
 

 

Figure 1: The model  depicting the components of our generic human automation control system 

An additional module of intelligent software, called an e-partner, could support the 
operator with this task. The e-partner can monitor the control software, the 
environment and the human operator. Based on internal models and the specifics of 
the situation, it can inform or advise the operator, tell the operator what to do, or  
could even adjust the control software itself. Although these developments started 
in the eighties with expert systems that advised on specific topics, the previous 
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generation of support systems was not aware of the operator state and could not 
function as a colleague of the operator with varying (adaptive) work agreements. 
Joint control between human operator and intelligent e-partners in highly 
autonomous settings requires other types of support and a clear design of locus of 
control and transparency. Notice that this model consists of one operator and one 
system. This environment will be extended to mimic more complex operational 
environments in which teamwork is essential and multiple processes or 
environments are under control. 
 
Part of the Early Research Program (ERP) Human Enhancement is a project that 
focusses on Adaptive Automation (AA). The ambition of this project is to develop a 
transparent (human-in-the-loop) adaptive automation platform, based on a 
computational human model to assess current and predicted human task load. The 
environments we focus on contain highly autonomous systems and often multiple 
processes under control (PuCs). Human supervision required is minimal, and great 
cost reductions can be made if the operator can conduct other tasks during quiet 
and predictable time periods. Hence, the aim of our adaptive automation concept is 
to enable operators to conduct other activities during stable periods of low risk. Our 
ambition is to lower the operational costs and increase efficiency, and  to design  a 
more interesting task set for the operator. To keep minimal situation awareness 
while conducting these other tasks, the operator receives status updates from the e-
partner, and when required can return to the desk and takes over active control. To 
get the operator back in the loop as quickly as possible, the e-partner supports the 
quick development of situation and option awareness. Collaboration and locus of 
control is highly adaptive to the state of the system and the (task) environment, but 
also to the state (and location) of the operator.  
 
To design this adaptive automation concept we distinguish three research topics: 
1. Shared supervisory control: How to design adaptivity in human-e-partner 

collaboration for supervisory control tasks?  
2. Minimal situation awareness (SA) levels: What is the minimal level of SA that 

the operator must have at all times to remain in-the-loop sufficiently and 
maintain safety, and which type of pro-active support should  the e-partner 
provide to accomplish this in the most efficient / least intrusive way?  

3. Just-in-time-awareness: What is the best way for the e-partner to support the 
operator to resume control, and how long does this take?  
 

All three topics are related to each other, especially the latter two. When the 
continuously maintained minimum level of SA is kept at a higher level, the operator 
will be able take over control faster. However, a higher level of SA will imply more 
interruptions. Hence, a trade-off between the minimal level of SA and the availability 
for other tasks may have to be made. Or maybe in specific contexts the answer of 
research question 2 will determine the required minimal level of SA.   
 
Chapter 2 will introduce the most relevant background knowledge on supervisory 
control. In a previous study (Van der Kleij et al., 2015), an extensive search of 
literature has been conducted. In this report, for ease of reading, the previously 
described theories and concepts used in the following chapters will be introduced 
shortly.  In Chapter 3 an ontology is presented that contains the most important 
terms in our research, and will simplify reuse of concepts in other projects. Further, 
a generic Concept Development and Experimentation (CD&E) approach to develop 
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supervising and intervening concepts for intelligent and effective human-system 
collaboration is presented. By embedding design patterns in a proven system 
engineering approach, a method is created to build human-automation concepts for 
the stated research questions.  In Chapter 5 initial activities and concepts will be 
presented for a dynamic positioning use case, with a focus on research question 
number 2. A platform for demonstration and experimentation for this use case is 
described. The report ends with conclusions and implications for further work.  
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2 Background knowledge 

2.1 Supervisory control and adaptivity 

Our generic operational environment is built upon the work by Sheridan (2011, 
2012) on supervisory control (Figure 2). In his representation, the e-partner is called 
the Pre-programmed Automatic Parameter Changer (PAPC), which can adjust the 
control logic of  the software, but also the control or display interface to the human 
supervisor. The rules that define the allocation authority of the PAPC determine 
which parameters the PAPC may change. Our e-partner can be seen as an evolved 
version of the PAPC that also takes the operator and environment into account.  
 

