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Stellingen behorende bij het proefschrift

Architecturcs for Real-Time On-Board Synthetic Aperture Radar Processing
door

Laurens Bierens

1. IfDSP hardrrare designers would use "processing speed per units ofprocessor
volume and power consumption" as a measure for the processing performance oftheir
hardware instead of "operations per seconds", then the popularity of DSP boards
would decrease dramatically.

2. A designer does not serve the application ofan algorithm ifhe writes out multi-
indexed fornulas and equations in full lowJevel detail. only showing his ability in
performing difficult actions, but he serves it well ifhe uses graph manipulations.
which allorvs him to concentrate on typical application specifìc constraints.

3. Rapid protot¡ping of a VLSI implementation using DSP boards is only profitable if a

hardware designer has extensive experience with these DSP boards and their
development tools. Otherwise realization of the VLSI irnplementation itself is the
cheapest s'a¡' of rapid prototyping.

4. It does not nrake sense to specify a radar signal processing system in full detail, if the
specifications ofthe radar front-end keep changing.

5. The term "pulse compression" is an inheritance from the days that krowledge about \
digital signal reconstruction techniques was limited. Nowadays it merely narrows the
scope ofradar svstem engineers.

6. Ifelectrical engineering would be propagated more as the basics ofwhat secondary
school pupils concerns (Nintendo, MTV, Internet, house music), then more of them
would choose to study it.

7. Just as the sensitivity of the inve¡sion of a matrix can be disturbed by its small
singular values. so can the sensitivity ofa large social inversion process be disturbed
by insignitìcant individuals in society. A poignant example is the murder on the
Israeli prirne-minister Yitáak Rabin comrnitted by the law student Yigal y'r,:yr.

8. The fact that l'ashion reverts to the past, implies that being behind the fashion will
always give a lead.

9. If during rush-hour on stations the train compartments ivould have a direct connectiotr
with the plartbrms (as is often the case rvith subways). instead of with narrow and
crowded gang\\'ays. then the delays ofthe trains would be reduced dramatically.

lO.Due to the expected increase in the use of Windorvs 95. rnemory chips are currently
reliable objects f'or investment.
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CHAPTER 1

INTRODUCTION

1.1 Objective and Motivation

This thesis is about the design of a¡chitecturesfor real-time on-board Synthetic Aperture Radar
(SAR) processing. A SAR is a side-looking imaging radar on a moving platform, in general an

ai¡craft or satellite. The SAR principle is based on synthetically generating an effective long
antenna by signal processing rather than using a long physical antenna. The actual physical
antenna length is in most cases relatively small. Generating a SAR image requires two-
dimensional signal processing techniques. The model of the SAR system that we use consists

of a ,SAR acquisition system and a SAR reconstruction system. The acquisition system maps the

information of the Ea¡ths surface onto a 2D SAR echo signal. The reconstruction system maps

the 2D SAR echo signal onto a SAR image. SAR processing or SAR imaging usually refers to
the SAR reconstruction system.

Real-time on-board SAR processing

The work presented in this thesis is strongly related to the PHARUS system. PHARUS stands

for Phased Array Universal SAR and is a fully pola¡imetric C-band airborne SAR with an active
antenna array [HSKP92]. T\e PHARUS system uses a phased aÍay antenna, which provides
in a flexible design and a compact and light-weight antenna system. The latter allows the user

to mount the PHARUS system on a small ai¡craft. The use of a small ai¡craft will improve the

operational coslbenefit ratio of an airborne SAR. Typical applications of the PHARUS sysúem

range from agricultural classification and geophysical mapping to typical defense applications as

surveillance, reconnaissance and Fixed/lvloving Target Indication (FlI/lr4TI). Moreover, there
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is the perspective of using PHARUS as a demonstrator for ESA's future Advanced SAR (ASAR)
system, a polarimetric spaceborne SAR system. At the moment of writing the PHARUS system
has concluded its first test-flight successfully.

The motivation for the work presented in this thesis was the need for a ¡eal-time on-board
SAR processor for the PHARUS system. The specifi.cations of the real-time on-boa¡d SAR
processor depend on the application. We give a representative, albeit incomplete, listing of
applications of the PHARUS system for which a real-time on-boa¡d SAR processor is essential.

Surveillance, reconnaissanc¿.' Surveillance and reconnaissance are typical defense applica-
tions, but it may also be important for e.g. coast guarding and pollution monitoring. The
main requirement is the fast detection of suspected objects or events. The processing time
is thus critical, in that it must be real-time, and processing must be performed on-board
the platform. If the platform is small, e.g. a fighter or an Unmanned Ai¡bome Vehicle
(UAV), then low power dissipation and small processor volume are additional constraints.

SAR data transmission: On-board processing is mandatory due to the exfremely broadband
communication links that are needed for the transfer of the uncompressed rada¡ data to
the Command & Control Centers below. In defense application, the tra¡rsferred data
may be (partly) corrupted dæ to jamming. On-board processing of the SAR data (in
combination with image processing) is a rigorous form of data compression. It allows
one to send only small banded signals to the Command & Conrol Centers. These small
band communication links are, in potential, less sensistive to jamming.

FTIIMTI: FTIA4TI require high geometric resolution SAR images, often combined with real-
time target detection ability. Moreover, for MTI purposes also the phase of the image
is needed to obtain information about the movement of the detected objects. Roughly,
the same consftaints hold for FTVMI as in surveillance and reconnaissance, with the
addition that processing capacity is more critical. This is due to the higher geometrical
resolution (for both FTI and MTI purposes) and the higher pulse repetition frequency (for
MTI purposes) that are required.

On-line system monitoring: Despite the application specific requirements, it is generally
preferable that a SAR system includes an on-board real-time SAR processor, so that on-
line monitoring is possible. A SAR system might malfunction due to technical defects,
or the surface a¡ea illuminated by the antenna might be wrongly chosen. Since SAR data
acquisition requires expensive missions, an early discovery of malfunctioning or a wrong
flight trajectory can save the operator a lot of expenses.

From the list we can determine some preliminary specifications for a real-time on-boa¡d SAR
processor for the PHARUS system. Fi¡st of all, the processor must meet the specified processing
speed in all cases. During the movement of the platform, the Earths surface is being illuminated
by the SAR antenna. Obviously, we have some delay time between illuminating a point of the
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Ea¡ths surface and displaying the SAR image pixel corresponding to this point. We say that
SAR processing is performed in real-tim¿ if this delay time is not more than (?(10) seconds,
and is independent of the size of the illuminated a¡ea.

The second specification is that the SAR processor size must be small and have limited
power consumption. High-performance real-time on-boa¡d SAR processors do already exists,
see e.g. [DJCM92, Mer95]. However, thei¡ size and power consumption is substantial, in that
they will not frt in small platforms such as frghters and UAVs. Ou¡ intention is to develop
ha¡dwa¡e for real-time on-boa¡d SAR processing that potentially fit in these small platforms.
We even opt for a real-time on-boa¡d satellite SAR processor in the near future.

A thfud specifrcation is that the SAR reconstruction system is linea¡. Reduction of computa-
tional complexity in SAR processing is often obtained by simplification of the SAR acquisition
system model, which leads to non-linear SAR reconstruction systems, see e.g. [CPR89, Mor92].
These simplifications may lead to non-linearities in the SAR image. An example is the occu-
ra¡¡ce of side-lobes at (sometimes unpredictable) positions far from the main-lobe of a point
target response. These a¡e assumed to be negligible for several imaging pu{poses. However,
for MÏ purposes it is essential to have an accurate model of the SAR reconstruction system.
Moreoveq it is desi¡able to have a linear system model of the reconstruction system, so that the
analysis of the phase history of point targets is straight-forward. For this reason, we consider
the model of the SAR acquisition and reconstruction system presented in [WLI82] as optimal,
since it describes the impulse response in terms of linea¡ operations, namely 2D convolutions.

Approach of the work

Our approach in designing a real-time on-boa¡d SAR processor is to emphasize on small and
high speed hardware. Low power consumption is considered as an additional constraint. The
specifications of the SAR acquisition system are given, however, we do not address the IF a¡rd

RF system configuration, the atmospheric influences, nor the antenna system specifications.
The SAR processing specifications a¡e based on the PHARUS antenna systom configuration,
although, we do allow for some flexibility. They also depend on the operation modes of
PHARUS, but operation modes may change. Therefore we will use the specifications as a

guidance: they deúermine the design approøch of the real-time on-boa¡d SAR processor , but
they do not prescribe the absolute specifications of the real-time SAR processor.

Consequently, this thesis will not end up with a design of a real-time on-board SAR processor.

Vy'e determine the critical processing steps required for real-time on-boa¡d SAR processing, and
propose an effective VLSI-based solution for it. The critical processing step within this real-
time on-boa¡d SAR processor appears to be lD correlatiorVconvolution of long discreûe signals
with a high effective data rate. The solution that we propose, reduces the size of the required
ha¡dware for the critical processing step from several DSP boards to a few chips. Obviously,
power consumption also reduces proportional to this reduction. The design approach is generic,

and may even bring real-time on-boa¡d satellite SAR processing within reach.
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1.2 Outline of this Thesis

We give a brief overview of this thesis per chapter. The objectives and the motivation of the

work have been presented in this chapter.

