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SUMMARY 
The Rapid Nano is a particle inspection system developed by TNO for the qualification of EUV reticle handling 
equipment. The detection principle of this system is dark-field microscopy. The performance of the system has 
been improved via model-based design. Through our model of the scattering process we identified two key 
components to improving the inspection sensitivity. The first component is to illuminate the substrate from 
multiple azimuth angles. The second component to improve the sensitivity is to decrease the wavelength of 
illumination. A shorter wavelength increases the total scattering and reduces the background scattering relative 
to the defect signal. A new Rapid Nano particle detection system (RN4) will be completed mid 2016. It 
combines the multi-azimuth illumination mode  with a 193 nm source. This system  will have a sub 20 nm LSE 
sensitivity, in-line with the requirements of the ITRS roadmap for defects on EUV masks.  
 
The Rapid Nano inspection system makes use of dark-field imaging, in which an area of a substrate is imaged 
on a camera. Previous generations of the Rapid Nano system made use of commercially available optics for the 
imaging step. In the DUV wavelength regime diffraction limited imaging over a large field is more challenging 
and suitable optics were not available off-the-shelf. Therefore TNO designed and fabricated an objective lens 
specifically for the Rapid Nano 4 inspection system. 
Other challenges in changing the illumination to the DUV include handling the high peak power of the pulsed 
laser source and the lifetime of the optics. The design of the Rapid Nano 4 and first results comparing it to the 
model predictions will be presented. 

1 INTRODUCTION 
 
Reticle defectivity is one of the issues that still needs to be addressed in order to prepare EUV lithography for 
high-volume manufacturing. Particle contamination before, during and after the production of a reticle is a 
source of reticle defects. For this reason, there are strict requirements on the cleanliness of all reticle handling 
equipment that interact with a reticle over its lifetime.  
In order to qualify the particle cleanliness of equipment for the reticle infrastructure, particle inspection 
equipment is needed. In 2011 TNO introduced the RN1, which was capable of detecting 59 nm particles on a 
full reticle substrate [1]. The ITRS roadmap gives the critical defect sizes for wafers and EUV reticles (see 
Figure 1). We aim to increase the sensitivity of our particle scanner to match the requirements set by the ITRS 
roadmap. By modeling the scatter process a road forward to increase the sensitivity were identified [2]: 
decreasing the background variance by multi azimuth illumination and use light at 193nm wavelength. The 
multi azimuth illumination mode averages out the variance in the background scattering, allowing for a lower 
detection threshold to be used. Two years ago, this illumination mode was implemented in our existing particle 

Metrology, Inspection, and Process Control for Microlithography XXX, edited by Martha I. Sanchez, Vladimir A. Ukrainstev
Proc. of SPIE Vol. 9778, 977835 · © 2016 SPIE · CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2219058

Proc. of SPIE Vol. 9778  977835-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



ITRS Roadman on particle detection

RN 10 0.532533 nn; a--Jg^, P0=1

.RN 3:\533 nm; w-60'; R&9

.

RNe;Re193nm;m-60'; R&9

-MS Node

e.,mh.-inky
4140,0116141010110002102121

nin Max 211.21214 me 0100
p.e 001,042110000020.1s)

1401010112Ibww.upVmge
Wee..kl

rwe Reni .. Pma...FMwaa. ewi,e...m
($01400 10000

u,eew.R,
Rw, uen eeenNr.mnaan w,...nul
IsananmLw.nl
I140IN100mm4NlRLY10^'I

ThisThis step is caused by the assumption
that the mask magnification changes
from 4 to 5 times

000 no 2011 200 2013 2014 2025 2014 2011 2020 w. 2023 2024 2025 2026

Meethnwe4eNn

 

 

detection system [3], RN3. This resulted in a decrease in lower detection limit from 59 nm to 42 nm PSL 
particles on silicon. According to the ITRS roadmap [5], the critical defect size for EUV reticles will be around 
20 nm (see Figure 1). With the next generation particle inspection equipment, the RN4, we are building a system 
that will be capable of measuring sub 20 nm particles, which matches with the defect size roadmap of ITRS. 
 

 

 
Figure 1: ITRS roadmap for critical defect size on EUV masks. 

 
Before equipment from the reticle infrastructure can be used in production, it should pass a qualification test in 
which the cleanliness is proven to meet the specifications. In such a qualification test a reticle blank is used. 
This blank is inspected on particles before and after the test. The difference between these two inspections 
shows the particles that were added by the equipment during the test. The test itself consists of a number of 
reticle passes through the tool. The minimum number of cycles for a statistically significant result depends on 
the cleanliness specification and background noise present in the measurement [4]. 
 
