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ABSTRACT:

Under the ESA study contract NR 9837/92/NL/GS synergy in the madelling of microwave with optical remote sensing
data has been studied for agricuktural crops. One of the most important issuea is whether we coukd expect synergy from various
remole sensing sources for crop yield prediction. Crop yield can be predicied already at an carly stage of growth using various
kinds of crop growth models with various levels of complexity. However, estimates of crop growth and thus yield predietions
often arc inaccurate for non-optimal growing conditions, e.g. due lo pest and desease incidenco, drought, frost damage or
fertilizer defiency. Remote scnsing can provide information on the actual status of agricuftural crops, thus offering the
possibillty of calibrating the growth modelling.

In this study we will analyse radar backscatter and optical rellectance from sugar beet crops at the MAC Europe 1991
Flevaland test site and we will examine the relations with the growth and development stages of sugar beet. Our final goal is
then to answer the question whether rader can monitor sugar beet growth throughout the whole growing season and whether
radar measurements can contribute to synergisin with optical data in predicling sugar bect yicld. The information from radar
remote sensing is used in a twofold manncr. Firstly, biomass is estimated by inversion of the Cloud model and, secondly, the
uge of structurc changes of the sugar beet crop on the backscatter will be discussed. The Flevopokder dataset of Mac Burope
1991 is used.

Keywords: Rader, optical, remote sensing, inversion, crop growth, encrgy balance, syncrgy, biomass, plant structure ,

modelling.
1. INTRODUCTION

In agricultural market economica knowledge of crop
production at en early stage is very important at both national
and regional level. The two constitvents of crop production
are orop acreage and crop yickd. In order to estimate or
predict crop yield, best results are obtained if Lhe growth of
the crops is being monitored during the growing season. The
crop variable leaf area index (LAI) is important ag & measure
for crop growth,

Crop growth can be monidored by using crop growth
models. However, estimates of crop growth often are inaccu-
rate for non-optimal growing conditions. Remole sensing can
provide information on the aclual status of sgricultural crops,
thus calibrating the growth model for actual growing conditi
ons. Best resulte are obtained by using (reflective) optical
remote sensing date (e.g, some vegelation index} in estima-
ting the LAl regularly during the growing season and subse-
quently calibrating the growth model on time-serics of csti-
mated LAls {Clevers & van Lecuwen, 1994}, However, at
national and regional scale in Burope the regular acquisition
of optical remote sensing data is hampered by frequent cloud
cover. Radar remole sensing data offer a solution in acquiring
remote sensing information with a high temporal resolution
due to its all-weather capability (van Leeuwen & Clevers,
1994). Moreover, data from both windows provide comple-
mentary information and the combined uze, cither contempa-
rary or at different times during the growing season, can
improve the catimation of crop variables,

In this paper we will try lo snswer the question whether
we can expect synergy from optical ‘and microwave remote
sensing for crop yield prediction. With syncrgy we mean that

8 methodology based on both optical and microwave dala in
principle is superior to & methodology based on either

or microwave data solcly. In the applied methedology optical
and radar remote sensing techniques are combined with crop
growth models (in this paper SUCROS i used as an cxam-
ple) through the LAI as the essential link. The LAJ is estima-
ted with the derived inverse remote sensing models and
brought in the calibration process of the crop growth model
with the appropriate weight factor. Dela on sugar beet from
the MAC Evrope 1991 campaign over the Dutch test site
Fievaland will be used for illustration. Scparate parts of the
methodotogy have becn reported before by Clevers & van
Lecuwen (1994), van Lecuwen & Clevers {1994) and van
Lecuwen et al. (1994a), A delailed description of the MAC
Burope campaign for Flevoland and the data gathered has
been given by Biker et al. (1992a,b).

