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Abstract
In clinical practice, approximately one-third of patients with rheumatoid arthritis (RA)

respond insufficiently to TNF-α inhibitors (TNFis). The aim of the study was to explore the

use of a metabolomics to identify predictors for the outcome of TNFi therapy, and study the

metabolomic fingerprint in active RA irrespective of patients’ response. In the metabolomic

profiling, lipids, oxylipins, and amines were measured in serum samples of RA patients from

the observational BiOCURA cohort, before start of biological treatment. Multivariable logis-

tic regression models were established to identify predictors for good- and non-response in

patients receiving TNFi (n = 124). The added value of metabolites over prediction using clin-

ical parameters only was determined by comparing the area under receiver operating char-

acteristic curve (AUC-ROC), sensitivity, specificity, positive- and negative predictive value

and by the net reclassification index (NRI). The models were furthervalidated by 10-fold

cross validation and tested on the complete TNFi treatment cohort including moderate

responders. Additionally, metabolites were identified that cross-sectionally associated with

the RA disease activity score based on a 28-joint count (DAS28), erythrocyte sedimentation

rate (ESR) or C-reactive protein (CRP). Out of 139 metabolites, the best-performing predic-

tors were sn1-LPC(18:3-ω3/ω6), sn1-LPC(15:0), ethanolamine, and lysine. The model that

combined the selected metabolites with clinical parameters showed a significant larger

AUC-ROC than that of the model containing only clinical parameters (p = 0.01). The com-

bined model was able to discriminate good- and non-responders with good accuracy and to

reclassify non-responders with an improvement of 30% (total NRI = 0.23) and showed a

prediction error of 0.27. For the complete TNFi cohort, the NRI was 0.22. In addition, 88
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metabolites were associated with DAS28, ESR or CRP (p<0.05). Our study established an

accurate prediction model for response to TNFi therapy, containing metabolites and clinical

parameters. Associations between metabolites and disease activity may help elucidate

additional pathologic mechanisms behind RA.

Introduction
Rheumatoid arthritis (RA) is a chronic, disabling disease that mainly affects the synovial joints.
The disease is a multifactorial autoimmune disorder with a prevalence of 0.5–1% in industrial-
ized countries [1–3]. Disease-modifyinganti-rheumatic drugs (DMARDs) are the cornerstone
of anti-inflammatory therapy in RA and can be divided into two categories: conventional syn-
thetic DMARDs (csDMARDs) and biological DMARDs (bDMARDs) [4]. The csDMARDs are
relatively cheap chemical agents consisting of small active-substancemolecules and are used
for decades in the treatment of RA, whereas bDMARDs, predominantly antibodies such as
TNF-α inhibitors (TNFis), are expensive agents that target specific inflammatory pathways
and have revolutionized the treatment options for RA patients since the first trial in 1993 [5].
Despite the success of TNFis, a substantial proportion of patients (approximately 30–40%)
responds insufficiently to these biological agents [6,7]. At the initiation of TNFi therapy it is as
yet impossible to distinguish future responders from non-responders, therefore, the only used
treatment approach is by trial and error. This approach is inefficient because the clinical
response can only be assessed after at least three months of treatment. Within this timeframe,
non-responders might develop joint damage or may experience toxic side effects. In addition,
an inefficient treatment increases healthcare costs due to intensive monitoring, more complica-
tions, higher morbidity, and medication costs. The challenge is therefore to identify responders
and non-responders before initiation of TNFi treatment so that the decision can be guided and
the most optimal agent can be selected for each patient. Many approaches have been explored,
mostly by evaluation of clinical parameters, proteins or mRNA biomarker profiles, but none
were thus far successful in such a way that they can be implemented in clinical practice [8].

Metabolomics is a rapidly developing approach in biomarker research, involving the measure-
ment of a large number of small-moleculemetabolites in biological fluids, tissues and cells. One
major advantage is that it offers a characteristic profile of each patient fromminimal amounts of
sample. With high-throughput techniques, such as nuclear magnetic resonance (NMR) spectros-
copy and liquid chromatography coupled to mass spectrometry (LC-MS), metabolite profiles in
disease or therapeutic response to treatment can bemeasured [9]. In this sense, metabolomics
provides a novel perspective on the search of new disease biomarkers and drug targets.

Metabolomic approaches in RA have already contributed to the understanding of RA and
its subtypes, as well as the effect of drug treatment [10]. However, there is a limited number of
studies employing metabolomic profiling to predict patients’ response to biological therapies.
To our knowledge, only two previous studies have usedmetabolomics to predict the clinical
response to TNFi, both by usage of the 1H-NMR-based technique. Kapoor et al. [11] screened
the urine metabolome of 16 RA patients and found that histamine, glutamine, xanthurenic
acid, and ethanolamine predicted TNFi response. In addition, there was a significant correla-
tion between baseline urinemetabolic profile and the magnitude of the one-year change in the
disease activity. Priori et al. [12] showed that the serummetabolic profiling of 27 RA patients
at baseline could discriminate the response to etanercept. Additionally, higher levels of isoleu-
cine, leucine, valine, alanine, glutamine, tyrosine, and glucose and lower levels of 3-hydroxybu-
tyrate were observed in good responders after 6 months of therapy. The predictors found in
these 1H-NMR based studies have thus far not been validated in other cohorts.
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In the present study, the baseline serummetabolome of RA patients commencing biological
therapy was analyzed using LC-MS, a different technique as previous studies used, targeting a
large scope of metabolites consisting of lipids, oxylipins, and amines. The objective was to
assess the potential value of serummetabolite profiles in the prediction of response to TNFi
treatment, using LC-MS. Additionally, we investigated the association betweenmetabolites
with current disease activity, in order to gain more insight into the pathologic metabolic mech-
anisms in RA.

