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During the early development of aircraft, not much attention was paid to aerodynamic 
e!ciency. Structural design did not yet allow for cantilever wings - wings that are only 
supported on one side. Instead, they had to be supported with numerous struts and 
wires, which caused huge amounts of parasitic drag. During WWI speed and range 
became important for "ghters, bombers and observation aircraft. #e drag of an air-
craft increases with the square of its speed, so drag reduction came high on the agenda. 
#e resulting advances in aerodynamic design can be seen in the Spirit of St. Louis, 
the aircraft with which Charles Lindbergh performed his famous $ight across the 
Atlantic Ocean in 1927. It could $y non-stop for over 
33 hours, covering a distance of almost 6500 km. Lind-
bergh’s airplane shows a number of aerodynamic design 

by Michiel Straathof

Shape up!
Control l ing drag through three- 

dimensional shape opt imizat ion

Fig. 8. Charles Lindbergh next to 
his Spirit of St. Louis. 



aerodynamics22

features. First, the steel tube fuselage is covered with fabric to allow the air to $ow 
past smoothly. Second, the struts are aerodynamically shaped for low drag and their 
number is kept to a minimum. In later versions a cowling (cover) was added to the 
propeller. 

Towards the end of the 1920s wooden monocoque fuselages and wings appeared. 
#ese had much cleaner lines, but a few struts were still necessary to support the 
wings, as on the Fokker F.VII.

True aerodynamic optimization was "rst achieved in the 1930s with the Boeing 247 
(1934) and the Douglas DC-2 (1935). Except for the propellers and the rear land-
ing gear, the entire exterior of these aircraft consists of a smooth aluminum skin; even 
the engines are completely covered. #is skin could carry part of the loads occurring 
during $ight, so external struts were no longer required. Also, the intersection between 
the wings and the fuselage has been aerodynamically optimized, to prevent the air $ow 
from separating1. #e wings are tapered and swept backwards, which also decreases 
drag.

1 FLOW TRANSITION AND SEPARATION

Air that flows past a surface can go through different stages. At the leading edge of a wing, the flow is usually 

laminar, meaning that it is very smooth and causes very little friction drag. For sail planes the area of laminar 

of the wing chord. Instabilities in the flow – known as Tollmien-Schlichting waves - eventually cause the lami-

nar flow to transition to a more chaotic state called turbulent flow. Turbulent 

flow causes considerably more friction drag than laminar flow, but it is less 

likely to separate due to its energetic nature. Separation generally occurs in 

areas where there is a strong positive pressure gradient, i.e. in areas of large 

curvature. This can be actual curvature in the geometry or induced curvature 

caused by a large angle of attack. On passenger aircraft, flow separation is 

always unwanted since it creates enormous amounts of pressure drag and 

could even lead to loss of lift and/or control of the aircraft.
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Fig. 9. Laminar and turbulent flow.
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In December 2009, the latest airliner to enter production, the Boeing 787, took to the 
skies. Compare the B787 to the DC-2 and it is clear that over a period of 75 years, 
nothing changed in terms of aircraft con"guration. #at was not for lack of trying. 

Fig. 10. The Douglas DC-2 
in flight. (photo: Ed Coates 

collection)

Fig. 11. The Boeing 787 during 
turnaround.  

(photo: Tomoaki Inaba)
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Over the years, various novel aircraft concepts have been considered, but none of them 
actually made it into production. One design that has been extensively studied is the 
joined-wing or box wing aircraft. Creating lift using two sets of wings, joined together 
at the tips, could dramatically reduce induced drag by weakening the wing tip vorti-
ces 2. A promising concept, but a lot of structural challenges will have to be overcome, 
such as making the box-wing structure sti5 enough. 

Another novel con"guration is the blended-wing-body aircraft. By merging the wings 
with the fuselage, the entire exterior surface of the aircraft contributes to the genera-
tion of lift. In a conventional aircraft, the fuselage only generates drag, without con-
tributing to the lift. Challenges to overcome with this con"guration mainly concern 
stability and control.

