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SAMENVATTING

Statistische methodes in de fysica (evenals in de chemie of bijv.

de sociologie) voor de beschrijving van 'mocvuxoeojacidie' systemen zijn

vaak nodig ten gevolge van de onmogelijkheid of onwenselijkheid van een

gedetailleerde 'micAo&c.opit>che.' beschrijving. Afgezien van de experimen-

tele of fundamentele onmogelijkheid, is niemand geïnteresseerd in bij-

voorbeeld de precieze posities en snelheden van alle 1026 molekulen in

zijn huiskamer, terwijl aan de andere kant het aantal microscopische

objecten (zoals molekulen, photonen of mensen) vaak toch niet voldoende

groot is om tevreden te zijn met een zuiver deterministische (d.w.z.

niet-stochastische) beschrijving van het macroscopische systeem (bijv.

een reactie vat, laser of populatie).

Statistische modellen zijn zelden exact oplosbaar. Daarom is het,

zeker in de fysica, zinvol te zoeken naar niet-exacte oplossingen

waarvan gegarandeerd kan worden dat ze de werkelijke oplossingen steeds

dichter zullen naderen naarmate het systeem meer macroscopisch wordt.

Dit laatste wordt uitgedrukt in een kleine, pcuwmutvi, i.h.a. aangeduid

als het inverse volume van het systeem.

Laat nu een systeem stochastisch beschreven zijn d.m.v. de zogenaam-

de Markovse master vergelijking. En laat ons beginnen te veronderstellen

dat de toestand van het systeem in de macroscopische liniet stabiel is

in de lineaire benadering, d.w.z. onder zeer kleine verstoringen. Zo 'n

toestand heet normaal. Indien er slechts één normale deterministische

toestand bestaat, spreekt men van een mono&tabJ.t>JLe. faze van het systeem.

Indien er evenwel, als gevolg van het wijzigen van een externe grootheid

(de zogenaamde pamp-poAam&teA, bijv. temperatuur, electrische stroom,

chemische concentratie of mechanische kracht) twéé normale determi-

nistische toestanden mogelijk zijn, spreekt men van een blktah-LeJLi faze.

De tot dusver bekende ontwikkeling van de master vergelijking is toepas-

baar op zowel de monostabiele toestand als op de twee separate toestan-

den van de bistabiele faze. Ze is evenwel ongeldig in het cAA&L&che. ge.-

fa-ced van de pomp-parameter, dat de normale monostabil i tei t scheidt van

de normale bistabil iteit. De in dit proefschrift gegeven ontwikkeling is

wél geldig in het critische gebied.

Het wezenlijke idee van de theorie is de master vergelijking te

separeren in een niet verder te reduceren wJLde. onds. deel en een

restant, dat steeds kleiner wordt naarmate het systeem groter wordt.

Deze separatie is mogelijk na een precieze quanti fi eering van het



critisehe gebied. De nul de orde stochastische benadering is een tamelijk
eenvoudige Fokker-Planck vergelijking, die de essentiële aspecten van het
proces bevat. De oplossingen (eigenfuncties) van deze diffusie vergelij-
king worden besproken. Als zij eenmaal bekend zijn kunnen hogere orde
c.oM.e.ctLu, in de oorspronkelijke master vergelijking op systematische
wijze in rekening worden gebracht.

In het eerste deel van dit proefschrift wordt het probleem van dif-
fusie in een externe potentiaal behandeld. De appendix van deel I bevat
een gedetailleerde discussie van de oplossingen van de irreducibele
Fokker-Planck vergelijking. In het tweede deel van dit proefschrift wordt
de ontwikkeling gegeven voor het meer algemene Markov proces. De appendix
van deel II is ter illustratie gewijd aan het magnetische 'mean field'
I sing model.



SUMMARY

In this thesis it is shown how to solve the master equation for a

Markov process including a vûtlccut pa+nt by means of successive approxi-

mations in terms of a &m<M pasiamvte.».. A critical point occurs if» by

adjusting an externally controlled quantity, the system shows a transi-

tion from normal mow&tab&i to bistable, behaviour. Examples of the exter-

nal quantity (the pump ptvuuruiteA) are temperature, electric discharge

current, chemical concentrations and mechanical force. The appropriate

small parameter may be either the diffusion coefficient or the inverse

size of the system. The latter is usually given by the volume or by the
total number of constituents such as spins, photons or molecules.

The fundamental idea of the theory is to separate the master equation

into its proper irreducible part and a corrective remainder. The -iM-zdu.-

cÀJole. on. z&wth oidin stochastic approximation will be a relatively

simple Fokker-Planck equation that contains the essential features of

the process. Once the solution of this irreducible equation is known, the

ktgfreA ondifL co^iecttowo in the original master equation can be incorpo-

rated in a systematic manner.

In part I of this thesis we consider the problem of diffusion in an

externally applied potential showing a monostable to bistable transition.

The appendix of part I presents a discussion of the irreducible solutions.
In part II we examine the general Markov process. The appendix of part II

is devoted to an example, namely the magnetic mean field Ising model.
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C R I T I C A L D Y N A M I C S

THE EXPANSION OF THE MASTER EQUATION INCLUDING A CRITICAL POINT

PART I: DIFFUSION PROCESSES -

ABSTRACT

The master equation for a diffusion process that takes place in an

external potential will be evaluated systematically in terms of a small

parameter, namely the diffusion coefficient. Contrary to the known

expansion the present solution is not only uniformly valid in the normal

monostable, and bi&tabte. cases, but also applies at the cAAM.caJL po-int.

This has been achieved by using in zeroth order approximation the

complete set of eigenfunctions belonging to the appropriate irreducible

description of the process. Successive higher order corrections are

evaluated explicitly.

1. INTRODUCTION

One of the outstanding problems in theoretical physics remained the
proper description of the connection between a system's normal stochastic
features and its critical dynamical behaviour. In brief, the formidable
difficulties encountered are due to the occurrence of widely separated
scales in both space and time. This statement might well deserve some
further elaboration.

For that purpose we shall consider a diffusion process in one
dimension z with diffusion coefficient v, for example of ions in a
membrane, subject to an external potential U(z). The probability density

P(z,t) obeys the master equation [1, 2]

— , (1-1)
3t 3Z 322

where the prime denotes differentiation with respect to the argument.
Totally disregarding fluctuations would mean setting u=o. In that case
(1.1) reduces to the Liouville equation associated with the determinis-
tic equation of motion

z=-U'(z) . (1.2)

Normally, in order to find the correct stochastic description in terms
of v one should return to (1.1) and set [3] z=ip(t)+w^C; cp(t) is a

- r-



solution of the deterministic equation (1.2). The leading part of (1.1)
becomes a linear Fokker-Planck equation of order v" in terms of C.[3, 4]:

at 3ç aç
Higher order corrections can in principle be calculated systematically
in powers of v^. Let us for clarity confine ourselves to the simple
potential

U(z)=2°'z%-jz'' , (1-4)

which is shown in figure 1. This potential involves a so-called Landau
critical point for a=o[5]. If a>o, it has only one minimum, at z=o,
corresponding to the steady state solution of (1.2). Any solution ip(t)
ends up in that equilibrium state, which is both locally and globally
(asymptotically) stable in the linear approximation (see e.g. [6]) . In
this monostable case the zeroth order approximation for the equilibrium
fluctuations is therefore indeed given by (1.3) with U"(ip)=U"(o)=a>o. So
the fluctuations are of order v% and there is one relevant time scale of
order unity.

The fundamental solution of (1.3) is a Gaussian. The Gaussian
property of the zeroth order propagates here over finite time intervals
because of the local linear stability of the deterministic state. Such
situations will be called m>moJL. Although the Gaussian propagation
property remains true for diffusion processes over sufficiently small
time lapses, it is lost for finite time intervals if the stability
properties of the system become more involved due to nonlinearities [7].

If a<o,U(z) develops one maximum at z=o, and two minima at z=±(-a)^.
See figure 1, and e.g. [8]. That is, the previously stable equilibrium
state ip0=o becomes unstable. Clearly, the linear noise approximation
(1.3) at this unstable state breaks down after a time period of order
lnu~* , although several more or less ingeneous attempts have been made
to extend its validity [9-12]. After such a time period the initial local
fluctuations (of order v%) grow to global size (of order u°) and the
anharmonicity of U(z) becomes essential.

In the deterministic approximation the process terminates in one of
the two locally stable steady states <p+, completely predestined by the
initial condition [8]. In a stochastic description (disregarding initial
values in a small neighbourhood of order v% of the unstable state <p„=o)
the system also tends first on the time scale t (of order v°) to one of
these two minima. However, in the end it diffuses further partly into
the other well. This sluggish process takes place on a time scale which

- 2 -



aso

7. The potential U=U (z)
according to (1.4). Note that
U ( z ) s U ( x ) , the irreducible

Ot K

potential (3.1). If a<o: depth

of wells (i.e. barrier height)

2. The Schrödinger

potential V(x) according to

(3.11). The x-axis has been

drawn at V=-^K. If K->-<» :

depth of outer wells is |K|;

barriers height becomes

- 3 -



is essentially determined by the Arrhenius-Boltzmann factor e"a ' v

connected with the potential barrier height [8, 13-16]. If a is negative
of order u° , and one neglects this so-called Kramers' diffusion rate

[13], the system may be approximately described by two isolated local

Gaussians [10, 17] which are solutions of (1.3) with U"(cp)=U"(ip+)=-a>o.
The above-critical momo&tabte. case (a>o) and the below-critical

o-uiafa/.e case (a<o) are separated by the c/u.£ico£ point a=o. Here the

potential (1.4) has one single minimum at z=o, which is very broad. Again

consult figure 1. The potential is essentially anharmonic. Hence,

although ip0=o still is asymptotically stable, there is no stability in
the linear approximation. Obviously, (1.3) ceases to be valid as zeroth

order approximation: initial fluctuations would grow beyond bound. If we
set [4] z=y*n« we obtain the nonlinear Fokker-Planck equation

Where A=u"'a. Clearly, in a range where the pump poAam&tet a is small

of order v%, A is of order unity and (1.5) presents a correct zeroth
order. Note that this range of a includes the critical point a=o. The
time scale T=u%t reflects the slowing down of the critical dynamics. The
critical fluctuations are of order v% and therefore are much larger than

the normal fluctuations.