In chapter 2 we briefly review the basics of SAR processing. The impulse responses of the

SAR acquisition and reconstruction systems that we derive are based on the model presented

in [V/LJ82]. The SAR basics a¡e addressed in terms of Doppler bandwidth and resolution.

In chapter 3 we determine the SAR processor parameters. We give the relations between the

SAR processor parameters on the one hand and the SAR system specifications and the required
image resolution on the other hand. We present two illustrative examples: a real-time on-boa¡d
airborne SAR processor for the PHARUS system and for real-time on-boa¡d spacebome SAR
processor for the ERS-l system.l We analyze the SAR processing data flow with respect to the

SAR system specificaúons and the required SAR image specifications. Based on this analysis,

we show how and where data reduction within the data flow can be achieved, without affecting
tho SAR image specif,cations. We conclude this chapter with the notification of the critical
processing step within the SAR processing: the lD corelation/convolution.

The lD convolution problem is addressed in chapter 4. We introduce the multirate convolu-
tion system to solve the long convolution problem. It is known that multiraæ filær banks have a

close ¡elationship with short-time Fourier transforms and fast convolution schemes [Vet88]. V/e

elaborate this relationship in terms of combined algorithm development and a¡chitecture design.

The result is a design methodology that allows direct mapping of an algebraic specifrcation of
signal processing algorithms - here multirate convolution - onto prototyping architectures or
dedicated VLSI processors. This mapping is obtained by fiansformations of graphical represen-

tations rather than by manipulating multi-indexed formulas.

In chapter 5 we show the exact relaúonship between the multirate convolution system
and block-signal processing algorithms. The latter a¡e traditionally used to solve the long
convolution problem, the so-called overlap-add ard overlap-disca¡d methods. Here we exploit
the graphical representation to map the long convolution onto a highly regular architecture based

on sho¡t FFTs. This is in fact a schematic description of the multi¡ate convolution system.

In chapter 6 we implement the multirate convolution system in an efficient VLSI hardwa¡e
a¡chitecture. The first stage in the design ftajectory is the design of a prototype a¡chitecture of
the convolution processor based on off-the-shelf DSP components. This stage is essential to
gain hands-on experience in the mapping of the system onto hardwa¡e. Based on the prctotype
architecture a single-chip convolution processor is designed. The chip convolves up to a

maximum of 8 Ksamples convolution length with an effective data rate of 2 Msamples/sec.

This performance compares roughly to a¡l off-the-shelf DSP boa¡d. However, it is obvious that
the size and power consumtion of a DSP boa¡d is much more than the size and power consumtion
of a single chip. Moreover, the convolution data rate of our chip can be increased by parallel

IERS-I is a satellite Remote Sensor of the European Space Agency (ESA).
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proccssing. The used arithmetic is based on a hybrid floating point data format.
In chapter 7, we round off this thesis. Wç briefly address how the main results of this

thesis a¡e implemenæd. Also we give some hints for solving somo open problems; tnotion
compensation and autofocusing.

ll



CHAPTER 2

INTRODUCTION TO SAR
PROCESSING

2.1 Introduction

The performance of the SAR processing strongly depends on the parameters of the SAR anúenna

system, such as wavelength, antenna size, etc.. But the platform parameters are as important as

the antenna system parameters. Examples of platform parameters are speed a¡rd altifude as well
as unpredictable platform motions. All have their impact on the signal processing effectiveness,
a¡rd that is what this chapter is about: the description of SAR in terms of system parameters,

such that we can determine processing strategies.

In this chapter we will concentrate on purely predictable SAR system para.meters and thei¡
impact on the processing of SAR data. In fact, these parameters a¡e basic to the SAR principle.
The movement of the SAR platform with a certain constant speed introduces a Doppler effect.
This Doppler effect is implicitly exploited in enhancing the resolution of a SAR image in the
direction of the movement. This principle was first mentioned by Sherwin in 1952 [SR62], and
has been validated in later years by e.g. Cufrona et at [CVLH6U.

However, the system para.meters introduce also some unwanted side-effects, such as range
migration and range-dependent attenuatíon. The first effect is caused by the fact that the echo
signal of a point on the ground, is shift-va¡iant in range di¡ection. Only in case of low-quality
SAR imaging this effect might be negligible. Otherwise we have to introduce 2D processing
techniques to compensate the range migration effect. The second effect is a result of the free
space attenuation of the elecEomagnetic waves. The analysis of the attenuation in relation with
tra¡rsmitted power and system noise gives the boundary condition of the maximum range of the

SAR system.
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SAR system

Impulse Acquisition system Reconstruction system SAR system
impulse response

Figure 2.1: The modelling of the impulse response of the SAR system. A denotes the impulse
responses of the SAR acquisition system, which includes the transmitter, the atmosphere, the
receiver, and the A/D conversion. R denotes thç impulse response of the reconstruction system:
the SAR imaging system.

The SAR system specifications can be determined from the so-called SAR sysæm impulse
response. To determine the SAR system impulse response, it is generally assumed that the
imaged surface contains a single point target, which is illuminated by the antenna beam. The
mathematical equations requi¡ed to reconsfiuct the point target can be obtained from the analysis
of the rada¡ returns from this point target. The complete system is shown in figure 2.1, where
A stands for the impulse reponse of the data acquisition system and R stands for the impulse
response of the reconstruction system, also called the SAR imaging system.

The objective is now clea¡: find a mathematical description of the SAR acquisition system
A a¡rd determine from this the reconstruction system R. Of course, in the ideal world R would
be the inverse function of A. However, in the real world this inversion is hardly possible due to
system limitations such as the limited bandwidths in both range and azimuth direction and the
appearance of thermal noise within the echo signal.

The viewpoint we take in this chapær is the classical Doppler viewpoint, which is well-
understood and well-described in the literatu¡e (excellent references are e.g. [Cut70, Oli89,
CM91l). We do not intend to intoduce any novel viewpoint on the SAR principle, we shall
however strive for a novel viewpoint on development of fast and small hardwa¡e a¡chitectures
for the SAR processing. Nevertheless, in appendix A we will give a brief description of SAR
from a matrix algebraic viewpoint, see [8D92].

The line of thought of this chapter is along the step-wise analysis of SAR data, leading to a
paramefric description of the impulse response of the ideal SAR system. The Doppler viewpoint
is reviewed in section 2.2, wherc also some fundamental conditions of the SAR parameters are

examined. In section 2.3 the signal processing technique known as pulse compression is
reviewed. It achieves enhancement of the resolution in the radar look-di¡ection. In section 2.4 it
is shown how the Doppler effect can be exploited to enhance the resolution in the flight direction.
Including the range migration in this description results in a model of the SAR system impulse
rhar is presented in [wLJ82].
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Figlre2.2: Geometry of the SAR system.

2.2 Doppler Analysis

In this section we take a closer look at the fundamentals of synthetic aperture rada¡. We analyze
the rada¡ returns in terms of Doppler shifts. This will lead to the high-resolution imaging
property of SAR. In the analysis we assume perfect conditions, i.e. we describe the steps

that are required in SAR processing mathematically, thereby neglecting the inaccuracies due to
range-dependent attenuation, range migration and unwanted platform motions.

Geometry

The geometry of the SAR system that we will consider is shown in figure 2.2. T\e moving
platform will be an ai¡craft. Irt points in 3D space be specified in Cartesian coordinates
(r,A, 

").The 
earths surface is represented by the øy-plane, and the antenna platform is moving

with speed u along the staight flight trajectory {(ø, y, z)ly : 0, z : h), where å is the altitude
of the platform above the earths surface. The relation between the plaform's z-coordinate and
its speed is given by a : uf, where f is the time variable. The elevation of the antenna beam is
measu¡ed by the angular inclination á, relative to the z-axis. The squint of the SAR antenna is
the deviation of the radar look-di¡ection from the y z-plane. It is measured by the squint angle

7, see frgure 2.2. Dunng the flight the SAR continuously transmits pulses and receives thei¡
echoes. The points on the ground that are illuminated by the successive pulses during the flight
are referred to as ground swath. In SAR processing it is customary to use the terms range and
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Figure 2.3: The simpliñed geometry in azimuth of the SAR system. B is the beamwidth of
the physical antenna in azimuth. The point target is within the antenna beam as long as the
ø-coordinate of the antenna position is within the interval (r^¿o, Í^o,).

azimuth. Range is defined as the distance between the antenna and a point on the øy-plane.
Azimuth is defined as the direction along the line of flight of the ai¡craft.

The SAR signal space is usually taken to be temporal and two-dimensional, that is, it is
expressed by the 2D time variable (¿', ú). The variable ú' is related to the round-trip of the
transmitted signal and is roughly confined to time-intervals of (?(10-a) seconds. The variable
Í is related to the movement of the platform and is confined to time intervals in the order of
seconds or more. They are linearly related to the two spatial variables of the so-called object
space: the terrain that is to be imaged. The 2D object space is characterized by the range and
azimuth va¡iable (r?, ø). In the following we derive the relations between the va¡iables.

