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1. Introduction: NTM stabilization, techniques

Neoclassical tearing modes (NTMs) are magneto-hydrodynamic  

(MHD) instabilities, which can be excited in high-beta 

tokamak plasmas. They are characterized by magnetic islands 

located on rational magnetic surfaces, which typically rotate 

with the plasma around the tokamak axis. NTMs signi�cantly 

increase the radial transport, and thus reduce the performance 

of fusion plasmas [1].

Electron cyclotron resonant heating (ECRH) and electron 

cyclotron current drive (ECCD) with high-power millimeter 

waves can stabilize NTMs, if the power deposition is aligned 

with the mode location [2, 3, 4, 5]. For ITER, the suppression 

of NTMs is a main purpose of ECCD applied from the upper 
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Abstract

At the tokamak ASDEX Upgrade, experiments to stabilize neoclassical tearing modes (NTMs) 

by electron cyclotron (EC) heating and current drive in the O-points of the magnetic islands 

were performed. For the �rst time, injection into the O-points of the revolving islands was 

performed via a fast directional switch, which toggled the EC power between two launchers 

synchronously to the island rotation. The switching was performed by a resonant diplexer 

employing a sharp resonance in the transfer function, and a small frequency modulation of 

the feeding gyrotron around the slope of the resonance. Thus, toggling of the power between 

the two outputs of the diplexer connected to two articulating launchers was possible. Phasing 

and control of the modulation were performed via a set of Mirnov coils and appropriate signal 

processing. In the paper, technological issues, the design of the diplexer, the tracking of the 

diplexer resonance to the gyrotron frequency, the generation and processing of control signals 

for the gyrotron, and the typical performance concerning switching contrast and ef�ciency are 

discussed. The plasma scenario is described, and plasma experiments are presented, where 

the launchers scanned the region of the resonant surface continuously and also where the 

launchers were at a �xed position near to the q  =  1.5-surface. In the second case, complete 

stabilization of a 3/2 NTM could be reached. These experiments are also seen as a technical 

demonstration for the applicability of diplexers in large-scale ECRH systems.

Keywords: NTM stabilization, fast switching of EC power, high-power diplexers, electron 
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launchers [6]. Depending on the beam divergence, mode purity, 

and mutual misalignment of the launchers, as well as beam 

broadening by turbulence, the width of the power deposition 

pro�le wCD can exceed the marginal width of the island wmarg 

for stabilization [7, 8]. For this case, the highest ef�ciency for 

NTM stabilization is reached when ECCD is applied in the 

center (the O-point) of the island; ECCD between the islands 

(in the X-points) may even destabilize the modes. Therefore, 

modulated injection of the launched power synchronous with 

the frequency of the rotating islands may be required [1].

Up to now, synchronous current drive has been performed 

by power modulation of the gyrotron [2], with the disadvan-

tage that some of the installed power is wasted with the amount 

dependent on the ratio wCD /wmarg. An alternative for power 

modulation could be the synchronous toggling of the gyrotron 

power between two launchers directing the beam to poloidal 

or toroidal planes, which are about (2 k  +  1)  ∗  180° away from 

each other with respect to the phase of the NTM, as sketched 

in �gure  1. Here, k is an integer with ⩾k 0. (Alternatively, 

the power of one output can be used for synchronous NTM 

stabilization, while the other output feeds a launcher for an 

independent ECRH or ECCD experiment.)

The (non-mechanical, electronically controlled) switching 

can be performed with a resonant diplexer [9, 10], which is 

operated as a fast directional switch (FADIS), while the gyro-

tron source operates continuously.

The FADIS operation is based on the transmission charac-

teristics of a resonant diplexer. This device consists basically 

of a ring resonator made of two focusing mirrors and two plane 

coupling gratings, as sketched in �gure 2, left. The resulting 

transmission functions are narrow resonances at output 2 (the 

‘resonant channel’), which are periodic with c/L, and broad 

transmission regions with notches in between at output 1 (the 

‘non-resonant channel’), shown in �gure 2, right. The width 

of the resonances is determined by the diffraction ef�ciency 

R1 of the coupling gratings. With control of the resonator 

length L by making one of the resonator mirrors movable, the 

diplexer can be tuned with respect to the gyrotron frequency 

fgyr according to the application. In particular, it can be tuned 

to point B by having fgyr and L correspond to the slope of 

the resonance (tracking to the slope). For the toggling of the 

power between the diplexer outputs, a small frequency-shift 

keying of the gyrotron between two frequencies f1 and f2 

corre sponding to the upper and lower frequencies of the slope 

of the resonance is needed (�gure 2, right). This is performed 

by modulation of the gun anode or the beam acceleration 

voltage of the gyrotrons. Note that this voltage modulation 

usually causes a reduction of power during the low-voltage 

phase. Note also that for the tiny frequency shifts of some tens 

of megahertz needed for the switching, no remarkable change 

in the deposition radius in the plasma occurs.

In this paper, experiments to stabilize NTMs on ASDEX 

Upgrade by fast switching between two launchers are 

described. Note that synchronously power-modulated NTM 

stabilization experiments have been performed at ASDEX 

Upgrade [2] and other tokamaks like DIII-D [5] and JT60-U 

[3]. The main motivation of the work is the demonstration of 

the applicability of resonant diplexers for NTM stabilization. 

The paper is organized as follows: in section 3, we revisit the 

case of modulated O-point current drive without switching. 

In section  4, technical issues related to fast switching are 

addressed, such as the FADIS setup and the control of its reso-

nator. Section 5 describes the NTM stabilization experiments 

using fast switching. Finally, conclusions are given in view 

of the application of the diplexer technology to large ECRH 

systems.

2. NTM stabilization with modulated ECCD—test 

case without FADIS

Before studying the effect of fast switching between L1 and 

L3 as sketched in �gure 1, we address the case of using only 

one launcher with maximum power modulation in phase with 

a fast rotating NTM. The basic concept for NTM stabilization 

is to maximize the power when the absorption location is close 

to the O-point of the island and to minimize the power when 

it is close to the X-point. Note that current driven outside the 

island can even have a destabilizing effect. The concept has 

been �rst experimentally demonstrated on ASDEX Upgrade 

[2]. It may even become a necessary condition for complete 

stabilization in cases when the ECCD deposition width is sig-

ni�cantly greater than the marginal island width, below which 

the island becomes unstable and vanishes on its own.

As a reference for the fast switching experiment we �rst 

have reestablished NTM stabilization with a modulated 

ECCD beam using one launcher. First we discuss the some-

what different absorption geometry (as compared to [2]), then 

we address diagnostic and technical issues related to NTM-

phase-locked gyrotron modulation and �nally we show the 

stabilization results for different phase angles and continuous 

wave (cw) operations.

