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Model and a recurrent neural network, respectively. The latter
two have the interesting ability to process sequences ofrange
profiles. Ba¡as and Wolk [4] showed the feasibility of range

profìle classification on multiple resolution levels using

wavelets.

In real measurements, the absolute positions of the scatter

returns in a range profile are undefined. It requires that the

classification method should be shift-invariant. A promising

solution to this problem is the use ofcorrelation filters [5]. In
this paper we investigate the potential of a shift invariant
profile-to-profile distance. Once it is defined, all classification

techniques that are based on these pair distances are available.

Earlier results on such a distance metric using a nearest

neighbour classifier (section 3.4) ue reported by Novak [6].
Four different classification methods are devised and tested.

Two of them are based on the Nearest Neighbour rule, the

other two are implementations of a Radial Basis Functions

network. In this study a thorough test on real radar data from
inflight aircraft is carried out. An important property of the

used data set is that the train- and test profiles were measured

independently.

Furthermore, we present a method to compare the classihers.

Clearly, an important comparison criterion is the error on an

independent test set. r¡/ith an eye on future applications for a

range profile classifier we believe that it is important to

include the classification speed in the comparison as well.
Two less important parameters are the time needed for training
a classifier and the size of the classifier.

Finally, we select for all combinations of two scenarios and

four applications the most appropriate classifier. Although
these choices are ¡ather tentative given the moderate amount

of data that is considered, it clearly demonstrates the employed

method.

The organisation of this paper is as follows: The next section

reviews the physics of range profiles, section 3 describes the

used distance metric and the four classification techniques.

Then, section 4 establishes the approach to compare classifi-

cation techniques. Section 5 shows the results on real radar

data and, finally, section 6 gives the conclusions.

ABSTRACT
Aircraft identification is essential in any air-defence scenario.

Without a robust classification capability no effective threat

evaluation can be performed. A prominent aircraft recognition

technique is based on the exploitation of a one-dimensional

image of a target, a range profile.In this paper, we employ

four different classification techniques, all based on shift
invariant distances, and a method to compare them. Two of the

techniques are based on Radial Basis Functions for which a

novel technique to optimize the number of free parameters is

presented. The application is on real radar data, where a true

separation between train- and test profiles is accomplished.

The classifìcation results are encouraging. As an example, a

qualitative statement is given about the best of the four
classifiers to be used in combinations of two scenarios and

four applications.

I. INTRODUCTION
An important aircraft identification technique, Identifi cation

Friend Foe, relies on the cooperation ofthe target. If, in war-

or crisis time, the aircraft fails to cooperate for whatever

reason the only saue conclusion for the interrogator is that the

aircraft is hostile.

This incomplete decision process caused serious cases of
fratricide. In April 1994, two Blackhawk (friendly) helicopters

were shot down in the no-fly zone of Iraq. This incident

underlined again the importance of an additional identification
capability such as NCTR (Non-Cooperative Target Recogni-

tion).
Currently we are investigating the NCTR potential of High
Range Resolution (HRR) range profiles. Measurement of these

signatures is relatively easy and the requirements for motion
compensation are moderate or the compensation may even be

omitted. Additionally, range profile classification is applicable

at almost all aircraft orientations.

In the literature, several approaches to classify range profiles
are reported. Selection of a feature vector from the spectral

components of a range profìle is reported by Garber et al lll,
Dewitt [2] and Kouba [3]. Classification of this vector is

carried out by a nearest neighbour rule, a Hidden Markov
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2. RANGE PROFILF.S

Figure I shows the contour of an aircraft and its range proflrle.

The profile can be viewed as a projection ofthe aircraft

scatterers onto the line of sight. It thus shows the radar cross

section as a function ofrange.

Fig. 1: The aircratt is illuminated from the lett side. Each strip

represents a range cell. The contributions of the scat'

terers in each strip are summed to constitute a single

range profile element.