The 2D echo signal

l-at p(t) be a single pulse, non-zero in the time intewal(-rrf 2,rr12) ndzero otherwise, where
ro is the pulse width. The pulse is transmitted in range direction. Let Íp,Íbethepulse repetition
frequency, then the time inærval between two subsequent transmitted pulses, also called the
inter-pulsetime,isTp,!:Ilfp,t.l,ett¿,i:...,-1,0, l,...,bethetimeinstantsatwhichthe
pulses are ftansmitted, using a carrier frequency uc- For each i, the transmitted signal is then

";(¿) 
: p(t - t;)exp(ju.t) (2.r)

It is convenient for the Doppler analysis to assume that 7 - 0 , see figure 2.3. The case 1 f 0
will be discussed in section 2.4. Furthermore, let ri : uti be the z-coordinate of the antenna

15
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position at l; and assume, for convenience, that úo : 0 and thus also uo : 0. Consider apoint
target on the ground with ø-coordinate zero. The distance between the antenna position and the

point target is function of the time, and denoted as r?(ú). Tlte nominal rønge Ra is defined as

the dista¡ce between the antenna and the point target at fe, and thus in this case ,% : n(0).
Irt, be the length of the physical antenna in azimuth a¡rd let À : 2r c I u.be the wavelength

of the ca¡rier wave, then the physical half-power beamwidth in azimuth is B : ÀlD [Cut7ll.
In practice, B is small, thus the spatial beamwidth of the antenna beam in azimuth at distarice

Ao, say ¿¿¿¿rm, approximates

Li¡u^ : PRn : R4^lD Q.2)

l,et r^¡n¡,no" = ut^;n¡^o" :l IL;tu^ :+ Ra'^12D, see figure 2.3,thenthe pulse transmitted
at l; is reflected back to the antenna if r^in 1 ïi 3 r^o,. We consider all i for which the latter
inequality holds.

If the atmospheric attenuation is assumed zero, then, for each i, the echo signal is a shifted
version of s;(t), where the shift is determined by the round-trip delay of the transmitted signal.
Let c be the speed of light, then the round-trip delay of the pulse transmitted at t¿ is 2R(t;) lc.
For each i, the echo signal received by the antenna is then

s¿(t -2R(t¿)lc) = p(t - ti -zÀ(ti)lc)exp(-ju.2À(t;)lc) (2.3)

In the latter expression we have omitæd the term exp(ju.t), since it bea¡s no additional infor-
mation of the point target and is removed by demodulation. Thus, the 1D echo signal of the
subsequent pulses is the summation

D 
" 

(¿ - 2 R(t¿) I c) = | rt(t - t i - 2 R(t i) I c) exp (- j a.2 R(t ¿) I c)

However, since SAR is an imaging radar, we rather work with a 2D echo signal. If we use the

substitution t - t¡ <- f', for all i,withtt < T.p,¡, then we can write the2D echo signal as

e(t',t,) A sr(¿' +ü-zR(ti)lc) - p(t' -zù(tt)lc)exp(-ju.2R(t¡)lc) (2.5)

In practice, this means that for each transmitted pulse, the pulse echo is acquired until the next
pulse is transmitted. The acquisition time per pulse echo is thus limited by the inter-pulse time.

Doppler frequency

If the dista¡rce between the signal source and the signal receiver changes in time, then it induces
a frequency shift of the received signal, known as the Doppler shift or Doppler frequency. T\is
Doppler frequency is proportional to the change in distance between source and receiver. Since
the radar moves during the transmission of the subsequent pulses, the distance A(ú¡) changes
in f¿ and thus the phase of the echo signal changes in ú¡. This induces a Doppler shift in the

(2.4)
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(a) (b)

Figve2.4: The phase history g(t), (a), and the Doppler frequency f ¿(t), (b), of a point target.

azimuth direction of the echo signal. Thus, since the echo signal is discrete in the azimuth
di¡ection, the sampling frequency .Ç"¡ must satisfy the Nyquist criterion to prevent aliasing. At
this point, though, we are only interested in the Doppler shift in azimuth. We simply assume

that fo,¡ satisfies the Nyquist criterion. To simplify the Doppler analysis we consider the echo
signal time-continuous in azimuth, thereby omitting the index i, i.e., f : t; and x : x;.

Since the Doppler shift is completely determined by the phase history of the point target

v(t) : -a.2R(t) lc, it is sufñcient to use the simplified echo signal

e(ú) : exp(-j¿¿"2fu(t)lc)

Then the Doppler frequency can be derived as the derivative ofthe phase history

r¿þ) = jftoø:-'r**U,
In general fro > Irl, for all ø-;, 1 r. 1 ï^o", then, from figure 2.3, we have

.R(ú) : t/4+rr: Fo+ #-#.
Thus we can approximate equation (2.8) as

A(ú) : ^*#

fa(t¡ : -'#

up to an elror terrn O(u4t4 lSRo). This means that the phase 9(ú) is approximately quadratic in
ú, and the Doppler frequency approximates to

(2.6)

(2.7)

(2.8)

(2.e)

12.t0)
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The phase and the Doppler frequency of the echo signal of the point target are shown in
fr,gwe 2.4.a and 2.4.b, respectively. The corresponding Doppler bandwidth B¿ is the difference
between the minimum and maximum of the Doppler frequency

B¿ : lf ¿(t^",) - ¡¿(t^r^¡1 : 
2u2(t^:{ t^¿*) : 2'!!'u 2u

z.3Purse."-;*:;::: 
)Â" - 

^R":D 
Qtt)

In the previous section we neglected the pulse width ro. This is allowed if we can accomplish
a sufflciently small pulse width zo, so that p(t) approaches a dirac signal. In practice, however,
the minimum feasible pulse width is relatively large, due to physical limitations in antenna and
ftansmitter components. Still, there a¡e a number of design considerations which must be taken
into account [Sko85]. The two most important considerations in SAR a¡e:

o The signal energy must be high enough to detect targets (resolution cells) at the specified
range and in the presence of noise.

o The range resolution must meet its specification. Often it is specified that the range
resolution must be equivalent to the azimuth resolution.

The combination of these two items implies a very short pulse with high peak power. This is
not feasible in practical radar systems.

The key solution to this problem is to transmit a pulse with a specific waveform, such that
a long pulse can be transmitted with high energy but low peak power. After receiving the echo
the resolution and signal-to-noise raúo can be enhanced by means of signal processing: the
so-called pulse compression. In radar, pulse compression is generally performed by means of a
so-called matchedfilter, i.e., the received echo signal is correlated by a replica of the transmitted
pulse. The principle of matched filtering has its origin in information theory [Nor63], and is
used to detect a known signal in the presence of noise.

We briefly summarize the principle of matched filtering for our case. For a concise derivation
ofthematchedfrlterprinciple,wereferto[Pap84]. lntp(t)bethetransmittedpulseandletn(t)
be additive white noise with zero-mean.l-et e(t) : p(t - tp) + n(t) be the received echo signal
of the shifted pulse, reflected by some point target in the antenna beam. Note that the distance
between the antenna and the point target is proportional to the shift fo. The objective is now
to detect the pulse echo within the signal e(f) and to localize it. This can be accomplished by
filtering the received signal with the matched filter having the impulse response h(f ) a p-(-¿).
l-.et a(t) : h(t) + 1t(t - t) -t h(t) + n(t) 4 ao(t) t a"(t) be the outpur of the matched filter. Then
the matched filter maximizes the ratio between lyr(tr)l'and the expected noise power Ely"(t)|2
at the output of the matched filter. The peak is located at to.

However, the matched filter does not enhance resolution per se. Resolution enhancement
by matched filtering can be accomplished by transmitting a waveform with an autocorrelation
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function that approximates adi¡ac function. Many waveforms are known [Del70], butcommonly
used in SAR is the linea¡ frequency modulated (FM) pulse, also known as the chirp signal. L,et

p(t) be a linea¡ frequency modulated pulse with frequency varying linea¡ in nme, atf r, and
pulse width ro. Then we deñne

p(t) : exp(iatz), for -lrr1t<lr, (2.r2)

and zero otherwise. a is called the chþ-raæ. The bandwidth of a linear FM pulse is Bp : arp I r .

Maæhed ñltering of the chþ results in a sinc-function

I n.G,)nQ - r)dr (2.t3)

Two examples are given in figure 2.5. Observe that the waveform is the same as in figure 2.7,
which is the reason why the matched ñlter is also commonly used for azimuth compression.
Furthermore we can see that for larger time-bandwidth product roBo the spectrum of the linea¡
FM pulse becomes more and more rectangular.

It remains to derive the range resolution after the received pulse echo has been processed by
the marched frlter. Here we use the fact that for large time-bandwidths roBo, the power spectrum
is approximately rectangular with bandwidth Bo [Del70]. The resolution is then defined as the
half-power width of the sinc, which approximaæs lf Bo. The range resolution, say p,, is then

the two-way spatial half-power width of the compressed pulse

P, : lcf B, - (2.r4)

Observe that the ratio between the width of the pulse, ro, and the width of the compressed pulse,

1/Bo, equals the time-bandwidth product rrBr. Therelore the time-bandwidth product of the
pulse is also called the pulse compression ratio.