Fig. 12. Joined-wing aircraft. 
(image: NASA / Lockheed Martin) 

Fig. 13. Blended-wing-body 
aircraft. (image: NASA / Boeing)
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2 LIFT DISTRIBUTION

The planform – the shape of the wing from above (or more likely, from below) – has a significant influence on 

the aerodynamic performance. It is one of the major factors determining the spanwise distribution of lift on 

the wing. During flight, the lower side of a wing experiences high pressure and the upper side low pressure; 

this causes an upward force: lift. At the wing tip, the high and low pressure regions come together and cause 

the air to flow from the lower side of the wing to the upper side and roll up into vortices. These vortices in turn 

cause a downwash at the leading edge of the wing, resulting in a rearward tilt of the lift vector. This vector now 

has a component opposite to the direction of travel, which is called induced drag. Induced drag is inevitable, 

but it can be reduced by modifying the wing planform.

A wing with an elliptical planform experiences the least amount of induced drag for a given aspect ratio. 

Elliptical wings are difficult to manufacture, because of the required curvature in the leading and trailing 

edges. Tapered wings form a good alternative, but they produce up to 15% more drag. The number by which 

the induced drag exceeds that of the elliptical lift distribution is called the Oswald factor.  

Another way of reducing induced drag is by increasing the aspect ratio of the wing. This will reduce wing tip 

vortices and hence induced drag. The aspect ratio is a measure of slenderness and can be expressed as: 

AR = b 2 / S, where b is the semi-wing span and S the wing area. Sailplanes typically have very high aspect 

ratios, resulting in extremely low induced drag. 

Despite the lack of new con"gurations, a number of subtle di5erences can be distin-
guished between the DC-2 and the B787. #e wings and tail surfaces of the B787 are 
very slender and highly tapered, lowering induced2 and wave3 drag. Additionally, the 
nose section of the B787 is more aerodynamically shaped and the landing gear is fully 
retractable. #ese characteristics give the B787 a much higher aerodynamic e!ciency.

In general, a number of factors have led to the superiority of modern aircraft.  One is 
the advancement in materials. #e slender wings of the B787 could simply not have 
been produced 70 years ago. Another one is the availability of computer power. #e 
design of the DC-2 was purely driven by the experience of the designers, validated 
by wind tunnel testing. #ese days, computer algorithms are used to accurately model 
the air$ow around an aircraft and then to numerically optimize aircraft shapes. #ese 
powerful tools are capable of optimizing complete aircraft.

Fig. 14. Induced drag due to wing 
tip vortices.

root airfoil
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3 SHOCK WAVES

As the speed of an aircraft increases, there comes a point where some of the air flow on the wing is super-

sonic, even though the aircraft itself is still flying at subsonic speed. An air particle moving over the wing will 

accelerate from subsonic to supersonic and decelerate back to subsonic speed again.  This deceleration leads 

to a shock wave on top of the wing. Because it takes energy to form this shock wave, this process translates 

into a form of drag called wave drag.  The strength of the shock wave and hence the amount of wave drag 

depends on the component of the flow velocity that is perpendicular to the wing. For a straight wing, this 

component is equal to the speed of the whole aircraft.  For a swept wing it can be much smaller. That is why a 

swept-wing aircraft is able to travel much closer to the speed of sound, without the air flow becoming super-

sonic anywhere on the wing.

CFD

Calculating the $ow of air around an object using com-
puter algorithms is called computational $uid dynamics 
or CFD.  #is is done with the help of a set of equations 
named after French engineer Claude-Louis Navier and 

British mathematician George Gabriel Stokes: the Navier-Stokes (N-S) equations.  
#ese describe the motion of $uid substances. Unfortunately, no analytical solutions of 
the Navier-Stokes equations are known, meaning that the equations always have to be 
solved numerically. #e most straightforward and time-consuming way of solving the 
N-S equations is a direct numerical simulation. #is is however not (yet) feasible for 
use in aircraft design, because it simply takes too long to compute the $ow. #is prob-
lem can be solved by making a number of assumptions about the $ow, such as that it is 
inviscid and/or incompressible.4

4 FLOW EQUATIONS

The Navier-Stokes (N-S) equations describe the behavior of all fluids (including gases, such as air) at all 

scales. For incompressible, Newtonian fluids, the N-S equations can be written as:

∑ ∑

ρ
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[
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Fig. 15. Shock wave formation.
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As mentioned, no analytical solutions of the Navier-Stokes equations are currently known. In fact, a $1 million 

prize has been offered to the first person who finds an analytical solution or proves that no such solution 

exists. So for now, the only way to find a solution to the N-S equations is to solve them numerically. This can 

be done directly on the full set of equations (Direct Numerical Simulation or DNS) or one or more assump-

tions can be made about the flow to simplify the computation. Separating the turbulent velocity fluctuations 

from the mean velocity leads to the Reynolds-Averaged-Navier-Stokes (RANS) equations. Neglecting viscosity 

results in the Euler equations and assuming irrotational flow finally leads to the potential flow equations. Many 

commercial flow solvers are available to solve these simplified sets of equations. In my work I have used an  

Euler code that was developed at TU Delft.

Solving the N-S equations produces a velocity "eld; it describes the velocity of the 
$ow at certain points in space. Interesting properties can be derived from this veloc-
ity "eld, such as the $ow rate and aerodynamic forces and moments. CFD is also very 
useful for visualizing the $ow around an object.

Many $ow phenomena can be easily identi"ed by looking at a plot of the pressure 
distribution on a wing or aircraft. Where the isobars (lines 
of constant pressure) lie close together and the pressure 
gradient is positive a shockwave is likely to form. Stagnation 
points can be found at locations where the pressure coef-
"cient is equal to 1. Areas of low pressure on top of the wing 
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(and high pressure below the wing) can give an indication about the aerodynamic 
moments involved. #e list goes on, but an important conclusion is that computational 
$uid dynamics provides a powerful tool that gives insight into the $ow around an 
aircraft in both a quantitative and a qualitative way.

PARAMETERIZATION 
#e shape of an object must be properly described in order to compute the $ow 
around it.  Finding a mathematical description of a shape is called parameterization. 
#e "rst CFD algorithms that were used in the 1970s and 1980s were simple and thus 
required only simple ways of parameterizing a shape. However, as computer power 
grew and the $ow solvers became more sophisticated, the need arose for novel param-
eterization methods. #is is the primary focus of the CleanEra design work.

EXISTING METHODS

#e most straightforward way to parameterize a shape is 
by taking discrete points along its boundary and con-
necting those points with lines. #is is not very e!cient, 
as you need a lot of points to generate a smooth shape. 
Additionally, it is very di!cult to maintain a smooth shape 
throughout the optimization process.

#e number of variables required can be greatly reduced by using a polynomial rep-
resentation, where the polynomial coe!cients determine the shape. #is results in a 
shape which is much smoother than with a discrete representation. A disadvantage is 
that in order to capture local deformations of a shape, the order of the entire polyno-
mial needs to be increased, which could result in a high number of design variables 
after all.

Another alternative is to add up a number of special functions that together form the 
required shape. Di5erent functions can be used for this purpose, such as Bernstein or 
Chebyshev polynomials5.

5 POLYNOMIAL BASIS FUNCTIONS

Instead of using a single polynomial to describe a curve, it is also possible to use a set of polynomial basis 

functions that form a smooth curve when added up. 

One such set of basis functions are the so-called Chebyshev polynomials, which are defined by the following 

recurrence relationship:

Fig. 17. Discrete parameterization.
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T0(x) = 1
T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)
p

The curve is then given by multiplying each basis function with a coefficient and then adding them all up. This 

is described mathematically as:

−

f(x) =

p
∑

n=0

anTn(x)

( )

Another popular set of basis functions are the Bernstein polynomials, which have the special property that 

their sum is always equal to 1. They are defined as follows:

∑

Bn,pS =

(

pS

n

)

xn(1− x)pS−n

The Bernstein curve is then described as:

( )
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CST METHOD

In 2008, a Boeing employee named Brenda Kulfan introduced a novel parameteriza-
tion technique called the Class-Shape-Transformation (CST) method. $is technique 
combines an analytical function, called the class function, and a set of Bernstein poly-
nomials, called the shape function. $e class function represents a basic class of shapes, 
such as an airfoil or a fuselage cross-section, while the shape function represents the 
deviation from this basic shape6.

6 CLASS-SHAPE-TRANSFORMATION (CST) METHOD

The CST method as developed by Kulfan describes the shape of a curve as the product of a class function C 

and a shape function S:

∑

f(x) = C(x) · S(x)

The class function is given by the following analytical function:

C(x) = x
N1(1− x)N2

By varying the coefficients N1 and N2, different classes of shapes can be generated, from typical round 

nose/sharp trailing edge airfoils to fuselage cross-sections.