Materials andMethods

Patient cohort
Patients were selected from the observational BiOCURA study (Biologicals and Outcome,
Compared and predicted in Utrecht region, in Rheumatoid Arthritis) in which patients were
enrolled between 2009 and 2015. In BiOCURA,RA patients eligible for bDMARD treatment
in clinical practice, were followed up after start of treatment, in one academic hospital and
seven regional hospitals in the Netherlands (see Acknowledgments). The treatment included
any of five TNFis, adalimumab, etanercept, infliximab, golimumab, and certolizumab pegol, or
non-TNFi agents, including tocilizumab, abatacept, and rituximab. All csDMARDs were
allowed to be used concomitantly with the bDMARD, and includedmethotrexate (MTX),
hydroxychloroquine (HCQ), leflunomide (LEF), and glucocorticoids (GCs). Apart from
csDMARDs, patients continued other medication, such as statins, bisphosphonates, anti-
hypertension and nonsteroidal anti-inflammatory drugs (NSAIDs), all according to regular
clinical practice.

Regular visits with the treating physician and a trained research nurse were scheduled at
baseline, three, six, and twelve months. Clinical parameters and blood samples were collected
by the nurse from each patient before the first dose of the biological agent. Of note, blood sam-
ples were collected from fasting and non-fasting patients, as the visiting times of the patients
could not be standardized in the morning. The bloodwas collected in a Vacutainer1 SST II
tube and processed immediately after clotting. Samples were centrifuged for 10 min at 1500 g
at room temperature and serumwas aliquoted and stored at -80°C until use for metabolomic
analyses. Re-inclusion after switching to a different biological agent was possible. The study
was approved by the ethics committee of the UMC Utrecht and the institutional review boards
of the participating centers (see Acknowledgments).Written informed consent was obtained
from each patient.

Inclusion in the present study was restricted to subjects of BiOCURA fulfilling the following
criteria: at start of treatment patients should not be in clinical remission (disease activity score
based on a 28-joint count, DAS28 > 2.6), after three months of therapy the DAS28 assessment
needed to be available, and no (temporary) discontinuation of treatment should have occurred
within the first three months of bDMARD treatment.

Clinical measurements
Demographic, clinical, and laboratory parameters of patients at baseline were obtained, includ-
ing age, gender, menopausal status, bodymass index (BMI), disease duration, any previously
used bDMARD (biological naivety), currently used csDMARDs and non-anti-rheumatic
drugs, 28 tender joint count (TJC), 28 swollen joint count (SJC), a 100mm visual analogue
scale on general health (VAS-GH), erythrocyte sedimentation rate (ESR), C-reactive protein
(CRP), rheumatoid factor (RF), and anti-citrullinated protein antibody (ACPA). Disease activ-
ity was assessed at baseline and at follow-up visits, using DAS28 [13]. In clinical practice the
response to biological therapy is usually measured 3–6 months after initiation [14]. However,
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in BiOCURAa substantial number of patients withdrew treatment before the 6-month time-
point due to insufficient response or side effects. Using the 6-month response would thus result
in (non-random) missing responses. Therefore, in this study, the patients’ response was deter-
mined after 3-month of treatment, based on the EULAR response criteria [15]. A EULAR good
response is defined as an improvement in DAS28 of> 1.2 and a present DAS28 � 3.2, whereas
a EULAR non-response is assigned to patients with an improvement of 0.6–1.2 with present
DAS28 > 5.1 or patients with an improvement �0.6. In between, an improvement > 1.2 with
present DAS28 > 3.2 or an improvement of 0.6–1.2 with present DAS28 < 5.1 is specified as a
EULARmoderate response.

Metabolomic profiling
Serum samples from selected subjects were measured on three targeted LC-MS platforms,
which used standard operating procedures from previously published methods [16–18], cover-
ing a broad spectrumof pre-definedmetabolites. The lipid platform targets low abundance
lipid species, including free fatty acids (FAs) and phospholipid derivates, such as lysophospha-
tidylcholines (LPCs) and lysophosphatidylethanolamines (LPEs); the oxylipins platform covers
oxygenated metabolites derived from polyunsaturated fatty acids through enzymatic and non-
enzymatic oxidation processes; the amine platform targets amino acids and biogenic amines.
All analyses were performed by the BiomedicalMetabolomics Facility Leiden (BMFL) of the
LeidenUniversity. Extra serum of the subjects was pooled and used to create internal quality
control (QC) samples.
Lipids analysis. For the detection of lipids, each 20 μL serum aliquot was spiked with