For the generation of range profiles, we need a radar that is

able to emit a high bandwidth-waveform. This can be done

either with a single short pulse, or with a burst of pulses at

linearly increasing carrier frequencies [7].
Due to coherent summation of aircraft scatterers (speckle), the

exact shape of the range profiles depends strongly on aspect

angle. However, the overall profile shape does not change

significantly (see for example fìgure 3) as long as the aircraft

scatterers do not move outside one range resolution cell.

For the available data, the maximum change in aspect angle to

avoid this rotational range migration is approximately

L5 degrees. It is very difficult to determine the aircraft aspect

angle with this accuracy. Consequently, a simple look-up table

approach - a measured profile and its aspect angle is compared

to the profiles in a data base with the same aspect angle - is not

applicable [5].
Another approach is therefore to consider aspect angle bins

that are several times larger than the error in aspect angle. The

procedure is to construct a classifier for each bin. Then, for an

unknown profile, retrieve its aspect angle, select the appropri-

ate bin and assign a class with the corresponding classifier.

Evidently, an extra mismatch,probability will occur, because a

prof,rle from class I may look like a profìle from class 2, as

seen at a different aspect within the bin.

For the data set we consider in this paper the errors on the

aspect angles are witnin five degrees. All profiles have aspect

angles with absolute values ranging from 0 to 20 degrees and

are placed in a single bin.

3. RANGE PROFILE CLASSIFICATION

3.1 Delinitions
Two sets of independently measured range profiles within a

single bin are available, the input set and the test sel' A subset

of the input set, the train set, is used for training a classifier.

The profiles in the input set, train set and test set are randomly

ordered and are named r¡, i = l, . . ., Ninput, p¡, i = 1, . .',
Nu.ain, and 9¡, i = l, . . ., Nt.rt respectively.

A classifier is fully determined by

L the classifícation technique and

2. the train set.

The classes of all profiles are known. This enables us to train

and test a classifier. Clearly, in an operational situation there is

no test set available.

3.2 Sliding Euclidean Distance

All our classification methods a¡e based on prohle-to-profile

distances. The absolute positions of the reflections in the

profìle depend strongly on the distance to the target. As we

cannot estimate this distance accurately enough to place the

reflections on an objective position, we must use a shift

invariant distance.

Suppose we have two range profiles xt and xz, length a ,

elements r(l), . . . , x(d). Then we define the distance D as

the minimum Euclidean distance over all shifts:

D(xr,xr) = min
j=0"""o-l

The shifts are cyclical, that is ¡l( a + j) = x1@.

3.3 Compression and normalisation of proñles

In profile classification using the Sliding Euclidean distance it
is advantageous to lift the weak scatterers in the range profile

relative to the strong scatterers so that they can play a role in

the profile matching as well. Several choices can be made for

such a compresslon, e.g. a log-scale or a power function with a

power less than one.

Current investigations concern the search for the optimum

compression function. Preliminary results show that a power

function with a power % works satisfactorily.

After the compression, the profiles need to be normalized, as

the magnitudes of the reflections depend strongly on the

absolute sensitivity ofthe radar and the distance at which the

aircraft was measured. As neither the sensitivity nor the exact

distance of the aircraft is known, we normalise the compressed

profîles such that the sum of squares of the profile elements

equals one.

3.4 Nearest Neighbour
The nearest neighbour rule decides that the class of a profile

from the test set is the class ofthe nearest profile in the train

set. Here 'nearest' is with respect to the chosen distance

metric D.

A simple extension to this technique is to search for the

k (k>2) nearest neighbours, giving k class declarations. The

class that occurred most frequently is assigned to the profile

ifx,¡i+ ¡¡- x2¡i¡12



from the test set. Experiments showed that this extension did

not give significant differences in the classification results.

Therefore we will only consider a l-nearest neighbour in this

paper.