The shape function consists of a set of Bernstein polynomials and can thus be 

described as follows:

S(x) =

pS
∑

n=0

bn

(

pS

n

)

xn(1− x)pS−n

The main advantage of the CST method is that the final shape always belongs 

to the class of shapes determined by the class function. For example, 

if N1 = 1 and N2 = 0.5, then the CST curve will always have a rounded nose and a sharp trailing edge, inde-

pendent of the shape function. The shape function merely describes the deviation from the class function.

$is method proved to be very useful because of its ability to handle many di&erent 
airfoil and wing shapes with a relatively low number of design variables. Another ad-
vantage of the CST method is that the round nose of the airfoil is completely de'ned 
as a result of the square root term in the class function. $is causes problems for most 
other parameterization methods. 
$e CST method has one big limitation: it cannot handle local deformations e*-
ciently. When more detail is required in a speci'c area, the order of the entire shape 
function needs to be increased. $is problem can be solved by adding a third function 
based on B-splines.

N1 = 0.1

N2 = 0.05

N1 = 0.9

N2 = 0.7

N1 = 0.7

N2 = 0.3

N1 = 0.5

N2 = 0.5

N1 = 0.5

N2 = 0.05

N1 = 1.0

N2 = 0.5

Fig. 20. Possible class functions.
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CSRT METHOD

To be able to e*ciently model local shape changes, an extension to the CST tech-
nique was developed at CleanEra, called the Class-Shape-Re'nement-Transformation 
method. As the name suggests, an extra function was added: the re'nement function. 
$is function is based on B-splines7, which are basically strings of lower order curves.
Because of the piece-wise nature of B-splines, it is possible to deform only a particular 
region of the curve, while keeping the rest constant. $is provides the possibility to 
increase the detail on a speci'c part of the shape, without having to increase the order 
of the whole shape function. 

7 B-SPLINES

As was the case for the shape function, a B-spline curve (and hence the refinement function) consists of a set 

of basis functions, multiplied by a set of coefficients. For a B-spline, this set of coefficients is represented 

by the coordinates of so-called control points that together form a control polygon, P̄. Mathematically, the 

B-spline is described as follows:

∑

R(x) =

pR
∑

n=0

P̄nNn,k(x)

The B-spline basis functions are defined iteratively:

∑

Nn,1(x) = 1 if tn ≤ x ≤ tn+1

= 0 otherwise

and:

Nn,k(x) =
(x− tn)Nn,k−1(x)

tn+k−1 − tn
+

(tn+k − x)Nn+1,k−1(x)

tn+k − tn+1  

Where t 
i
 are called the knot values, which relate the parametric variable x to the control points P̄. 

They are defined as follows:

∑

ti = 0 if n < k

ti = n− k + 1 if k ≤ n ≤ pR
ti = pR − k + 2 if n > pR

Fig. 21. B-spline basis functions.
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The CSRT method can now be described symbolically as:

f(x) = C(x) · S(x) ·R(x) = xN1(1− x)N2
·

pS
∑

n=0

bnBn,pS(x) ·

pR
∑

n=0

P̄nNn,k(x) (10)

( )

$e methods mentioned so far are all used to parameterize two-dimensional shapes, 
such as airfoils. A three-dimensional shape can be treated as a stack of two-dimen-
sional shapes with the points in between interpolated. $is is how most aircraft wings 
are currently de'ned. $is is an easy solution, also because production can be done in a 
similar fashion, with ribs representing the airfoil sections. However, the more com-
plex the wing shape, the more airfoil sections have to be de'ned to describe the wing, 
rendering the method less e*cient.
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With more sophisticated production techniques and computers available, it is now 
possible to represent the entire three-dimensional shape as a mathematical surface. To 
do this with the CSRT method, the class, shape and re'nement functions will have 
to represent surfaces instead of curves. For the class function this is straightforward, 
since it is an analytical function. For the shape and re'nement functions this means 
that Bernstein and B-spline surfaces will have to be used. $ese require slightly more 
elaborate computations compared to Bernstein and B-spline curves, but they are well-
de'ned and have the same advantageous properties.