2.4 AzimuthCompression

Before we proceed with the exploitation of the Doppler bandwidth in SAR imaging we introduce
the optimurn azimuth resolution. Consider the situation as shown in figure 2.6 where there a¡e

two adjacent point targets with equal nominal range Â¿. L,et thefu ø-coordinates be 0 and

& : u&, respectively. We assume that throughout the time that the point targets a¡e within
the antenna beam, the azimuth echo signal is acquired. The optimum azimuth resolutionl of
a side-looking imaging rada¡ is the minimum spatial distance ár between two adjacent point
targets, for which they still can be discriminated within the echo signal in azimuth direction. We

I Vfe assume that resolution of a radar image is user specified within certåin bound¡ries, one of them being the
optimum resolution, that is, it is the best one can get given the system parameters.

l9

lfc

,"r,
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Figure 2.5: Two examples of lineü FM pulse: (a) ro : 1 ¡rsec, a = 6.28 x 1013 and rrBo : /Q
and(b) %:5 p,sec,a:3.14 x 1013and r.pBr:)JQ.
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Iu*

Figure 2.6: Two adjacent point targes with equal nominal range Ã6 and at relative distance dz
in azimuth di¡ection. L;¡u is the length of the antenna beam in azimuth at nominal range Pa.

assume that this is the spatial half-power beamwidth of the antenna (either a real aperture or a
synthetic aperture antenna) on the ground. We usually denote the optimum azimuth resolution
by p, whereas the azimuth resolution of the SAR image is denoted by ár. The difference
between p and áz is that p is a SAR acquisition system parameter and & is a SAR reconstruction
system parameter. I.e., in ou¡ case p is given, and & is speciñed (either by the designer of the
reconstruction system or by the end-user), with the condition that & > p.

A rada¡ sysûem that images the 2D rada¡ echo signal without resolution enhancement in
azimuth is called a. real aperture rødør or a side-looking airborne rødar (SLAR) system. Læt p
be the optimum azimuth resolution of this system at nominal range Ra, then, according to the
definition of the optimum azimuth resolution,

P : L.uu^: RD^ID (2.1s)

Despiæ the relatively narrow azimuth bean B : 
^l 

D, in SLAR sysrems p can be quiæ bad,
typically O(100) m for ai¡borne systems. This is caused by the relatively large nominal range
Êo. The resolution in range can be much betær, typically O(l) m. Moreover, p depends on
system parameters as wavelength and range, which is not desi¡able.

Optimum azimuth resolution of SAR

Using SAR we can achieve a much higher azimuth resolution, typically O(l) m for ai¡borne
systems, which is also independent of the wavelength a¡rd the nominal range. There are m¿my
viewpoints from which the SAR principle can be derived, all yielding "more or less" the same
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expressions. We do not wish to be complete here, in that we simply adopt one viewpoint which is

illustrative in our opinion. For other viewpoints we refer to, e.9., [Cut70, Ha¡70, Hov80, CM91].
Substitute equation (2.9) into equation (2.6), then the echo signal of a single point target is

"(t): *r(-tT#) r"ui

Weassumethate(t)isdefinedintheinterval(t^¡n,t^o")andiszerootherwise. In[DeI70],itwas
shownthatifthetime-bandwidthT,Bdof e(ú)issufficientlylarge(say> 10,see[CM91]),then
the power spectrum of e(t) approximates a recta¡gular with bandwidth B¿. Note that the power

spectrum of e(t) is the Fourier transform of r(t) : e.(-ú) * e(f). Thus, conversely, if r(f) has

a rectangular real Fourier transform with bandwidth B¿ then r(t) - sinc(2r B¿t). We consider
the width of the main lobe of lr(ú)12, which is approximately llB¿, as the optimum temporal
azimuth resolution. Then the optimum azimuth resolution of the SAR, say p", approximates to
p" : u I B¿. Using equation (2.11) for the Doppler bandwidth, we obtain

Po : ulB¿ = Dl2 (2.17)

which is the usual expression for the optimum azimuth resolution of SAR. Better resolution in
azimuth can thus be accomplished by filtering the echo signal with

o(¿) : e.(-r) : "-rQ+#) rr.trl

We refer to a(l) as the impulse response of the /D azimuthfilter.
An advantage of SAR over SLAR is that p, is independent of the nominal range and

wavelength. It depends only of the length of the physical anûenna. The latær should be no
surprise: the smaller the antenna, the larger the Doppler bandwidth, see equation (2.1 1), and thus

thesmallerpn. Thedurationofthetimeintervalneededtoacquireechosignal,To:t^n"-t-¿n,
is called the synthetic aperture tíme or simply aperture lime. For convenience, we assume that
t^in : -)T" uñ t^o" : j4. Conesponding to this synthetic aperore time the synthetic
aperture lengthis defined as

Lo : Ín o" - rnin - uTn : Ro^lD z Liuu^ Q.19)

We ca¡l also relate the synthetic apertwe length with the optimum azimuth resolution po. From
equation (2.11) follows thatTn: ¡B¿ÀRaf u2. Thus, with po : ulB¿, we have

Lo : uTo : lB)Rala : i\Ralp" Q.20)

If we compare the optimum azimuth resolution p of SLAR with the optimum azimuth
resolution p" of SAR, we have achieved a resolution improvement factor pf p". Using p :

1)
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Figtlre2.1: Simulated azimuth echo signal (real part) with antenna pattern and its real aperture

resolution (dashed line) and the synthetic aperture resolution. The used radar paraneters are:

À : 0.057 m, u : 100 m/sec, Ao : 10 km, and ?o : 1 sec.

Lirtu^ : uTo and po : u I B¿, it follows that this improvement is equal to the time-bandwidth
product ?}B¿. This resolution improvement factor can bo up to (?(103) in practical SAR
systems. It is illustrated in figure 2.7 , wherc we have used simulated azimuth echo data.

As we have mentioned implicitl¡ obtaining the autocorrelation signal from the echo signal
yields the optimum azimuth resolution po. Observe that, if we model the point target by a

dirac function, then the echo signal e(f ) is, in fact, the impulse response of the simplified SAR
acquisition system. To accomplish a high resolution SAR image, the received echo signal
should thus be correlated by the known impulse response of the SAR acquisition system. The
correlation of the received echo signal with the known impulse response e(t) is called azimuth
compression. A useful side-effect of the azimuth compression is that it is equivalent to matched

filtering, which is an optimum detector of a known waveform (such as the impulse response) in
the presence of noise, see section 2.3.

0.4

0.2

0
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Depth of focus

'the depth of focus is a phenomenon that results from the range dependence.As we have shown

above, for each nominal range Ãe we should use a different azimuth filter. Consider the azimuth
echo signal corresponding to nominal range Re. Suppose that the azimuth filter is optimal for
nominal range .R6 + óÆ, i.e., we have a mismatch ór? in nominal range. It is useful to know the

effect of the mismatch in nominal range on the reconstructed signal. The depth of focus is the

relation between the mismaûch in nominal range and the azimuth resolution.
From equation (2.16) we see, that the mismatch ár? in nominal range corresponds to a

mismatch dp in the phase of the impulse response of a point target at nominal range F¿ and the

azimuth filter. Let

u.þ) : 4r u2t2

^ 
2RÐ Q'2r)

be the phase history of a point target at nominal range Ã¡. Then the phase mismarch is

^ 4r ,2t2 4r aztz6P: -it(EljÃ)-+ir'" Q.22)

If 16Ãl < Ão, then the phase mismatch approaches ep : -9(t)6R/R¡. Observe that lg(t)l is
maximum for ú : t^inf ^o":l å?.. Thus

t&t : vê +ròry : ffiv^t Q.23)

From equation(2-20) we have T": lÀRaf up". Substitute 7. in equation (2.23),thenwe obtain

wt = ftvn"l Q.z4)

If we allow a maximum phase mismatch of + r l4 [CM91], then we have

l6Rl I
From the latter term we derive what is called in the literature the depth of focus

fLa"f 4 4Êl^ Q.26)

The depth of focus is a criterion for the maximum mismatch in nominal range of the azimuth
filter and the azimuth echo signal that is allowed, given the wavelength and optimum azimuth
resolution. In practice, this means that we can use one azimuth filter assigned to nominal
range Ã6 to process the azimuth echo signals assigned to an interval of the nominal range
(h - ;n no.Í 1 Rn + iLR¿"t). For example, if I : 0.057 m (the wavelength corresponding to
C-band) and p" :2 m, then the depth of focus is A.R¿,¡ : 140 m.
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(a)

(b)

Figure 2.8: The geometry in azimuth of the SAR system with non-zero squint angle (a) and the

non-constant range .R(ú) of a single point ørget as function of the time (b).
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Range migration

Until here we have used the simplified echo signal e(l), thereby neglecting the shift n p(t' -
zÀ(t) lc). It allowed us to analyze the Doppler frequency of a¡r echo signal in azimuth of a

single point target along a straight line parallel to the ø-axis. However, in general this is not the
case, especially if the squint angle is non-zero. In this section we derive the general descriptions
of the SAR acquisition system A and SAR reconstruction system R for non-zero squint angle 7.

Consider the geometry in azimuth of the SAR system in figure 2.8.a. Assume between

tmin : -iT" and t,,o" : j4 a point target with ø-coordinate øo is illuminated by the antenna
beam. We assume that at ¿ : 0 the distance between the antenna and point target is the nominal
range Ra, thus zo - Æo sin 1.l-nt a : uf and define fo : rp/a. From figure 2.8.a we ca¡r derive
the extended version of equation (2.8)

R(f) : (2.27)

læt I sin 7l ( 1, then we have .Ro < Thus .R(l) approximates to

R(r) : Ro-utsinT* # ",%+ln1t¡
(2.28)

In figure 2.8.b A(¿) is shown as function of f. The linea¡ decline of ,R(t), called the range walk,
depends on the squint a,ngle 1, and the non-linea¡ decline of ,R(t), called the rsnge curvature,
depends on the aperture ttme To. The range migration is illustrated in figures 2.8.a and 2.8.b.