The Rapid Nano 4 (RN4) will become one of the instruments that is part of an larger TNO infrastructure for 
handling an qualifying EUV equipment (pods, handling equipment, backside particle detection unit (OCT). See 
Figure 2). The basic infrastructure is build and qualified, consisting of an atmospheric reticle handler, load port, 
exchange ports and reticle flipping tools. At this infrastructure, the RN4 will be attached for automated 
inspection of reticles. Customers of TNO can have access to this unique facility to qualify their products or 
systems. 
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As described in previously [2], [3]. there are a several ways of increasing the contrast of the particle and the 
background. One of the implemented methods is polarization. The incident polarization is P-polarized. This will 
result in a lower scattering of the background compared to the particle. 
The other important improvement, already introduced in RN3, the illumination of the substrates for different 
azimuth angles [3]. 
Both of these methods are also implemented in the Rapid Nano 4 design. The main difference between the 
previous Rapid Nano generations is de decrease in wavelength. As the intensity of particle scattering is strongly 
related to the wavelength as ~λ-4 and particle diameter ~d6(Rayleigh scattering approximation) where the 
scattering of the background due to roughness is related to the wavelength, it really helps to decrease the 
wavelength. For Rapid Nano 4, the design wavelength is 193 nm. For this wavelength, there is a good source 
available (ArF excimer laser), can still be used in atmospheric pressures and still have some different glass types 
available to design the optics with. 
However, changing the wavelength to 193nm has quite an impact on the system. Contamination of optics due to 
hydrocarbons becomes an important issue as well as the poor transmission of the 193 nm through air. Also the 
availability hardware that can be used at 193nm is more limited than for larger wavelengths. 
 
The Optical system of consists in total of 9 modules: (See Figure 4) 

1) Laser 
2) Beam shaping and delivery 
3) Pulse Stretcher 
4) Light guide 
5) Illumination branch 
6) Beam Dump 
7) Detection Branch 
8) Level Sensor 
9) Scan Box 

 
Next to these 9 optically oriented modules, there are also stages, metro frames and other supporting equipment 
needed to keep the system clean and safe. 

 
Figure 4: Schematic overview of the RN4 system 
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Furthermore, the minienvironment can be accessed by 2 automated doors, one is used at the side of the reticle 
handler and gives the Reticle Handler robot access to the Rapid Nano system. The other door is a manual feed 
door. This door is used to access the stage compartment in case of odd size substrates, or for maintenance. 

                                         
Figure 10: Mechanical design of RN4 

 
Outside the mini environment, the electronics racks, laser, beam delivery and pulse stretcher are located. 
The laser is mounted on a carriage, for maintenance the laser can be slide outside the base frame for easy access. 
After the maintenance, the laser can be replaced on exactly the same position as the original without further 
alignment. 
The base-frame and the xy stage are already build and operational. The custom designed z-tip-tilt-stage is 
integrated at the xy stage and is under test. The lower section of the metro-frame and mini environment is 
already mounted as well as the electronic racks, pneumatic cabinet and the power distribution unit (See Figure 
11). May of the opto-mechanical components for the different modules are still in the procurement phase and 
are delivered soon.  It is in the expectation that the system will be fully build in the next 2-3 months.  
 

       
Figure 11: Assembly of the RN4 system, with stages and tip-tilt z-stage  

 

4 EXPECTED PERFORMANCE 
Using advanced modelling of the Rapid Nano system a performance estimation is made. 
In Table 1 the performance is given. The modeling results showed a performance for RN3 of 43 nm where the 
measured performance of RN3 was 42 nm. The model [3] and the measurements are in good agreement. The 
same model type also used to predict the performance of RN4. Here the model showed a sub 20 nm PSL on Si 
particle detection. 
The first measurement results for RN4 are expected somewhere in June 2016 
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Table 1: Predicted and measured performance of the different Rapid Nano generations 
 

 PSL on Si [nm] Al on Si [nm] 
RN1: 532 nm, 1-azimuth   

Predicted 59 35 
Measured 59 35 

RN3: 532 nm, 9-azimuth   
Predicted 43 25 
Measured 42   

RN4: 193 nm, 9-azimuth   
Predicted 18 18  
Measured June 2016  

 

5 NEXT STEPS 
The goal of the Rapid Nano 4 system as being build today is to show that it can measure sub 20 nm particles. To 
reach this milestone, all activities related to automation or throughput are considered less important. 
Nevertheless the system is designed to inspect a full reticle substrate in ~90 min. The next step will be to 
improve the throughput of the system.  
One of the first steps will be using the camera in TDI mode: The camera used is a Hamamatsu C10000-801 TDI 
camera. This camera is now used in a full frame mode which requires start/stop motion of the stage Using this 
camera in TDI mode the stage does not need to follow a stepping pattern. Instead, it is possible to perform a 
scanning motion, where the velocity of the stage is kept constant, depending on the “shutter speed” needed. The 
camera and the laser will be triggered using the stage position. For each trigger pulse, the charge of one row of 
pixels is transferred to the next row. By triggering this transfer, the speed of the stage and the camera are 
synchronized. Using a scanning motion instead of a stepping motion, will improve the inspection time with a 
factor ~35. 
Furthermore the throughput is limited by the laser repetition rate. The laser will be used for the current 
generation has a repetition rate of 500 Hz. The RN4 system is designed such that the laser can be replaced by 
another laser with higher repetition rate (2 kHz). This laser replacement can be performed with minimum impact 
to the system. 
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