2. CROP GROWTH MODELS

Since the 19th century, agricultural researchers have used
modelling as a too] o describe relationships between crop
growth (yield) and environmeatal factors such as solar irmadi-
ation, lemperature and waler and nutrient availability, The
models compute the daily growth and development rate of a
crop, sinulating the dry malter production from emergence
till maturity. Finally, a simulation of yicld at harvest time is
obtained. The basis for the calkulations of dry matter pro-
duction is the rate of gross CO, assimilation of the canopy.
Input data requircments concermn mminly crop physiological
characteristics, site charaoteristics, environmental characteris-
lics and the initial conditions defined by the date at which the
Crop emerges.
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SUCROS (Simplified and Universal Crop Growth Simulator,
Spitters ct al., 1989) is & mechanistic crop growth model that
deacribes the potential growth of & crop from irradiation, air
temperature and crop characteristics. Polential growth mesns
the mooumulation of dry matter under ample supply of water
and nutrients, in &n environment that is free from pests and
discases. The light profile within a crop canopy is compulted
on the basis of the LAI and the extinction coefficient. Assimi-
lated matter is first used to muintain the present biomass
{mnintenance rcspiration) and for the rcmainder converted
mio new, structursl plant matter (with loss due to growth
respimtion). The formed dry matter is partitioned to the
various plant organs through partitioning factors introduced
as a function of the phenological development stage of the
crop. An important vacisble that is simulated is the LAL,
sinco the increase in leaf area contributes 1o next day's light
mmmwmﬁ,-mofmmum

When applied 1o operatioiial uses such as yield estimation,
models such as SUCROS often mppear to fail when growing
conditions are non-optimal (e.g. fertilizer deficiency, pest and
discase incidence, severe drought, frost damage}. Therefore,
for yicld cstimation, it is necessary lo ‘check’ modelling
results with some sort of information on the sctual status of
the crop through out the growing season. For this checking of
the actual growing conditions, mn observation technique
should be applied that can be operationsal in practice for very
large areax (up lo at least national kevel). Remote sensing can
provide such information (Bouman, 1991).

3. OPTICAL REMOTE SENSING

A simplified, semi-empirical reflectance model for ostima-

ting LAl of a green canopy was introduced by Clevers (1988,
1989). It is called the CLAIR model. In this model, first, the
WDVI (= weighted difference vegetation index} was ascertai-
ned as 8 weighted differcnce between the measured NIR and
red reflectances, assuming that the mtio of NIR and red
reflectances of bare soil is constant (the weight factor). in
this way a correction for the influence of woil background is
performed. Subsequeatly, this WDVI was used for ostimating
LAl according to the inverse of an exponential function:
LAl = -l/e . In{l - WDVI/WDVL,) (1)
with & as a combination of extinction and scattering coeffi-
cients describing the rate with which the function of equation
(1) runs to its asymptotic value, and WDVI,, as the asymplo-
tic limiting value for the WDVL

The exponentia]l relationship between WDV und LAl
means that LAI estimstions will be less acourate when ap-
proximating the asymptotic value of WDV (WDVIL,). In
other words: the acouracy of LAI estimation will decrease
with increasing LA! value. A first order approximation of the
standard deviation of the LAI can be derived as:

ofLAI] = expfa.LAI - in(a. WDV1.)] . ofWDVI] @

The validation of the CLAIR model for sugar beet was per-
formed by Bouman et al. (1992). They found for sugar heet
empirically for « an estimate of 0.485 and for WDVI, en
cstimale of 48.4, whoreby the WDV1 was based on green
reflectance instead of red refleclance, The residual mean
square for the calibration set was 4.1, This value may be

used 85 en estinate of the variance of the individual WDVI
measurements. The resulting estimate for the WDVI standard
deviation (c[WDVI] in equation 2) is 2.0. Figurc 1 plots the
catimated LAl uging the CLAIR model ngainst the measured
LAI (ground messuremcnts) for the calibration sct wsed by
Bouman et al. (1992). In addition, the lines exhibiting devia-
tions +/- two standard deviations from the measured LAl arc
shown.
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Figure 1. Relationship between estimaied LAl wsing ithe
CLAIR model and measured LAI for sugar beei. Flevoland
tesl sile, AGRISCATT canpaigns 1987 and 1938.

4. RADAR REMOTE SENSING
4.1 Model-Based Approach

In former studiea (Hoekinan et al., 1982; van Lecuwen,
1992) it was shown that the Cloud model could be used as a
simplified semi-empirical model for the mdar backscatter (y)
of agricultural crops:

¥ = C. (1 - exp(-D.W.h/cos8))} +
G . exp(B.m,) . exp(D.W.h/corB) 3

where C, G and D are regression constants, each with their
physical meaning. The parameter C represents backsoatter at
full closure of the crop; G is the dry soil characteristic with
roughness information incorporated; D represents the extineti-
on by the canopy layer. B is the sensitivity of backscatter to
=0il moislurc. W is the water content of the vegetation, d is
the vegelation height, m, is the soil moisture conteat and B is
the incidence angle. However, in genersl this model is only
valid during the beginning of the growing season, because
efler closure of the crop s constant backscatter level is res-
ched. Another limitation is the calibration and validation
process itself. A high lemporal resolution is needed for
calibrating the radar model.