2.1. Plasma scenario

Figure 3 compares several possible settings of an AUG ECRH 

launcher to drive localized plasma current. Experiments in 

[2] used a high-�eld-side resonance with absorption close to 

the plasma mid-plane (black curves in the middle part of the 

�gure, corresponding to toroidal launching angles of 5°, 15° 

Figure 1. Sketch of the NTM structure in a tokamak, and the 
principle of the synchronous stabilization of NTMs using a fast 
directional switch.
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and 20°). Larger toroidal launching angles lead at this location 

to wide ECCD pro�les, whereas small toroidal angles lead 

to high but narrow current density pro�les. These pro�les are 

a consequence of the resonance surface being almost iden-

tical to a !ux surface in the absorption region. The proper-

ties of this setup were ideal for the studies presented in [2]. 

It was shown that the widening of a cw-beam by increasing 

the toroidal launching angle hampered the full stabilization 

of the NTM, which could be regained using O-point modula-

tion (roughly 50% duty cycle). X-point modulation was less 

stabilizing (in terms of the minimum achieved mode-amplitude)  

than cw.

Since 2007 AUG has been operated with W-coated plasma-

facing components. As a consequence, central wave heating 

is required for the stable operation of H-mode plasmas with 

signi�cant β [11]. The plasmas in [2], which did not use cen-

tral wave heating, could not be reproduced yet. In order to 

provide central ECRH at the same time when tackling NTM 

stabilization, the cold resonance has to be close to the magn-

etic axis. Recent experiments on feedback-controlled NTM 

Figure 2. Left: principle of a ring resonator diplexer. Right: transmission functions for the resonant (OUT2, red, solid) and the non-
resonant (OUT1, blue, dashed) output, calculated for the parameters of the diplexer Mk IIa with a resonator length of L  =  2.121 m, and 
a grating coupling ef�ciency of R1  =  0.22. The pink dot shows the operation point B for fast switching generated by a small frequency 
modulation.
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Figure 3. Beam tracing results for different values of toroidal �eld Bt and launching angles. Kinetic and (scaled) magnetic data from 
discharge 240 61 at 3.5 s. Left: position of the maxima of jECCD for the various cases, projected on a poloidal cross section of the torus, 
together with a sketch of the launching geometry. The radial position of the maxima depends on the value of Bt. Middle: ( )ρjECCD  (MA 
(m2MW)−1) for the resonance located on the high-�eld side ( =B 2.1t –2.2 T). The solid curves correspond to a 5° toroidal angle at 2.1 T, 
and the dashed curves correspond to 15° and 20° at 2.2 T. Right: ( )ρjECCD  for the resonance through the plasma center ( =B 2.5t  T). The 
solid curves correspond to a 15° toroidal angle, and the dashed curves correspond to 10° and 20°.
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stabilization [12] have therefore focused on such a con-

�guration leading to ECCD pro�les as in the right part of 

�gure 3. Here, the resonance cylinder is almost perpendicular 

to the !ux surface such that the deposition width (in ρ) is 

determined by the beam width, and it does not depend sig-

ni�cantly on the toroidal angle (between 10° and 20°). The 

driven current density jECCD is lower compared to the high-

�eld-side resonance when depositing at the mid-plane, but it 

is not signi�cantly different from an HFS deposition above or 

below the mid-plane. The latter positions have to be chosen 

for feedback control with a movable launcher, since the posi-

tion at the mid-plane does not allow one to shift the deposi-

tion towards lower ρ. In this sense, the new con�guration has 

no signi�cant drawback for NTM stabilization using a mov-

able mirror as actuator.

Unfortunately, this new con�guration does not allow one 

to repeat experiments with wide deposition and modulated 

ECCD as shown in [2]. With a narrow deposition, the bene�-

cial effect of O-point modulation is known to be smaller than 

for a wide beam [8]. From �gure 3, one can estimate the width 

of the ECCD beams to be =w 3CD  cm. The typical width of 

the marginal island could not be measured at =B 2.4t  T, as 

the ECE system is not optimized for this case. From a cor-

relation and phase analysis [13] of the ECE signals of similar 

discharges at =B 2.6t  T, a typical island width of w  =  7 cm 

is obtained [12], and the resulting estimate for the marginal 

island size is =w 5marg  cm. As these values are not very pre-

cise, we therefore compare the effect of NTM-modulated 

ECCD centered either on the O-point or on the X-point of the 

island with cw ECCD in a �rst step. For this purpose we want 

to use only one ECCD beam (later we have only one FADIS), 

and, therefore, we reduce the heating signi�cantly after having 

created the NTM in order to reduce its strength and to facilitate 

stabilization. In [11] it is described that the central ECRH pre-

venting W accumulation (provided by other gyrotrons) should 

be deposited within ρ < 0.2pol . Using 140 GHz and taking into 

account the Shafranov shift of the plasma center, this boundary 

condition on ρ limits the toroidal �eld in the geometric center 

of the vessel between    < <B2.4 T 2.65 Tt . As described in sec-

tion  2.2, the lower value had to be chosen. It requires large 

toroidal angles (±20°) for the central heating beams such that 

the Doppler shift moves the absorption region towards larger 

major radii and inside the ρ = 0.2 surface. For this purpose, 

two ECRH beams with opposite toroidal angles were used in 

order to cancel the current drive effects. The equilibrium with 

the locations of absorption is shown in �gure 8 (left part) for 

the FADIS con�guration. For the results presented in the sec-

tion below, only launcher L3 is used (no FADIS operation).

2.2. NTM location, Mirnov coil signals

The concept of how to lock the ECCD modulation to a cer-

tain phase of the toroidally rotating NTM has already been 

described in [2] and in more detail in [4]. As a �ngerprint 

for an (m,n)-NTM, speci�c Mirnov coil signals are analogly 

combined. In the papers cited above, signals speci�c to even 

or odd n-numbers were generated. Meanwhile the concept is 

more sophisticated allowing one to also separate even and odd 

m numbers. For the (3,2)-NTMs tackled in the experiments 

described here we therefore use the even-n, odd-m signal as a 

reference for the NTMs.

As already discussed in [2, 4], there is an intrinsic phase 

delay between the Mirnov signal and the ECCD modulation 

due to two independent effects. The O-point corresponds to 

the zero of ḂR where the sign of ḂR changes from positive to 

negative, resulting in a phase difference of 90° between the 

maximum of Ḃ and the center of the ECRH on the interval. An 

additional phase difference arises when taking account of the 

different locations of ECCD and Ḃ measurement on the !ux 

surface as discussed in detail in the abovementioned refer-

ences. Adding the two phases with the correct signs results in 

a phase difference, which has to be technically realized with 

the gyrotron as will be described in the next section.