In summary, it should be clear that the normal Ansatz z=ip+u% cannot
lead to a systematic evaluation of the diffusion process (1.1) with

(1.4) for small v, that will be uniformly valid for all a. The reasons

can be traced to the quite diverse scales both in space (z~v% if a>o;u^
if a=o;y^i and u° if a<o) and time (t~u° if a>o; v~* if a=o; u° and eI//w

•if a<o) , which will be subtly intertwined in a unified treatment. In
this article it will be shown how such a unified treatment of monostable,

critical and bistable behaviour can be achieved for more general poten-
tials than (1.4).

The essential point is the recognition of the proper critical range,
where a is of order u% z is of order v% and t is of order t>~'. Using

the appropriate scale transformations one then separates the master
equation into its ^nindncAbtn zeAotk oideA. part and a corrective

remainder (section 2). The irreducible part will be of the form (1.5).

Having obtained complete knowledge of the eigensolutions of the irre-
ducible problem (section 3 & appendix), one knows its propagator (Green's
function) and can proceed to the inclusion of successive tu.gh.eA
ccii.tecu.ow4 (section 4).

- 4 -



2. REDUCTION OF THE PROBLEM

Let us investigate a diffusion process described by (1.1). Consider

the general symmetric potential

U(zHa(l)Z
2V3)z\|a(5)z%— . (2.1)

a changes sign at the critical point and a is assumed to be

positive. The coefficients do not depend on v. Obviously, the potential

(2.1) has one minimum at z=o if <x ( 1 )>o. It changes into a maximum when

<x ( 1 )<o. In that case U(z) has two minima at z=ip+, where <p_=-<p+. Throughout

it is presumed that there exist no other minima along the real z-axis.

For example, the deterministic equation (1.2) with (2.1) has the follow-

ing stable stationary states if a (1)=a,a (3)=a (5)=l and all other

coefficients are zero:

if oieo ,
,(-) - , ( 2 - 2 )

if a<o

2.1 The. cAA.tic&JL /teg-cow and above.:
Here a (1)>o or negative of order v%. If one introduces the scale

transformations

z=Ai, t=i»"*T, a (1 )/cx (3 )=A (2.3)

into (1.1) with the potential (2.1) one finds

(2.4)
3T 3n 3n~

Considering formally n,T and A as quantities of order unity, and

disregarding terms in (2.4) that vanish as v±o, one obtains the

irreducible part of the equation, namely

8P(x.s) = -L(<X+X
3)P44 , (2.5)

3s 3x 3x

where we have set

K = A [ a ] (2.6)

in order to have the equation available in standard notation; K is the

standard pump parameter. Eq. (2.5) shows that the irreducible part

represents in fact a one parameter problem. Higher order corrections

come in successive powers of v%. In section 4 we will show that these

corrections indeed remain small in terms of v for all K>O, that is for

all a(1)>o.

- 5 -



2.2 The. UiÀiical. po<Lnt and beJLow-

Here (a(1Uo) the situation is complicated by the existence of two
stable states. In order to find the correct irreducible description
of the equilibrium fluctuations we shall need a certain reordering of
coefficients in the potential, as will be shown below. For that purpose
we must explicitly introduce the deterministic states <p+, which
correspond to the precise positions of the minima of U(z) , that means to
the zeroes of U ' ( z ) . Since the force also has the unstable zero <PO=O,
we may formally write it as

U'(z )=z[a ( 3 ) ( z -<p + ) ( z -< |>_) + —+a ( 2 m "" 1 ) ( z - ( p + ) i n ( z - t p_) m +—] . (2 .7 )

Usine; <p_=-ip+ and the identity z^ = (zz-<p*)+q>* in the original form (2.1)
of U(z) , and invoking the binomial theorem, one obtains the relation

;m=l,2,— (2.8)
k=m

between the new and old coefficients. Incidentally, a ( 3 ) can be easily
cast into closed form, either from an algebraic manipulation with (2.8)
or directly from (2.7) . This yields

. (2.9)

For the special case (2.2) a(1)=a,a(3)=a(5)=l , while all other coeffi-
cients are zero, so that the only nonzero renormalized coefficients may
be given explicity as

a(s)-l+ai£V"M? , a(5)=l . (2.10)

In general , if one now introduces the scale transformations

z=Ai, t=-y"^T, (p*=-^V (2.11)

into (1.1) with the renormalized potential according to (2.7) and (2.8),
one finds

3T

Considering formally n,T and V as quantities of order unity implies by
virtue of (2.11) that £ is of order A In view of (2.8) the
a(2:n+i)_a(2m+i)+ô ^ remain of order u° . Disregarding then in (2.12)

terms that explicity vanish if v-Vo, one obtains the irreducible part of
the equation below the critical point. This result is readily transformed
into the standard form (2.5) if we set

x=n[a(3)]\ s=T[a(3)]\ K=V[a{3)]^ . (2.13)

- 6 -



In section 4 it will be shown how the above renormalization guarantees
the higher order corrections in (2.12) to remain small in terms of v for
all «o, that is for all a(1)<o.

2.3 Some. CjOtme.nt&

We have seen how the master equation (1.1) with the potential (2.1)
reduces in the limit u-K> to the standard form (2.5). Note that the
transformations relating the original variables and coefficients to x,s
and K are different above and below the critical point (although (2.3)
applies to the whole critical range). Nevertheless, the irreducible part
of U(z) is given for any a ( l ) by a quartic form. This is the form of
potential used in the introduction to illustrate the essential features
of monostable, bistable and critical dynamics.

Well above the critical point in the normal regime <x ( 1 ) i s positive
and of order unity, so that by (2.6) and (2.3) the pump parameter
KSAsu a (1> tends to plus infinity. Rescaling then in (2.5) according
to X=[K/O ] £, which in effect amounts to z=u%, one easily retrieves
the normal linear noise approximation (1.3) with <p=<p0=o as the leading
part of (2.5).

On the other hand, in the normal regime well below the critical point
a is negative and of order unity, so that cp+ are of order v°. Hence, by
(2.13) and (2.11) K=V=-U >+ tends to minus infinity. Setting then
x[a(3)]"*=±(-V)^-n;''c, which in effect corresponds to z=tp++u^, one
readily obtains in leading order (1.3) with -p=cp+, which is the correct
Gaussian linear noise description locally around these stable steady
states. Further it is not difficult to see that the above-critical and
below critical formulae indeed smoothly connect at the critical point

a ( 1 ) =o .
In contrast with the normal linear noise approximation [3, 4], the

irreducible problem (2.5) does not allow the computation of moments
explicitly in successive higher orders of v% directly from the differen-

tial equation due to its nonlinear drift term (see also [18]). Therefore

one must know the solution of (2.5). Of course, it suffices to know its

Green's function, also called transition probability or propagator.

- 7 -



3. THE IRREDUCIBLE PROBLEM

Let us repeat (2.5) here as

3P(o)(x.s) = _3_,

3s 3x

Eq. (3.1) has been used occasionally as a model for the single mode
laser (see e.g. [19]). although a physically realistic description would
involve not only intensity but also phase diffusion [20-23].

The propagator of (3.1) will be written in terms of the ei gen-
solutions of the equation, which has the natural boundary condition
P t o ) ( x , s)-o if x+±oo, as follows (also see [8, 15, 24-29]):

P ( ' J ( x . s | x 0 , o ) = z P^WQ'^xJe-^5 . (3.2)
n=o

Here Q^'fx) is the adjoint eigenfunction of P(°'(x) defined by

P(^)(x)=P(')(x)Q(')(x) , (3.3)

P(0
)(x)=W0exp[-UK(x)] . (3.4)

NQ is the normalization factor of the stationary solution, corresponding
to the lowest (zeroth) eigenfunction (because it has no zeroes). The
Q ( ° ' ( x ) obey

dXÜ-u.(x)dQÜV>Q<°>(x)=o . (3.5)
dx' K dx

Clearly, if y^W^o we have Q(°)(x)=l, which by (3.3) indeed belongs

to the stationary solution. The P'̂ X) and the Q(°'(x) form a biortho-
gonal and presumably complete set (see e.g. [24]):

6 , (3.6)

I P ( ; ) (x)Q ( ; ) (x c )=6(x-x 0 ) . (3.7)
n=o

Equilibrium quantities now take on relatively simple forms. For example,
the correlation function becomes

r(s)= ƒ dx ƒ dx^xP^x.slx .0)P7(X ) (3.8)
— CO — OO

oo 2 (°)

= I <x>ne'y n s , (3.9)
n--o

where

- 8 -



<x>n= ƒ P M x d x (3.10)
-co

represents the first moment of the n-th probability ei genf unction.

Rapid insight into the eigenspectrum can be obtained by transforming

the original eigenvalue problem to its sel f adjoint representation. Put-

ting Pn
=PgSn one obtains the Schrödinger-like equation (seealso [8, 24,

26-28, 30-33])

dx > (3.11)

V( x) =JIT 2 - JIT =- jK+i ( \<2 -3) x2+iKX^x6 .

The potential V ( x ) is shown in figure 2. As V(x)-»- + °° if x-*-±«> there

will be a pure point spectrum (see also [24, 34-36]). The properties of

the ei genf unctions S (° ' are useful to gain insight in the higher order

corrections in the full master equation ( (2.4) or (2.12)), because in

perturbation theory the pertinent matrix elements involve in effect the

products P'n'Q^S^S^. See section 4. However, as can be seen for

example from (3.10), the original probability ei genf unctions (and their

higher order corrections) will be the ultimate relevant ones in the

equilibrium quantities. Presently merely a description of the properties

of the eigensolutions will be given, sufficient to proceed to higher

orders in the master equation. More details can be found in the appendix.

See also figure 3, and [27, 33].

3.1 We££ above tiie. vuJticjoJL vo-Lnt

Here K-*°°; both U (x) and V(x) have only one minimum at x=o. Resca-
K i

ling to the asymptotic local variable p=x<S one readily shows that the

ei genf unctions S ( 0 ) ( p ) neatly tend to the quantal harmonic oscillator

eigenfunctions, the Weber-Hermite functions. This implies that x will

be of order K~'. The eigenvalues are y ( ° > s nK, with n=0, 1, 2,-—.

3.2 i he. CAÀJU.COJL fte.g£on

Here K^O; both U (x) and V ( x ) become relatively broad, which reflects

the large critical fluctuations, so that x will be of the order of one.