 

Figure 2: Sheridan's model of supervisory control 

A key concept in our approach is adaptive automation. Adaptation in systems can 
appear in different forms. We will adopt the taxonomy developed by Feigh, 
Dorneich and Hayes (2012) presented in Figure 3. This taxonomy distinguishes four 
different categories: 

1. Modification of Function Allocation 
2. Modification of Task Scheduling 
3. Modification of Interaction 
4. Modification of Content 

 
Function allocation, dynamically shifting the locus of control of specific functions 
between a human operator and an intelligent system, is what is typically meant in 
studies of adaptive automation and relates to Sheridan’s Allocation authority. 
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However, in this study we will adopt a wider scope and include the other three types 
of modification of adaptivity as well. Modification of interaction and modification of 
content are common in adaptive or intelligent user interface concepts, and change 
the control or display interface to the human operator. Modification of task 
scheduling means altering the process that is being controlled, i.e. the control law in 
Sheridan’s model. 

 

Figure 3: Taxonomy of Adaptations (Feigh et al, 2012) 

Besides what is being changed, the trigger that initiates adaptivity is another 
essential part of adaptive systems. Feigh et al. (2012) developed a taxonomy of 
triggers (Figure 4), and distinguish five main categories: 

1. Operator 
2. System 
3. Environment 
4. Task/Mission 
5. Spatio-Temporal 

 
In this taxonomy, system refers to the control software managing the environment 
or plant, not to the e-partner. The environment represent the process(es) under 
control, of which their state or occurring event could instigate a trigger. The e-
partner can use its models of the operator, system or environment to select 
appropriate triggers and the appropriate type of adaptation.   
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Figure 4: Taxonomy of Triggers (Feigh et al.,2012) 

2.2 Supervisory displays 

In our concept for the control of (semi-)autonomous systems, the ability for the 
operator to leave the control desk is one of the main goals. When not actively 
monitoring the systems, the operator can work on another desk, or could be walking 
around. This provides two different operational settings with different support 
opportunities. 
 
In case the operator is sitting at a desk, supervisory information can still be 
presented in an easy manner. Inspiration can be found in work done by St. John 
and King (2010) on multi-tasking supervision and the development of the so-called 
Janus display (St. John, 2013). Their focus is multi-tasking supervisory support, 
where an operator has to monitor multiple highly-automated systems. They 
developed the four-second supervisor that enables the operator  to detect deviant 
situations in one of its systems and turn to the primary task window in time.   
 
Research conducted on peripheral displays could also provide concepts of interest, 
although they are normally designed in such a way that they are non-intrusive. 
Hence, they may be useful to signal non-urgent low risk changes in a situation 
(Matthews, Rattenbury, and Carter, 2007).  
 
When the operator is not sitting at a desk but walking around and maybe even 
conducting physical tasks, opportunities for supervisory support are more limited. 
Information can be provided on mobile displays, but alerts may need to be 
generated to attract attention and the smaller screens have less space to provide 
detailed information. However, supervisory concepts similar to desk work should be 
usable.  
 
Another field of research that may provide input to the development of supervisory 
displays is change blindness, a topic extensively studied. For example, 
Parasuraman, Cosenzo, and De Visser (2009) studied the monitoring and guiding 
of multiple UAVs with different levels of automation,  presenting promising results 
on optimizing change detection for adaptive automation systems. A more thorough 
literature search must be conducted, as these topics where not part of the literature 
review in our previous report (Van der Kleij et al., 2015). 
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2.3 Skills, Rules, Knowledge (SRK) Framework 

To understand the types of problems that are relevant for supervisory control 
systems, it is useful to distinguish between different types of behaviours. The Skill 
Rules Knowledge framework of Rasmussen (1983), distinguishes three categories: 
 Skill-based behaviour represents behaviour that requires very little or no 

conscious control once an intention is formed. This is also known as a 
sensorimotor behaviour.  

 Rule-based behaviour is characterized by the use of stored rules and 
procedures to select a course of action in a familiar work situation 

 Knowledge-based behaviour represents reasoning at a higher conceptual level 
using an internal model of the system. This type of control must be employed 
when the situation is novel and unexpected. 