Substitution of .R(t) into equation (2.5) gives

e(t',t) : p (t' - zLR(t) I c) exp (jatr LR(t) I )) (2.2e)

To simplify the notation, we have applied a shift ú' - z&olc <- ú' in equation (2.29). This does
not affect the analysis, as the location of the origin of f is only a matter of reference. Equation
(2.29) is the 2D echo signal of a single point target. If we model the point target by a di¡ac
function and if we neglect the atmospheric attenuation, system losses, etc., tben e(t',f) is, in
fact, the 2D impulse response of the SAR acquisition system A.

At this point we obtain the 2D impulse response of the SAR reconstruction system R. The
first step of the reconstruction is the range compression.z l-et g(tt,ú) be the 2D echo signal,
correlatedwithareplicaofthetransmittedpulsep(t'). Assumethatp(t')isthechþsignalwith
bandwidth Bo, as described in section 2.3.

e(t' ,t) : I r" ?r)"{t' - r,t)dr

: sinc (2tr Br(t' - 2\,n(t) lc)) exp (-j4zrA R(t) lÐ Q.30)

,?fr cos2 I -f þ, -2xRosin7 *

l2ø.Rasin7 -

2In SAR it is customary to use the term range compression for pulse compression.
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Observe that the peak of the position of the sinc-peak varies in ú, due to the range migration.
Obviously, this shift can be eliminated by convolving 9(f',1) over t' with a dirac signal á(ú, {
ZLR(I) I c). l-û g' (t' ,ú) be the echo signal afær the range migration compensation, then

s' (t" t) 
- !,:n.-:;,ï;:,',' 

")""i:,;:){r) 
exp (- j 4,r a, R(t) t ^) e 3t)

Another side-effect of the range migration we must take into account is that the Doppler
spectrum (i.e., the spectrum in azimuth direction) is shifted. This frequency offset, say f¿",
is called the Doppler centroid, as it is the center of the Doppler spectrum. The Doppler
centroid is the constant term in the derivativç of the phase history of the point target. L€t
v(t) : -atr L'R(t) I ), be the phase history see equation (2.30), then

2u2tjfrvttt: -L*o^(ú) : 2H
)Ro

27

(2.32)

Thus /¿" = 2u sin 7/ì. The second term is recognized as the Doppler frequency shift /¿(ú), see

section 2.2. The derivate of the Doppler frequency shift /¿(f ) is also called the Doppler rate
fn: -2u2 lÀR6. Note that the Doppler bandwidth is still /¿(f-.") - fnlt^r^¡ : Bo.

A consequence is that the azimuth filter should also contain this frequency offset. Then, using
the azimuth filter ø(f ) derived in section 2.4, the lD azimuth filær in this case is a(t) exp(2r f ¿.t).
Thus, convolving g'(t',t) with this azimuth filter over f, gives the reconstructed signal r(¿', ¿)

r(t' ,t) : I aþ) exp(2r f o.r)g'(t' ,t - r)dr - sinc(Zr Brt')sinc(2r B¿t) e.33)

Observe that we have derived the sinc functions sinc(2r Brt') and sinc(2zrB¿f ) earlier in sec-
tions 2.2 urd 2.4, respectively.

Of course, t've can also combine the compensation for the range migration and the azimuth
compression. Then we should use the 2D azimuth compression ñlter

ø(t' ,t) : a(t) exp(2r f ¿"t)6(t' + zLR(t) I c) (2.34)

Obviously, the 2D impulse response of the SAR reconstruction system is thus p.(-f)ø(t',t¡.
Notice that this impulse responso represents, in fact, a 2D matched filær.

Vy'e have stated in section 2.1, that in the ideal world R would be the inverse of A. The
reconstruction system R as we have determined, approaches the inverse A-1, if Bo and B¿ both
approach infinity. Indeed, in designing high resolution SAR systoms, bandwidth increment has
in general a high priority. The impulse response of the reconstruction system , the 2D matched
ñlær, is optimum in terms of signal-to-noise ratio, howeve¡ it does not minimize the square
error of the desired signal (the reflectivity map of the imaged surface) and the reconstructed
SAR image. In appendix B we propose an alternative filær, that performs suboptimum in terms
of signal-to-noise, but yields the minimum mean square error.



CHAPTER 3

SAR PROCESSOR
SPECIFICATIONS

3.1 Introduction

Typical developments of the last decade in the freld of SAR processing can be divided into two
a¡eas: two-dimensionalhigh-resolutionSARprocessingalgorithms,e.g.,[Cen88,FS90,CPR91,
RRB+941, and dedicated real-time SAR processing hardware, e.g., fMor92, DJCM92, Bie93l.
In the first a¡ea the ongoing progress in the general purpose computer ha¡dwa¡e is exploited
by development of complex two-dimensional SAR processing algorithms. The objective is to
achieve high-resolution SAR images, whereas processing speed is of minor importance. In the

second a¡ea dedicated ha¡dwa¡e is developed for real-time on-board ai¡borne SAR processing.

Although it has lower priority in real-time on-boa¡d SAR processing, image quality becomes

more and more important. For example, in [Mor92, Bie93] an attempt is made to balance

between algorithm and architecture design, which should lead to an optimal SAR processor.

The objective of this chapter is to give a brief introduction in the design aspects of a real-
time SAR processor. We translate the SAR acquisition system para.meters determined in the
previous chapter, to SAR processing parameters. rüy'e do not intend to design a generic real-time
SAR processor, in that, we restrict ourselves to antenna systems having small squint angles and

na¡row azimuth antenna beamwidth (both in the order of a few degrees). The justification of this
resftictions is in the fact that the work presented in this thesis is strongly related to the PHARUS
system. PHARUS stands for Phased Array Universal SAR and is a fully polarimeric C-band

airborne SAR with an active antenna array. The PHARUS system employs yaw steering to
minimize the squint angle, and has a small azimuth antenna beamwidth in the order of 2o. More
deøils about the PHARUS sysrem are given in section 3.3.
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h¡ls Rcpli@ Moti6 Dat¿

Figure 3.1: Typical ai¡bome SAR processing chain.

Duo to the small squint angle a¡rd the n¿urow beam, range migration effects a¡e limited.
As a consequence, we can perform the basic SAR processing algorithms (range and azimuth
compression) using lD fast convolution techniques. The azimuth compression approach is

related to the so-called Hybrid Correlation approach tWLI82l. It performs a 2D convolution,
hereby utilizing fast convolution in azimuth di¡ection and time domain convolution in range

di¡ection. This approach has the advantage that data flows and memory management remain
relatively simple, so that we can focus on the design of small and high speed SAR processing
hardware. Since the approach is snaight-forward, the processing is robust and the effects on the

SAR image quality are well-understood.

Our lead is a typical ai¡bome SAR processing chain, shown in figure 3.1. In section 3.2 we
translate the SAR parameters to SAR processing parameters. We describe them per functional
block, except for the motion compensation and the autofocusing, which a¡e beyond the scope

if this thesis. We simply assume that motion compensation a¡rd/or autofocusing is performed

and that it satisfies our needs. Nevertheless, in appendix C a brief description of motion
compensation and autofocusing aspects are given. In section 3.3 we show the usefulness ofthe
processing parameters by a design example: a real-time SAR processor for PHARUS. The result
of this secúon is a set of specifications for real-time SAR processing ha¡dwa¡e, such as range

and azimuth compression data rates, number of looks, filter sizes and data reduction factors. In
section 3.4 we show that our approach does not only apply to the PHARUS system. rù/e specify
a real-time SAR processor for the ERS-I satelliæ SAR system.
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3.2 SAR Processing System Parameters

In this section we assume that the raw SAR data is sampled in range a¡rd azimuth. we assume

that sampling frequencies in range and azimuth, say j; and /", respectively, satisfy the Nyquist
criterion. Thus, let Bo be the pulse bandwidth and let B¿be Doppler ba¡ldwidth, then f, > B,
and -t > B¿.r Note that in section 2.2 wehave interpreted the pulse repetition frequency fr,¡
as the azimuth sample frequency. In many airborne SAR systems, however, /0,1 is substantially
larger than the Doppler bandwidth. The azimuth sample frequency /, is then obtained by
bandpass filtering and decimation of the azimuth echo signals, i.e., f.p,¡ is then a multiple of
¿. It is assumed that the reception time per pulse echo is limited and thus the length of the
pulse echo is limited. 'We denote the length of the discrete pulse echo by 1/,. In practice, N, is
0(103) up to O(104).

Range compression

læt the transmitted pulse be the chirp signal as defined in equation (2.12), with pulse width ro

and bandwidth Be. lr;t f, be the sampling period in range, then the length of the discrete pulse
replica is ÀÇ : rrft,. The advantage of discrete range compression is that the pulse shape can
easily be modified. For example, we can use a shorter pulse replica. A property of the chþ
signal is that its bandwidth is proportional to its length. Recall that the optimum range resolution
p, is inverse proportional to the pulse bandwidth, see equation (2.14). Thus, a shorter pulse
replica yields a degraded resolution. In this way we can specify a suboptimum range resolution,
say & ) p., which is accomplished by correlating the received pulse echoes with a pulse replica
with length reduced with a factor & I p.. Tltis is illustrated in figure 3.2.a. Moreove¡, since the
bandwidth of the pulse replica is also reduced with a factor & f p,, the range sample frequency
might also be reduced after the range compression. Thus, if we require a suboptimum range
resolution, data reduction (and thus data rate reduction) can be achieved.