3.5 Condensed Nearest Neighbour

A drawback ofthe nearest neighbour technique is the large

computational effort necessary for the classiflrcation. For each

profile for which classification is desired, we have to compute

all distances to the profiles in the train set again. This is even

more a problem in our application, because the chosen

distance measure D is computationally expensive.

The technique we will apply here to reduce the computational

burden is based on the idea that a profile that is far from the

decision boundary has, on average, fa¡ less influence on the

outcome of the nearest neighbour classifier than a profile that

is near the decision boundary. Therefore we might as well skip

this profile and save the computation time.

It is possible that a profile does not contribute to the decision

boundary at all, as it is completely surrounded by other

profiles from the same class. Skipping it does not alter the

outcome of a nearest neighbour rule. However, in our applica-

tion this situation seldom occurs as a profile is of very high
dimension and thus almost always defines a part of the

decision boundary. This means that in virtually all cases the

classification accuracy is reduced if a profile is removed.

In this paper, we use the condensing algorithm [8]. To arrive

at the condensed subset of the train set, two complementary

subsets of this set, named A and 8, are defined. Place the first
profile from the train set, pl, in A, the remaining profiles, pz,

. . . , pruua¡n, in B. The method proceeds as follows:
1. Use the nearest neighbour rule to classify the first profile

in B with the profile(s) in A. If it is classified correctly
with the nearest neighbour rule, leave it in B, otherwise,

place it in A. Repeat this operation for all profiles that are

left in B.

2. lf in step I not a single profile has been transferred from B

to A, or if B is empty then terminate. Else retum to step L

After termination, A contains the condensed subset. For

classification, the nearest neighbour rule is applied using the

condensed subset instead ofthe full train set.

3.6 Radial Basis Functions

Radial Basis Functions (RBF) provide a way to construct a

function that maps vectors from a high dimensional space onto

a lower dimensional space [9]. As the only inputs for this

method are distances between profiles we can use the sliding

Euclidean distance D to make the method suitable for range

profile classifìcation. The advantage of the used RBF imple-
mentations compared to a nearest neighbour technique is the

Iarge reduction of classifier size and classification effort.

From the train set, I profiles are selected to serve as centres cL

I = l, . .. , L. (The next two subsections 3.7 and 3.8 describe

the used selection methods.) The pair distances between the

centres and a train profile pi enter the RBF network and form

the elements of a distance vector di with elements:

t't-3

Then, a non-linear transform using a Gaussian function

2

Q0)=e'
is applied to each of the elements in the distance vector, giving

b¡¡ = Q@). (3)

Multiplication of the vector þ¡ = (bit, . . . , b¡r)r by a weight

matrix I,I¡ and addition of a bias vector w0 gives, for each train

profile, the output o,.

o¡ =ws*Wb¡ (4)

In the training phase, the weights woand Ware chosen such

that the outputs are as close as possible to unit vectors in a

y-dimensional space, where y is the number of classes.

Train profìles from class I are mapped as close as possible

onto the output er: (1,0 , . . . , 0)1, train profiles from class 2

onto e2 = (0, l, . . . , 0)r, et cetera.

Hence the training of the Radial Basis Functions network boils

down to finding the least squares solution for wo and lV using

equation 4 for all train profiles. This is an attractive property

ofthe Radial Basis Functions approach: although it is able to

construct any complex non-linear decision boundary, the

weights can be found by linear methods [9].
For classification we simply compute the output for a lesî

profìle qi using the distances D to the centres and equations 3

and 4. If the closest unit vector to the output is e; then class j is

assigned to the test profile.

In the next sections we will address the problems of choosing

the centres and selecting the number of centres.

3.7 Radial Basis Functions with Random Centre
Selection

A good first choice for the centres is to select them randomly

from the train profiles. One must be careful, however, about

the number ofcentres to choose. Each extra centre adds an

extra degree of freedom to fit the train profiles. If we take too

fèw centres, the approximation will be too coarse. If we take

too many centres (but less than the number of train profiles),

also the noise on the profiles will be fïtted ('overfitting'). In
both cases, the generalisation capabilities of the classifier will
be worse than with an intermediate number of centres.