If K>6^2.45 V(x) still has one minimum; if |ic|<6^ it has one maximum

at x=o and two shallow minima (at x=±24=1.19 if K=O); and if K<-6 it

attains its typical below-critical structure with three minima separated

by two barriers. At the critical point no known special functions of

- 9 -



Fx'gote 3. Eigenvalues u of irreducible problem for m=o through 5.
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mathematical physics exist to describe this system. Even a WKB-analysis
will not be very accurate, in particular not for the dynamically
important low lying eigenvalues. Such analysis for K=O results in

y(°)=2"^(mrV'53l.66n^ (see also [37]) . Further, using the simplest
polynomial trial functions for the lower Q ( 0 ) ( x ) in the pertinent
variational principle (see the appendix, and e.g. [24, 27, 34, 38], one

obtains for example u(^=2r(5A)/r(3A) £1.48. Detailed numerical anal-
ysis [33] reveals that the correct values for some of the lower
eigensolutions at K=O are ^'=1.37; v ( ° 2

} =4AS; and y'^S.ZS. The
important facet here is that the eigenvalues are of the order of one, in
contrast with being very large (of order K) outside the critical range.
This represents the critical slowing down.

3.3 UM beJLovi the. cMtical po-int

Here K->— °°;V(x) takes on the typical shape shown in figure 2. Three
deep local minima, one inner at x=o and two outer at X+=(-K) , are
separated by two high barriers. The outer minima almost coincide with
those of U (x) . See also figure 1. Transforming in each of the local

L

wells of V ( x ) to the appropriate local variable (P=X(-K) or
p=(x-x+)(-2ic)^), one sees that there exist asymptotic eigensolutions
S ( 0 ) ( p ) which are locally given again by the harmonic oscillator Weber-
Hermite functions. Therefore, although x is globally of order (-K)^, it
will locally be of order ( -< ) " . The local eigenvalues become
u(0)=(n+l) |K| for the inner well and u ( 0 )s2niic| for the outer wells,
with n=o, 1, 2,—. In view of the global symmetry of V ( x ) the outer-
solutions of course combine in even and odd pairs. The spectrum may then
be described as follows.

First comes one doubtvt, formed by the even and odd paired outer
functions with p ( o ) so. The even function with u (° '=o of course is the
stationary solution. It can be shown [8, 14, 15, 26-28] that the odd

, , _ K 2 /4
one has an extremely small but nonzero eigenvalue u =e , where

K /43UK(o)-UK(x+) represents the height of the potential barrier in
(3.1). This corresponds to Kramers' diffusion rate between the two
metastable states X+=(-K) . Further, due to the normalization (3.6) one
has in (3.4) that N~£e~K2/4.

Second, there exists a set of 4-twg^e/ti, namely the even inner

solutions with u^n-z^2""1) H » where n=l, 2,---. In view of the
normalization (3.6) the inner functions S ( 0 ) are of order unity in terms

-K2/4of e ' . Regarding their definition this implies, however, that the

- 11 -



Pn(x) Sn(x)

4. Irreducible ei genf unctions far below the critical point; n=o

represents the stationary solution; n=2 is the lowest singlet solution.

S3 (x)

5. Asymptotic (K->~°°) odd ei genf unctions S3(x) and 55(x) of
lowest triplet. Upper sketches: weak degeneracy (weak coupling). Lower
sketches: strong degeneracy (strong coupling).

- 12 -



inner probability eigenfunctions P(0)are of the order of [P*"']^-^
-K"^ /8which means very small of order e ' . See figure 4.

Third, one observed a set of tnApteAi,, consisting of an odd inner

solution and two (even and odd paired) outer solutions with
u(°n-iay(InSy(°i+iS2nlKl ' Where n=1' 2 '"~- Tne odd m6"*61"5 of the

asymptotic triplets may mix, of course. There are two possibilities.
Either the higher order corrections in terms of K"1 to the local eigen-
values are different for the inner and outer wells. In case of such weak

degeneracy it can be shown that the true eigenfunctions are indeed

essentially confined either to the inner or to the outer well (see the

appendix). Or the degeneracy is lifted only by ever present exponentially
small differences (due to the finiteness of the exponential barriers).
In case of such &&u>ng degeneracy it can likewise be shown that the inner

and outer odd triplet members combine on equal footing. See figure 5.
Curiously, so far we have not been able to show which case actually

occurs. Nevertheless, in any case the probability eigenfunctions P
-K /8 £

2
/4near x=o will be asymptotically small of order e 'or e ' if

K-*-°°. Therefore, with reference to (3.10), ultimately the actual inner

functions do not contribute anymore in equilibrium quantities.

Combining the above mentioned features of the eigenspectrum of (3.1)
one arrives at figure 3, that has been obtained from extensive numerical

calculations [33].
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4. HIGHER ORDER CORRECTIONS

Equations (2.4) and (2.12) may be written in- a single formula,

-A(-L,x)P . (4.1)
3s 3x 3X 9x

where

2 ( > x ) + " " • (4'2)

Below the critical point the perturbational operators are given by

and so forth. Above the critical point the perturbational operators are
obtained from (4.3) simply setting K^O and replacing the renormalized
a.^ ' by the original a(k). One obtains the general eigenvalue problem as

. (4.4)
dx dx K dx

It will be convenient to cast (4.4) in matrix form. Let

P(x)=I criP
(°>(x) , (4.5)

where the P l° ' (x) are the eigenf unctions of the irreducible problem.
Inserting (4.5) into (4.4), multiplying with the adjoint eigenfunction
Q k (x) and integrating over all x, leads to

I l / c = o , (4 .6)

where we have used (3.6) and introduced the matrix elements

Eq. (4.6) is equivalent to (4.4). It is the starting point for our ap-
proximation scheme.

4.1 The. even &ohjutiont>
We insert (4.2) and

into (4.6) and collect coefficients of equal powers of ü . Defining

u^)=y(n
)-y(ok

), this yields:

- 14 -



( 2 ) _ r | . ( 2 ) „(i) r(i) (O f -d ) - ! , (o) /4 1 3 \
ckn '[l/kn +

AJn "k* cJln y n ckn J/unk ' <4 ' ld '

and so on. From section 3.2 one infers that both x and u . are of order
nk

v at the critical point, so that the validity of the above scheme is

obvious in that case. It remains to demonstrate that (4.8) and (4.9)

retain their significance as systematic perturbation series even in the

normal regimes well above and well below the critical point.

4.1.1 We££ above, the. c.tcti.ca£ poi-nt

From section 3.1 it is seen that here X~K , which will be of order
w , while u(0)~< is of order v . Hence, the matrix element l/M* ', with
p=l, 2, — , defined by (4.7) and (4.2), becomes of order y p + 1 . See

below (4.3). Then it is not difficult to see that \i p becomes of order
i>i(P+'i and c (P' of order ^(P+2). So, if we define v^^'P^f and
c(P)=uHp+2)a(p+D s the XCP ) and a(p) will be of order y»_ inserting this

K K. n k.
into (4.8) and (4.9), one finds

^Xn'^kn)*--- ' ^4 '14)

X - X ' « t X I X ( ; )
+ — , (4.15)

where we have set al/=c,,, \=w and X^^y^'v^, which are of order u°K K n n
here. Clearly, also well above the critical point the higher order
corrections come in successive powers of v. The actual perturbation
parameter becomes here v itself, instead of the critical u . Note
further that the expansion is not a true power series as both the zeroth
order and the matrix elements also contain higher orders as well. Final-
ly, one easily convinces one self of the correctness of the absence of
the first order term in (4.14) and (4.15). This correction of order v
is here fully contained already in the irreducible solution.

4.1.2 We££ beA.ua the.

We infer from section 3.3 that due to (3.6) the inner solutions are
of the very small order e"K ' near x=o as the outer solutions are of
the order of unity near x+. Also see again figure 4. Hence, in any

- 15 -



pertinent equilibrium quantity, that means moments like (3.10), we can
dispense with the even inner solutions*. In order to investigate the be-
haviour of the V., for the outer eigensoluticns we set according to
section 3.3 again x=±(-K)^+p(-2ic)"^ into (4.7) with (4.2) and (4.3). This
yields that l/.'P' will scale up to order v , independent of p=l, 2,-—.

/ \ _L (0\

One then easily observes that jrp' becomes of order v~ , while cv£'
remains of order v" . Therefore, setting u'[|'=u x'jjj' and introducing
again the order unity quantities X=yu^ and \ = v ( v * one obtains here:

A + ^ W ^ — • (4.17)

Hence, also well below the critical point the scheme retains its validi-

ty. The corrections come in successive powers of w , instead of v as
above the critical point, because the original potential U(z), ie. (2.1),
is symmetrical about z=o but not about z=<p+. As in section 4.1.1, note
that the expansion is not a genuine power series.

4.2 The. odd solutions,

The preceding nondegenerate calculation scheme for the even solutions
also applies to the lowest odd solution P1§ that is the odd member of
the below-critical doublet. See section 3.3. However, in view of the
symmetry of the original problem and the presence of two odd eigen-
solutions of the irreducible problem within each triplet far below the
critical point, we must now turn to pseudo-degenerate perturbation
theory for a unified treatment (i.e. valid for any a(1)). Following
Davydov [34] we now first set

V'(nV<(:V- ;u=u<°>+- . (4.18)

Here n and m are the indices of two odd triplet solutions. Inserting
(4.18) into (4.6) and collecting terms up to and including order v*
leads to a set of two homogeneous linear equations, which in matrix
notation takes the form

0(S couAóe, j.^ the. &y&tem we/ie. faa/i ouJL o& e-quAJLibfaJuum neon. the.
<t> 0 -0 , tnu£y -in the. LYWM. Sck/ib'dingeA-weJM., Jit laouJLd be. c.onve.nie.nt

to e.xpand tocaJLty -in tumt> ofi the. -inné*, fanationi, . Sae. otoo [28] and
4.
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""C ''m'
The solvability condition of (4.19) yields

(4.19)

Substitution of these values into (4.19) gives the required relations
between c ( o ) and c ( o ) .n m

4.2.1 UeJU. above the. critical po-Lnt
Here u(°' -vl^=v^} is of order K~V , while the first order matrix

elements are of order v, as can be inferred from section 4.1.1. Hence,
in (4.20) one may safely expand the square root so as to give

(4.21)

and a similar result with m and n interchanged. As expected, this agrees
with the purely nondegenerate case discussed for the even solutions.

4.2.2 The n.e.Q-Lon

Since here both and the first order matrix elements are of
order v , (4.20) again leads to the nondegenerate results, as it should.

4.2.3 We££ t>e£ow the. cju.VLc.aL point

As noted at the end of section 3.3 there are two possibilities of a-
symptotic degeneracy. Consequently, we distinguish these two cases here.

See also again figure 5, and the appendix.
i) Weak rfegeneAact/: y^5 is of the order of v* to some power*, while the
irreducible odd eigensolutions of the triplet almost completely separate
spatially, i.e. for example Sn£Souter and 5maSinner. Hence, the off-

*We know that H &uch a. di^eAznc.e. dou
7** . See the. appendix.