internal standard (ISTD) mix and lipids were extracted by methanol. This lipid profiling was
conducted using ultra performance liquid chromatography coupled to electrospray ionization-
quadrupole time-of-flight (Agilent 6530 San Jose, CA, USA) with an ACQUITYUPLC™ HSS
T3 column (1.8 μm, 2.1×100mm) [16].
Oxylipins analysis. Each 180 μL serum aliquot was spiked with antioxidants and ISTD

mix, followed by solid phase extraction. The samples were analyzed by high-performance liq-
uid chromatography (Agilent 1260, San Jose, CA, USA) coupled to a triple quadrupolemass
spectrometer (Agilent 6460, San Jose, CA, USA), using an Ascentis1 Express column (2.7 μm,
2.1x150 mm) [17].
Amines analysis. Each 5 μL serum aliquot was spiked with an ISTDmix and proteins

were precipitated by methanol, after which the supernatant was dried and derivatized by AQC
reagent. The samples were analyzed by an ACQUITY ultra-performance liquid chromatogra-
phy system coupled to Xevo Tandem quadrupolemass spectrometer (Waters, Milford, MA,
USA) with an AccQ-TagTM Ultra column (1.7 μm, 2.1x100 mm) [18].
Data preprocessing and correction. For the lipid and oxylipin platforms, peak determina-

tion and peak area integration were performed by Mass Hunter Quantitative Analysis (version
B.05.00, Agilent technologies); for the amine platform, TargetLynx software (version 4.1,
Waters) was employed. For each metabolite, the concentration was determined by the ratio
between the peak area of targeted analyte and peak area of the appropriate ISTD. These
response ratios (Area analyte/Area ISTD) were used as raw metabolomic data in the subsequent
analysis. For batches measured in each platform, an in-house developedmethod was applied to
compensate and correct for instrumental drift during the measurements. The within-batch and
between-batch effects of metabolomic data were corrected per metabolite using the responses
of QC samples [19]. The QC samples were measured repeatedly every 10 patient samples
across the different batches per platform. The details of the data correctionmethod are
describedby van der Kloet et al [20]. The relative standard deviation (RSD) of metabolites in
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the QC samples was used to assess the quality of targeted metabolites in each analytical
platform.

Metabolite measurements, which were lower than the limitation of detection (LOD) of the
platform, were imputed by half of the observedminimum value for the correspondingmetabo-
lite. Subsequently, log-transformation and auto-scaling of the metabolites were applied to
reach or approximate a normal distribution, with a mean of 0 and SD of 1. The resulting data
were used as input for all subsequent statistical analyses.

Statistical analyses
Metabolites were used to develop a model for the prediction of response to TNFi at 3 months,
and to assess their association with disease activity in general of the total cohort. An overview
of the analyses is provided in Fig 1 and will be discussed in more detail below. All analyses were
performed in IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp., Armonk, N.Y.,
USA), MedCalc for Windows, version 16.2.1 (MedCalc Software, Ostend, Belgium),andR
(Version 3.2.3).
Development of models for predicting TNFi response. In order to increase the possibil-

ity of picking up predictors related to response, we focused on subjects with EULAR good- ver-
sus non-response to TNFi treatment only, since EULARmoderate responders are an in-

Fig 1. Flowchart of statisticalanalyses. (A) Prediction of response to TNFi: All steps to build a prediction model on
TNFi response were performed on the TNFi subset with EULAR good-response or non-response (n = 124). (B)
Sensitivity analysis on the complete cohort of TNFi initiating patients. (C) Metabolites associated with disease activity.
Analyses to investigate metabolites association with CRP, ESR or DAS28 were performed on the total cohort of
patients using bDMARDs (n = 231; including TNFi and non-TNFi treated patients). Blue boxes/circles indicate
(selection of) respectively metabolites or clinical parameters, whereas orange boxes indicate the performed analyses.
bDMARDs: biological disease-modifying anti-rheumatic drugs; CRP: C-reactive protein; DAS28: disease activity score
based on a 28-joint count; ESR: erythrocyte sedimentation rate; GEE: generalized estimating equation, LC-MS: liquid
chromatography coupled to mass spectrometry; ROC: receiver operating characteristic; TNFi: TNF-α inhibitor.

doi:10.1371/journal.pone.0163087.g001
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between category in which some patients continue treatment and others discontinue due to
inefficacy (BiOCURAdata). With TNFi good responders and non-responders as an outcome,
we built two multivariable logistic regression models: a clinical model including clinical param-
eters only and one combined model with the same clinical parameters and the metabolites.We
selected the following baseline clinical parameters: age, gender, menopausal status, BMI, smok-
ing status, alcohol consumption, DAS28, (log-transformed)CRP, concomitant csDMARDs
(MTX,HCQ, LEF, GCs) and non-DMARDs (statins, antihypertensive drugs, bisphosphonates
and NSAIDs), regardless of the predictive ability (i.e. p-value) of each single parameter.

To decrease the number of metabolites in the combined model, a (non-strict) pre-selection
on metabolites was performed. The predictive value of each individual metabolite to TNFi
treatment outcome (good- or non-response) was investigated while combined with the clinical
parameters, and all metabolites with p< 0.10 were pre-selected. Subsequently, the pre-selected
metabolites together with the clinical parameters were added to the logistic regression model
on response with backward elimination of the metabolites, to build the final combinedmodel
(thus keeping all clinical parameters in).