To find the optimum number of centres we devised the

following algorithm:
1. Select, randomly, half of the profiles from the train set,

and use them as evaluation set. Use the other half as de-

.rign set.

2. Choose, randomly, a profile from the design set (one that

has not been chosen earlier) and copy it to the centre set.

3. Find the weights using the centre set and the design set

from equation 4.

4. Compute the outputs oi for each of the evaluation profiles.

Compute the sum of the errors ll o¡e; ll where e; are the

desired outputs corresponding to the class ofthe evalua-

tion profrles. This is called the evaluation error.

5. Repeat steps 2, 3 and 4 until all design profiles (apart from
one) are used as centre.

(2)

d¡¡ = D(p¡,c¡) (l)
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Similarly to step 4 it is instructive to compute the design error

as well.

Although this error decreases monotonically as the number of
centres increases, the evaluation error will reach a minimum

for a certain number of centres. See figure 2. The best choice

for the number of centres is therefore at the minimum value of
the evaluation error.

poor 
Poorgeneralization seneialization

caused by too gogd . " du. to
few degrees 9f $enerallzatlon overf,rtting

freedom

optimum /
centre set 

--/stze
Number of centres

Fig. 2: As the number of centres increases the network is able

to represent the design profiles better, i.e. the design

error tends to zero. However, the true classification ca'

pability is revealed by the error on an independent

evaluation set.

3.8 Radial Basis Functions with Gram-Schmidt Centre

Selection
A procedure to select the best centres from the design set is to

use a Gram-Schmidt orthonormalization technique. Here we

will confine ourselves to a qualitative description, for details

we refer to [10].
As in the Random Centre Selection, the ltrst step is to employ

the first part of the train set for designing the classifier and the

other part for evaluation. Then we search for rlrøt profile in the

design set that gives the best least-squares solution if used as a

centre. At each next step, we add another profile to the centre

set that gives the best improvement of the least-squares

solution.

Instead of the computation of the least-squares solutions, Chen

et al U}l devised an efficient Gram-Schmidt orthonormaliza-

tion procedure to select the best centres.

As in the random centre selection, we compute the classifica-

tion error on the independent evaluation set and choose that

number of centres where the evaluation error has a minimum.

4. COMPARISON OF CLASSIFIERS

Often, classification techniques are compared in terms of their

effors on a test set only. For most practical applications three

more properties deñne the usefulness of a classifier. The

following list gives the four measurable classifier properties

that are of interest.

2',(",)
í=1

answer.

5. RESI]LTS

ar Classification error l7o false on independent test setl

d2 Computational effort needed for one classification

[# floating point operations]

43 Computational effort needed for training the classifier

[# floating point operations]

a¿ Memory required to store the trained classifier [# of
bytesl.

Ideally, each ofthese quantities equals zero. In practice, for

each classification technique there will be a trade-off between

these four properties which can be found by varying the size of

the train set.

For example, let us consider a classifier that uses the nearest

neighbour technique (a3 = 0) and a small sized train set. Then

the classification error, ar, will decrease ifthe train set

increases. This also implies, however, that more distances

have to be computed and it thus results in a larger a2and a4.

To choose the right classifier we would like to have weight

functions, ar¡ (monotonously increasing) so that the quantity

is minimized with respect to al, . . . , ¿¿. Unfortunately, we do

not have these functions available, but we can make a few

simplifying but realistic assumptions to tackle the problem'

The first one is that the most important parameters in a

military context are a1 and az.The time needed for training

(a¡) is of much lesser importance, because it can be done off-

line. The size ofthe trained classiher is generally also less

significant. Besides that d4 is (almost) linearly related to az for

the classification techniques we consider. Therefore we do not

have to minimize ¿¿ by itself. For the remainder of this paper,

we will therefore focus on at and az only .