-it moo-t be. at

- 17 -



diagonal elements '̂l'and V^ are exponentially small, so that (4.20)
directly reduces to the nondegenerate case. Clearly, if one could prove
that the irreducible problem is really only weakly degenerate well below
the critical point, then the calculation of the higher order corrections
in the original master equation (1.1) with (2.1) could proceed entirely
be nondegenerate theory for any a(1) . Unfortunately, such a proof has
not been found yet. Therefore, we must also consider:
ii) S&iong de.gz.neAa.c.y: ŷ °' is exponentially small and the irreducible
odd triplet members do not separate spatially. In stead, they are almost
identical everywhere except for a change of sign in either the inner or
the outer well of the Schrodinger potential V(x) , i.e. for example

and ^" Hence' and C • as wel1 as
and "mn ' On1y differ by exponentially small terms. Therefore,

(4.20) leads to:

which clearly lifts the degeneracy. The c(0) are ±1, which simply implies
that the thus obtained zeroth order eigenf unctions, say Sp and S ,
separate spatially. As usual [34], using now these new nondegenerate odd
solutions one may further treat the problem by the standard perturbation
theory as discussed in section 4.1.
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5. SOME FINAL REMARKS

In conclusion, we have shown how to set up a systematic expansion

for the equilibrium solutions of a Fokker-Planck master equation

describing a diffusion process with a small diffusion coefficient v in a

potential U(x) showing a transition from mono to bistability. The expan-

sion is valid uniformly for all values of the pertinent pump parameter

a ( 1 > , including the critical point cx ( l ) =o.

In the introduction we have briefly indicated the features of mono-

stability, bistability and critical behaviour. In section 2 we have shown

how to separate the general problem into its irreducible part and a

corrective remainder, which is small in terms of v. Section 3 has been

devoted to a description of the relevant properties of the solutions of

the irreducible problem, while in section 4 it has been shown explicity

that the higher order corrections indeed remain small for any a .

The unified description becomes possible for the following reasons.

First of all, it depends on a proper recognition of the critical region.

Second, because the critical fluctuations are larger than the normal

ones (but see e.g. [39] for an exception), at least the connection with

the above-critical monostable regime presents no serious difficulties.

Third, the extension to the below-critical bistable case, however, could

be effectuated only after renormalising the original potential so as to

collect all relevant information for the local normal equilibrium fluc-

tuations into the irreducible potential. This renormal ization makes the

global large scale fluctuations (of size v°) ineffective in spoiling the

expansion. In more technical terms, it prevents the upscaling of the

perturbational matrix elements.

If in any formula in section 3 we drop the superscript (o) and nor-

malize the corrected eigenfunctions according to (3.6),* the propagator

TheAe. -06 an aJlteAnatJLve. viheAe. one. can ge.t cvwund the. expLicÀt noiwaLi-

zation pioc.ejdu.ie. ( 3 . 6 ) . Namely, -ij, one. di*.e.ctly UAU the. c.oM.e.cte.d

eA.ge.n{,unc£Lon», P^U) <u> obtained. Jin &e.ctu>n 4, -i.e., laith c.^'=0 £01

p>1, one. &houJLd -in (3 .2 ) d>iap tlie. &u.peA&cjvipt (o) on the. P-&unc£ion

only. However, 4-tnce p
n*P0#n''P06

(0> » ^^ cjOM.eJLoM.on iu.nc.tion fan

ixampie. wUJL not be. g-tven by the. eJLe.ga.nt faimula. ( 3 .9 ) -in tku,
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will be represented by (3.2) while for example the correlation function
remains given by (3.9) . Finally, in terms of the original variables one
explicitly has P(z,t|z0 ,o)«-*PK(x,s|x0 ,o), where:

x=

s=

K=

above-critical below-critical

- 20 -



APPENDIX: THE IRREDUCIBLE SOLUTIONS

In this appendix we examine the eigensolutions of the irreducible
problem (3.1) in some more detail. The three regions, well above the
critical point (monostable case; ic*») , near the critical point (K^O) and
well below the critical point (bistable case; K+-») will be discussed
separately. For a numerical analysis we refer to [33]. The spectrum is
shown in figure 3.

Al . We££ above, the. vtiJULcaJL po<Lnt

In this case one applies perturbation theory in terms of K~2 to the

adjoint equation of (3.1), obeyed by the Q(x) . Introducing the appro-

priately scaled variable p=x(K/2)^ and M=U/K (p being the standard

eigenvalue), one finds

Q"(p)-2pQ'(p)+2vQ(p)=4K'2p3Q1(p) . (Al.l)

Throughout the appendix we suppress the superscript (o) for typographical

reasons. If K=°°, (Al.l) is satisfied by Hermite polynomials Q(p)=Hn(p),

i.e. v=n=0, 1, — . Therefore, for large K we set

Q(p)= I cnHn(p) , (A1.2)
n=o

and cast (Al.l) as usual into matrix form

where BkA=K~2B^) , with

+4(l«4){k+3)(k+2)(k+l)ok+sA . (A1

Using the "modified iteration-perturbation" formulae of Morse and

Feshbach [24] (which have an improved radius of convergence over the

usual Rayleigh-Schrödinger formulae) one finds for the eigenvalues

22) . (n- l ) (n-2) }

K ZK l+i(n+2)2/K l-!(n-2) /K2

For example,

y0=u; Ui^+SK"1 ---- ; u2=2K+12K~l ---- ;

Note that all eigenvalues lie above the asymptote yn=nK. The correlation

function r(s), given in (3.9), reduces effectively to the normal single

exponential, expressing ordinary Debeye-relaxation.
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A2. Thi CAÂticat fie.gi.on

A2.1 S-imple. van-Lotionat c.ont«LdeMitLoni,

Insight into the dynamically important low lying eigenvalues may be

obtained from the variational principle (see e.g. [27, 34, 38, 40, 41]).

That is, the stationary value of the functional
CO

u(Q(x)}= ƒ P 0 ( x )Q ' (x ) 2 dx (A2.1)
-00

should be a good approximation to the true eigenvalue. In (A2.1) we

implicitly assume normalization according to (3.6). Obviously, Q0(x)sl

corresponds to be stationary solution y„=o. Let us further consider

Q2(x)=A/J(l-c2x
2) , > (A2.2)

Q,(x)=Nj(x-c3x
3) . J

Using e.g. Gradshteyn's [42] formula (3.462.1) in normalizing QI(X), one
ob.tai ns

• (A2<3)

where D (z) is a Weber-Hermite (parabolic cylinder) function. The factors
N2 and W3 are readily expressed in terms of N , once the coefficients
c2 = Wj and c3=(Nl-K)~

l have been determined by orthogonality according
to (3.6). Substituting the obtained functions into (A2.1) results in

Hence, at the critical point <=o the values are y1(o)=2r(
5/1()/r(

3A)=1.48;
yz(o)s4.97 and u3(o)sg.49. For comparison, the numerical results from
[33] read u1(o)=1.37; y2(o)=4.45 and y3(o)=8.26. Incidentally, using the
appropriate asymptotic formula for the parabolic cylinder functions as
K*» (see e.g. [35]; or [42], form. (9.246.1)), one obtains from (A2.4)
the eigenvalues (A1.6) well above the critical point, including the pro-
per first order correction. Well below the critical point (A2.2) and
(A2.4) are in error, as will become clear in due course.

A2.2 TuA.ni.ng po-ûtto an

A turning points or improved WKB-analysis is relevant in particular

for the higher eigenvalues which follow from (see e.g. [24, 34, 43, 44])

, **
(A2.5)vn'

x.
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The potential V(x) is given in (3.11) and is shown in figure 2. The

range of integration in (A2.5) is determined by the real turning points

which follow from the equation u=V(Xj)=V(x2). We only consider the case

of two turning points* and define XOEXZ(=-XI). The potential (3.11) is

now inserted into (A2.5) and a new variable z=(x/x0) is introduced.

Defining v=y+|K, one obtains

, (A2.6)
ZTT ° o" " 1-z' 1-ZJ

.. n o . _~( 3 l - . t _ r \ _ . ~ 3where V 0 =x 0 , 8=2Kvo '3 and y=(< -6)v„ . In view of the nature of the
WKB-approximation, we expand (A2.6) in terms of v~ (see also [45, 46],
and ). The leading terms yield vQ~n , which is assumed to be large.
As the r.h.s. of (A2.6) is in fact correct only through order n° [44,
45], the expansion of the integral is stopped at order v~' . In the
evaluation one encounters several integrals which can all be related to
the beta function. Next one determines the expansion of v0, that means
of the turning point XQ, in terms of v to sufficient accuracy. The
result reads

a 2 (4v) ^a^v) ^=2ïïn , ( A 2 . 7 )

where a =-<(-n3^/^a ), a =eB(14 ,\ Hir^r( V6 ) / r ( 2 / j }=TT. This is a quadra-
1 2 ^ 2

tic equation in (4v) . It leads to

] - (A2.8)

Hence, at the critical point these eigenvalues beco::.e

yn(o)=̂ (nv9)H=1.66 n*4, (A2.9)

so that ^(0)^1.66; u2(o)=4.70 and y3(o)s8.63. We mention again that
the numerical results from [33] are resp. 1.37; 4.45 and 8.26. Clearly,
while the variational method is superior for yx, the WKB-method becomes
rapidly better at the higher eigenvalues. Nevertheless, in particular

Jhit, -co c.oM.e.ct fax. oJUi n=0, / , - - - -ih K>-6 (I/ ho& one. 01 two minima.}.
k k 2

Id K«-& (I/ /too thn&e. nti.nuna.) , ^it hold* L^ mr

The. cowue^igewce wJUL be. M.Monabte. andeA the. appfiozimate. condition
2/ L

max. |0 ,y |< ' . Ui-twg v ^im^, tkiA ij^zidt, naughty the &amz tLUtsu.ctiont>
® •%

00 Ln the. pfuiv-iouut* footnote. : only ^ K»/ it addt, the ieqiiiA.eme.nt
2
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for the important lower eigenvalues these results are quantitatively

insufficient and one must resort to numerical analysis [33]. Finally it

is noted that both (A2.4) and (A2.8) confirm the earlier finding that

the critical slowing down continues somewhat below K=O [33].