 
The SRK framework has not only been successful in studying and understanding 
human behaviour, but also for understanding computer behaviours, and what they 
are good at. In short, computers perform very well at skill-based tasks, are capable 
of doing rule-based tasks, and have most difficulty at doing knowledge-based tasks. 
However, as the field of Artificial Intelligence progresses, more and more 
knowledge based tasks are also (partly) automated.   

2.4 Just-in-time-awareness 

Designing for SA is a topic extensively studied, for example by Endsley herself 
(Endsley and Jones, 2011). Endsley and Jones provide fifty SA design principles of 
which some may be useful for our work, but need further scrutinizing. For example, 
design principle number 34:  “Automate only if necessary”, clearly shows that in 
Endsley’s model the operator is the holder of SA, whereas others propose a more 
system oriented view on SA (Stanton et al., 2006).  This topic has recently been 
debated quite vigorously (Dekker, 2015; Endsley, 2015; Stanton, 2015). Because 
our environment consists of a human operator, an e-partner, and a control system, 
a distributed (system) perspective on SA is probably appropriate. 
 
Most research addresses the maintenance of SA over prolonged periods. Little 
work seems to have been done specifically on the topic of fast SA development ore 
recovery (Gartenberg, Breslow, McCurry & Trafton, 2013; John & Smallman, 2008). 
Probably, if little time is available, an intuitive, naturalistic decision-making kind of 
approach will be taken, whereas when more time is available a rule-based or 
analytical knowledge-based approach may be chosen (Klein, 1993). This may 
provide indications of the type of support that is most beneficial to the operator.  
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3 Ontology 

Before we can start implementing or specifying a prototype, the models as 
described in the previous section must be formalized and made consistent with 
each other. This section makes a step in this direction by defining an ontology: it 
describes all concepts that are needed to represent knowledge in this domain, and 
it does so in a uniform way. This ensures that knowledge can be shared between 
the different components of the system (e.g. actors, user interfaces, reasoning 
systems) because everybody speaks the same language.  

3.1 What is an ontology? 

An ontology is defined as a “formal specification of a shared conceptualization” 
(Gruber, 1993). This definition reveals two aspects which are important for our 
purposes. Firstly, as it is a formal specification, it can be used by a computer to 
represent and reason with knowledge. Most of the models about human behaviour 
lack that property, which means that they cannot be easily implemented, unless 
they are developed further into an ontology. Secondly, an ontology models a shared 
conceptualization. This means that they are used by multiple people and 
computers, which facilitates knowledge sharing as everybody speaks the same 
language. In this project, we aim to share the ontologies between the use cases for 
dynamic positioning, and (semi-)autonomous driving. Furthermore, the developed 
ontology will also be used within the defence research program Manning and 
Automation. 

3.2 Ontologies for adaptive automation 

To develop systems for adaptive automation, we need an ontology to represent 
knowledge in a computer and to be able to share information between different 
actors (human or machine) in the system. The subsections below describe our 
initial efforts in this area. 

3.2.1 Top level ontology 
 
The top level ontology is visualized in Figure 5.  As this is only a top level ontology, 
the structure behind these classes is not yet specified and will be part of a later 
ontology-engineering effort. The important ontological commitment behind this 
model is that the context of a task must be modelled in three separate models for 
resources, environment and functions. For example the task check-weather-
forecast serves to fulfil the function Maintain-Situation-Awareness in the 
environment Sea using the resources DP-operator and DP-System. Obviously this 
representation is too shallow to be useful for establishing adaptive task support in 
our domain. For example, it does not support reasoning over alternative resource 
allocations. However, it can be used for a first requirements analysis which in turn 
will help fleshing out this ontology in further depth. 
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Figure 5 Top level ontology 

3.2.2 Resource ontology 

A resource is defined as anything that can be required by a task to enable task 
execution. This means that a resource can either be a consumable, a tool or a task 
performer. Different types of task performers exist: humans, but also machines.  
Humans can enact roles, which allow them to take tasks upon themselves. In the 
case of machines, we do not speak of roles, but of services. The resource ontology 
is depicted in Figure 6.  

 

Figure 6: Resource ontology 
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work. We distinguish among three different tasks:  
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1 tasks that have been observed in the past or in the present (descriptive tasks) 
2 tasks that must occur according to regulations or plans (prescribed tasks) 
3 tasks that are predicted to occur (predicted tasks). 
 