Another important advantage of discrete range compression is that it allows the application
of weighting. By windowing the pulse replica, the peak side-lobe ratio (PSLR) can be improved.
The PSLR is deñned as the ratio of the largest side-lobe peak to the main-lobe peak [CM91]
and is usually expressed in dB. Some examples of pulse compression and weighting a¡e shown
in figure 3.2.b. Clearly, reduction of side-lobes results in an increase of the resolution- The
increment factor of the resolution for different types of windows can be found in [Sko85].

Azimuth compression

Given the lD azimuth filter as defrned in equation (2.18). Let f" be the sampling period in
azimuth, and observe that the filter length is the aperture time Q, then the length of the discrete
lD azimuth filter is Nn : Tolto. Equation (2.20) gave the relationship between the aperture

¡Note that the sample frequencies are defined for complex signals.



3.2 SAR Processing System Parameters 31

(b)

Figure 3.2: Pulse compression with a pulse replica length ro : 5 psec (straight line) and
rp : 2.5 psec (dotted line) (a), and the effect of weighting: uniform weighting, PSLR=l3 dB
(snaight line), cosine weighting, PSLR=23 dB (dashed line) and hamming weighting, PSLR =
43 dB (dotted line) (b).
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time 4 and the optimum azimuth resolution p". If we specify a suboptimum azimuth resolution

fuu O",thentheaperturetimeisreducedÍeTo- l,Raleu. Thusafactor&f p"reductionof
the discrete azimuth ñlter length is obtained. Similar to the range compression, this also yields

a factor fu f p" bandwidth reduction after azimuth compression, and thus data reduction can be

achieved.
The update rate of the azimuth filter depends on the depth of focus. Given the suboptimum

azimuth resolution &, then the depth of focus is A.R¿,y : 4&2 I 
^. 

l.ett,be the samplingperiod
in range, then the sampling dista¡rce in range is # : !ct,. Then updating of the azimuth frlter
is only required for every N¿oj ^ L,R¿.¡ f ú'subsequent range bins.

As we have mentioned in section 2.4, range migration compensation might be required. It
depends on the maximum decline of Ê(t) : P4 + AÆ(ú). læt & be the suboptimum range

resolution. Then a sufficient criterion is that compensation is necessary if the maximum value

of AR(t) over the interval (-rT",j?,) exceeds ár/4 [CM91]. Thus

juftlsin tl+ffi (3.1)

Substitute4 : )Ralu&intoequation(3.1),thenweobtainthatra¡lgemigrationcompensation
is necessary if

(3.2)

This expression is called the ra nge mígration criterion. Given that ì and 7 are system parameters

and that Ao is bounded by some maximum A-o,, we conclude that the range migration criterion
depends on & and dr.

The range migration compensation can be performed in va¡ious ways. We only consider the

sfraight forwa¡d method, that is, we perform the azimuth compression with the discrete version
of the 2D azimuth filter, see equation (2.34), which performs range migrations correction and

azimuth compression all at once. Let L.R^;n be the maximum decline of Æ(t) over the interval
(-rT",lT") and let r# be the sample distance in range, then the size of the discrete 2D azimuth
filær in range is N^ig : LR^is f ú'.

Corner turning memory

The corner turning memory is a device to store the range compressed data set. In general,

azimuth compression is performed on batches of azimuth echo samples, whereas the acquisition
of the azimuth echo samples is a continuous process at the rate of the azimuth sample frequency.
The function of the comer turning memory is briefly addressed here, where we consider the

following preliminaries. A range line refers to a discrete range compressed pulse echo. An
azimuth line refers to a the set of azimuth echo samples that corresponds to a specific range.
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Thus, the iúA components of subsequent range lines forms the itâ azimuth line. We havo N, - N,
azimuth lines, which is the number of effective samples that results from the range compression
operation. In general we assume that an azimuth line is ñnite, which is then referred to as

an szimuth batch. T\e azimuth compression operates on azimuth batches, thereby using an

overlap-discard approach. The overlap is determined by the azimuth frlter length ÀI". The
function of the corner turning memory is then: collect À16 range lines and wdte atl ¡f, - 

^6azimuth barches sequentially to the azimuth compression.
It is now obvious, that during the writing of the azimuth batches to the azimuth compression,

new range lines keep coming. Thus the comer turning memory should be dual-ported, and have

sufficient storage capacity to store the new range lines while writing the batches. This implies
a "ping-pong" memory structure: range lines a¡e written in the "ping"-paft of the memory and

azimuth batches are read from the "pong"-part of the memory. When the "ping"-part is full and

the "pong"-partis empty, they interchange the "ping" and "pong" functionality.
However, we must take into account the overlap N". The¡efore, from hardware point of

view it is useful to use the concept of banking. This concept is explained by the following
example. Assume that the overlap is 50 Vo, and thus Nt :2No, and consider the corner tuming
memory with th¡ee banks. Each bank has size N, - I{o x Ä{". Assume that at a certain moment
banks 1 and 2 have been frlled, and bank 3 is still empty. At this point we start writing range

lines into bank 3, and in the mean we read the azimuth batches from banks I and 2. Obviously
we have a limited time to read the azimuth batches, namely N"l f ", which is the acquisition time
of N. range lines. When the banks I andZ have been read and bank 3 has been fi.lled, the range

lines are written into bank 1 and the azimuth batches a¡e read from bank 2 and 3. This concept
can readily be extended to more banks.

Obviously the ouþut data rate is higher than the input data rate, thus we have a mismatch
between input and ouÞut data rate induced by the overlap. This effect is best described by the

utilization of the corner turning memory [/, which is the ratio of the required input data rate

and the required oulput data rate. Observe that the utilization is completely determined by the

azimuth batch length 1{¿ and the length ofthe overlap l{,

u : e .e (3.3)
Nü

The measure of the utilization is in percents Eo-

The utilization is an important design parameter. For example, if the utilization approach

100 Vo we have large ÀI¿ relative to N,. In general this means that the acquisition trme N6f f"
(which is the time required to acquire ,À16 pulse echoes) can be large. If we use the rough
estimation that azimuth compression of the azimuth batch requires NaU I f " seconds, then we
have a latency

L: Nb1+u)lf" (3.4)

The laæncy .C is a measure for the time between the first appearance of a point on the ground

within the antenna beam and the imaging of that point on the display. Conversely if we require
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a small latency, the utilization will be small. In that case Iú¿ is small relative to 1ú., but then the

efficiency of the processing drops dramatically.

Speckle reduction

A surface a¡ea within a SAR image with a constant backscatter coefñcient øs appe¿ìrs as a noisy
signal with mean øo [UMF82]. This noise is referred to as speckle noise. l-et z be the intensity
of a SAR image pixel with mean Z and variance ,2. 'lo improve the visual appearance of an

image, it is desi¡able to cluster the observed intensities z closer around Z, which is equivalent
to reducing the standa¡d deviation. If we assume that we have Nr independent realizations 2,,
n : 0,. . . ,Iy'¡ - 1 of an image pixel then the mean of the averags zNr - (r/¡f,) Dfst ," ¡
unchanged

z,\1 : E+'H ,, : +'H Ezn - z (3.5)' l\t -7=o l\t 
-7=o

whereas the sta¡rda¡d deviation z;y, is reduced by a factor ../fi. ffris can be derived as follows

t N¿-l
rÌ¡¡,: E(zy,-zx,)z : E(zN,-Z)' :-, D E(r*-z)z : (llNùv2 G.6)lYl ¿=o

The most widely used method to obtain N¡ independent realizations of a single pixel is to
generate multi-look images. I-et the time instant tn, n :0, . . . 

, ffr, be defined as

tn : -!7"' L, Q.7)' N,-o

Then the aperture (-+T",å4) is subdivided into Nl subapertures (tn-r,tn), n :1,".,1ú.
The subaperture time is then T"f N¡. Azimuth compression with each subaperture results in .fü¡

independent images which a¡e added incoherently. The resolution is then determined by the
length of a single subaperture, a¡rd thus decreased by a factor Àd compared to the single look
image. However, from equation (2. 1 1) we know that subdividing the aperture in 1ü¡ is equivalent
to subdividing the Doppler band into I{r subbands. Hence, the multiple looks can be generated
by azimuth compression with the full aperture (and thus full Doppler bandwidth) and filæring
with a bandpass filter to subdivide the Doppler bandwidth in N¿ subbands. Iæt the frequency

Ín, n : 0,. .., ¡ú, be defined as

^ 2u2 (., _n.\l" 1". (åt, - Nt") 
(3.8)

Then the n¿l' bandpass filter has bandwidth Bn : 2u2T"l )r%Nt and is defined over the fre-
quoncy band (fi-1, l,). Both principles are illustrated in figure 3.3. The complexity of azimuth
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a

x

(a) (b)

Figure 3.3: Multiple look azimuth compression with N¡ : 3 (a) and full-resolution single look
azimuth compression with l/r : 3 Doppler bandpass filters (b). The bandwidth of the bandpass
fi.lters is equal to the bandwidth of the subapertures.

compression is mainly determined by the length of the data signal. The complexity of both
multiple look azimuth compression approaches are roughly determined by the azimuth compres-
sion. The bandpass filærs in figure 3.3.b are in general short, thus the filtering complexity can
be assumed negligible. Since the approach shown in figure 3.3.a requires ,Àú¡ times a¡r azimuth
compression, its complexity will be I{¿ times larger than the complexity of the approach shown
in figure 3.3.b.