A3. UM be£oiü the.
Rapid insight into the spectrum as K-*-°° is obtained from the

Schrb'dinger-like equation (3.11). In this limit V(x) develops three
minima separated by high barriers (of order |K | S ) . Asymptotically the
three wells become isolated local harmonic oscillator potentials with
eigenvalues u=(m+l)|<| resp. 2n|ic| for the inner resp. outer minima
(n,m = 0, 1, 2, — ). The corresponding asymptotic local eigenfunctions
5R(x) are the usual Weber-Hermite or parabolic cylinder functions.
Clearly, there is a twofold degeneracy for n=o (globally even and odd
combinations of outer solutions) and a triple degeneracy for odd m, viz.
m=2n-l. See also [27, 28, 33].

A5.1

Introducing the appropriate local variable p=x(-K/2p and V=(-U/K)-!

into the equation for the adjoint eigenf unctions, and setting

Q(p)=e"p R(p), one obtains

R"(P)-2pR'(p)+2vR(P)=4K'
2p3epVp2R(p)]' . (A3.1)

If K=-°°, (A3.1) is solved by R(p)=Hm(p), i.e. v=m=0, I,—-. For large

negative K we expend R(p) in terms of these Hermite polynomials like in

(A1.2) and cast (A3.1) into matrix form as usual. This leads to (A1.3)
with

Using standard perturbation theory (see e.g. section 4.1) through third
order in K~ , we have obtained

u=(m+l)|K|{l-4-(ni+l)-4-[2(m+l)2+l]-^ r(m+l)[35(m+l)2+52]+— } .(A3. 3)
K < <

A3.2 Tkz doublte*.

If K=-°° and v=-l, (A3.1) allows for solutions corresponding to
Q0(p)=l and Qj(p)=erf(p) . Although they are not contained in the Hubert
space of local inner solutions, these functions do belong to the Hubert
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space of global.solutions. Note that they asymptotically connect with
the exact stationary solution at the outer wells and beyond. Using the
above Q^p) for the first excited state into the original irreducible
adjoint equation and invoking the global Hubert norm (3.6), one may
calculate the first order correction to v=-l (corresponding to y ( J ' = o ) .
It leads to

"'I'-fM0-^/0-!^ • ( A 3 -4 )

By means of the appropriate asymptotic expression for the parabolic
cylinder function this gives

u^He^V^r*—) . (A3.5)

This corresponds to Kramer's diffusion rate [13, 47]; <2/4 is the height
of the barrier in the irreducible potential UK (X) . The result (A3.5)
agrees with that obtained from using Qj(p)=erf(p) into the variational
principle and has been confirmed numerically [27]. It also agrees with
Kramers' original analysis [13, 15] if the pertinent integrals are
handled carefully [16]. Finally, the leading part in (A3.5) coincides
with the result from a WKB-type analysis [28].

A3. 3 OuteA &olu£ion!>
Introducing X=(-K) N-P(-K)"^ and v=(-y/2i<) into the irreducible

problem, one finds for the adjoint eigensolutions

Q"(p)-2pQ'(p)+2vQ(p)=(-3K-1p2+K-2p3)Q'(P) . (A3.6)

If K=-°=, (A3. 6) yields Q(p)=Hn(p), i.e. v=n=0, 1,— . Again expanding
Q(p) in general in terms of these polynomials like in (A1.2), the matrix
form of (A3. 6) leads to (A1.3), where presently B^K"^^-*'^^ with

W1 , (A3.7)

Using standard perturbation theory through sixth order in K" , we have
found

y=2n|K|{l-^--4(8n +I)~(35n2+13)+— } . (A3. 8)
K K K

It is surprising to see that this is identical to the result for the odd
inner solutions, viz. (A3. 3) with m=2n-l. It leads to the conclusion that
the degeneracy within each triplet is not lifted by power series terms,
at least not up to the shown order in ic"2 . Of course, there are always
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exponentially small differences between the degenerate eigenvalues due
to the finite potential barrier (sections A3.2&4, and [28] ) -

A3. 4 TiA.ptzt dzgznziaicy

In view of the outcome for the local eigenvalues, we briefly examine
the relation between the nature of the degeneracy and the pertinent odd

triplet eigenfunctions. Suppose we have determined the local solutions
to any desired accuracy (in terms of K" :). Within one triplet, let
Qout(x) denote the odd combination of the left and right outer solutions,
and let Q. (x) be the corresponding odd inner solution. For convenience,
let these functions be appropriately normalized locally. Write the glob-
al solutions as Q(x) = coutQout(x)+c inQ in(x) and insert this into the
variational expression (A2.1). Taking derivatives with respect to cQut

resp. c. according to [41], one obtains two linear homogeneous equations,

which may be presented as

_0
9'-6

9'-^el fcoutl _0

«in-J bin J

Disregarding terms of order e"^ ' , the y. and y . are the local
eigenvalues (A3. 3) and (A3. 8). The offdiagonal elements 6 ,6 ' are related
to overlap integrals** and found to be of order e"^ / . The solvability

condition o* ( A 3 . 9) gives

y = à ( y +u. ) ± \ 4 ~ - - • ) i + [^ ' - i ( ' - t+u- )9] 2 ' , (A3.10)

where we have disregarded some irrelevant small terms for ease of
exposition.

Weafe dzgznziacy
Let the observed equality of local eigenvalues be violated in higher

orders of <". That is, u t-u. is of order 9°, with 9~e"K . In this
case (A3.10) yields: (i) u=u. ; setting c. =1 one finds c t to be of

,2 10 ' n '" UU L

order e~e ' ; (ii) -„=± t; with c t=l one finds cin to be of order

Foi example, Auch Lifting wouJLd occu.1 unmzd^ateZy oncz. we iz.pta.cz. tkz

qaaitic t<um -in the. -Lnzdu.cA.btz. potzntLat by x2p, wWi p=3, 4, — .

**S-tu.ot£i/ &pe.akA.nQ , tkz tocat. zi.QZniu.ncM.ont> aiz not va&Ld -Ln thz ovzi-

tap iz.QA.on. Nonzthztzt>& , e~e'~( '~K 'S agizu with iuutt& that can bz

obtaLnzd $iom a. QtobaJL OlKB-tijpz <waty&-U, [28].
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•̂ 2 /o

6~e" ' . Hence, in case of weak degeneracy there exists only an expo-
nentially weak coupling between the local eigenfunctions. See figure 5.

S&iang de.Qe.neAnc.ij
Let the local eigenvalues be exactly equal, that is yout

=uir). In

this case (A3.10) leads to P̂ i«/.»̂ '̂'̂ .}/.»!8! • Inserting this back
into (A3.9) gives cn-n=

±c
ouf Hence, in the case of exponentially strong

degeneracy there exists a stong one-one coupling between the local eigen-
functions. See figure 5.

These conclusions have been used in section 4.2.3. As yet it remains
an open problem which type of degeneracy actually occurs.
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•PART II: GENERAL MARKOV PROCESSES



C R I T I C A L D Y N A M I C S

THE EXPANSION OF THE MASTER EQUATION INCLUDING A CRITICAL POINT

• PART 11 : GENERAL MARKOV PROCESSES

ABSTRACT

The master equation for a general Markov process that shows a

transition from mono6ta.bte. to bAAtabie. behaviour will be evaluated

systematically in terms of a small parameter, namely the reciprocal size

of the system. The expansion is uniformly valid also at the critical

potnt. The fundamental idea is to separate the master equation into its

irreducible part and a corrective remainder. The irreducible or zeroth

order approximation is a relatively simple Fokker-Planck equation con-

taining the essential features of the process. Having achieved complete

knowledge of the eigensolutions of the irreducible equation the higher

order corrections are computed explicitly.

1. INTRODUCTION

In a previous article [1] we have shown how to solve the problem of
a simple diffusion process involving a mono-to bistable transition by
means of a systematic approximation method valid also in the transition
(or critical) region. Thereto it is crucial to recognize the correct
irreducible stochastic description. Having solved this relatively easy
irreducible problem, one can calculate higher order corrections in terms
of successive (fractional) powers of a small parameter, namely the dif-
fusion coefficient v.

Presently we embark on the problem of solving the (integral)
Markovian master equation by essentially the same techniques. The appro-
priate small parameter will be the reciprocal system size e=l/ß. The
irreducible description is again given by the Fokker-Planck equation
describing in effect a diffusion process in a quartic potential. Well
above the critical point (monostable case) and well below it (bistable
case), it involves the linear noise approximation at the stable mac-
roscopic states [2], where the fluctuations are of relative order e .
Near the critical point the linear noise description fails. Here the
fluctuations scale up to order e [3, 4]. Nevertheless, the corrections
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to the irreducible approximation always remain small in terms of e and
can be incorporated into the solution in a systematic manner.

In section 2 the irreducible part will be extracted from the general
master equation. In section 3 we briefly outline the properties of the
eigensolutions of this Fokker-Planck equation. The calculation of the
higher order corrections is discussed in section 4, while section 5
contains some final remarks. In the appendix we examine the dynamical
mean field Ising model as a typical example.
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2. REDUCTION OF THE PROBLEM

The probability density P(n,t) of a general Markov process obeys the

master equation [2-5]

P(n, t )=S n , [W(n|n ' ' )P(n ' , t ) -W(n ' |n)P(n, t ) ] , (2.1)

where n is the physical extensive variable; n may be continuous or
discrete, Sni representing integration (with the appropriate measure) or
summation respectively. In terms of the intensive variable z=n/n=en, the
transition kernels in (2.1) are assumed to have the property of exten-
sivity [3, 4]

W(n'|n)=ßw(z,n'-n) . (2.2)

Setting v=n-n' and introducing the operator [6]

E=expe-^=l+e-^-+ie2-^T+— , (2.3)
3z 3z Dz

one transforms (2.1) into

.v)P(z.t) . (2.4)

Defining the intensive jump moments (n=l, 2,---)

«n(z)=Sv v
nw(z,v) , (2.5)

one obtains [2-4, 7-9]

^1L I _Len-l(__L,
n
 (z)p(Zit) . (2.6)

8t n=l ni 3z n

In order to find its expansion one normally sets z=g>(t)+e% [2, 3, 10],
which transforms (2.6) into an equation in terms of Ç. Terms of order
e"^ vanish as the macroscopic part ip(t) is a solution of the determinis-

tic equation of motion

z=ai(z)s-U'(z) . (2.7)

Here we have defined a macroscopic potential U(z), the prime indicating
differentiation with respect to the argument. The part of order e° of
the master equation becomes a linear Fokker-Planck equation in terms of
Ç. Higher order corrections can be calculated systematically in powers
of e% However, this method fails at critical points where the macroscop-
ic solution lacks stability in the linear approximation.