We do not make a choice for atl and al2 either, but construct a

large number of classilters to demonstrate the trade-off

between at and az. For example, if the user wishes a cerfain at

he may find in a single curve the classifier that has the smallest

42.

At this point, we also want to stress that not only the applica-

tion (e.g. surveillance or aircraft radar) is decisive for the

classiher choice, but also the scenario (crisis or wartime). Äs

an illustration table I shows roughly the importance of correct

classifìcation and fast classification as a function of the

application and the scenario.

This table shows in qualitative terms that in times of crisis it is

more important to have a reliable answer then to have a quick

answer. In wartime it is of greatest important to have a fast

5.1 Available data

We have an input set available of 357 profìles of four different

aircraft from an S-Band radar. The number of elements of the

profiles is 128. These profiles were gained in six different

aircraft flights.



scenano cnsts wartime

classifier oroDertv correct class. fast class. correct class. fast class.

application SHORAD

HIMAD

Fighter aircratt

Surveillance

+

+

+

+

0

0

0

0

0

0

+

0

+

t7-5

Table 1: Relative importance of classification properties for application and scenario in terms of minus signs (less

importance), zeroes (moderate importance) and plus signs (high importance). Here SHORAD means

SHOrt Range Air Defense and HIMAD Hlgh to Medium AirQefense (e.9. HAWK, PATRIOT).

In five other measurements, 339 profiles were obtained from
the same four aircraft. These profiles made up an independent
test set.

For each profile, an approximate aspect angle is available. The
absolute aspect angles (we assume symmetry around aspect

angle 0) are in the range of0 to 20 degrees from head-on. The
effors on the angles are believed to be within 5 degrees, the

elevation is approximately zero.

As stated in subsection 3.3 the profiles were compressed with
a power of ll4 and normalised. Figure 3 shows some examples

of compressed and normalised profiles from the four different
classes and from the input- and test set. Each of the three

profìles in one class and one set was measured during the same

flight. This means that, although the aspect angle is inaccurate,
the change in aspect angle (as indicated above each prohle) is

more accurately defìned.

5.2 Classificationexperiment
In this section we investigate the properties ofthe classifica-
tion techniques of chapter 3. To this end, we construct a large
number of classifìers using the four techniques and varying
train sets to monitor the trade-offs between the classification
speed and the classification error.

Carry out the following steps for Nrain = 8,24,40, . . . ,152:
l. Choose, randomly, Ntnn/4 profiles per class from the

input set and use them as train set.

2. Construct the classifiers

NN (Nearest Neighbour)

CNN (Condensed Nearest Neighbour)
RR (Radial Basis Functions with Random Cenrre Se-

lection)
RGS (Radial Basis Functions with Gram-Schmidt or-

thonormalization)
for this train set.

3. Classify all prohles in the test set using these classifiers.

Compute the percentage offalse classifications. This gives

al. Also keep track of the number of flops used for classi-
fying a single profile (az).

4. Repeat steps l-3 thirty times and average at a¡d a2.

The results are shown in figures 4 and 5.

Figure 4 shows that a fairly good classification rate can be

achieved with only a small number of profiles per class in the

train set. For example the nearest neighbour technique needs

only 40 train profiles (on average one profile per class per two
degrees) to achieve a classifìcation error less than ll%o.It
suggests that a rather crude coverage ofaspect angle sufhces

for reasonable classihcation, although one must be aware that

the performance is favoured by the small number of classes.

For all sizes of the train set, the nearest neighbour technique

has the best classifìcation rate. This technique apparently

makes the best use of the available data. For small sizes of the

train set, both Radial Basis Function techniques have poor

classification rates. This is because half of the profiles has to

be used for evaluation. If the train set increases, this effect

becomes less important.

Fig. 3: Examples of compressed and normalised profiles of
four different aircraft, near head-on. The input set is

shown on the left hand side and the independent test
set on the right hand side. ln the upperleft corner, the
aspect angle ditference (in degrees) relative to the left-

most of the three profiles is shown. As can be seen, the

small scale variations (speckle) are unpredictable

whereas the overall appearance, in most cases, is
similar.