The internal structure of a task is specified using workflows (i.e. tasks occur 
according to a specified control sequence, containing sequential composition, 
parallel composition and XOR splits). A specific type of activity is the “human 
activity”, which are activities performed by humans. Activities performed by non-
humans (e.g. agents) are described in the more general concept “Activity”. Figure 7 
presents the task ontology.  

 

Figure 7: Task ontology 

3.2.4 Discussion 
This chapter presents an initial version of an ontology for adaptive automation. It 
focusses on four aspects that are considered important for adaptive automation, i.e. 
resources, functions, environment and tasks. This ontology is a useful basis for 
requirements engineering (which is the topic of the next section), as it adds 
meaning. For example, when a requirement states that the status of a resource 
must be monitored, this ontology defines that the status can be one of the values 
OK, Degraded, Faulted. This not only makes the requirement more precise, it also 
provides a basis for implementation, as the ontology can be translated 
straightforwardly into data structures of the implementation.  
 
Obviously, this ontology is not set in stone and will change and be enhanced as 
research progresses. For example, during the  implementation effort, it could turn 
out that the ontology is insufficiently expressive to allow for the kind of reasoning 
that is required. Therefore, this ontology should be regarded as a starting point 
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which defines the concepts that are crucial for adaptive automation and which are 
usually left implicit in automated systems.  
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4 Concept Development and Experimentation  

4.1 Situated Cognitive Engineering  

To develop effective interactive, human-centred automation, as is our aim in this 
project, theory and empirical research should be built into the design process. To 
support the design processes systematically, a situated Cognitive Engineering 
(sCE) method was constructed. The sCE approach is based on the following 
development principles (Neerincx, 2012):  

1. Creating human-centred automation is a multi-disciplinary collaborative 
activity 

2. Functional modules are defined and tested incrementally in an iterative 
refinement process 

3. Design decisions are explicitly based on claims analyses, explicating the 
up-downside trade-offs 

4. Keeping and sharing the design rationale is key for progress and coherence 
in automation development 

 
At the highest level, the sCE method distinguishes the Foundation, Specification 
and Evaluation phase (Figure 8). The Foundation contains the operational 
demands, human factors knowledge and technological principles. These give input 
to the Specification of a system at both the task and communication level of the 
system. This represents the concept development phase. Concepts developed are 
input for Evaluation, where experimentation takes place. The experimental results 
of the Evaluation will contribute to the knowledge base of the Foundation. We 
expect that part of this knowledge on adaptive automation concepts will be captured 
in design patterns that will be added to the Foundation for re-use.    
 

 

Figure 8: Three main components of the  sCE method (based on Neerincx, 2012) 
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urban planning  and building design, the principle has become popular in software 
engineering (Gamma et al, 1993) and user interface design.  
 
A design patterns provides a generic structure that, depending on context details,  
leads to a different but similar solution for different use cases. Many variations can 
be found in literature, but a pattern typically contains the following fields:  
 Pattern Name: Choosing a clear and descriptive name helps people find the 

pattern and encourages clear communication between team members during 
design discussions. 

 Pattern Description: Because short names like "one-window drilldown" are 
sometimes not sufficient to describe the pattern, a few additional lines of 
explanation (or a canonical screenshot) will help explain how the pattern works. 

 Problem Statement: Written in user-centred language, this communicates 
what the user wants to achieve or what the challenge is to the end-user. 

 Use When: "Context of use" is a critical component of the design pattern. This 
element helps people understand situations when the design pattern applies 
(and when it does not.) 

 Solution: The solution should explain "how" to solve the problem, and may 
include prescriptive checklists, screenshots, or even short videos demonstrating 
the pattern in action. 

 Rationale: Providing reasons "why" the pattern works will reinforce the solution, 
though time-pressed developers may prefer to ignore this explanation. 

 Examples: Each example shows how the pattern has been successfully 
applied  

 Comments: Including a place for team members to discuss the use of the 
pattern helps maintain an active resource and keeps the team engaged. 

Design patterns provide a powerful and practical method to capture knowledge 
developed into reusable packages that can be tweaked to similar problems. Most 
work on design patterns and adaptivity is focused on adaptation of the user 
interface. For example, Peissner and Edlin-White (2013) have studied adaptation 
based on personal characteristics, such as lower visual or auditory perception 
recognition ability. Larger fonts or a different use of sounds are chosen 
automatically by the system. Hence, referring to the taxonomy of Feigh et al. 
(2012), this work focusses on the modification of interaction and the modification of 
content.  
 