Let us examine the macroscopic equation (2.7) in some more detail.
Suitably choosing the origin, we consider the genere symmetric macro-

scopic potential

UW-Vî'z'VîVVï'z«»- . (2.8)

so that n! a1"' =dnai(z)/dz
n at z=o. See figure 1 of [1]. It is assumed
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that a( J' changes sign at the critical point, while a ( 3 ) is negative (at

least at the critical point). The coefficients do not depend on e. Along

the real line (2.7) has one stable macroscopic steady state solution

ip0=o if o'J^o, and two stable stationary solutions q>+A> if a i >o.

Furthermore, the symmetry property a (-z)=(-l)nan(z) supposedly holds

(about the appropriately chosen origin) for any n=l, 2,—, so that

a , (z )=a ( 1 ) ,z4« ( 3 )
l Z

3^ ( 5 )
i2

5
+— ,

2I1-P ' 2H-1 211-1 2H-1 .„ -^

a (2) =a(0)
+a(2)zW"zV~ .2ir ' 2n 2n 2n

Throughout we take a °' to be nonzero [11].

2.1 Above and at the. atAMjcaJL

In

mations

In this monostable case (a (1 )so) one introduces the scale transfor-

z=Au t=A, a
( 1 ) /a ( 3 )= (2.10)

into (2.6). Using (2.9) one finds

1 3n 2: 2 3n2 3! 3 8n3 41 * Sn"
+ --- . (2.11)

Formally treating r\,i and A as quantities of order unity and omitting

terms in (2.11) that vanish as e-l-o, one extracts the irreducible part

(2.12)
3s 3x

where we have set

with a - J a a 1 » in order to have (2.12) in standard notation; K is

the pump parameter, here >o. In section 4 it will be seen that the

higher order corrections in (2.11) do remain small in terms of e for all

KX>, i.e. for all a | $o.
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2.2 Be£ow and aJL the. cMM.c.aJL po-int
In this case (a ( | '>o) one must explicitly account for the existence

of the two stable macroscopic steady states <p+, which are the nontrivial
solutions of i=a1(z)=o. That is,

The correct below-critical irreducible description is obtained only
after a certain reordering of coefficients in the master equation (2 .6 ) .
The procedure is a generalized version of the one presented in [1]. The
jump moments (2.9) are rewritten as

Comparison of (2.15) and (2 .9) yields

( 2 m + i ) = ,k, (2k+0 2(k-m)

By (2.14) one readily checks that a l | '=o , whi l e a ( j ' may be cast into
the closed form

Clearly, a(3) is connected with the local stability in the linear

approximation at y+. Further, one notes that a. ° =a2(<p±). Inserting now

the scale transformations

z=e*n, t=n*r, <p2=-e^V • (2.18)

into (2.6) with the renormalized jump moments according to (2.15) and

(2.16), one obtains

lElZblLV^nfV+n2!
ST 3n 3n~

-ev:>- • • _.
oTl C..

8n 21 2 an 3: 3n

3n 2:
a : n ( V + n ) P - < ] + - (2.19)

3: 3n 4: 3n

* one 4-tep p^oceó^eó a =o for all n=l , 2,— .2n~i
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Considering now formally H,T and v as quantities of order unity and
omitting terms in (2.19) that vanish explicitly as e4-o, one gets the
irreducible part of the master equation below the critical point. Setting

(2.20)

where a(3)=-ia.(\}a.(l), it is readily written in the standard form (2.12)
with K<O. In section 4 we will show how the above renormal ization helps
in keeping the higher order corrections (2.19) small in terms of e for
all K$O, i.e. for all ct^'^o.

2.3 Some,

Thus it has been shown how the irreducible standard form (2.12)
arises from the master equation in the limit f+=°. Note that the relations
between the standard variables x,s and K and the original ones z,t and

a(1j' are essentially different above and below the critical point a'jW.
Well above the critical point in the normal regime a(|' is negative

and of order unity, so that by (2.10) and (2.13) K tends to plus infini-
ty as n . Appropriately rescaling in (2.12) such that effectively
z=e^£, one easily obtains

!E(£lîia.a<|)J.çp+iaV-lo_r.

3t ' SÇ 2 3Ç

as the dominant part of order e°, which provides the normal linear
noise approximation at the single stable state ip0=o.

In the normal regime well below the critical point a J is positive
and of order unity, so that by (2.18) and (2.20) K here tends to minus
infinity as ti*. Appropriately rescaling in (2.12) about X=±(-K)^, such
that effectively z=g>±+e^c, and using (2.17) and a

(°'=a2(ip±), one easily
retrieves the linear noise descriptions at the two stable states q>+ as
the leading parts of order e .

In the critical range, where by definition a j is of order e"2, K
is of order unity and the irreducible nonlinear Fokker-Planck equation
(2.12) can not be simplified any further. One should note that (2.12)
does not allow the computation of moments explicitly in successive
orders of z* directly from the differential equation itself due to the
nonlinear drift function [2, 3, 9, 12, 13]. Therefore, contrary to the
normal cases where the linear noise approximation always holds, we must

know the solutions of (2.12) explicitly.

- 34 -



3. THE IRREDUCIBLE PROBLEM

Let us repeat (2.12) here as

9P(o)(x.s)_8 .
as ax K ax2 \ (3.1)

2. U I
| J ^ y \ — l i ^ Y + l y I

which formally represents a diffusion process in a simple potential
showing the mono- to bistable transition (see e.g. [1'4-21]). As such it
has been mentioned as a model for the single mode laser [22], disregar-
ding phase diffusion [23-27].

The Green's function solution or propagator of (3.1) will be written
as [1]

oo . . . . _,.(°),.

(3.3)

where Q(o)(x) is the adjoint eigenfunction of P(o)(x) ,

The P(o)(x) and Q(o)(x) form a presumably complete biorthogonal set:

(3'4)

Equilibrium (or rather, steady state) quantities become relatively
simple in this format. For example, the dynamical susceptibility
becomes [28, 29] .

,3.5,
n

where we have invoked the pertinent expression [1] for the correlation
function r(s); <x> represents the first moment of the n-th probability
eigenfunction, and X(o) can in principle be computed (at least at zero
bias of the external 'force' [28]) from the stationary distribution
P ( :>(x) .

The eigenvalue spectrum of (3.1) is shown in figure 3 of [1]. More
details may be found in [1, 16, 21].

ttieJUt above, tke. cA t̂lcat po4.nt<+<*>\ the adjoint eigenf unctions tend

to become Hermite polynomials about x=o (note that the Gaussian propa-

gator of the linear noise approximation (2.21) can be expanded in terms

of these polynomials ; see e.g. [30] form. 10.13(22)); x is effectively

of order K"^; the eigenvalues are y(°)sn<, with n=0, 1, 2, — .

In the. cALtLcaJL .teg-ôon K^O; both x and y (°' are of order one, e.g.

U ( ÏJ=1.37 (see also [4]).
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\HeJUL bzlou! the. viitÀ.c.al point K-»--00 ; x is globally of order (-KP,
L _t

but is locally (near the origin and X=±(-K)'S) of order (-K) ; there is

one low lying doublet, consisting of the stationary solution with y ° =o

and the first excited state with y ( J > £ e"K ' (corresponding to Kramers'

diffusion rate [31-33]); further there is a set of singlets with

y ( 0 ) = (2n-l)|ic|, where n=l, 2,— (and where all eigenfunctions are^n^2 ^ L
even and completely confined to the region x~(-<) "* near the origin);

finally, there is a set of triplets with lj(°n_1
3vi(°j1

sy(°]1+1-2n|K|,

again with n=l, 2,— (hence, each triplet consists of one even and two

odd eigenfunctions); for a discussion of the possible nature of this

degeneracy the reader is referred to [1].
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4. HIGHER ORDER CORRECTIONS

The higher order corrections in the original master equation will be
calculated in terms of the standard variables x,s and K. If one were
interested only in the true critical region, the calculation could pro-
ceed by definition directly from the standard version of (2.11) and
(2.19) as they stand. However, in a systematic unified treatment of

above-critical, critical and below-critical cases, one must define the
perturbational terms still more carefully. Fortunately it is not too
difficult to arrive at the following scheme handling (2.11) and (2.19)
simultaneously:

(4 .1)

- . (4.2)

The correct below-critical perturbational operators are

3x 3x 2: 3x

31 3x 4: ax"

3x 3x 2! 3x
(4.3)

3! 3x 41 3x

+A^a<;>A5/2^-x -Aev:>A?

5! 5 3x5 61 6 3x6

and so on, where A=-a J'/ia'"' . Above the critical point the perturba-
tional operators are obtained from (4.3) simply setting KSO and re-
placing the renornalized a/™' by the original a'm' . The terms (4.3)

may be gleaned from (2.11) and (2.19) as follows. In order to construct
l/(p), one takes the first and second derivative terms of critical order
ep and adds the third derivative term of the next order and the fourth
derivative term of the second next order, and so forth until the series
terminates.

As has been done in [1] we cast the eigenvalue problem of (4.1) into
matrix form. With

P(x)= r cüP (^(x) , (4.4)
n=o

this leads to

iaV0 • ( 4-5 )
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where
00

(4.6)

4.1 The. e.ve.n f>otution&

In view of the degeneracies in the irreducible eigenspectrum well
below the critical point (see e.g. [1], figure 3), a unified treatment
valid for all values of the pump parameter calls for a separate examina-
tion of even and odd solutions. Even solutions are either singlets or
the single even member of triplets. They can be treated by nondegenerate
perturbation theory, which also applies to the Kramers' doublet. Putting

«Y-Viw;'«-- ,
and defining u y ' - y . one obtains (see [1]):

nn

(4-8)

Jtfn nA in

tyn
etcetera. In the critical region both x and y(

nl- and hence each
are of order e°. The above scheme is obviously correct in that case.

4.1.1 HIM above, the. cJuAicaJL point

Here X~K~^ which will be of order e^; yn
0)~K is of order îA Using

(4.6) and (4.3) with KSO, it is not so difficult to see that the matrix

element* l/^p) (with p=l, 2, — ) becomes of order e(p"l)/2, and that
c(JP} is of order ep/2 . Therefore, if we define y(p)=e(p~1)/2 X (p ) and
c(p)=eP/zbWs tne x(p) and b(p) are of order unity- Inserting this into

(4.7) and defining the order e" quantities b.=c. . X^^e^i^' and X=eii,
K K n n

one gets

To be. (LKpticAJL, the. opejuvton. V p may be. g<Lve.n
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Clearly the presented scheme remains valid. However, the higher order
corrections now come in succesive powers of e instead of the critical
e*. Note that, contrary to the diffusion process treated in [1],
presently the first order normal correction does occur in (4.9) : it is
not fully contained here in the irreducible part of the solution.