The condensed nearest neighbour has an approximately 6Vo

higher classification error rate than the normal nearest neigh-
bour for all sizes of the train set. As stated in section 3.5, the

condensing procedure deletes profiles that somehow contrib-
ute to the decision boundaries.

The Radial Basis Functions using a Gram-Schmidt centre

selection has a somewhat better classification rate than the

RBF using a random centre selection. For larger input sets, the

difference tends to vanish.

The classification effort (figure 5) is closely related to the

number of profiles that is present in the classifìer.

In the nearest neighbour case, all profiles are used in the

classifier - the CNN classifiers use the condensed profiles

only. The classification effort is exactly linearly related to the
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Fig. 4: Average percentage wrong (41) as a function of train

set size.

number of profiles in the train set (NN) or the number of

condensed profiles (CNN).

The left-over profiles in an RBF classiher are the centres' The

major part of the computations arises from the profile-to-

profile distance evaluations - a small number of extra compu-

tations is necessary for the non-linear transform (equation 2)

and the matrix multiplication (equation 4).

The two plots show that in the CNN-, RR- and the RGS

classifiers only a very small number of profiles is left over,

compared to the nearest neighbour' It means that redundant or

nearly redundant profiles are removed at the cost of an

increased classifi cation error.

As the important parameters are at and a2, ftgve 6 shows the

trade-offs between classification rate and classification speed

for the four classification techniques.

From this ltgure one can decide which classifier is most

appropriate for a particular classiflication purpose. The simple

approach is to choose a desired classification error on the

vertical axis, move horizontally until the first curve in the plot

is reached. This classifier should be used as it is the most rapid

one. For example, ifone desires a classification between

approximately 9Vo and l4Vo an RGS classifier is the best

choice. The required size of the train set can be found in

figures 4 or 5.

Conversely, fìgure 6 can be utilised to find the best classifier

given a desired classification speed. E'g. if one is willing to

carry out 10,0ffi flops for one classification, a CNN classifìer

is the best choice, because it has the minimum error of ap-

proximately llVo.
If one desires the minimum classification error possible, a

nearest neighbour is appropriate, but it will take a long time to

answer.

Returning to the table I we may insert, using figure 6, the

most appropriate classification techniques; see table 2. We

want to stress that filling in this table is merely a demonstra'

tion of the method of classifier selection - for a decisive

answer on which techniques to use, larger scaled experiments

have to be carried out.
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6 CONCLUSIONS
In this paper we described a successful classification test on

range profiles. The profiles used for training and those for

testing were acquired in strictly separated aircraft flights and

covered a wide aspect angle range of20". Still' the best

classihcation results were within l0% error. Although these

results are favoured by the small number of classes, they are

very encouraging for the applicability of this technique for

NCTR.

All classification techniques we considered were based on

profile-to-profile distances. The best rates were found using a

simple nearest-neighbour rule. In this paper we demonstrated,

however, that for most cases this is not the best technique if
one incìudes the classification speed into the comparison as

well. It shows that the Condensed Nearest Neighbour and the

Radial Basis Functions with Gram-Schmidt orthonotmaliza-

tion have a more favourable trade-offbetween classification

rate and -speed.

Average classification etfort for resulting classifier (42)

as a function of train set size.

0.5 1 1.5 2 2.5 3 3.5 4
Classification effort [lopsl x 1Os

Average classification eflo¡l (az) vs Average classifica-

t¡on rate (¿r) (zoomed).
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scenaflo cnsts wartime

application SHORAD

HIMAD

Fighter aircratt

Surveillance

RGS medium train set

RGS large train set

RGS medium train set

RGS laroe tra¡n set

CNN small train set

CNN small train set

CNN small train set

CNN medium train set

f able 2: Best classification technique given scenario and application.
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