Geometric correction

The main geometric distortion in a SAR image is caused by the non-linea¡relationship between
the temporal variable in range f' and the spatial ground variable y. A side effect of the non-linear
relationship between t' and g is that the range resolution mapped on the ground, say @, will
vary within the swath. l.rot $ : arccos(å/r?), then this increase is due to the relationship
6a : & I sin /, see figure 3.4. fo would be worse tha¡r & lor $ < r 12. The mapping of the

SAR image onto a rectangular grid on the ground plane is also referred to as slant-to-ground
conversion.

3.3 Real-Time SAR Processing for PHARUS

In this section we derive the system parameters of a real-time on-board SAR processor for the
PHARUS system [HSKP92]. The PHARUS system is a fully polarimeteric C-band ai¡borne
SAR. It has an active antenna array that consist of 48 TransmiVreceive (T/R) modules. Each
T/R module has its own digital conrol unit that controls the phase and amplitude. It supports

the internal calibration of the antenna, in that, the T/R modules ca¡r be interchanged without
affecting the antenna beam. The antenna array has three clusters, each containing sixteen T/R
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Figure 3.4: Relationship between slant range resolution & and ground range resolution @.

modules. Each cluster conEol calculates the individual settings per T/R module, depending on

the position of the module within the ¿uray, the required tapering, required beam steering, etc..

The antenna is modular, in that, clusters ca¡r be added.
An important property of the PHARUS antenna is that beam can be electronically steered.

For example, the drift of the ai¡craft can be compensated by yaw steering. But it can also be

used for advanced SAR modes, such as spotlight SAR and scan SAR. Spotlight SAR increases

the maximum aperture length by pointing the beam at a fixed spot on the ground, so that azimuth
resolution can be increased. Scan SAR illuminates multiple strips on the ground, so that the
maximum swath width increases.

The PHARUS is fully polarimetric, which means that each úansmitted pulse can have a

horizontal polarization or a vertical polarization. The antenna receives both horizontal and

vertical polarized pulse echoes. In general, the polarization will switch from pulse to pulse,

thus we obtain four SAR echo data sets, usually denoted as HH, HV VH, and W (the first
capital stands for the polarization of the transmitted pulse, the second capital stands for the
polarization ofthe antenna during the recepetion ofthe pulse echo). The four data sets results

in four geometrically identical images. However, objects and a¡eas within the image may differ
in their radiometric appearances, which is important for forest and agriculture classiñcation
purposes and contrast enhancement of images.

SAR processor specifi cations

ìvT'e assume that for on-boa¡d processing purposes it is sufficient to process one channel (in
general this is either the VV or HH data sets). The SAR processing specifications, see table 3.1,
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wavelength ì
pulse bandwidth Bp

Doppler band B¿

squint angle lrl
pulse width rp

minimal range R^in
maximal range R^o"
nominal speed u

range sampling frequency Í"
azimuth sampling frequency f"

0.057 m
45lvlHz
146Hz
<30
12.8 p,sec

7km
16 km
150 m/sec

50 MHz
625H2

Table 3.1: PHARUS system parameters.

a¡e based on the PHARUS high-resolution non-pola¡imetric mode, specified in [Ott94]. In this
mode the highest input data rate of the SAR processor is expected. For this reason we consider
the ñgures conesponding to this mode representative for the feasibility of a real-time SAR
processor. In this application we omit the slant-to-ground conversion. It will be addressed in
the next section, and can be easily applied here.

The length of the pulse replica is Np : 640. letw, : &n¿n - R^o": 9 k¡n be the swath

width in range, and let á : i4 f, :3 m be the sample distance in range. Then the number of
pulse echo samples per pulse echo is N" : I{o + W, I ù : 3640. The number of samples that is

written to the corner turning memory is N. - Np : 3000. The effective data rate of the range

compression is the number of samples that has to be processed within one azimuth sampling
period D" : N,fo :23¡4H2.

From equations (2.14) nd (2.17) follows that the optimum range and azimuth resolutions of
PHARUS tra pr :3.0 m and po : l.O m, respectively. However, it is desirable to have square

resolution cells, thus requiring an azimuth resolution & : 3 m. Læt B" be the Doppler bandwidth

that corresponds to &, then Bo : u l& : 49 Hz. Thus we can construct N¡ : lB¿f B") : 3

non-overlapping subapertures to generate multiple look images. However, a rule of thumb is that
up to 50 Eo overlap between adjacent subapertures is allowed, thus we can increase the number
of looks to ¡ül : 5. Vy'e propose the multiple look generation scheme shown in ñgure 3.3.b.

One might conclude that decimation of the azimuth sampling frequency is allowed from
the fact that the azimuth sample frequency is sufficiently larger than the Doppler bandwidth.
However, noise energy from outside the Doppler band may appear inside the Doppler band,

due to aliasing. We can overcome this problem by prefilæring with a bandpass filter, but then

we meet the following problem. The PHARUS system has a range dependent squint angle

7. Yaw steering of the antenna beam only yields zero squint for a specific range. For smaller

or large range the yaw steering yields a non-zero squint angle. The squint angle induces a

variable Doppler centroid l/*l < 275 Hz. The bandpass filter should thus have a va¡iable



3E SAR PROCESSOR SPECIFICATIONS

range compression data rate
number of pulse echo samples N"
number of pulse samples Np
number of looks Nt
data reduction in azimuth n!
azimuth compression data rate Do

number of samples per azimuth batch ¡{b
depth of focut Nao-f

max. size 2D azimuth filter in range N^ig
max. size 2D azimuth filter in azimuth ¡ú.

3000
640
5
4
10 Msamples/sec

940
23

8

470
9 sec

Table 3.2: Real-time SAR processor parameters for PHARUS.

center frequency. After filtering, we can decimate the azimuth echo signal with a decimation
factor n¡: Ll"lBdJ :4.

For the worst-case situation (lf l : 3o and maximum range) range migration must be
compensated. From equation (2.20), we have the aperture time for maximum range is To : 3

sec. Thus, using equation (2.28), we have the maximum decline LR*is of ,R(t) over one
aperture LR^is : LR(|T") - LR(-\T") : tl4 sin ál : 2l m. The size of the 2D azimuth
filter that corresponds to maximum range is then No : Tof olnt : 470in azimuth and Nmis - 8

in range. Furthermore, from equation (2.26), we have the depth of focus A-R¿,y : 70 m, and
thus ÀI¿"t : 23.

The overlap that we have to take into account in designing the corner turning memory is
the size of the 2D azimuth filter in azimuth before datareduction n¡N,. l-et -ôl¡ be the azimuth
batch sizs after data reduction. A nade-off between latency and utilization leads to an utilization
U : 50 7o, and thus Iü6 :940, and a latency L : n{úl + U)lÍ": 9 sec. In this case the
data rate for azimuth compression after the data reduction is D" - N^¡s(N, - Nr)f"f n¡U : 10
Msamples/sec.

The specifications for a rea-l-time SAR processor for PHARUS a¡e summa¡izedin table3.2.
One must realize, however, that designing a real-time SAR processor is more than the deter-
mination some performance figures. Perhaps the most bounding constraints in the design are
the specification of the speciñc hardwa¡e components. Therefore, these figures should be inter-
preted as representative for the PHARUS system, which gives an impression of the dimensions
of the parameters of a real-time SAR processor. In [Bie94a] a simila¡ study is presented, based
on preliminary specifications of PHARUS.
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3.4 Real-Time SAR Processing for ERS-I

In satellite SAR huge amounts of data a¡e involved, typically in the order of 100 Mbytes for
imaging a 100 x 100 km surface. This figure will increase more and more in future SAR systems.
The communication system a¡ld the intermediaæ storage must handle this increasing amount of
data as well. Furthermore, ground stations must process, broadcast and a¡chive the SAR data
and therefore show the tendency to become more and more expensive and time-consuming due
to this data increment.

An atfractive solution to reduce the communication requirements is to perform SAR process-
ing on-board the satellite. In combination with image compression techniques (e.g. JPEG), it is
the most rigorous kind of raw SAR data reduction. For example, an ERS-1 SAR image contains
63 Mbyûes whereas a batch of raw ERS-I SAR data contains 300 Mbyæs. Image compression
techniques can be used to achieve an even higher data reduction ratio. The advantages ofdata
reduction by using on-boa¡d SAR processing and image compression can be summarized as

follows:

Intermediqte datø storage: As a result of the compression rates achieved, more data can be

stored on-board and less ground stations will be required. Moreover, the SAR can collect
data from parts of the earths surface which are not within the reach of a ground station at
that moment.

Direct broødca$ facility: Since the satellite transmits the end-product down to earth, the end-
user has the SAR image directly available. This means that aprocessing and broadcasting
facility at the $ound stations are not required. The end-users also receive the most
up-to-date information.