4.1.2 MM boJLovi Uil cAA.tic.aZ. po-int

It has been discussed in detail in [1] that the singlet solutions
lead to exponentially small contributions (of order e" ) in any equilib-
rium quantity. Hence, they can not be seen in an asymptotic power series
expansion. On the other hand, the even triplet solutions are significant
precisely near the macroscopic steady states ip+. Shifting to X=±(-K)^
and rescaling to the appropriate local variable, one then finds that
I/^C' scales up to order fi , independent of p. Consequently u £' becomes

1, / rt \
of order n', while c^p) remains of order unity. Therefore, setting
j/P^nV one finds

^ ^ ) - - - •

where we have once more introduced the order e° quantities ^n'
=e u'«'

and X=ETI. Eq. (4.10) shows that the presented scheme remains valid also
in the normal regime well below the critical point.

4.2 The. odd koi.aJU.oni>
Apart from the first excited state, the odd eigensolutions of the

irreducible problem combine within triplets well below the critical point.
Their treatment in the higher order corrections in the master equation
requires pseudo-degenerate perturbation theory in order to sufficiently
lift the degeneracy. The appropriate lowest order coefficients and
eigenvalues follow from [1, 34]

•Vï = 0 . (4.11)

Hence, the eigenvalues read
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Substitution of these values into (4.11) yields the sought linear

combinations of P ( ° ' ( x ) and P l ° J ( x ) .

4.2.1 \ileJUL above, the. c.KAM.cjoJL point
In this case the first order matrix elements remain of order unity,

while y'°' will be of order K~fi (see section 4.1.1). Expanding then the

square root in (4.12), one finds

i1;1-«';1^1— •
£'i- C-^1/*1*-- •

and a similar result for the m-th eigensolution. As it should, this

reproduces the purely nondegenerate outcome through first order.

4.2.2 The. CA t̂ical ne.Qi.on

Here both the first 01

so that (4.12) again properly leads to the nondegenerate results.

Here both the first order matrix elements and y°' are of order e°,

4.2.3 WeJUL beJLow the. critica*, po-int

As discussed in more detail in [1], we must in this case examine two

possibilities for the asymptotic degeneracy. The somewhat subtle consi-

derations are identical to those presented in [1] and will therefore be

omitted here. The simple outcome is that in either case (4.11) provides

us with two linear combinations of the original eigenfunctions, such

that the new solutions are nondegenerate and significant only near the

steady states <p+. As usual, subsequent higher order corrections can be

handled further along the lines of the nondegenerate theory of section

4.1.
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5. SOME FINAL REMARKS

In conclusion, we have shown how to set up a systematic expansion

for the equilibrium solutions of the master equation describing a Markov

process that shows a transition from monostable to bistable behaviour.

The expansion proceeds in successive fractional powers of the inverse

size of the system (e=l/£2) and is valid uniformly for all values of the

pertinent parameter (e.g. temperature) a (J' , including the critical

point a ( 1 )=o.

In the introduction we briefly stated the problem and outlined its

solution, making reference to our similar treatment of diffusion proces-

ses [1]. In section 2 we have been concerned with the separation of the

master equation into its irreducible part and a corrective remainder.

The irreducible part is a relatively simple nonlinear Fokker-Planck

equation. Some relevant properties of its eigensolutions have been

mentioned in section 3. The corrective remainder can be written as a

sum of terms that remain small in successive powers of e^ for any a \ ,

as has been shown in section 4.

The unified treatment heavily leans on the following notions. To

begin with, it crucially depends on a proper recognition of the critical

region (a (1 ) of order E^). This allows for the separation of irreducible

(zeroth order) part and corrective remainder. Further, a certain

reshuffling of the critical corrective terms is required for the succes-

sive corrections to remain small of the correct order outside the criti-

cal region. At least, this suffices in the normal (monostable) regime

well above the critical point. Last,- but not least, the extension into

the normal (bistable) regime well below the critical point could be

realized only after a certain renormal ization of the original jump

moments. This procedure effectively eliminates the global large scale

fluctuations (n of order n) that would spoil the'expansion.

Dropping the superscript (o) and normalizing the corrected eigen-

functions following (3.4), the propagator remains given by (3.2). For

processes with the property of detailed balance [3, 35] (or with an

equivalent property, such as all one-step processes), the relation (3.3)

between the probability eigensolutions and their adjoints persists

through all orders of the corrections*. In that case equilibrium quanti-

Poi fM>cu&eA tuWiout dztcuite.d boJLa.nc.iL theie. i,tUUi e.*u>t adjoint

&otu£Lom>, but (3 .3) ceooei to be vaLLd be.yond the. -LAA.ejdacA.blie. apptwx-

•Lmation. fox. &u.ch ptiocu&eA one. can not e.\)e.n au(ja.y& guaAante.e. the.
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ties like the dynamical susceptibility remain given by such simple
formulae as (3.5). Finally, in terms of the original variables one has
explicitly P(n,t|n0 ,o)«-»PK(x,s|x0 ,o), where:

x=

s=

above-critical below-critical

comp£e£ewei4 o£ the. eAgeM>pe.ct/wm o& the. onA.Q4.naL moAteA. equation. None.-

the. *>et o& 4AM.du.cA.bie. eÀ.Qen&otutÀjon& -it, complete., 4.nde.pe.nde.nt

balance.. 'TheA.e.^onjL -it -u> 6oftmM.y po&&4Jble. to ptvoce.ed wi60i

the. expowo-con even -Ln &u.ch CAóeó Ue.e. footnote, in [7 ] , Auction. 5), but

one. can not be. AuJie. in general that thiJ> pwcedatie. converge* to the. tnue.
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APPENDIX: MEAN FIELD ISING MODEL
In the mean field Ising model short range interactions between

constituent spins are smeared out effectively over the entire system.
Physically the model's pump parameter (i.e. a'J', or K) is a tempera-
ture*. To be more precise, it is the difference between the actual
temperature and its critical value. Above the critical temperature there

is no spontaneous macroscopic magnetization (monostable case). Below the
critical temperature the nonzero spontaneous macroscopic magnetization
may be either plus or minus (spin up or down; bistable case). The model
has been studied previously in the critical region only numerically [29].
Presently we briefly discuss the correct lowest order of the stochastic

description including the critical point.

Al. The. ma&tsA. e.qua£ion
Let us consider a system of N spins and denote the number of down-

spins by ni , the number of up-spins by n2. Trivially, n1+n2=N. The system
will be described by the bivariate master equation

P(n1,n2;t)=W(n1,n2|nl+l,n2-l)P(n1+l,n2-l;t)

+W(n1,n2|n1-l,n2+l)P(n1-l,n2+l;t)

-W(n1-l,nz+l|n1,n2)P(n1,n2;t)

-W(n1+l,n2-l|nl,n2)P(n1,n2;t) , (Al.l)

which is of the one step type. The spin flip transition rates are taken
to be [29]

W(nrl,n2+l|n1,n2)=nlexp[-ß(nl-n2)/N] ,

W(n1+l,n2-l|n1,n2)=n2exp[-e(n2-n1)/N] .

The parameter ß defines a dimensionless temperature T=l/3. As N is kept
fixed it is convenient to introduce the nett magnetization m=n2-rii. That
is, m=N means all spins up, m=-N all down. In terms of m the equation
describes a two step process,

P(m,t)=W(m|m-2)P(m-2,t)+W(m|m+2)P(m+2,t)

-[W(m+2|m)+W(m-2|m)]P(m,t) , (A1.3)
where

W(m+2im)=HN-m)e
+ßm/N ,

W(m-2|m)=l(N+m)e~3m/N .

The. modal hat, ban u&e.d oc-COAJjonaZLy aL&o ta ducju.be. nonphy&4.ca£
cana4.deju.ng &ocÂ.aJL phe.nome.na. [35-37].
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U(ip)

/. The macroscopic potential U(g>) of the mean field Ising model

according to (Al.8).

A2. Solving (Al.7) for the stationary macroscopic state.
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The first and second extensive jump moment are obtained from

a. (m)=l (m'-m)kW(m'|m) ,
k m'

(A1.5)

with k=l resp. 2. See also (2.5). For the corresponding intensive jump

moments <v(<p)=ak(N<p)/N one thus finds

ai ' (A1.6)
a2((p)=4(coshß<p-<psinh8ip) .

For the pure one step process higher moments are simply multiples of

(A1.6). In view of the macroscopic evolution equation (2.7), the sta-

tionary solutions follow from

tanhßif>=q> . (Al.7)

The stable solutions correspond to the minima of the macroscopic

potential (see (2.8))

U(<p)=!(l4)(1-cosnß¥)-|l(l)sinh8<p , (Al.8)
P P P

which is shown in figure Al. The transcendental equation (A1.7) is
illustrated in figure A2. Obviously, if 3<1 there is just one solution

<P0=o. However, if 3>1 there exist two nonzero solutions <p+, tending from
zero for 3=1 to ±1 for ß-«°. See figure A3.

From (A1.6) and the definition (2.9) one obtains the relevant

coefficients

a(;)=2(ß-l);a(31
)4(3-3)32;cl

(
2
)=4 . (A1.9)

Note that a ( 3 )<o at the critical point 8=1, which guarantees stability.
The mean field Ising model clearly falls within the framework of the
general theory presented in the main text. The irreducible, zeroth order
description including the critical point is given by the standard quartic
potential Fokker-Planck equation (3.1).

A3.
The stationary
macroscopic magnetic

moment <j>+ of the
mean field Ising
model as a function
of temperature

T(=l/ß).
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Al. 1 Above and cut tiie. aùticjoJL point
Here T>1, i.e. ßsl. From (A1.9) a(|Uo and a^^o. Denoting by X the

eigenvalues belonging to the original time scale t (so that Xteps),
defining the ratio X/y=/L, and using (A1.9) into (2.10) and (2.13), one
obtains explicitly

Al.2 Below and at the. csuitLcat
In this case T<l,i.e.ß>l. Using the pertinent renormal i zed coeffi-

cients belonging to (A1.6) into (2.18) and (2.20) one finds

K=-<p,[(N/2)(cosh2ßq>+-3)] ,
(Al . l l )

A2.
A2.1 Macro.* copte magweU.zati.ow

The solutions of the macroscopic equation (A1.7) are shown in
figure A3. Near the critical point one has

<P±
S±[3(1-T)]^, as TH(ß-H) . (A2.1)

Well below the critical point one finds

<P±2±(l-2e~2 ß), as T+o(ß-+oo) . (A2.2)

A 2. 2 Pump poAamteM. and time.