Peissner and Edlin-White (2013) also defined two adaptation dialogue patterns. In 
the first, the operator is informed about the adaptation, and has the option to undo 
this process. The second pattern describes an explicit conformation pattern, which 
means the operator has to accept the adaptation explicitly before or after the 
adaptation is executed. The patterns are evaluated based on controllability and 
transparency.  It was concluded that complex systems will need both, as each has 
its own advantages and costs.  
 
Design patterns developed will be added to the Foundation as described in the 
previous section on sCE.  
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4.3 Designing for adaptivity in human-automation systems 

Johnson, Bradshaw, Feltovich, Jonker, Riemsdijk and van Sierhuis (2011) present a 
method called Coactive Design that can be used by developers to translate high-
level teamwork concepts into control algorithms, interface elements, and behaviours 
that enable robots to fulfil their envisioned role as teammates. They developed a 
human-robot system model that supports collaboration through attention to 
requirements for observability, predictability, and directability. These categories can 
be traced to the 10 “automation as a team player” principles put forth by Klein et al. 
(2004) and are defined as follows (Johnson et al., 2011): 
 Observability means making pertinent aspects of one’s status, as well as one’s 

knowledge of the team, task, and environment observable to others. Since 
interdependence is about complementary relations, observability also involves 
the ability to observe and interpret pertinent signals. Observability plays a role in 
many teamwork patterns e.g., monitoring progress and providing backup 
behaviour.  

 Predictability means one’s actions should be predictable enough that others can 
reasonably rely on them when considering their own actions. The 
complementary relationship is considering others’ actions when developing 
one’s own. Predictability is also essential to many teamwork patterns such as 
synchronizing actions and achieving efficiency in team performance.  

 Directability means one’s ability to direct the behaviour of others and 
complementarily be directed by others (others can be human or machine 
actors). Directability includes explicit commands such as task allocation and 
role assignment as well as subtler influences, such as providing guidance or 
suggestions or even providing salient information that is anticipated to alter 
behaviour, such as a warning. Teamwork patterns that involve directability 
include such things as requesting assistance and querying for input during 
decision making.  

 
Design patterns developed in this study will take these three dimensions into 
account to optimize for transparency in joint-control.  

4.4 Experimental platform 

An experimental platform will be developed that facilitates the  experimentation and 
validation of automation concepts developed in this project. This platform will be 
described in more detail in the next chapter..  
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5 Use case: Dynamic Positioning  

5.1 Introduction 

Our use case focuses on the stationary dynamic positioning (DP) operator at 
Floating Production, Storage and Offloading (FPSO)  platforms (see Figure 9). For 
more information on FPSOs, please refer to Van der Kleij et al. (2015). Stationary 
DP operations are a typical example of a control task that is highly automated but 
does require human supervision. Most of the time, the operator monitors the system 
but does not have to take action. It is quite rare that system failure or environmental 
circumstances require human intervention. However, when an intervention is 
required the operator has to be fast, as generally very little time is available before 
dangerous situations occur. Quickly understanding what is going on followed by 
appropriate action taking is a complex task that operators sometimes fail at, 
resulting in environmental spills, life-threatening situations, or large economic 
damage. 
 

 

Figure 9: FPSO on DP during offloading 

Figure 10 shows the future DP control environment we envision. An FPSO is 
managed by a DP system consisting of control software, sensors and thrusters. The 
DP software can be monitored and managed by either the DP operator or by an e-
partner. This is an addition to current practice, where this type of support is non-
existent.  
 
As described in paragraph 2.2, the aim of our support concept is to enable the 
operator to leave the DP desk during stable periods of low risk to conduct other 
activities. He may get regular status updates (notifications) by the e-partner, and 
when required can return to the desk and take over active control. In this case, the 
e-partner supports the quick development of situation and option awareness. 
Hence, the e-partner has two main tasks: 
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 Proactively support the roaming operator with updates whenever relevant, to 
keep the operator at a minimally required level of SA.  

 When required, actively support the DPO with just-in-time awareness when he 
has to take over control immediately  

 

 

Figure 10: The high level concept of a control environment for future DP operators 

The next two paragraphs will address the research questions and propose solutions 
that will be implemented and evaluated.    