OP TIMIZATION

Once a /ow solver and a parameterization technique have been selected, they can be 
coupled to an optimization algorithm. At the heart of most optimization algorithms 
lies a so-called sensitivity analysis, which determines the gradients of the objec-
tive function with respect to the design variables. In other words, it 'nds out how 
the function to be optimized (e.g. lift-to-drag ratio) changes when you change the 
parameters that determine the shape. $is can be done in a number of ways, but most 
of them require the /ow solver to be run once for each gradient. $is means that if 
a shape is parameterized using 100 variables, the /ow solver will have to be run 100 
times to 'nd all gradients, which can take a very long time. However, there is one 
technique that can signi'cantly reduce the required computation time: the adjoint 
equation method8. In my work, this technique has been successfully coupled to the 
CSRT method and to an Euler solver that was developed at TU Delft.

8 ADJOINT EQUATION METHOD

First, let us assume some aerodynamic property J which is a function of the flow variables U and the geometry 

design variables x:

 J = J(U,x)

The derivative of J with respect to a specific design variable x
i
 can be written as:

dJ

dxi

=
∂J

∂xi

+
∂J

∂U

∂U

∂xi

Note that this equation distinguishes between a change in objective function as a result of a variation in the 

flow solution ∂U and a variation due to the change in geometry ∂x
i 
. In order to solve this equation, a relation-

ship between U and x is needed. Such a relationship is the steady state flow equation, i.e.:

R(U, xi) = 0

Computing the derivative of R with respect to x
i
 gives:

dR

dxi

=
∂R

∂xi

+
∂R

∂U

∂U

∂xi

= 0
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The adjoint method can be derived by introducing a vector of Lagrange Multipliers . The steady state flow 

equation be added as a constraint to the sensitivity to obtain: 

dJ

dxi

=
∂J

∂xi

+
∂J

∂U

∂U

∂xi

−Λ

(

∂R

∂xi

+
∂R

∂U

∂U

∂xi

)

=
∂J

∂xi

−Λ
∂R

∂xi

+

(

∂J

∂U
−Λ

∂R

∂U

)

∂U

∂xi

The vector of Lagrange Multipliers can be chosen to satisfy the following adjoint equation:

Λ
∂R

∂U
=

∂J

∂U

Combining the last two equations results in the elimination of the last two terms and hence:

dJ

dxi

=
∂J

∂xi

−Λ
∂R

∂xi

Finding a solution to this system only requires solving as many equations as there are flow functionals. For 

most aerodynamic optimization problems, this number is much lower than the number of design variables. 

Hence, using the adjoint equation method can dramatically reduce the time required to compute the gradients.

 e CSRT method, in two as well as three dimensions, allows for a two-step opti-
mization approach. In the "rst optimization step, only the Bernstein coe#cients of 
the shape function are used as variables. In the second re"nement step, the B-spline 

coe#cients are varied. Typical results indicate that the "rst 
optimization step signi"cantly reduces the shockwave on 
a wing in transonic conditions, increasing its aerodynamic 
e#ciency by about 20-30%.  e re"nement step usually 
results in a further improvement in the order of 5%. 
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 ese results can be visualized by looking at the pressure distribution on a wing before 
and after the optimization process. Putting an ordinary wing in transonic conditions 
will often lead to shock waves, indicated by strong positive pressure gradients. As a 
result of these shock waves, most of the lift will be located near the leading edge of 
the wing, causing an unwanted pitch-up moment. Looking at the optimized wing, a 
strong reduction of the shock waves can be identi"ed. Additionally, a more even distri-
bution of lift over the entire wing will lead to a lower pitch-up moment.

CONCLUSIONS

 e CSRT method developed at CleanEra proved to be a very intuitive and e)ec-
tive way of parameterizing aircraft shapes, both in two as well as in three dimensions. 
 e method allows for a two-step approach which has the potential to signi"cantly 
increase the lift-to-drag ratio of various aircraft shapes. Using an adjoint algorithm 
provided the computational e#ciency necessary to perform true three-dimensional 
shape optimization.

Future research will be focused on optimizing the complete design framework and 
investigating the applicability of the CSRT method to more diverse aircraft shapes.
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