Well above the critical point one infers from (A1.10) that

. (A2.3)

Approaching the critical point from above one gets

• (A2'4)

The same result is obtained slightly below the critical point from

(Al.ll), appropriately expanding the cosh and using (A2.1). Well below

the critical point the cosh in (Al.ll) becomes progressively dominant

and one obtains

"" "ß, as T4.o(ß+°°) . (A2.5)
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A2.3 Eûjem>o£ue4 and {,u&c.ejptibiJLL£ij

One now easily obtains the curves X ( T ) , which are distorted versions
of the standard y ( K ) . See [1] figure 3, and [21]. Well above the critical
point \i=j]K (n=0, 1, — ), so that X=vi=nKtL. By means of (A2.3) one finds

\=2n, as T-»-»{ 04-0) . (A2.6)
Near the critical point y=u(o) is of order one. Using (A2.4) one gets

A=2y(o)/^, if Tsß=l . (A2.7)
Wel l below the critical point \i=-n< (n=0, 1,— ). By (A2.5) one obtains

Asjne6, as T+o(ß-*<>°) . (A2.8)
As a typical i l lustrat ion of the above analysis, the third eigenvalue
of the irreducible problem (corresponding to n=3 in (A2.6) and n=2 in
(B2.8)) is sketched in figure A4 for the unrealistic total spin number
N=50. Note from figure 3 of [1] that the true critical region where
substantial deviations from the asymptotic values y=n|< | occur, is given
roughly by |K|<!O. By (A2.4) this implies a critical temperature range
ATslON'^T . Hence, with a critical temperature T 2300°K, one requires

C C

at least 1013 spins for the critical range to be of the order of a
milliKelvin [29, 33].

Let us examine the eigenvalues as N-»-«. Above the critical point the
standard asymptotes are u=nK, and (A1.10) leads to A=2n(l-ß). The below-
critical standard asymptotes are y=-nic. Using (Al.ll) and a simple
hyperbolic relation, one finds

X=n[(l-D*)-*-0(l-?*)*] . (A2.9)

With (p±=o this includes the above-critical result. With n=2, (A2.9)
agrees with the result (4.11) of [29]. This case corresponds to the first
excited state of the outer solutions of tiie irreducible problem (3.1).

Using the above discussed irreducible description, one can cal-
culate the lowest order approximations of (dynamical) equ i l ib r ium
quantities such as the correlation function, spectral density and suscep-
t ibi l i ty. For example, the static susceptibility (see (3.5)) above the
critical point becomes

( i ) , (A2.10)

where cp0 ( J=d<p0 /dh at h=o, h being the external magnetic f ie ld ; 9
see [293. Wel l above the critical point (A2.10) reduces to the normal
Curie-Weiss law. By means of (A2.4) at the critical point (A2.10) leads
to

. (A2.i l)
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Ma. General
eigenvalue y3 as
function of pump
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Figure Mb. Eigen-
value X3 for Ising
model with N=50
spins, as function
of temperature T.
The value K=100 in
fig. 4a corresponds
to TSIO, while
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to T=0.27. Dotted
lines represent
asymptotic values,
N=oo.



Further, using the standard results of the irreducible eigenspectrum
[1, 21], it is not difficult to compute the dynamical susceptibility
(3 .5) . Defining x=X'-iX", for the mean field Ising model one obtains at

the critical point

J.0152 . 0.0004 + __.J p (A2-12)x,(u)=x (
C C '-1+0.40 lu

I.6230Ù
-0.401Ù2

1+O.Olléö2 1+0.002Ù2

0.0016Ù
Ir*"-] • (A2.13)

1+O.Olliö'

where (2=u)\̂ ?. See figure A5. Contributions from higher eigensolutions
than shown are zero at the displayed numerical accuracy. Higher order
corrections in terms of N can be calculated systematically as discus-
sed in section 4.

oirl)

0.58 Ni -

. Â5. Real and imaginary part of dynamical susceptibility x=X'-iX"

as functions of the frequency u at the critical point T=l for the mean

field Ising model. See (A2.12&13). Curves have been drawn using N=50
spins.
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Tke. Expan&-ûw otf the. Moi-tet Equation including a. CA/C£CCO£ Poi.nt

H. VikkeA, Uto.e.cJnJt, 19SO ap/üZ 21

STELLINGEN

ID De wijd verbreide idee dat het niet mogelijk zou zijn een systema-

tische ontwikkeling van de master vergelijking te geven welke geldig

blijft in een cri tisch punt, is met dit proefschrift definitief weerlegd.

2 D In tegenstelling tot hetgeen Larson en Kostin beweren, is Van Kampen 's

correctie op Kramers' diffusie formule niet van de orde exp(-AU), maar

wel degelijk van de orde l/ AU.

N. G. van Kampen, 3.Stat.?hyé.17_{1977}71 .

R. S. lauon & M. P. KoAtLn, 3.Chem.Phy&.69_(1978]4&21 .

3D In bepaalde gevallen dient Van Kampen 's formule voor de cri tische
schal ing te worden gegeneraliseerd.

W. G. van Kampen, Mv.Chem.Phy&.3±{1976)245.

H. Ve.kkeA., J. Chem.Pkyt. 7211980)189.

4D Een uniform geldige ontwikkeling van de master vergelijking voor de

relaxatie van een normale instabiele toestand is nog niet bekend.

M. Suzufw., J.Stat.Phy&.U^ f / 9 7 7 ) 11.

f. HaaJie., Pfc(/4. Reu. Lett. 4^(7 978) 1685.

5 D Het beschrijven van critische fluctuaties in diffusie processen met

behulp van de 'meest waarschijnlijke paden' is onjuist.

V. VÜM. & A. Batfe, Z.?ky*.Z32[197<)}413.

6 d Berekening van padintegralen met behulp van alleen het 'meest

waarschijnlijk pad over korte tijdintervallen1 behelst een ad-hoc

voorschrift, dat slechts in vlakke ruimtes achteraf kunnen worden
gerechtvaardigd.

H. Vekke*., In P/ioc.Iwi.Wo/tfe^nop on fu.nvt.lnt.(Pie.nwn, New Vonk., 19SO}.



7 D Een eenvoudig model van een niet single-mode laser, geldig in de buurt

van het critische punt, is ten onrechte vrijwel onopgemerkt gebleven.

H. Ve.kk.eA, Optiu Comm._7_0J7974)774.

R. L. S&iatonov4.ch, S0v.J.Qu.E£ec#i.7;[ 7977) 7225.

8 D De beschrijving van de quantum mechanica van dissiperende systemen

met behulp van tijdafhankelijke Hamiltonianen en afzonderlijke toe-

gevoegde ruisbronnen (ten einde de onzekerheids relaties te waarborgen)

leidt tot resultaten welke dusdanig afhangen van speciale begincondities,

dat zij als onjuist moet worden beschouwd.

I.R. Svin'tn, TzotL.Mat.K.z.2ni976}270.

J. Mu&Vi, Ac-ta P^.Aa6*L._5£(J977)75.

9 D De bewering dat in het waterstof atoom 'banen' met gelijk hoofd-

quantum getal door de letters s, p, d, f, g, ... in volgorde van

afnemende excentriciteit zijn aangegeven, is gebaseerd op de oude

quantum theorie en om die reden onjuist voor de s-'baan' (£=o).

J. A. VuLnt,, GtLondbe.Q4.nt>eJte.n van de. kede.ndaa.Qi> e. natuuA.ku.nde.

(Wottnu, GnonA.YiQe.ti, 7963) .

V. tvi Haa/i, The. OM Quantum The.o/iy \ViHQomon, Ox.{,old, 7 9 6 7 ) .

lODDe relatie tussen de quantum-electrodynamische interactie Ham-
i l toni aan in de dipool benadering in termen van de vector potentiaal

en' in termen van de electrische veldsterkte is, hoewel eenvoudig, aan-

leiding geweest tot verwarring. Een correcte behandeling is te vinden in

C. W. LambeAfy, & H. PefefeeA, Phy&.Lab.TNO Re.pt. PtfL 7975-49.

llDEen foton tu is het kleinste energie quantum dat één Fourier

component (met frequentie u) van het electromagnetisch veld kan

bevatten. Dynamische verschijnselen behoeven noodzakelijkerwijs meer

dan één Fourier component. De gebruikelijke aanduiding 'emissie van een

foton' is dan ook semantisch bezien onjuist, evenals de in de quantum

electronica ingeburgerde zegswijze 'fotonentellen1. Een correct

alternatief voor dit laatste is 'foto-electronen tellen'.



12DVerder onderzoek naar de eigenschappen, zoals fading en interne

excitatie, van thermoluminescente dosimeters blijft gewenst.

Z. SpuAny & J. Kuoónt&a, Iwt.Contf.Lum.Po.4. [K/iakmü, Po&md, 7974 )255 .

H. PefefeeA, Heo&Öi Pfc(/4-cc6 30J 7976) 399.

ISDSupergeleidende objectief lenzen voor electronen microscopie, en de

Faraday methode ter bepaling van hun kwaliteiten, zijn ten onrechte

ondergewaardeerd.

H. PefefeeA, J.Pfa/a.E _5 | I972)368 .

P.W. Hauiku & U. l/o&tol, J.Ph</4.E £ 0 ( 7 9 7 7 ) 3 0 9 .

14DBij het ontwerpen van conferentie- en concertzalen wordt het

effectief dissipatieve randeffect gewoonlijk ten onrechte niet in

beschouwing genomen.

H. PefefeeA, J. Sound & WM. 3ZJ 1 974) 1 99.

IBDHet invoeren van veel niet goed bekende parameters in wiskundige

modellen, zoals gebruik voor bijvoorbeeld economische voorspellingen,

geeft hun uitkomsten een ruisachtig karakter. Deze stochastiek zou

- ten eerste - op de juiste wijze behandeld, en - ten tweede - niet in

het eindresultaat verbloemd moeten worden.

ISDDe negatieve invloed van de Nederlandse vertaling van een boek van

de Franse katholiek Venette aan het eind van de zeventiende eeuw op

de maatschappelijke waardering van de vrouw in de daaropvolgende eeuwen

dient nader te worden onderzocht.

W. Ve.ne£te., Ve.wA Ali.nA.ceke Goi-ÖtuXó (AirtóteAdom, 1687}.

W.F. Moondam, Spiegel \\LktanJuaeJL £2(7979)650.

17DHet gezegde 'als de nood het hoogst is, is redding nabij' moet op

logische gronden als ofwel onjuist ofwel triviaal worden beschouwd.