5.2 Maintaining minimal SA: the use of smart notifications 

Modern SCADA (Supervisory Control And Data Acquisition) systems, such as DP 
systems, can be regarded as having two control loops. The first loop is a fully 
autonomous loop where the system responds to triggers in the environment. As an 
(oversimplified) example, if the ship on DP is drifting eastwards, the power on the 
thrusters facing eastwards is increased. The second control loop serves to deal with 
those situations in which the computer cannot establish a solution autonomously. In 
this case, the computer recognizes a problem, alarms the user, and then passes full 
control to the user. If we map these control loops to the Skill-Rule-Knowledge 
framework discussed in Section 2.3, we observe that the computer is applied to 
perform skill-based and rule-based behaviours. The skill-based behaviours are 
implemented in the first control loop, where sensor data are immediately mapped to 
action. Rule-based behaviours are implemented in the second control loop, where 
rules are used to trigger alarms that are followed up by users who follow procedures 
to deal with these alarms.  
 
Currently, the knowledge-based control loop is not supported in SCADA 
applications. The reason for this is not that Artificial Intelligence is not capable to 
reason or assist with those types of problems. Today, many examples exist of 
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operational systems that assist in knowledge based solutions using advanced 
symbolic reasoning systems, machine learning, and big data analytics techniques 
(e.g. Neerincx, 2011). (One of) the reasons that these solutions are not frequently 
applied in SCADA systems, is that the current HMI paradigm, which is based on 
alarms, does not suffice. Alarms are a very shallow way of communicating 
information to the user. This works well when the alarm is triggered by a simple and 
non-controversial fact (for example, when a threshold is exceeded), as in skill-
based and rule-based problems. In knowledge-based problems, the trigger may be 
less concrete (e.g., a weak signal), and it may be unclear what the proper response 
should be: who should resolve the problem (computer or human or both)?, is it a 
problem at all (the computer may be wrong, or the operator may be wrong)?, when 
does the problem require a response (now, or can it be postponed)? For this 
reason, we believe that an additional layer of communication should be introduced 
that supports knowledge-based problem solving. We call this type of communication 
‘smart notification’ (Figure 11).  
 

 
 

Figure 11: Introducing an additional control loop “smart notifications” in SCADA applications 

5.2.1 Difference between alarms and smart notifications 
 
To understand to concept of smart notifications, it is useful to distinguish them from 
alarms. The definition of an alarm is as follows (according to ISA 2009): 
An audible and/or visible means of indicating to the operator an equipment 
malfunction, process deviation, or abnormal condition requiring a response. 
 
This definition defines four important characteristics of alarms (DeltaV 2013): 
1 There must be an indication of the alarm (audible or visible). An alarm limit can 

be configured to generate control actions or log data without it being an alarm.  
2 The indication must be targeted to the operator to be an alarm, not to provide 

information to an engineer, maintenance technician, or manager. 
3 The alarm must indicate a problem, not a normal process condition.  
4 There must be a defined operator response to correct the condition. If there is 

no operator response necessary, then there should not be an alarm.  
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The main reason why alarms are not suitable to use as a basis for smart 
notifications, is that knowledge-based decisions (by definition) have no predefined 
operator response to correct the condition. 
 
The ISA standard also defines another concept, called an alert, which is similar to 
an alarm, but which has a somewhat weaker definition: 
An audible and/or visible means of indicating to the operator an equipment or 
process condition that requires awareness, that is indicated separately from alarm 
indications, and which does not meet the criteria for an alarm. 
 
However, the definition of an alert is still not sufficient to use as a basis for applying 
smart notifications, because the responsibility for dealing with the alarm or alert is 
still transferred to the operator. In the human-machine team paradigm, many more 
options exist, such as shared responsibility or collective obligations (Van Diggelen, 
2010). To capture these aspects, smart notifications can be applied, which do not 
simply push problems to the operator, but builds up mutual collaborations and are 
dedicated to solve problems that arise. The differences between alarms, alerts, and 
smart notifications are outlined in Table 1. 