The receiver operating characteristic (ROC) curves of the clinical and combined model was
plotted, with the area under the curve (AUC) as an indicator of its predictive ability. Sensitivi-
ties, specificities,misclassification rates (MR), and positive- and negative predictive values
(PPV/NPV) were calculated based on the optimal cutoff (Youden’s index [21]). This optimal
cut-off was applied to both models, so that per patient per model, either a non-response or
good response was predicted, which could be compared to the observed response. Based on
these predicted and observed responses, the net reclassification index (NRI) was calculated to
determine if the addition of metabolites reclassifies more patients into the correct category. For
example, when a future non-responder is classified at baseline to have a high probability of
good response by the clinical model, but is classified into the low probability category in the
combinedmodel, the reclassification is “more correct” and the NRI for non-responders will
increase, as well as the total NRI (= NRI responders + NRI non-responders). The robustness of
the final models was judged by 10-fold cross validation of the model, using the cv.glm function
of the R-package boot.

As an additional sensitivity analysis, the developedmodels were also applied to the complete
cohort of TNFi initiating patients, thus without excluding any responders. In this step, the
regression coefficients of the developed clinical and combined model were frozen and used to
create a prediction rule. Subsequently, this clinical and combined prediction rule were com-
pared for their abilities to distinguish EULAR non-responders from EULARmoderate- and
good responders, using the same outcome measures for predictive ability as described before.
Metabolites and disease activity. In order to investigate associations betweenmetabolites

and disease activity (CRP, ESR and DAS28), we analyzed the complete cohort of 231 patients
with TNFi and non-TNFi therapy. However, in BiOCURA some RA patients were re-included
after switching to a different biological agent (usually non-TNFi after a TNFi) and, therefore,
had multiple baseline visits and follow-up periods. In order to account for the effects of subjects
with multiple inclusions, generalized estimating equation (GEE) was used for these analyses, as
GEE is a regression-basedmethod that allows analyses of repeated measurements within sub-
jects [22]. Because we were interested in the association of each individual metabolite with
CRP, ESR and DAS28, and clinical characteristics of patients might influence the metabolite
levels (confounding), we corrected for baseline clinical parameters except CRP, ESR and
DAS28, to gain more reproducible outcomes. As such, with the (log-transformed) CRP, (log-
transformed) ESR or DAS28 as the dependent variable, each individual metabolite was added
into GEE as an independent variable while corrected for the possible influential factors. Cytos-
cape was used to visualize the significant associations [23].
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Results
In total, 231 RA patients from BiOCURAcohort fulfilled the selection criteria for the present
study. Baseline characteristics of all patients are shown in S1 Table. Of all patients, 173 (74.9%)
received TNFi treatment and 58 patients (25.1%) received a non-TNFi treatment. Concomitant
csDMARDs and non-DMARDs were very diverse, and frequently includedMTX (166 patients;
72%), GCs (93 patients; 40%) and bisphosphonates (101 patients; 44%) (S2 Table). Only 14
patients (6.1%) used no concomitant csDMARDs. The baseline characteristics of patients
receiving TNFi and comparisons between non- and good responders are shown in Table 1.
Among these patients, 64were EULAR non-responders and 60 were good-responders. The
number of RF positive patients and the SJC was significantly higher in the good responders,
besides there were no significant differences in other baseline clinical variables between good
responders and non-responders. Missing data was present for< 5% for each of the variables.

The metabolites were measured using three validated platforms: lipids, oxylipins, and
amines, thereby giving a broad view on the serummetabolites. 25 samples (of which 10 good-,
5 moderate-, and 10 non-responders) could not be analyzed in oxylipins platform due to inade-
quate serum volume. After analysis and data pre-processing, one sample in lipid platform and
one sample in amine platform were excluded due to abnormal ISTD areas. For each platform,
RSDs of QC samples were applied as quality indicators. In total, 139 metabolites were mea-
sured: 40 amines with QCRSD<0.15, 68 lipids (lysophospholipids and fatty acids) with QC

Table 1. Baseline characteristics of all selectedTNFi initiatingsubjects (n = 173), and split for all EULARnon-responders (n = 64) and good
responders (n = 60).

Subjectswith TNFi (n = 173) Non-responders (n = 64) Good responders (n = 60). p-value

Female, n (%) 130 (75.1) 50 (78.1) 43 (71.1) 0.41

Menopausal status of females, n (%) 0.84

Pre-menopause 40 (30.8) 16 (32.0) 16 (37.2)

Post-menopause 82 (63.1) 28 (56.0) 26 (60.5)

Unknown 8 (6.1) 6 (12.0) 1 (2.3)

Age, years, mean (SD) 54.6 (12.4) 53.7 (13.2) 53.9 (11.7) 0.95

Disease duration, years, median (IQR) 6.0 (2.0–12.0) 5.0 (2.0–11.5) 5.5 (2.0–11.0) 0.95