For sugar beet & constant relationship {factor A) between
the amount of crop moisture (W.h} and the LAI was found
{van Lecuwen et al., 1994h):

LAl = A . W _h @
For one dalc in the growing scason we may consider the soil

moisture content {m,) and the soil roughness for all sugar beet
fields in Flevoland constant. If we put:



K = C- Gexp(B.n,) and D' = D/A
the Cloud model can be inverted and rewritten as:

LAl = -c086/D' . In{{y-C)/-K) (5)

Similarly as with the CLAIR model we (ind an exponential
relationship between remote sensing measurement and LAL
Aguin, the accuracy of LAl ecstimation will decrease with
increazing LAl value. A first order approximation of the
standard deviation of the LAl can be derived as:

ofLAI] = cos©/(K.D’) . exp{D'.LAlcosB) . ofy) (6)

Since no LAl measurements were performed during MAC
Europe 1991 in Flevoland, (optical) AVIRIS dala were used
for calibrating the Cloud model (van Lecuwen et al., 1994b),
An intersection was made of all sugar beet ficlds in the
AVIRIS image with all sugar beet ficlds in the AIRSAR
image of the beginning of July 1991. Dala exiraction resulted
in a lotal of 37 sugar beet ficlds (or 2 polarizations (HH,VV)
end 3 frequencies of the AIRSAR (C-, L- and P-bend; resp.
5.3 GHz, 1.3 GHz and 0.3 GHz). Calibration results showed
that L-band HH and C-band VV-polarization were uscful o
invert. They rcpresent also the configuration of the recently
Inunched radar satellites ERS-1 and JERS-1. To calibmte the
Cloud model for L-band HH and for C-band VV, a8 random
calibration set of 20 ficlds was selected from the available
fickds (tsble 1). Figure 2 plots the estimated LAl uging the
Cloud model againat the "measurcd” LAl (from AVIRIS) for
the calibration set of MAC Europe. In addition, the lines
oxhibiting deviations +/- twoe standard devialions from the
"measured” LAl are shown.

Table I. Cafibralion results of the Clowd madel for sugar beel
using data from MAC Enrape 1991,

LAl estimated

L-band HH C-bond VV
D’ parameler 0.8967 0.3660
C parameler 0.1389 0.6811
K pammeter 0.1767 0.4394
R-square 0.6250 0.6665
ofvl 0.022 0.055
(z)
3~ 96800 L~baond HH-pgl.
LAal4-2+gigma
—— LAi—2+sigma -
= -~
-
2 o
o -
P
- = o
-
1
® o0 Fo
- /-—'—\\
0-F T T T I T
(b 1 2 >

LAl measured

133

L]
¢ 1. ooo00 C=band VW-—pol. st
LAI+2-51gma 90 .
LAI—2+sigmo P
7 Q
he) 2 o~
8- .
o 7’
-
£ .
Hs o
-1 3
3 L0 ’
o
s m
A7 & y
0-r T T ; T \

0 A \ 2
LAl measured

Figure 2. Relationship between estimated LAI using the Cloud
model and measured LAI for sugar beet in L-band HH-polari-
zation (a) and C-band VV-polarization (b). Flevolond test
site, MAC Ewrape 1991 campaign.

4.2 Feature-Based Approach

Observed variations in radar backscalter of a crop after
closure ere mainly aitributed to variations in canopy structure
(Rijckenberg & van Lecuwen, 1994). The scasona) behaviour
of backscatter (X-band) from sugar beet has been studied by
de Loor (1984). He showed thet the temporal shape of back-
scaller curves is typical for specific canopiecs. Bouman & van
Korteren (1990) have detected specific features in wheat and
barley, due Lo transitions in development stages.

In data seis thal were obiained over a period of seventeen

yeary in The Netherlands, significant changes in the backscat-

ter of sugar beet canopics were found coinciding with transiti-
ons in devclopment siage (Rijckenberg & van Lecuwen,

1994; see figure 3). These transitions could be associated

wilh consistent temperature sumns. The lemperature sum (T,,)

iz defined as the inegraled daily average temperature from

the moment of emergence onwards. The temperature sum is
the main cavironmenial facter affecting crop development.