Table 1: Alarms, alerts and smart notifications 

 Alarms Alerts Smart Notification 

Responsibility 
for handling the 
alarm or 
notification 

Operator - Operator and 
Intelligent Operator 
Support System 

Trigger Simple (e.g. 
threshold, or 
rule-based) 

Simple Complex (e.g., 
resulting from ML or 
data fusion of 
heterogeneous 
sources)  

Communication 
type 

One shot One shot Dialogue 

Modality Short text Short text Text, pictures, 
graphs, movies, 
sounds.  

Content Facts Facts Facts, judgements, 
predictions (which 
may be unreliable), 
contextual 
information. 

Intended effect Action by 
operator 

Awareness by 
operator  

1)  Action by 
operator-SOS team. 
2) Negotiation to 
reach consensus on 
how to proceed 
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Whereas the concept of Smart notifications allows for establishing a more advanced 
human computer interaction within SCADA systems, it still requires very good 
design practices to actually realize them. These design practices will be laid down 
in design patterns.  

5.2.2 Proposed Design patterns 
 
To design a good smart notification, many decisions must be made on aspects such 
as: 
 What is the modality? If pictures are used, what do these look like? If 

sonification is used, what type of signal should be chosen? 
 How is the dialogue structured? What are the response options for the 

operator? What are the answers of the computer?  
 Who takes the initiative? Does the system proactively start communications with 

the operator, or is it only reactive? If so, when does it do so? 
 How does operator/system state affect the smart notifications? If the operator is 

busy, does the smart notification respond to that and become less occupying?  
 How do the different smart notifications behave with respect to each other? Are 

the most important ones shown more prominently? What happens to smart 
notifications that are no longer relevant? 

 
Much work remains to be done to design these in a proper way, and to evaluate 
them. The current project has just scratched the surface. Below, two proposals for 
design patterns are shown that describe two types of smart notifications. Note that 
this format is more light-weight than the format we originally proposed in Section 
4.2.The remaining pattern fields can be described after evaluation.  
 
The first design pattern (Table 2) aims at overcoming a problem present in most 
modern SCADA systems (Supervisory Control And Data Acquisition), where either 
the computer has full autonomy, or where the full control is passed to the human via 
an alarm. Using this design pattern, a novel way of interaction is introduced which is 
a combination of alarming and supervisory controlled automation.  

Table 2 Design pattern for Request approval for corrective action 

Pattern Name Request approval for corrective action 
Pattern Description The computer notices a problem (could be an alarm) 

and suggests a solution that it will execute if the human 
approves. 

Problem Statement - Operator needs sufficient understanding of the 
problem to be able to judge the solution.  

- Explaining the solution should not take too much 
time 

Use When An automated solution exists, but is too unreliable to be 
implemented without human supervision. 

Solution description Popup window with short explanation of the problem 
and proposed system solution. The user can ask the 
system for more explanation, and decide to approve or 
disapprove the proposed solution. 

 
The second design pattern aims at providing a solution for the problem that human 
control has some context requirements which must be fulfilled before control can be 
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passed to the human (Table 3). One of these context requirements is spatial 
location. For example, when the system operates in fully autonomous mode, and a 
problem occurs,  the human operator should be able to make it back to the 
workstation within a certain time limit.  

Table 3: Design pattern for Demand operator to stay in vicinity 

Pattern Name Demand operator to stay in vicinity of workstation. 
Pattern Description The computer that autonomously executes a task 

predicts that human intervention might be necessary 
soon, which cannot be done from a mobile device. It 
asks the operator to stay in the vicinity of the 
workstation. 

Problem Statement - Operator needs understanding why this is 
necessary.  

- Computer needs feedback if the operator approved.  
- Computer needs to know operator location 

Use When Computer expects to switch from autonomous mode to 
a semi-autonomous mode which requires a stationary 
operator. 

Solution description Popup window with short explanation of the type of 
expected problems and time frame. The user can ask 
the system for more explanation, and decide to agree or 
disagree to stay in the vicinity. 

5.3 Just in time awareness 

Whereas initial solutions have been developed for smart notification, work has yet 
to start on just-in-time-awareness concepts. Based on the lines of research 
introduced in this document, various concepts will be developed, implemented in 
our demonstrating environment and evaluated in line with the sCE method.   