As described in the introduction for the fast switching 

experiment, NTM amplitudes should be  ≈  o180  out of phase 

at the absorption locations for the two launchers in order to 

allow ‘continuous’ O-point heating. This additional require-

ment determines the choice of Bt. The best choice within the 

range of    < <B2.4 T 2.65 Tt  necessary for suf�cient central 

heating (see above) is at 2.4 T. Figure 4 illustrates the situ-

ation. The phase of the mode is plotted as a function of the 

poloidal and toroidal angles on the q95  =  1.5 surface allowing 

a direct comparison of the relative phases at the location of 

the Mirnov coils and the locations of absorption of the two 

launchers. This allows one to obtain a request for the ideal rel-

ative phasing of the (50% duty cycle) power modulation of the 

launchers with respect to the Mirnov signal. In the next sec-

tion we will describe how and how well this has been realized. 

Note that the ideal phase delay between the two launchers is 

close to o180 , i.e. well suited for the switching experiment. For 

the experiments without a FADIS, described in section 2.4, 

we only used L3. The estimated relative phasings as shown in 

�gure 4, bottom, depend somewhat on the equilibrium used, 

resulting in an error of the relative phasing of  ≈  ± o10 .

2.3. From Mirnov signals to gyrotron control

On AUG, Mirnov signals generated by rotating (3,2)-NTMs 

span a frequency range between 10 kHz and 25 kHz. One period 

is therefore  ≈40–100 µs. An accuracy of 1 µs is required for 

the power switching to achieve a phase match better than 10°. 

The time for Mirnov data acquisition, analog linear combina-

tion and transmission via 100 m of optical �ber is estimated 

to be faster than 100 ns. The latter step consists of a voltage– 

frequency converter (    ±10 MHz 1 MHz corresponds to  ±10 V). 

The frequency is transmitted through the glass �ber by light 

!ashes and back-converted to a voltage on the other side. A 

transmission time below 100 ns has been explicitly veri�ed 

using two independent data loggers on both ends of the optical 

�ber (analog input versus analog output), both triggered by 

the optical-�ber based AUG trigger system. These small time-

shifts are neglected in the following. An analog phase shifter  

converts the Mirnov signal into phase-shifted trigger-pulses 

for the series-tube modulator. During the low period of the 

Nucl. Fusion 56 (2016) 126001
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trigger the modulator reduces the acceleration voltage of the 

electron beam in the gyrotron by a pre-set value. In the case 

shown here from  −41.5 kV to  −28.5 kV (constant depres-

sion  +32 kV) a reduction of the power from 700 kW to 130 kW  

has resulted. Data transmission to the series modulator uses a 

digital optical transmission which introduces a �xed delay of 

18 µs. This results in an uncomfortable procedure to achieve 

the requested phase delay between the Mirnov signal and 

ECCD: based on the expected frequency of the mode, the 18 

µs is converted into a phase difference which is subtracted 

from the requested phase difference. The result is then set at 

the phase shifter with the help of a function generator and 

an oscilloscope. Additionally, the trigger level has to be set 

at the phase shifter in order to prevent triggering on noise 

without losing too much sensitivity on real modes. If the real 

frequency differs from the expected frequency this leads to an 

improper phasing as further discussed in section 2.4. In prin-

ciple such problems could be avoided by inclusion of the �xed 

delay of 18 µs into an FPGA-based phase shifter if such oper-

ational scenarios will be requested more frequently. Figure 5 

illustrates some of these issues. At the top left, an overview of 

the whole discharge is shown. The stabilization of an NTM 

is seen in the upper time trace. As the NTM is stabilized, the 

amplitude becomes so small that the locking is lost. The box 

average of the gyrotron power shows that during modulation 

the duty cycle is  ≈50% changing to almost 100% as noise 

creates only occasional triggers5. Further insight into trig-

gering requires a strong zoom (bottom left). At this zoom level 

it can be seen how other MHD disturbances (ELMs herein) 

affect triggering. They can suppress zero crossings due to the 

NTM oscillation, thereby blinding phase detection for some 

periods resulting in a loss of  ≈2% of the NTM oscillations 

for these speci�c conditions. A further zoom allows one to 

check the phase shifts. As mentioned above, the shift between 

the top (green) and middle (red) curves can be adjusted at the 

phase shifter, but the time shift between the middle and lower 

curves is �xed (18 µs).

2.4. Variation of the phase angle

Figure 6 shows the reaction of a (3,2)-NTM to ECCD locked to 

the O-point, ECCD locked to the X-point, and with cw-ECCD. 

In the =I 1p  MA, = −B 2.4t  T discharge, a (3,2)-NTM is trig-

gered by a fast increase of the NBI-heating to 12.5 MW. The 

Figure 4. Top: phase of the (3,2) NTM on the q95  =  1.5 surface as a function of the toroidal and poloidal angles in radians. The zero of the 
poloidal angle is at the outer mid-plane. Small crosses indicate the position of the Mirnov coils. The three colored dots correspond to the 
positions of the reference Mirnov coil (black), launcher L1 (green), and launcher L3 (red). Bottom: ideal relative time traces for maximum 
O-point heating for 50% duty cycle and independent ECRH beams for Ḃ and the power across the respective launchers L1 (green) and L3 
(red), for =B 2.4t  T.

5 The reason for having ’full power’ as a default lies in the technical realiza-

tion of fast high-power modulation. The input power to the series modula-

tor does not vary, but all power which is not output to the gyrotron during 

modulation is cooled away via the modulator anode. The default ‘full power’ 

therefore protects the tetrode, since it minimizes the heat load on its anode. 

In principle the discharge control system (DCS) could request to fully 

switch off the gyrotron (i.e. to apply a blocking voltage to the tetrode control 

grids) after it has detected a stabilization of the mode, but this has not yet 

been attempted.
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ECCD deposition is twice scanned across the resonant surface 

by a pre-programmed rotation sequence for one launcher axis. 

For cw-operation and dominant O-point heating the mode 

disappears during the �rst crossing, roughly at the ρ-value 

expected from RT-Torbeam [14] and the estimated position of 

the (3,2)-surface [15]. For the O-point case, one of the under-

lying centrally-heating cw-gyrotrons is lost at  ≈3.5 s, but the 

off-axis modulation works as planned. With dominant X-point 

heating the mode is not fully stabilized. In the latter case, the 

mode amplitude has two minima in the vicinity of the two 

expected crossings. The cw-power is 700 kW, and the time-

averaged power for O-point modulation is 410 kW.

We did not further study the minimum power for com-

plete stabilization with cw and O-point modulation. Since 

CW can be regarded as a mixture of X- and O-point modula-

tion it seems likely that the threshold for the time-averaged 

power should be somewhat lower for the O-point modulation. 

After stabilization of the NTM in the O-point and cw-case the 

stored energy recovers somewhat. Note that the NBI heating 

in this phase of the discharges has been reduced to 7.5 MW 

such that a full recovery of the maximum stored energy cannot 

be expected.

The power needed for these reference scenarios is not in line 

with the estimates given before: =w 3CD  cm, =w 5marg  cm. 

As the bene�cial effect of O-point modulation is signi�cant, 

we have to assume a ratio / >w w 1CD marg . The reason for this is 

not clear. Nevertheless, we have to take these reference values 

as the basis for comparison of the stabilization experiments 

for the diplexer discussed in chapter 4.