Of interest are the maximum in gamma which ocours at
values of T, between 400 and 500, corresponding with an
LAl ~ 2 - 3, and a dip at T, — 900-1000, corresponding
with sn LAl ~ 4 - 5. By comparing the different backscatter
data, these two features, corresponding with two periods in
the growing season of sugar beel, were recognized:

{1) at T, — 400-500 {closure of the crop) Lhere is a maxin-
um in the backscatier. This is the top of the characteristic
bump in the temporal curve of backscatter from sugar
bect.

{2) at T,,, — 900-1000 (no additional leaf formation) a drop
{aboul 2 dB) in the backscatter is found.

Two changes in the leaf angle distribution (LAD) during the
growing scason were obscrved at the Flevoland test site. In
the parijal coverage skualion thers is an initia] distribution
which is a combination of spherical and erectophile leaves
(feature 1).

Secondly, a maximal erectophile distribution is reached at the
moment that the leaves tend to droop (feature 2). De Wit
(1965) and Ross (1981) also found that the LAD changed
during the second hslf of Lhe growing season from ercctophile
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Figure 3. Temporal curve of backscatter from sugar beet with
the features indicated as seen in several temporal date sets
(ROVE 1980, MAC Europe 1991, ERS-1 1992).

to a more planophile distribution. The increase of the average

leaf angle by competition of the neighbouring plants, occur-

ring ecspecially at closure, is therefore development stage
related (feature 1, see figure 3). During feature 2 a transition

occurs of leaves with an erectophile/spherical LAD into a

planophile LAD. This is the point that the outer leaves get

more weight and that the tuber of the beet is growing.

When it would be possible to locate the second feature accu-

rately as a function of time, this would yield two kinds of

information for the calibration of the crop growth model:

(1) the moment of temperature sum=900, which, in combi-
nation with meteorological data, would render a possibili-
ty lo estimate the actual sowing date by calculating back-
wards the cumulative temperature;

(2) the moment at which LAl=4.0 occurs.

It must be realized that this is lunited = priori information

with limited accuracy that one can obtain from radar data, It

might get significant in combination with LAl estimates from
radar data or optical data or both.

§. COMBINED USE OF CONTEMPORARY
OPTICAL AND RADAR DATA

When looking at the results in scction 4.1, it is striking
that the standard deviation of LAl estimation from mdar
becomes quite large already at small LAI values. This is quite
contrary to the situation in the optical domain as described in
section 3. The comparison between standard deviations of
LAI estimates from optical and radar measurements is illu-
strated in figure 4, This figure clearly illustrates that the
accuracy of LAl estimation from radar measurements is much
worse than from optical measurements except for very low
LAI values. So, only little additional value is lo be expected
from radar measurements for LAI estimation when optical
measurements are available and no synergy ocours in the
estimation of LAl

The significance of radar measurements lies in the possibi-
lity of obtaining information about crop growth at periods
that optical remole sensing is not possible from a practical
point of view (mainly caused by bad weather conditions) and
in the possibility of obtaining information about the plant
structure. Therefore, in the rest of the study emphasis is put

on monitoring the growth of crops in a dynamical way using
growth models (non-contemporary approach). However, it
must be noted that the above-described contemporary appro-
ach does yield synergy in the way that optical remole sensing
measurements are used for calibrating the Cloud model,
which would not have been possible without optical data in

this study.
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Figure 4. Comparison qf standard deviations of LAl esiimaies
optical and radar ineasirements, (a} L-band HH-polori-
zatlon; (b) C-bund VV-polarization.

6. LINK REMOTE SENSING AND GROWTH MODELS

The SUCRQS crop growth model is initialized and cali-
brated to @it simulated LAl values to estimated LAI valucs
obtained from remote sensing messurements. Thus, first the
CLAIR and/or inverted Cloud model are applied for oblsi
ning LAl estimates from the remote sensing measurements.
Subsequently, the SUCROS model is calibrated on these LAl
estimates. Since we have seen that the accuracy of the LAl
estimates depends on the absolute value of the LAI, the
reciproke of the standard deviation of LAl estimation is used
as a weight factor for each individual LAl estimate used in
the optimization procedure. For LAI estimates from optical
measurements equation (1) is used and for LAl estimates
from radar measurcments equation (5) is used. In addition,
paramcter estimates obtained during the calibration of CLAIR
and Cloud model, respectively, are used in these equations.
This approach yiclds at the same time & proper mutual weigh-
ting between optical and radar dats when data from both



windows are used together in the oplinizalion procedure.
Moreover, it is obvious that for the methodolngy it is not
relevant whether one has optical and radar dats al the sane
date or not. In addition, in section 4.2 it was shown (hat
radar remots scneing data may also provide information on
crop development stage, which may be used for calibrating
the crop growth model in & feature-based combination appro-
ach.