5.4 Demonstrator 

We have developed a simple demonstrator to demonstrate the idea of smart 
notifications. The architecture of this demonstrator is shown below: 
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Figure 12: System architecture of the Demonstrator 

The backbone (i.e., the components of the system that are not visible for the human 
operator) of this architecture are made up of: 
 The DP simulator. This component is developed by RH Marine (formerly known 

as IMTECH), and simulates the ship. In operational conditions, this component 
would be absent, and be replaced by a real vessel. 

 The DP control system is the system that reads sensor data, computes what the 
proper response should be, and subsequently controls the actuators. This 
component is also developed by RH Marine. It comes with a front end interface 
called Conning. 

 OASYS is a layer on top of the control system that generates additional alarms, 
and allows for easy prototyping of alarm-based systems. In this demonstrator, 
only the alarm-generation functionality was used, the user interface functionality 
of this component was not used. This component is developed by the company 
UReason. 

 
The front end (i.e. the components of the system that are visible to the user) are the 
Conning user interface and the Smart Notifications interface. Both of these 
interfaces will be described in more detail below.  

5.4.1.1 Conning interface 
The conning interface is developed by RH marine, and is the interface as it is 
currently used by DP operators to monitor sensor values, to direct actuators, and to 
set the inputs for the control system (such as positioning location). Figure 13 shows 
the main view of this interface. 
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Figure 13: Conning DP interface 

Figure 14 shows the alarm screen of the Conning DP interface, showing the alarms 
as a long list which in case of incidents or failure easily overwhelms operators 
without providing structured information that helps to develop a deeper 
understanding of what is going on. 
 

 

Figure 14: The alarm screen of the Conning interface. 

5.4.1.2 The smart notification screen 
The smart notifications screen is shown in Figure 15. The coloured tiles/windows 
contain active smart notifications. The grey windows contain inactive smart 
notifications. We will briefly describe the active notifications below 
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Figure 15: Smart Notifications screen 

 
The green notification at the upper left corner contains a warning that the user 
should stay in the proximity. After the user had asked “why?”, the system has given 
more information. If the user would choose to resolve the issue, the window would 
turn grey. 
 
The green notification at the lower left corner contains a notification that stems from 
a machine learning algorithm. This means that the system has derived that the 
probability of a drift is high, using, for example, an artificial neural network. This 
means that the system cannot explain why this is the case (it can just give a 
probability of its error rate). Depending on the trust that the operator has in this 
system, he/she can choose to ignore this advice or to follow it. This is also one of 
the reasons why such a separate smart notification screen is important: to allow the 
user to distinguish between factual information on the conning information, and 
judgemental information on the smart notification screen (i.e., information which 
may be wrong). 
 
The yellow window contains a smart notification that uses a graph to communicate 
information. In this case, the graph contains the wind speed. Based on the trends 
observed by the user, the user can decide if he/she finds the situation alarming or 
not.  
 
To be able to evaluate the ideas described above, we will formulate them as design 
patterns, and evaluate them in an experiment with test subjects.  
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6 Conclusions 

Next generation human-automation collaboration will incorporate flexible and 
adaptive collaboration styles, especially when highly autonomous systems are 
involved. Smart notification concepts combined with just-in-time awareness support 
can provide new types of work agreements that enable operators to conduct other 
tasks during quiet or safe periods, and engage the operator when things get 
difficult. Intelligent e-partners with a thought understanding of the processes under 
control, the automated controlling system, and the operator, play a central role in 
these new concepts.  
 
A CD&E research framework consisting of a design methodology (sCE), novel 
concepts to support operators of highly autonomous systems with multi-tasking 
(smart notifications and just-in-time awareness), and a platform for experimentation 
and demonstration (DP simulator with Conning interface and OASIS software) was 
presented.  First ideas on smart notifications have been implemented and 
demonstrated, giving us hands-on experience with the different parts of the platform 
and its viability for experimentation and demonstration purposes.  
 
In 2016, innovative smart notifications and solutions to quickly bring operators back 
in the loop will be developed and evaluated on the experimentation platform. In an 
iterative manner, more sophistication will be added and validated.    
 
We expect the concepts developed and validated on the DP experimentation 
platform to be easily transferable to other domains, as the problems tackled are 
generic by nature. Autonomous sailing is an obvious candidate in the maritime 
domain, but highly automated processes in other domains (navy, mobility, utility 
management) are likely to provide ample opportunities for application of our 
concepts. 
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