Smoking, currently, n (%) 42 (24.3) 17 (26.6) 15 (25.0) 0.84

Alcohol,>7 units/week, n (%) 31 (17.9) 8 (12.5) 12 (20.0) 0.24

BMI, kg/m2, mean (SD) 26.8 (5.0) 27.3 (5.2) 26.5 (5.2) 0.42

Positive RF, n(%) a 114 (65.9) 39 (60.9) 47 (78.3) 0.04

Positive ACPA, n(%) a 123 (71.1) 41 (64.1) 46 (76.7) 0.13

CRP, mg/dL,median (IQR) 6.0 (3.0–13.0) 5.0 (2.8–10.0) 8.0 (3.8–15.0) 0.12

BaselineDAS28, mean (SD) 4.5 (1.1) 4.3 (1.2) 4.6 (0.9) 0.14

TJC, median (IQR) 7.0 (2.0–13.0) 6.5 (1.3–13.8) 6.5 (3.0–11.0) 0.73

SJC, median (IQR) 2.0 (0.0–4.0) 1.0 (0.0–3.0) 2.0 (1.0–4.0) 0.02

ESR, mm/h, median (IQR) 20.5 (11.0–34.8) 18.5 (5.3–34.0) 18.0 (10.3–33.0) 0.65

VAS-GH, mean (SD) 56.5 (23.1) 56.3 (23.4) 56.0 (23.2) 0.94

a The positivity for RF and ACPA was determined by the hospitals using different measurement methods and cut-offs, according to their own laboratory

standards. Therefore we were not able to show an exact titer.

Descriptive statistics are expressed as number (%) for dichotomized variables, and mean ± standard deviation (SD) and median and interquartilerange

(IQR) for respectively normally and non-normally distributed variables. The p-value is calculated for the difference between responders and non-responders.

ACPA, anti-citrullinated protein antibody; BMI, body mass index; DAS28, disease activity score based on 28 joint count; ESR, erythrocytesedimentation

rate; IQR: interquartile range; RF: rheumatoid factor; SJC, 28 swollen joint count; TJC, 28 tender joint count; VAS-GH, 100mm visual analogue scale on

general health.

doi:10.1371/journal.pone.0163087.t001
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RSD< 0.30, and 31 oxylipins both with QCRSD< 0.30 (S3 Table). The details of targeted
compounds are shown in S4–S6 Tables.

Metabolites and TNFi response
In the TNFi cohort, the clinical and combinedmodel were built for the prediction of response
containing all selected 16 clinical baseline parameters (as listed in the Materials and Methods
section “Development of models for predicting TNFi response”). We did not exclude any clini-
cal parameters, for three reasons. First, because the comparison of the clinical and combined
model containing the same (complete) set of clinical parameters, allows us to compare the sole
added value of metabolites over clinical parameters alone. Second, when biomarkers are in fact
a (partial) reflection of any clinical parameter, we avoid the incorporation of any metabolite
that provides knowledge which could have been obtained with a simple clinical parameter.
Third, because clinical parameters might serve as partially influential factors (i.e. confounders)
on metabolism as well, incorporation of all clinical parameter in the model would result in
more reliable estimates of the true predictive ability of the metabolites and thus increases the
reproducibility and externalization of results.

The clinical model containing all selected 16 clinical baseline parameters (Cox & Snell R-
square = 0.147, see S1 Fig) showed reasonable predictive abilities to differentiate good respond-
ers and non-responders, with an AUC-ROC of 0.720 (0.622–0.818) (Fig 2) and a sensitivity of
78.2%, specificity of 60.0%, PPV of 68.3%, NPV of 71.4% and MR of 30.5% (S7 Table).

Next, each metabolite was tested for their association with good and non-response to TNFi.
sn1-LPC (18:3-ω3/ω6), sn1-LPC (16:1), sn1-LPC (15:0), sn2-LPC (18:1), LPE (20:3-ω3/ω6),
LPE (18:1), sn2-LPC (18:0), LPE (18:0), sn1-LPC (18:0), 9,10-DiHOME, 9-HODE, 11-HDoHE,
8-HETE, 9,10-EpOME, ethanolamine, and lysine were preselected based on p< 0.10. Multivar-
iable logistic regression with backward selectionwas carried out on preselectedmetabolites to
establish the final combined model. Four metabolites significantly added to the prediction of
clinical response to TNFi therapy (Table 2).

At baseline, good responders showed higher levels of sn1-LPC (15:0) and lysine, as well as
lower levels of sn1-LPC (18:3-ω3/ω6) and ethanolamine. The combinedmodel (Cox & Snell R-
square = 0.433, see S2 Fig) showed a good overall discriminative ability with an AUC-ROC of
0.841 (0.765–0.917) (Fig 2), and its performance is significantly better than the clinical model
(difference between areas = 0.121,p = 0.01). After determining the optimal cut-off, sensitivity
was 70.9%, specificity 90.0%, PPV 88.6%, NPV 73.8% and MR 20.0% (S7 Table). The high
specificity and PPV suggest that the patients classified as good responders are frequently cor-
rectly classified (low false positive rate).

Additionally an NRI was calculated in order to investigate whether the higher accuracy also
results in a better reclassification of individual patients. The reclassification of non-responders
by the combined model was 30% better and of responders 7% worse, resulting in a total NRI of
0.23 (Table 3). The clinical and combined models showed prediction errors of 0.303 and 0.269
respectively, which can be consideredmoderately robust. In the sensitivity analysis on all
responders to TNFi, the clinical model performedweakly with an AUC-ROC of 0.641 (0.548–
0.734), as compared to the combined model with 0.760 (0.682–0.837) (S3 Fig). The reclassifica-
tion of non-responders by the combined model was 30% better and for responders 8% worse
(total NRI = 0.22, S8 Table).