7. RESULTS OF MAC EUROPE CAMPAIGN 1991
FOR SUGAR BEET

7.1 Optical Remote Sensing

The crop growth model SUCROS was run to estunate the
final beet yicld for ten selected farmers in the Lest area. Input
for the model were the location paramelers, weather daia for
the 1991 growing scason and crop-apecific mode] parametcrs.
This resulted into an estimated beet yicld of 60.0 lons/ha.
The measurements oblained from three CAESAR recordings
(July 4th, July 23rd and August 29th) during the MAC Euro-
pe campaign in 1991 over the Flevoland test area were used
for testing the calibration procedure (or sugar beet using
oplical data only, The WDV] values obtained {rom the CAE-
SAR recordings were used for estimating the acius| LAJ
uging the fit parameters obtained by Bouman et al. (1992) for
sugar beet. Subsequontly, SUCROS was calibraied on these
three LAI estimales. Resullz are given in tabie 2. The com-
parison belween estimated and actual yicld is given in figure
5. Results using only lhree datcs during Lhe growing season
in the calibration procedure seem to offer quite satisfactory
resufts. On the average, the simulation error of {fresh) beet
yicld decressed from 13.4 tons/ha (17.5%) using “standard’
SUCROS, 1o 4.2 tons/ha (5.5%) with SUCROS calibraled on
three CAESAR dates (sec tablk: 2).

slirnaled beel yield

100 {‘l()ﬂS/I'IU) /
90 -
30
(o]
2 o

70- °

8

Q
60 -
S0 e (e el s g P e G|

s0 60 70 80 90 100
actual beet yield (tons/ha)

Figure 5. Estimated heet yield using SUCROS calibrated to
measared LAI o three opiical (CAESAR) recording dares
versies actually obiained beet yields.
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Table 2. Optical [(] aad radar [R] remote sensing confl-
gurations with high (10) and lower temporal resolution,
used for the combination method and the accompagnying
results, represeated by yield errors in tons per hectare.

Remote sensing dats category Average
error (Lha)

Without Remote Sensing [ 13.4

CAESAR (3) [0] 42

AIRSAR L-IIE 2) [R] 9.2

AIRSAR C-VV (2) R] 7.2

AIRSAR L-NI1 (2) + CAESAR (3) [R+0] 3.0
ATRSAR C-VV (2) + CAESAR (3) [R+0]) 35

ATRSAR L-1IH (2) + CAESAR Q) + feature kH |
AIRSAR C-YV (2) + CAESAR (3) + feature 2.9

7.2 Radar Remute Sensing

From the MAC Burope campaign 1991 two usable AIRSAR

recording dates (July 3rd and July 12th) are available from
the beginning of the growing scason for sugar beet al the
Flevoland test site. it was concluded that the parameters of
the Cloud model, as given in tsble 1, for both L-band HH-
polarization and C-band VV-polarization, respectively, may
be applicd to the messurements of both July 3rd and 12th
(van Lecuwen et al., 1994a). As a result, we have two data
points during the growing season for a model-based approach
using only radar duta. By applying equation (5} with the
appropriale parameter estimates from table 1, the LAl can be
estimated for mll sugar beet fiekds present in both AIRSAR
images. Equation (6) offers an estimate of the accuracy of
these LAI estimates. Subsequently, SUCROS was calibrated
un these LAl estimates from the AIRSAR recordings of fuly
3rd and July 12th 1991 for the beet ficlds used before, as far
ns the corresponding fields were present on both AIRSAR
images. Resulls arc given n toble 2 for L-band HH and C-
bund VV. The comparison between estimated and actual yicld
is illustrated in figure 6 for C-band VV-polarization.
Since we have two recording dates rather carly in the gro-
wing scason, accurate yicld estimales cannot be expected. On
the average, the simulation error of (fresh) bect yicld was 9.2
LMo (13.0% error) for L-band HH and 7.2 t/ha (9.8% error)
for C-hand VV, rcspectively, with SUCROS calibrated on
iwo AIRSAR datcs. This is beller than the result obtained
with "siandard” SUCROS without remole sensing informati-
on. For sugar beet this iv about the best we can expect using
only the model-based approach on radar data, since after mid-
July (in 1991) the Cloud model cannot be applied anymore.