We end this section  by discussing how well we did in 

matching the required modulation pattern (phasing of power 

on/off) compared to the ideal case shown in �gure 4, the red 

and black curves in the bottom part. In the left part of �gure 7, 

another pair of black and red curves is shown from the case 

we labeled O-point heating. Black is the Mirnov signal, and 

red the gyrotron power measured by a directional coupler. 

The comparison is not straightforward since the latter is sam-

pled only with 100 kHz. We have concluded that the time 

jitter and averaging effects of the data acquisition systems 

are irrelevant here by using the 100 kHz system to measure 

the Mirnov data independently, and the data lie suf�ciently 

well on the black curve. A simple analysis of the red curve in 

�gure 7 can only locate the jump in power within  ±5 µs since 

the coupler voltage typically changes in two steps (∆U1, ∆U2) 

as sketched in the �gure. More information can be gained by 

making a histogram over more than 20 000 switching cycles, 

binning ∣ ∣ ∣ ∣∆ − ∆U U2 1  by voltage steps of 10 mV. The result 

is shown in the top right part of �gure 7. The two colors cor-

respond to the rising and falling edges. The ‘ears’ at both 

sides indicate that the switching process is shorter than  
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10 µs, but not much shorter; otherwise they should be more 

pronounced. Quantitative insight is gained by integration 

of the histogram and normalizing the maximum to unity as 

shown in the bottom right part. The curves can be regarded 

as probability distributions, i.e. they give the probability that 

for an average jump ∣ ∣ ∣ ∣∆ − ∆U U2 1  is larger than the respective 

abscissa value. Let us further assume that (a) all rising jumps 

(and independently all falling jumps) are physically suf�-

ciently equal, (b) the jumps are symmetrical such that half of 

the jump amplitude is reached after half the jump time, and (c) 

the over 20 000 jumps cover stochastically the possible time 

deviation of  ±10 µs between the ‘real’ jump and the time 

when the intermediate data point (between ∆U1 and ∆U2) is 

sampled. Then the normalized integrals can be interpreted as 

calibration curves for the exact timing of the center of the 

jump as indicated by the additional labeling of the vertical 

axis. Obviously uncertainty rises as the center of the jump is 

more distant than  ±3.5 µs from the intermediate data point, 

indicating that the total jump duration is about 7 µs long. 

Also taking into account the asymmetry of this calibration 

curve with respect to the (0 V, 0 µs) point (which violates our 

initial assumption on the jump symmetry) we conclude that 

we can reconstruct the center-of-jump time with an uncer-

tainty of  ≈1 µs, depending on its closeness to the central 

data point. The vertical green (orange) dashed lines in the left 

part of �gure 7 correspond to such reconstructed half-jump 

times for the rising (falling) edge of the power signal for four 

consecutive cycles. The phasing with respect to the Mirnov 

signal is stable within  ±2 µs. The power signal lags behind 

the Mirnov signal by about ±
o o100 10 .

Figure 6. Comparison of three discharges with identical control parameters, except the modulation scheme. The latter was a 50% duty 
cycle close to the O-point (#29917), a 50% duty cycle close to the X-point (#29918) and a 100% duty cycle, i.e. cw (#29920). The 
upper box shows the scenario (all time traces in this box are from #29917 as a typical example): ‘rho q  =  1.5’ corresponds to the ρpol 
value of the q  =  1.5 surface as estimated from the real-time equilibrium. ‘rho_ECCD’ gives the location of the maximum ECCD as 
determined by RT-TORBEAM. The box second from the top shows the EC power. The color code is as indicated in the box below. The 
box second from the bottom shows the upper envelopes of the Ḃ signals of the Mirnov coils. Note that the noise level for these signals lies 
between 0.1 and 0.2 (a.u.), i.e. full stabilization is seen for t  >  4 s in the O-point and cw cases. At the bottom the stored energy is shown. 
Same color code as above.
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In �gure 4, the optimum phase delay for O-point heating 

with L3 is close to 135°, so we were about 35° off the 

optimum. The reason for this mismatch is that the phase 

shifter setting was optimized for a mode frequency of 22 kHz, 

but the real frequency �nally was 16 kHz, since we decided 

during the experiments to use one NBI source fewer in order 

to facilitate mode stabilization. As explained in section 2.3, 

such a frequency change would have required readjusting the 

phase delay between the Mirnov signal and gyrotron trigger. 

This was not attempted in this discharge. Fortunately, the 

mismatch is small enough such that there is still a signi�cant 

contrast between our ‘O-point’ and ‘X-point’ modulation 

setups.

3. Diplexer technology, operation and control

3.1. Diplexer technology, FADIS operation

For experiments on NTM stabilization via synchronous 

switching between two launchers, the diplexer Mk II [10] was 
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Figure 7. Left: Mirnov signal (black) and uncalibrated power signal (red) for the case of nominal O-point modulation (#29917). The 
straight lines are explained in the text. Right top: histogram of ∣ ∣ ∣ ∣∆ − ∆U U2 1  for the rising edges (green) and falling edges (orange) of the 
power signal. Sampled is the time interval (2.0 s, 3.8 s) with 26 000 jumps in each direction using a bin-width of 10 mV. Right bottom: 
normalized integrals of the curves on top.

Figure 8. Left: cross-section of ASDEX Upgrade showing the typical setting of the antenna beams of the ECRH-2 system, and a sketch of 
the NTM structure. Right: photograph of the diplexer MK II installed in the ECRH-2 system at ASDEX Upgrade.
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used. Its functionality had been tested extensively before at the 

ECRH test stand at W7-X [16]. For experiments on ASDEX 

Upgrade, it was integrated into the HE11 corrugated wave-

guide transmission of the ECRH-2 system [17]. This system 

features four 140/105 GHz gyrotrons and four launchers, 

where the toroidal and poloidal injection angles can be con-

trolled independently. The gyrotron Gy3 was connected to 

the input of the diplexer; the non-resonant output OUT1 was 

the feeding launcher L3, and the resonant output OUT2 was 

connected to launcher L1 (�gure 8; see �gure 2). To match 

the polarization to the launching geometry, miter-bend polar-

izers were installed behind the diplexer. (Note that the present 

diplexer operates with linear polarisation only.) The signals 

from the directional couplers installed in the transmission 

lines near to the launchers were used as input for the control of 

the resonator mirror drive; the controller was set for frequency 

tracking to operation point B on the positive (low-frequency) 

slope of the resonance.

3.2. Resonator control

The diplexer’s transmission behavior strongly depends on the 

relation between the resonator round-trip length and the gyro-

tron frequency. As discussed in section 2, for fast switching 

the transmission behavior should correspond to point B of the 

transmission curves, as indicated in �gure 2. By making one 

of the resonator’s mirrors movable, the diplexer can be tuned 

to this operational point for a given gyrotron frequency fgyr. 