Metabolites and disease activity
Metabolites were investigated for their association with disease activity. In total, 88 metabolites
out of 139 were significantly associated with baseline DAS28, ESR or CRP (p< 0.05) (S9
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Table). In Fig 3, the associations betweenmetabolites and the three clinical parameters are
visualized.With respect to the amines, glutathione was positively associated with all the three
parameters; sarcosine was negatively associated with both DAS28 and ESR, whereas serotonin

Fig 2. Receiver operatingcharacteristic curves of clinical and combinedmodel betweengood- and non-responder to TNFi.The
clinical model containing the 16 selected baseline clinical parameters; the combined model included four metabolites with p < 0.05 in
multivariable logistic regression with backward selection in addition to the clinical model.

doi:10.1371/journal.pone.0163087.g002

Table 2. Remainingmetabolitesand their estimated contribution in the predictionof response to TNFi in the final predictionmodel.

Coefficient Standard error p-value aOR (95%-CI)

sn1-LPC (18:3-ω3/ω6) -1.54 0.53 0.004 0.21 (0.08–0.61)

sn1-LPC (15:0) 1.67 0.56 0.003 5.32 (1.76–16.07)

Ethanolamine -1.61 0.53 0.002 0.20 (0.07–0.57)

Lysine 1.02 0.40 0.010 2.78 (1.27–6.09)

aOR: adjusted odds ratio; CI: confidence interval.

doi:10.1371/journal.pone.0163087.t002
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was positively associated with CRP and ESR. Besides from the overlapping amines, five amines
were negatively associated with baseline DAS28 (histidine, threonine, glycylglycine, asparagine,
and α-aminobutyric acid), while ten amines showed a positive association with CRP (valine,
leucine, tryptophan, γ-glutamylalanine, isoleucine, ornithine, arginine, 4-hydroxyproline,
kynurenine, and proline) and two amines a positive association with ESR (taurine, cysteine).
Fatty acids with aliphatic tails of 14 to 24 carbons were cross-sectionally found positively asso-
ciated with CRP, ESR and/or DAS28, while lysophosphatidylethanolamines (LPEs) and lyso-
phosphatidylcholines (LPCs) overall showed negative correlations with these parameters.
Oxylipins were divided into different classes by the pathways—the auto-oxidation pathway
with reactive oxygen species (ROS) and the enzymatic pathways with cyclooxygenase (COX),
lipoxygenase (LOX) and cytochrome P450 (CYP450). Specifically oxylipins synthesized by
ROS (10-HDoHE, 11-HDoHE, 11-HETE, 14-HDoHE, 8-HETE, 13-HDoHE, 9-HODE), COX
(PGE2, TXB1, TXB2, TXB3) and LOX (12-HETE, 15S-HETrE, 5-HETE, 9-HOTrE) were
cross-sectionally positively associated with CRP, ESR or DAS28, whereas only two downstream
products in COX and LOX pathways, 13,14-dihydro-PGF2a and 9,12,13-TriHOME respec-
tively, were found to be negatively associated with the clinical parameters.CYP450 synthesized
oxylipins (11,12-DiHETrE, 14,15-DiHETrE, 19,20-DiHDPA, 5,6-DiHETrE, 8,9-DiHETrE)
were all negatively associated with CRP.

Discussion
One aim of the study was to explore the possibility of using baselinemetabolomic profiling in
the prediction of good- and non-response to TNFi treatment in patients with RA. Our com-
binedmodel was able to predict response after 3 months of treatment with high accuracy
(AUC-ROC 0.841) and with a moderate robustness (prediction error: 0.269), and was signifi-
cantly better than a model containing clinical parameters alone (increase in AUC-ROC = 0.121,
p = 0.01, NRI = 0.23). The metabolites contributing to baseline prediction were sn1-LPC (15:0),
sn1-LPC (18:3-ω3/ω6), ethanolamine, and lysine, and the high NRI for non-responders indi-
cates that these metabolites are especially useful to identify non-responders in advance.

Table 3. Net reclassification index of predictionmodels for good- and non-responders to TNFi.

Observed response (n = 105)a Predicted by clinical model Predictedby combinedmodel

Non-response Good response

Non-responders (n = 50) Non-response 30 (equal) 0 (worsening)

Good response 15 (improvement) 5 (equal)

Good responders (n = 55) Non-response 6 (equal) 6 (improvement)

Good response 10 (worsening) 33 (equal)

An optimal cut-off for the clinical and combined model was chosen based on the Youden’s index, after which the predicted response of each patient per

model was compared to the observed response. Shown are the number of patients, split for future non-responders and good responders (observed

response), that were allocated at baseline to a predicted category (non-response/good-response) by both the clinical and combined model. These

allocations could be correct or wrong, based on the observed response. There are four possibilities of allocations that represent an equally good or bad

performance of both models (e.g.”30” represents 30 non-responders that were correctly classified as non-responders by both the clinical and combined

model). Two categories denote an improvement in the prediction by the combined model: either a future non-responder that switches from response in the

clinical model to non-response in the combined model (n = 15), or a future responder switching from non-response to response (n = 6). The two remaining

discordant categories denote a worsening of prediction by the combined model. The NRI for non-responders was 15/50–0/50 = 30% improvement, while the