7.1 The Combination of Optical and Radar Remote
Seusing

In this section, LAl estimsies from the three CAESAR
recordings and the two AIRSAR recordings are integrated
and, with their appropriale weight factors, used for calibra-
ting SUCROS. Results are given in table 2 for the three
CAESAR recordings in combination with L-band HH and C-
band VV radar data, The comparison between cstimated and
selual yield is illustrated in figure 7. On the aversge, the
simulation crror of (fresh) bect yield was 3.0 t/hs (4.2%
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error) for L-band HH and 3.5 t/he (4.8% crror) for C-band
VV, respecti
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Figure 6. Comparison between estimated yleld and actial
yleld for two AIRSAR recording dates in C-band YV-polariza-
tion.

vely, This error is clearly smaller than the onc cblained for
the three CAESAR recording dates only. Theso results indi-
cale a synergistio effect by using both optical and radar data
for crop growth monitoring. However, under practical condi-
lions only very few optical dats during lhe growing season
will be avmilable. For instance, when no optical data from
July 4th would be available it is to be expected thal radsr
data from the beginning of July offer a significant improve-
ment to the monitoring of crop growth, particularly at the
beginning of the growing season.

7.4 Combioation of Model-Based and Feature-Based
Approach

As mentioned before, apother potentinl advaniage of radar
measurements lies in the possibility of obtaining information
sbout crop structure changes. The latter may be related to
important transitions in crop developinent stage.
LAI estimates from the three CAESAR recordings and Lhe
two AIRSAR recordings (July 3rd and 12th) in L-band HH-
polarization and C-band VV-polarization, respeclively, with
their appropriate weight factors, were combined with ths
featurc-based information for calibrating the crop growth
model. In the optimization of the crop growth model the
featurc-bascd information used concerns the occurrence of
LAI=4.0 at day number 193 or 209 (and thus the range in
between) and a possible range in sowing dalex between day
70 and 11B. In the optimization procedure the LAI value of
4.0 was given n weight of 1.0 a8 a {irst approximation. On
the average, the simulation error of (fresh) beet yield was 2.9
tha (4.1% crror) for C-band VV and 3.1 t/ha (4.5% error)
for L-band HH, respectively (sec table 2). The comparison
between estimated and actual yield is illustrated in figure §
for C-band VV. These results are somewhat worsc for L-
band HH and better for C-band VV in comparison (o Lhe
results obtained with optical and radar data using only the
model-based approach,

As a resull, the additional valuc of the feature-based
approach is nol proven yet. Results indicate that & may get
significant when no optical datz are available.
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Figure 7. Comparison between estimated yicld and actsal
yield for ithree CAESAR recording dates and for two AIRSAR
recordings in and C-hand VV-polarization.
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Figure 8 Comparison between estimated yield and actwal
yleld for three CAESAR recording dates and for two AIRSAR
recordings in C-band VV-polarization in combination with the
Jeature-based information.

8. DISCUSSION AND CONCLUSIONS

For simultancous {contemporary) observations no synergy
occurred in the estimation of LAl Optical data were most
suilable. Calibration of the Cloud model at one date (contem-
porary) is possible using optical data if enough fields are
available for the calibration and the between-field variation is
large. Otherwise, more dates must be incorporated.

For operational applications the assumption of non-simul-
tancous observations is most realistic. For sugar beet, radar
data can only be used for estimating LAI early in the growing
season (before crop closure). This may be called a model-
based approach. After crop closure, radar backscaller is
determined by crop structure. However, this still may yield
important information for crop growth monitoring, Using the
latter information may be called a feature-based approach.

Results for sugar beet indicated that, when a time-series of
optical recordings is available, LAl can be monitored well
and a good estimate of sugar beet yield at the end of the
season is possible by using a calibrated crop growth model.
When only a few recording dates with an oplical sensor are
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available, radar recordings at L-band HH-polarization or C-
band VV-polarization gave a slight improvement of the
results of crop monitoring and yield estimation in comparison
to the optical data only. This confinns that the main advanta-
ge of radar lies in the possibility to acquire information on
crop growth when other techniques (in particular optical
techniques) fail.

The additional value of Lthe feature-based approach could
not clearly be proven for sugar beet. It is expected that radar
features provide more significant information for crops exhi-
biting more pronounced structural changes during the gro-
wing season, e.g. cercals (cf. figure 9).
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Figure 9: Examnple of a temporal signature for winter wheat.
ROVE measurements, 1979, X-band VV-polarization, 20
incidence angle. Development stage (1) refers to the moment
of ear formation, (2) refers io the start of ripening.
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