Ideally, tuning of the diplexer would be an a priori calibration 

action, but in practice disturbances drive the diplexer out of 

this operational point. These disturbances are mainly due to:

 1. Expansion of the cavity due to a temperature gradient.

 2. Non-stationarity of the gyrotron center frequency fgyr.

 3. Structural vibrations acting on the resonator cavity—for 

instance, those induced by cooling pumps.

Therefore, in order to tune the resonator to its desired func-

tionality and to reject external disturbances, the position of the 

movable resonator mirror needs to be controlled in real time. 

For this purpose a dedicated, mirror drive mechanism has been 

realized. It consists of a voice-coil actuator to move the mirror 

and an elastically deformable parallel leaf spring mechanism 

to guide the mirror. This type of guiding is friction-free. The 

leaf spring mechanism has high stiffness in �ve degrees of 

freedom of the mirror, whereas it is compliant for motion in 

the desired direction. To enable control of the position of the 

mirror relative to its casing a position sensor has been added. 

This optical encoder measures the displacement of the mirror 

base relative to the frame with a resolution of 0.1 µm. More 

details of this mirror drive mechanism can be found in [18].

The encoder signal from the position sensor is being 

used in an inner feedback control loop to enhance the band-

width of the mirror motion system. This position controller 

has been tuned on the basis of loop-shaping techniques. By 

doing so, the bandwidth of the mirror motion system has been 

increased from 8 Hz in an open loop to approximately 100 Hz 

in a closed loop. For the fast switching functionality of the 

diplexer, its desired set-point will be halfway the slope of both 

transmission curves, similar to point B as shown in �gure 2. 

The inner position control loop is not suitable for tuning the 

resonator to this set-point, since this would require an accurate 

model of the resonator and exact knowledge of the gyrotron 

frequency together with an absolute calibration of the mov-

able mirror position. It would be much more direct to use the 

actual power values of the output beams OUT1 and OUT2 

in a control loop, since these variables directly characterize 

the resonator behavior. Moreover, output power feedback 

will render the necessary absolute positioning accuracy to the 

mirror motion system.

A suitable error function e for the feedback control loop 

is the difference between the power of both output beams 

OUT1 and OUT2, represented by = −e OUT1 OUT2. Then, 

for the fast switching function the controller ideally tunes the 

resonator by driving the error signal e to zero. The block- 

diagram of this output beam power feedback system is shown 

in �gure 9.

Designing a controller for output power-based feedback 

is not as straightforward as for mirror position feedback. In 

resonator

mm-wave beam

-

+

controller

mirror

mechanism

cost function

evaluation

position

controller

mirror

position

mirror

position

mirror

command
OUT1

OUT2

power error

signal

Figure 9. Block diagram of the resonator feedback control system, with mirror position feedback (inner loop) and OUT1 and OUT2 beam 
power feedback (outer loop).
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the latter case the relation between the controlled variable 

(i.e. the mirror position) and the error signal is linear. The 

relation between the controlled variable and the power-based 

error signal is clearly non-linear, as is also illustrated in the 

lower graph of !gure 10. This is a result of the properties of 

OUT1 and OUT2 as a function of the mirror position. The 

power signals OUT1 and OUT2 have a non-linear gain rela-

tion with the mirror position, and they lack phase information 

(non-negative values) and are periodic with the wavelength λ 

(in the working area of the resonator). The error function e has 

similar periodicity, which means that several solutions exist 

for the mirror position that all render zero error (power equali-

zation of OUT1 and OUT2). For each period of one λ two 

error minima exist. In practice, only one particular solution 

will be acceptable for fast switching, because of the speci!c 

frequency-shift keying of the gyrotron.

The control approach to handling the non-linear behavior 

of the power error function consists of: (1) an appropriate gain 

scheduling technique together with (2) a restriction on the 

operational range of the mirror position. The limitation on the 

mirror position implies that for a selected power equalization 

point B, the allowable range of mirror positions is bounded 

by the area between the two neighboring minima, equaling 

a total position range of λ/ 2; for operation point B this is 

indicated by the black arrow in !gure 10. Within this range, 

the controller is capable of driving the resonator to the desired 

error minimum. Outside this range it will drive the resonator 

to another—though undesired—error minimum. In order to 

have the mirror motion system reject undesired disturbances 

and at the same time ignore the fast frequency-shift keying of 

the gyrotron (as intended for switching), an analog low-pass 

!lter with a cut-off at 5 kHz has been installed, to attenuate the 

fast #uctuations in the OUT1 and OUT2 power sensor signals. 

Note that mechanically induced switching (i.e. by vibrating 

the 15 kg mirror) is limited to the bandwidth of 100 Hz of the 

mirror control system.

4. NTM stabilization experiment using fast 

switching

4.1. Setup

The setup for these experiments uses similar target plasmas 

to those for modulation experiments without switching as 

described in section  2. The setup of the injection geometry 

is shown in !gure  8 (left), and the ideal phasing for both 

launchers is shown in !gure 4. For the experiments, the gyro-

tron output power (prior to modulation) was set to 490 kW; the 

relatively low value was used to avoid arcing in the diplexer 

resonator (note that the circulating power in the resonator is 

about a factor of 4 higher than the transmitted power). The 

cathode modulation voltage was set to 2.8 kV, to obtain on the 

one hand suf!cient frequency modulation, and on the other 

hand a tolerable power loss due to the concomitant power 

modulation. The diplexer control was tuned to obtain similar 

power in both launchers. Details on the launched power and 

switching contrast achieved with a FADIS are discussed in the 

next section. The generation of the NTM had to be modi!ed 

for the switching experiments since the total NBI power on 

the experimental days was limited to 7.5 MW due to hardware 

failure. Triggering of a (3,2)-NTM at this power level was 

achieved by changing to a low-density ramp-up with early 

heating as developed for the improved H-mode program [19]. 

As described in this reference, the q-pro!les generated at the 

end of such a ramp-up facilitate the formation of small (3,2)-

NTMs. After the NTM was triggered, the plasma fueling was 

increased to the levels of our previous stabilization experi-

ments, in order to end up with similar q-pro!les. In fact, the 
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Figure 10. Diplexer power transmission curves as a function of frequency (with !xed L) and as a function of mirror position (with !xed f  ). 
Upper: output beams OUT1 and OUT2. Lower: the differential power of OUT1 and OUT2; the green line shows the desired value.
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Figure 11. Three different discharges using a FADIS to switch the power of one gyrotron between L1 and L3. For each discharge several 
time traces are shown: the heating power of NBI and ECRH and the plasma current on top, in the middle the radial positions of the ECCD 
locations for L1 and L3 as calculated by RT-TORBEAM, and the position of the q  =  1.5 surface from the RT-equilibrium (all in ρpol). The 
error bars indicate the maximum expected deviation of the real positions from the calculated ones, derived in [12] for the ECCD locations 
and in [20] for the position of the resonant surface. Shown below is the positive envelope of the odd m/even n Mirnov signal and the stored 
energy. For all three discharges dashed vertical lines indicate a minimum in the Mirnov amplitude related to the launcher movement, and 
solid lines indicate the stabilization of the NTM, which is a (3,2) in all cases. Note that the noise level for these signals lies between 0.1 and 
0.2 (a.u.).
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modes were !nally observed at the same radial location with 

similar amplitude and frequency, indicating that the q-pro!les 

were suf!ciently close.