NRI for responders was 6/55–10/55 = -7% due to a net worsening in prediction by the combined model. The total NRI was 0.30 + (-0.07) = 0.23.
a Due to the missing data of the clinical parameters, 19 out of 124 patients initiating TNFi therapy were excluded from the multivariable logistic regression

models (clinical and combined model). Thus, 105 patients remained in the analyses.

doi:10.1371/journal.pone.0163087.t003
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Additionally, our sensitivity analysis confirmed the added effect of metabolites in the predic-
tion of (non-)response in all patients initiating TNFi. When the prediction rule is further vali-
dated, non-responders can be identified and offeredmore suitable treatments, which prevents
joint damage, potentially toxic side-effects and saves healthcare costs.

Two of the identified predictors were also found to predict response in the two previous
studies [11,12]. A lower level of ethanolamine was also associated with response to TNFi in the
study by Kapoor et al.[11], however, opposite results for a higher level of lysine were found,
which predicted good response in our study and non-response in the study by Priori et al. [12].
In addition, both of these previous studies reported high values of glutamine as predictors of

Fig 3. Visualization of the associations betweenmetabolites and disease activity − general inflammation(log-transformedCRP and ESR) and RA-
specific inflammation (DAS28)–based on the complete cohortof bDMARDusers (n = 231).The metabolites that associated with either CRP, ESR or
DAS based on linear generalized estimating equations (GEE), were grouped according to metabolic classes (LPCs, FAs, amines and oxylipins), which are
represented as color-coded symbols adjacent to the metabolites. The metabolites in these metabolic classes showed comparable associations with CRP,
ESR and/or DAS28. FAs positively- and the lysophospholipids negatively associated with CRP, ESR and/or DAS28; the association between other the
oxylipins and amines with CRP, ESR and/or DAS28 were mixed, based on their metabolic functions. Positive associations are indicated with red lines,
negative associations with blue lines; thicker lines indicate a more significant association. CRP, C-reactive protein; DAS28, disease activity score based on
28 joint counts; ESR: erythrocytesedimentation rate; FA, fatty acid; LPE, lysophosphatidylethanolamine; LPC, lysophosphatidylcholine

doi:10.1371/journal.pone.0163087.g003
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response to TNFi, though glutamine did not predict response in our study with- or without
correction for multiple clinical parameters (p = 0.312 and p = 0.555 respectively). Several differ-
ences in study design compared to our study might explain these apparent discrepancies, such
as different analytical platforms (technique and targeted panels) and statistical method applied,
on top of a smaller sample size as well as the use of urine instead of serum in one of the two
studies [12]. Therefore, sn1-LPC (15:0), sn1-LPC (18:3-ω3/ω6), ethanolamine and lysine hold
potential in predicting response to TNFi therapy whenmeasured with LC-MS and on top of
prediction by clinical parameters.

Two amino acids, ethanolamine and lysine, predicted good response to TNFi in our study.
Ethanolamine is a primary amino acid and down-regulated levels were found to be predictive
for good response to TNFi in our study. It has been reported that abundance of ethanolamine
was lower in synovial fluid of RA patients than in non-RA patients [24]. The derivatives of eth-
anolamine play important roles in many pathways. For example, cytidine diphosphate -etha-
nolamine can be used as a substrate for de novo synthesizing phospholipids
phosphatidylethanolamines (PE), which are structural components of biologicalmembranes
[25]. Up-regulation of lysine was found to be predictive for good response to TNFi in the pres-
ent study. Lysine is known to be related to RA treatment. A previous study that measured
metabolites in 20 patients before and after three months of TNFi treatment, reported that the
concentration of lysine was elevated after three months of TNFi therapy [26]. What its exact
role in inflammation is remained speculative, however in animal studies, in which acute
inflammatory processes were induced, it was indicated that amino acids are redirected from
muscle to the liver for acute-phase protein synthesis and gluconeogenesis[27], [28]. Although
absolute levels of ethanolamine and lysine were not directly found associated with DAS28 or
CRP, it is possible that the relative abundance of these metabolites is to some extent informa-
tive for the inflammatory status in RA.

Interestingly, a down-regulation of sn1-LPC (18:3-ω3/ω6) was found in good responders,
while a down-regulated sn1-LPC (15:0) was found in non-responders. The most common
structure of LPCs is with an even-chain fatty acid on sn1 or sn2 position, such as sn1-LPC
(18:3-ω3/ω6) with an 18-carbon fatty acid. However, sn1-LPC (15:0) carries an odd-saturated
fatty acid (OCS-FA) chain. As part of lipid metabolism, LPCs and FAs can interconvert [29]. It
is reported that the serum levels of OCS-FAs are associated with the consumption of dairy
products and the reduced disease risks of coronary heart disease and type 2 diabetes [30], but
no study has specified the function of OSC-FA chain LPCs in the human body, and the associa-
tions between LPCs and RA have not been explored. Although in the predictionmodels we
adjusted the metabolites for multiple clinical parameters, we were unable to correct for the die-
tary influences or fasted/non-fasted status. We assumed that dietary variability would be
equally distributed across response groups, however, the observed levels of OCS-FAs as predic-
tors of response might indicate that this is not the case for dairy products.