4.2. Results

Figure 11 shows the major results of the NTM-stabilization 

experiments using a FADIS.

First (top) we scanned both launchers with a large angle 

across the radial region where the NTM is expected using 

feedforward launcher control. The radial locations of the 

deposition were chosen to be radially out of phase such that 

the q  =  1.5 surface is not crossed at the same time. This 

allows one to study the effect of each launcher separately. The 

!gure  compares the deposition location as calculated from 

RT-TORBEAM with the radial location of the q  =  1.5 surface. 

Ideally, one expects the most signi!cant effect on the mode 

amplitude when the ECCD location matches the q  =  1.5 posi-

tion. Indeed, the mode amplitude (Mirnov signal envelope) 

shows a minimum close to each crossing for both launchers. 

At the second crossing with L1 the mode is even stabilized. 

We ascribe this to the two successive arcs in one NBI source, 

which appeared when the launcher was crossing the q  =  1.5 

surface; thus, the driving term of the mode (β W, mhd) was 

reduced just when ECCD was close to the q  =  1.5 surface. 

Note that at the !rst crossing with L1 (with properly operating 

NBI), the mode was not stabilized. Therefore, we assume that 

one launcher is not suf!cient for stabilization. Note that Wmhd 

rises signi!cantly after NTM stabilization.

For the next step the aim was to demonstrate mode stabi-

lization pointing both launchers at the q  =  1.5 surface at the 

same time in order to stabilize the NTM without failure of the 

NBI system. Such an experiment adds additional complica-

tion since the ECCD locations come with offsets of the order 

ρ±0.025 pol due to uncertainties of the equilibrium and the 

density pro!le [14, 21]. These offsets are unfortunately not 

constant and seem to depend on the stabilization strategy indi-

cating a (small but signi!cant) radial movement of the NTM 

as the ECCD deposition approaches. Comparing launchers 

above and below the mid-plane as L1 and L3 (!gure 8) these 

offsets cannot be expected to be correlated (and therefore to 

cancel out in our application), since the beams probe different 

radial ranges of the density pro!le and different regions of the 

equilibrium. A vertical error of the latter would even introduce 

an anti-correlation, i.e. the worst case for our application. 

These issues are currently under study using non-modulated 

ECCD for NTM stabilization, but no well developed solution 

exists yet on ASDEX Upgrade, except to raise ECCD power. 

For our experiment we concluded from the !rst crossings with 

L1 and L3 in !gure 11 (top) that both minima in the mode 

amplitude occurred at very similar reconstructed values of ρpol, 

such that we might get away with not compensating for dif-

ferent offsets. For launcher control we used pre- programmed 

ρpol, which the DCS realizes using RT-TORBEAM, and a 

model for the launcher drive (dead-times, default accelera-

tions) [22]. Figure 11 (middle) shows the result. Although the 

nominal deposition locations lie well on top of each other, 

the NTM is not fully stabilized, but all four crossings come 

with a clear minimum in mode amplitude. One reason could 

be the !nite time of the overlap between the mode and depo-

sition region. Another possible explanation relates to uncer-

tainties in the deposition as discussed before, and indicated 

in the !gure by error bars. This interpretation is motivated by 

!gure 11 (bottom), where we can get full stabilization within 

the uncertainties of the deposition location.

Fortunately, an experiment with long overlap was initiated 

by an unexpected failure of our mirror control, which delivered 

the necessary evidence for complete stabilization, as shown 

in !gure 11 (bottom). Here the mirror positions were frozen 

early in the discharge. The variation in time calculated by 

RT-TORBEAM is only due to variations of the density pro!le 

and a slight current diffusion which affects the equilibrium. 

L3 is close to the nominal q  =  1.5 surface, slightly crossing it 

as time evolves. In contrast to the discharges in !gure 11 (top, 

middle), the mode amplitude slowly reduces as soon as the 

stabilizing gyrotron is switched on. At approximately 3.8 s the 

mode stabilizes. At this time point, L1 aims nominally ρ∆ ≈ 

0.03 further inside. This clearly proves that we suffer from 

uncertainties in the mode location in the same range as those 

observed without modulation before, as we could get full sta-

bilization within the uncertainties of the deposition location.

So we have strong indications that we can stabilize the 

NTM with  ≈0.5 MW of ECCD applied ‘almost continu-

ously’ (detailed discussion at the end of this section) close to 

the O-point by using switching with a FADIS. We also know 

that we did not manage to stabilize the NTM for the same 

conditions in an earlier attempt, in which an earlier version 

of the resonator control was not able to maintain the optimum 

operational point, and the switching contrast almost vanished 

[23]—i.e. we have shown that optimization of the switching 

contrast matters, as expected from the results of section 2.

The remaining open questions !rst require an optim ization 

of the algorithm which sets the launchers. As mentioned 

above, the !ne tuning of the beam position is the topic of 

ongoing experiments on AUG, either using the mode ampl-

itude [21] or potentially the output of an in-line ECE system 

[24] for optimization. If one has con!dence that an optimized 

launcher position can be routinely achieved, one can address 

issues like ‘what is the minimum power needed to stabilize an 

NTM for a speci!c machine and its speci!c ECCD sources, for 

a speci!c beta, density pro!le and current pro!le given a cer-

tain switching contrast?’ On ASDEX Upgrade, experiments 

to study such issues do not necessarily require fast switching 

between launchers, but these issues can be addressed using 

a (modulated) gyrotron per launcher. These questions are 

beyond the scope of this paper.

We end this section  by addressing the accuracy of the 

locking of the ECCD to the O-points of the island. As a starting 

point, we refer to the discussion of this issue for the case 

without a FADIS at the end of section 2.4. A similar histogram 

approach shows that the power switching time for the 2.5 kV 

steps is  µ±6 1 s (!gure 12). In contrast to !gure 7 the ‘ears’ of 

the histogram are signi!cantly asymmetric and the maximum 

steps are larger for the rising edge than for the falling edge. A 

more detailed analysis shows that increasing voltage comes 

with a voltage overshot of 120 V, while decreasing voltage 
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tends to creep to its !nal value. Note that 100 V is the designed 

stability for the output voltage of the series modulator.