Secondary aim of the present study was to explore the relation betweenmetabolite profiles
and RA disease activity in general while correcting for most important clinical parameters. We
found 88 individual metabolites related to CRP, ESR or DAS28, among which LPCs and FAs
were abundant. We found that LPCs were negatively associated with all three parameters,
which is a consistent finding across several studies in humans [31,32]. LPCs are lysophospholi-
pids that play important roles in pathological processes as signalingmolecules [33,34]. The
sn1-LPC is generated by the hydrolysis of phosphatidylcholine (PC) by phospholipase A2
(PLA2). These LPCs have been studied extensively and their pro- or anti-inflammatory role
and magnitude of effect are dependent on the length and (un)saturation of the fatty acyl group
[35–37]. As the precursor of LPC, PC is present in the cell membrane and can bind to CRP to
initiate host defense [38]. Long chain FAs are precursors of pro- and anti-inflammatory
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molecules [17], [39], which were found positively associated with CRP, ESR and DAS28 in this
study. These results indicate that the FA metabolismwas more active in the RA patients with
higher disease activity and inflammation. Oxylipins generated by COX, LOX, and ROS path-
way have potent pro-inflammatory effects and were positively associated with CRP or DAS28
while oxylipins derived from the CYP450 pathway were negatively associated with CRP, which
can be explained by their anti-inflammatory effects [40].

In our study, several amines were found to be significantly associated with DAS28 (6 out of
7 negatively), CRP (all 12 positively) and ESR (4 out of 5 positively). Of those amines negatively
related with DAS28, histidine, asparagine, and threonine were reported to be downregulated in
RA patients compared to healthy controls [26], [10]. If these markers are indeed RA-specific, it
is not surprising they also signify disease severity to a certain extent, which is indeedwhat can
be concluded from the (negative) relation to DAS28 observed in our study. Amino acids in
arginine metabolism (arginine and ornithine), tryptophanmetabolism (serotonin and trypto-
phan) and branched-chain amino acids (isoleucine, leucine, and valine) were found to be posi-
tively associated with CRP, which may indicate as was suggested previously, that muscle
proteins are degraded to amino acids and are redirected to the liver for acute-phase protein
synthesis and gluconeogenesis [27,28,41,42]. Serotonin and taurine, which were positively
associated with CRP or ESR, were reported associated with oxidative stress and could therefore
be linked to the inflammatory processes in RA [43,44]. In conclusion, most of the metabolites
we found to associate with disease inflammation have been described before, either in vivo or
in vitro, and in most cases have been shown to be related to inflammation in RA in this study.

Although DAS28 has been extensively validated and is the most widely used instrument in
clinical trials as well as in daily practice, it should also be noted that it has been claimed to be a
rather instable monitoring instrument in RA patients with stable disease [45,46]. Two recently
developed and validated instruments–the simplified disease activity index (SDAI) [14] and the
clinical disease activity index (CDAI) [47], have been suggested to be used instead in clinical
practice. Especially SDAI recently gainedmore relevance due to its inclusion in the American
College of Rheumatism/EULARremission criteria [48]. It has been reported that DAS28,
SDAI, and CDAI do not result in the same classification of patients [49]. These newer instru-
ments may reflect disease activity to a better extent, however SDAI and CDAI could not be
used in our analyses because the Evaluator Global Assessment, a component included in both
SDAI and CDAI, was not systemically collected in the BiOCURA study.

In this study, only metabolites at baseline were used to predict response and cross-section-
ally investigate biomarkers for disease activity. As for the latter aim, investigating the change
over time of metabolites might gain more insight in the most relevant metabolites regarding
disease activity than any cross-sectional study, as they reflect prospective changes in RA
patients.

Conclusions
Metabolomic profiling is a powerful technique, which can be applied to analyze a wide range of
metabolites from small sample volumes. Therefore, it has the potential of identification of bio-
markers and increasing the understanding of the metabolic pathogenic pathways involved in a
disease, such as RA. In the present study, we employed metabolic profiling to identify candi-
date metabolites to predict clinical response and assessed associations betweenmetabolites and
disease activity of RA. Because subjects were selected from an observational study, the hetero-
geneity needed to be adjusted for possible influential factors in all analyses. Yet, regardless of
the possible absence of important influential factors, we showed that the predictive ability of a
model can be quite high (AUC > 0.8) in a heterogeneous setting like clinical practice. As for its
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potential use, metabolites allow a better identification of non-responders on top of clinical
parameters, which is of added value in determining the most fitting treatment for each individ-
ual patient. Further external validation is needed to assess the robustness of these findings and
its potential value for clinical application.

This is the first time that serummetabolomic profiles analyzed by LC-MS have been dem-
onstrated to predict therapeutic response to biological treatment in RA. It would be worth
studying how these metabolites could be used for predicting patients’ response with external
validation in a more homogenous cohort and thereby potentially optimize the treatment strat-
egy for patients with RA.
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