The easiest approach to determine the phases of the ECCD 

through L1 and L3 would be to assume that the central time 

of each higher-voltage plateau corresponds to a maximum of 

power through L1 and the central time of each lower-voltage 

plateau corresponds to a maximum of power through L3. In fact 

this will turn out to be a good assumption when the resonator 

control is operating well. This can be veri!ed using additional 

signals from two miter bends located between the FADIS 

and the respective launchers, which are used as a measure for 

the transmitted power, and which give the input signals for 

the diplexer control. In our con!guration these miter bends 

are located in the torus hall, and the data are sampled with a 

frequency of 50 kHz after being digitally transmitted via an 

optical !ber. The digital optical-!ber transmission comes with 

an a priori unknown delay of 10–20 µs. This old 50 kHz data 

acquisition is based on a local quartz oscillator in contrast to 

the new 100 kHz system which uses a central clock and is the 

basis for !gures 7 and 12. In order to check the identity of the 

time bases of both data acquisition systems in the µs range, 

we split the gyrotron power signal (from mirror M2) on the 

FADIS entry side, and sample it with both data acquisition 

systems, in both cases without a transmission via optical !ber. 

This allows us to correct the timing of the old 50 kHz system 

with respect to the new 100 kHz system (offset-linear correc-

tion,  µ∆ ≈t 30 smax ). All three signals (from M2 and the two 

Figure 12. Histogram and its normalized integral similar to the 
right part of !gure 7, but now for a reduced modulation depth of the 
cathode voltage (2.5 kV instead of 13 kV). This results in a smaller 
power modulation of the gyrotron and consequently the voltage 
variation at the directional coupler in M2 is much smaller. Green: 
rising edge; orange; falling edge. Shown are data for discharge 
31 631 in the time interval from 2.8 s to 5.8 s (see !gure 11 middle).

4.7326 4.7327 4.7328 4.7329 4.7330
Time (s)

0

1

2

3

7 /

L3

L1

fast

M2

slow

fast

M2

slow

L1+L3

Mirnov

4.70 4.72 4.74 4.76
Time (s)

0

1

2

3

4

L3

L1

4.7187 4.7188 4.7189 4.7190
Time (s)

0

1

2

3

4

L3

L1

L1+L3

Mirnov

Figure 13. Timing of power through L1 (green) and L3 (red) 
relative to the odd-m, even-n Mirnov signal. Additionally shown 
is the launched power as determined by the directional coupler in 
M2 and corrected for transmission and diplexer loss (blue: old data 
acquisition; cyan: new data acquisition), as well as the sum of the 
green and red curves (magenta). All except the Mirnov signal are 
given in units of 100 kW. The top and middle show the cases for 
different operational points of the FADIS for discharge 31 627 (see 
also !gure 11, top). Below, for the same discharge a longer time 
interval is shown (only L1 and L3), which allows one to locate 
the two different phases and shows that they correspond to two 
extremes of the resonator operation. The vertical bars in the upper 
two parts are used to determine the relative phasing of L1 and L3 
with respect to the Mirnov signal.
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miter bends) are voltages from diodes connected to directional 

couplers, which can be converted to incident power using cali-

bration curves. For M2 a direct calibration from voltage to 

gyrotron power exists. The directional couplers in the miter 

bends are not yet calibrated (and calibration depends on the 

chosen polarization). Assuming that the FADIS operates 

almost loss-free, the M2 signal should be a linear combination 

of the two miter bend signals, if the (common) delay time due 

to the digital optical transmission is chosen correctly. Several 

10 000 switching cycles allow us to set these quantities rather 

accurately. Here we do not use the full mathematical appa-

ratus but after some trial and error we are con!dent to have 

determined the time delay to be  µ±15 3 s and the calibration 

factors to be  ±10%. For our purpose this is suf!cient, since at 

this stage we aim to get the phasing right within /π± 4, which 

corresponds to  ±10 µs.

Figure 13 (top and middle) shows the results of such timing 

reconstructions for two different operational points of the 

FADIS. In the bottom part of the !gure  the time resolution 

is much coarser to show how the operational point varies in 

time as a consequence of the resonator control. For the rather 

rectangular power signals the limited time resolution of the 

data acquisition does not lead to arti!cial variations of the 

amplitude (there is always at least one point of each plateau 

sampled) in contrast to the expectation for a harmonic vari-

ation, but manifests itself in a variation of the widths only. 

The two operational points picked for the !gure correspond to 

the extremal values reached for the resonator control. Using 

the indicated vertical lines in the !gure  the relative phasing 

between the odd-m, even-n Mirnov signal and L3 is deter-

mined as 2.02 rad in the upper case and 2.09 rad in the lower 

case which compares to the value of 2.2 rad for the optimum 

phasing from !gure 4—about 10° off. Since the ideal phases 

for L1 and L3 are not perfectly opposed to each other, the 

error for L1 is  ≈20°. We conclude that even if an error of 

several µs is assumed we have reached the goal to match the 

phases better than /π 4.

From !gure 13, the switching contrast K ( /= −K P P1 min max) 

for both launcher channels can also be obtained. For the reso-

nant channel L1, ≈K 0.73 and is rather constant in time, as the 

operation point B is somewhat above parity. For L3, the !nite 

accuracy in the mirror position control or gyrotron frequency 

of  ±30 µm or  ±3 MHz leads to variations of K between 0.53 

and 0.95 during the shot—i.e. the average value is also around 

0.74. From these data, an average frequency-shift keying of 

only 7 MHz is derived (taking the curves given in !gure 10); 

this value, however, is signi!cantly less than the frequency 

modulation of 10–12 MHz measured before at a modulation 

frequency of 200 Hz. Nevertheless, a suf!cient switching con-

trast is obtained.

The average power, which is launched synchronously 

to the O-point from both L1 and L3, is estimated to be 

( )− =P O point 279 kW; for the average cw power on both 

launchers, we estimate ( ) =P CW 75 kW. Here, a gyrotron 

output power (without modulation) of 490 kW, a general trans-

mission ef!ciency of 95%, a gyrotron power modulation of 

24%, a loss for high-order modes in the resonant channel of 

5%, and a diplexer insertion loss of 6% and 2% [16] for the res-

onant and non-resonant channels, respectively, were assumed.

Table 1 summarizes the power deposited in the O-point and 

X-points with the diplexer and gives a comparison with the 

power injected in the reference experiments.

5. Summary and outlook

5.1. Summary

The present FADIS experiments on ASDEX Upgrade with 

the diplexer Mk IIa have clearly demonstrated that ef!cient 

NTM stabilization is possible via fast switching of the ECCD 

power between two launchers, synchronous to the rotating 

islands of the 3/2 NTM. For this demonstration experiment, 

many ingredients were required: The Mk II diplexer had to be 

integrated into a pair of transmission lines, which were con-

nected to a top and a bottom launcher of the ECRH-2 system. 

Careful preparation of the experiment was mandatory. In par-

ticular, the magnetic !eld and the aiming of the launchers had 

to be controlled thoroughly for optimum power deposition in 

the islands. The signals from the Mirnov coils had to be pro-

cessed via many steps to give a reliable signal for the phase-

correct 2.8 kV voltage modulation of the gyrotron, resulting 

in a synchronous frequency-shift keying of 6–10 MHz. An 

optimum switching contrast was obtained by the fast control 

of a resonator mirror of the diplexer, compensating thermal 

and gyrotron frequency drifts. Thus, a switching contrast of 

typically 74% was reached, and complete NTM stabilization 

could be obtained with a launched power of below 400 kW 

using O-point deposition, while with X-point deposition, no 

stabilization resulted.

If one just takes this experimental result—with all its 

limitations—and the !ndings from the experiments without 

a FADIS, one can conclude that the required ‘installed gyro-

tron power’ for complete NTM stabilization with a FADIS 

was lower by a factor of about 1.6, compared to the CW and 

modulation reference experiments. Notably, due to the higher 

stabilization ef!ciency for O-point modulation compared to 

Table 1. Available output power (kW) for the gyrotron (peak power, average power), average injected power at the launcher(s), and power 
deposited mainly in the O-point and X-point of the islands for the FADIS and the reference experiments.

Operation
.

Gyr.
P peak

Gyr.
P av.

Plasma
P inj.

O-point
P

X-point
P

Stabilization
reached?

FADIS 490 431 354 316 38 yes

Power Mod. 780 455 410 350 60 yes

Power Mod. 780 455 410 60 350 No

CW 780 780 700 350 350 yes
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X-point modulation and CW operation, we assume a ratio 

/ >w w 1CD marg  for the diplexer experiments as well.

It should be noted that the present FADIS experiment on 

ASDEX Upgrade clearly is a proof-of-principle experiment, 

which for various reasons is not optimized for a quantitative 

analysis of the minimum power required for NTM stabilization: 

as the AUG ECRH employs only one launcher per gyrotron, a 

switching experiment between two launchers disables the oper-

ation of one gyrotron. Moreover, the power through Mk II is 

limited by arcing to about 500 kW, as it operates at atmospheric 

pressure. (Note that a transmitted power of 500 kW corresponds 

to about 2 MW in the diplexer resonator, if operated at point A). 

In addition, for correct FADIS operation, permanent control of 

the diplexer is required. For ASDEX Upgrade, this means that 

NTM experiments with synchronous power modulation of one 

gyrotron are much simpler and equally effective, as was shown 

in the paper. Further diplexer experiments at ASDEX Upgrade, 

therefore, will aim at in-line ECE to explore the possibilities of 

launcher control [25]. These should also allow a precise assess-

ment of the power requirements for the different schemes.

5.2. Outlook: options for applications in large-scale ECRH 

systems

This paper demonstrates the FADIS application of resonant 

diplexers, which is only one feature of these devices. In future 

high-performance ECRH systems, where dedicated launchers 

are used for basic heating and current drive applications on the 

one hand, and for mode stabilization on the other, diplexers 

could play a central role in the DCS. Some aspects as well as 

integration concepts for various diplexer types are discussed 

in [26]. In this case, non-resonant outputs would be connected 

to standard launchers, and resonant outputs would feed dedi-

cated launchers for mode stabilization. Thus, according to the 

physical needs, the EC power could be arbitrarily distributed 

between launcher pairs by simply tuning the diplexer reso-

nance frequency, while the gyrotrons run continuously.

Therefore, when NTM stabilization is necessary, the 

required power is immediately available at the NTM launchers, 

without the usual delay of typically 2 s caused by the switch-

off of the gyrotrons during the movement of the miter bend 

switches. When the effective diameters of the stabilizing 

beams are larger than the typical island sizes, e.g. by imper-

fect (mutual) alignment of the NTM beams, broadening of 

the beams by #uctuations, plasma parameters, and deposition 

radii [7], synchronous EC power deposition in the O-point is 

needed. Then, a relatively small gyrotron voltage modulation 

synchronous to the rotation frequency of the islands together 

with proper tuning of the diplexer will yield a strong amplitude 

modulation in the resonant diplexer output, i.e. at the NTM 

launcher, and thus yield high stabilization ef!ciency. The 

remaining (modulated) power at the other diplexer output, i.e. 

the standard launcher, is used to continue the ECRH applica-

tion as before. The isolated input port of the diplexer can be 

used to receive ECE radiation from the plasma by sharing the 

NTM launchers with the (forward) ECRH [27]. After appro-

priate processing, the in-line ECE signal can be implemented 

into the control system of the experiment to steer the launchers 

for optimum deposition of the power in the NTM islands [28]. 

This port is also available for using the connected launcher for 

any microwave diagnostics operating around the EC frequency.

Resonant diplexers are also bene!cial for the reliable 

operation of the ECRH system. The mode puri!cation char-

acteristics of the resonator [29] can improve the focusing and 

reduce the possible beam squint of NTM beams, as low-order 

spurious (i.e. undesired) modes in the waveguides distorting 

the launched beam pattern predominantly exit the diplexer 

at the non-resonant output port. Very-high-order modes are 

absorbed in the (absorber-loaded) resonator casing; this !l-

tering reduces the thermal loading of the sensitive cuffs of 

the vacuum windows in the transmission lines as well as in  

the launcher components [30]. A stray radiation detector in the 

diplexer can serve as a monitor for mode purity. Eventually, 

if an upgrade of the ECRH power is needed, the second input 

ports of the diplexers could be used to connect further gyro-

trons, as the diplexer can operate as a power combiner [16].

Naturally, the integration of diplexers in ECRH plants 

increases system complexity. Depending on the type, diplexers 

need space for installation, and for when they replace the 

mechanical waveguide switches routing the power between 

launchers. Evacuated transmission lines are mandatory to 

avoid arcing in the diplexer resonator. Additional insertion 

loss for the main HE11 mode must be taken into account: for 

a typical design of a resonant diplexer, the HE11-loss in the 

non-resonant path is about 1% ; the HE11-loss at the resonant 

output is about 4% [30]. This loss needs to be cooled from 

the mirrors and the internal stray radiation absorbers; cooling 

concepts for the mirrors are available from developments for 

ITER and W7-X [31]. In addition, very-high-order spurious 

modes will be absorbed in the diplexer as well, and have to be 

considered in the cooling capacity. Note that low-order spu-

rious modes are not absorbed, but are transmitted mostly to the 

non-resonant output. Diplexers have some cross-talk (typically 

2%; see !gure 2, right) between output ports, which may need 

extra measures once a launcher channel is out of order. Control 

of the diplexer needs to be accounted for as well, including the 

processing of controlling and timing signals, as was described 

before. Note that other diplexer types [32] may have less loss 

or need less space for integration, but their scope of application 

is limited compared with ring resonator devices.

When accepting the extra technical effort concomitant 

with the use of diplexers, a universal EC power management 

system can be created, which in principle is adapted to the in 

situ control of ECRH and ECCD in the experiment. A possible 

use in ITER by replacing (part of) the waveguide switches in 

the junctions between the upper and equatorial launchers is 

subject to a detailed assessment with careful balancing of the 

advantages versus the implications and design changes of the 

well advanced ITER ECRH system.
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