Fast archiving.' The imagereceived by a ground station can be monitored immediaæly and, as

a consequence, can be a¡chived immediaæly.

In this section we will derive the specifications of a real-time on-boa¡d satelliæ SAR processor

based on ERS- I specifications. The objective is to optimize the function specifications and the
processing performance par¿uneters given the requirements and the specified SAR parameters.

SAR processing specifi cations

The specifications of the real-time SAR processor a¡e based on the ERS-1 product speciñca-
tions [ESA92]. Typical SAR parameærs a¡e listed in table 3.3. Based on the defi,ned parameters

we can give the specifications of a real-time SAR system. For the on-board processing we will
consider the so-called "fast delivery" product specifications:

r required ground range resolution:
o required azimuth resolution:

fu <33m
&:33m
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wavelength
Doppler bandwidth
pulse bandwidth
squint angle
pulse width
minimum range
maximum range
nominal speed

nominal altitude
ran ge samplin g frequency

B¿

Be

'l
1P

R^in
R^o,
1)

h

f,

1300 Hz
15.5 MHz
È00
37.7 psec

850 km
890 km
7000 m/sec

800 km
19 MHz
1700Hz

Table 3.3: ERS-I system pruÍrmeters.

o no. oflooks:
o ground range swath width:

N¿:3
I4le : 100 km

From equation (2.I4) follows that the optimum range resolution after pulse compression is
p,:9.7 m. Considertheangles Ó^in:arccos(hlR*i") and Ó^n":arccos(hlR*o,),see
figure 3.4. The ground resolution is then 6g : p,f sinS^;n :29 m at minimum range and
6! : p,lsinþ^o" :22 m at mfximum range, and thus meets the specification. After the
tÍmge compression, the effective number of samples per pulse echo that must be written in the
corner turning memory is Iü" - At : 5000. The effective data ¡ate required for the range
compression is deñned as the number of range samples that is processed within the inter-pulse
time D" : N,f o: 9.7 Msamples/sec.

The length of the pulse replica is Np :700. lßtw, : R^in - R^o": 40 km be the swath
width in range and let ù : t""l f, = 7.9 m be the sample distance in range. Then the number
of pulse echo samples is 1ú, : N, * W" f dr : 5700. Observe that the specified minimum and
maximum ranges correspond to a ground swath width l4ly : 100 tm.

Recall equation (2.20), which gives the subaperture length that corresponds to a required
azimuth resolution âr at range A¿. We include an increment factor ø that allows azimuth filter
weighting to increase the PSLR, without affecting the required resolution

. lÃot'": Ø2& (3.e)

We shall assume that ca : l 5 (Hamming window). A three look image requires three successive
apertwes of length L". Let B. be the equivalent Doppler bandwidth per aperture, then, from
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Fignre 3.5: Multilook azimuth compression with frequency translation over -fo¡¡,0,and fo¡¡,
respectively, lowpass ñltering, decimation with a factor r¿1, azimuth compression and multiple
look summation.

equation (2.1 1), follows

^ 2uL^ Db": Tñ :'o& (3.10)

Since Bn 1 B¿, for each look the bandwidth (and thus the sample frequency) can be reduced.
Substituæ & :33 m, then the required Doppler bandwidth per look is Bo = 320H2.

The antenna beam of ERS-I is yaw steered, yielding zero squint angle 7. Substituting ár,
p" and the system p¿ìrameters in equation (3.1), leads to the conclusion that range migration
compensation is not required. From equation (2.26) we have the depth of focus AÆ¿o¡ : lS
km. Observethatthedepthoffocusislargerthantheswathwidthinrangel,I/",thusoneazimuth
filter is suffrcient for azimuth compression of the complete data set. The subaperture length
corresponding to range i(R^", - R*;^) : 870 km is .Lo : I .1 km.

The critical azimuth sampling frequency required for the processing is deærmined by the
required Doppler bandwidth per subaperture ,B". The decimation factor afær proper band
filtering is n1 - Lil B"J = 5. However, in general, off-the-shelf decimation ha¡dwa¡e
components require powers of 2, and therofore we will set n.1 : {.

To reduce the data rate we split the azimuth echo signal in three channels and mix the th¡ee
Doppler bands to baseband, see figure 3.5. We can now use low-pass filters with real taps, and
then decimate the data rate with factor n1 : 4. An additional advantage is that the Doppler
bands of the three channels a¡e mixed to baseband, so we can use one azimuth filter for atl
three signals. Int &: uIf":4.1m be the sample distance in azimuth, then the length of the
decimaûed azimuth filter is N" : LolnIù: 67. Directty afær the azimuth compression, the
samples are squared and summated.

Let Nó be the azimuth batch size after data reduction, then we specify (somewhat heu¡isti-
cally) anutilization U :90Vo,thus N¿:670. Thelatencyis L = nl^L(l iU)lf" =2.3
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range comPression data fate D,
number of pulse echo samples ¡ú"

number of pulse samples 1\t
number of looks ¡¡l
data reduction in azimuth n!
azimuth compression data rate Do

number of samples per azimuth batch ¡úó

size lD azimuth filter in azimuth N"
number of image pixels in ground range 1{,
latency L

9.7 Msamples/sec
5700
700
3

4
8.5 Msamples/sec

n5
67
6100
2.3 sec

Table 3.4: ERS-1 SAR processor parameters.

sec. In this case the data rate for azimuth compression after the data reduction is Do :
Nr(N" - Nr)f"ln¡U: 8.5 Msamples/sec.

It remains to do the slant-to-ground conversion. It is desi¡able to have square pixels, mapped

on the øg-plane. The pixel size in azimuth is n¡á : 16.4 m. Therefore the image must be

interpolated2 in range to obtain the required ground range pixel size fu : 16.4 m. One ground
range image line in azimuth is constructed by interpolation multiple subsequent slant range

image lines. t t N, : Wnlù : 6100 be the image size in ground range direction, thus after
the interpolation.

The specifications for a real-time SAR processor for ERS-I are summarized in table 3.4.

These figures gives a good impression of the performance of a real-time on-board SAR processor

for the ERS- 1 satellite. In [BvHvB94] a demonstrator on-board processor based on these figures
was presented.

3.5 Concluding Remarks

In this section we have specified the processing parameters for real-time on-board SAR process-

ing for the airborne SAR sysæm PHARUS and the satellite SAR system ERS-I. Obviously,
data rates of azimuth and range compression remain the most challenging problem in designing
real-time SAR processor hardware, see tables 3.2 and 3.4. Using dedicated or commercially
available state-of-the-art DSP boards can perform the range and azimuth compression, but con-
straints in processor size a¡ld power consumption may not be met. Obviously, these constraints
are tight, especially if the processing should be performed on-board a satellite.

Off-the-shelf components can be used to perform the bandpass filæring, interpolation,
pythagoras processing. Implementation of the comer turning memory is sfaight-forward,

2For example, cubic spline interpolation.
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depends mainly on the commercially available memory components. Most effort should be

in designing of dedicaæd range and azimuth compression ha¡dwa¡e. For example, range and

azimuth compression with an effective data rate of 10 Msamples/sec implemented in commer-

cially avaitable state-of-the-art DSP boards [Cat92], will have 0(100) Vy' power consumption.

The size will be approximately equivalent to six Eu¡o-6 boa¡ds, but this may be too optimistic.
In this estimation we did not take into account VO daø handling.

With this in mind, we focus in the next three chapters on the design of efficient convo-

lution hardware a¡chitectures. We do not follow the conventional approach in designing the

convolution ha¡dware. This will not lead to satisfying reduction of processor size and power

consumption. Our approach starts with an extensive analysis of the convolution problems, and

leads to a generíc solution for long convolutions running on extremely high effective data rates.

It will rcduce the amount of ha¡dwa¡e required for range and azimuth compression to a few
dedicaæd chips.
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CHAPTER 4

CONVOLUTION AND
MULTIRATE SIGNAL
PROCESSING

4.1 fntroduction

In this chapter we will concenEate on one of the critical steps in SAR processing, namely the
convolution required for the range and azimuth compression.l Although much is written on fast
convolution algorithms (see e.g. [Bla85]), in SAR processing the required convolution length
in combination with the data rate remains a challenging complexity.

As we have mentioned in the previous chapter, in SAR processing signals can have lengths
of several Ksamples. In the future, this number will increase to more than 10 Ksamples. The
reference signal (the pulse replica or the azimuth filter, as described in the previous chapters)
can have lengths up to I Ksamples. For range compression, processing time may not exceed
the inter pulse time, which is in the order of mseconds. Performing the convolution in the
time domain would then require an effective data rate of the processor of several GFlops.
Performing the convolution in the frequency domain would still requi¡e an effective data rate of
several hundreds of MFlops. The problem becomes even tougher if the processor size must be
minimized.

In this chapter we introduce novel techniques that will lead to fast convolution algorithms
and architectures. To this end we rely on multirate signal processing. Multirate signal processing
was originally applied in telecommunications [8D74]. Since then, research effof has increased,
especially in designing aliasing free multirate filter banks, see e.g. [CR83, Vet87, Vai90]. In
the late 80's the resea¡ch effort moved to applications, such as FIR filtering with multi¡ate filter
ba¡ks [Vet88], filter bank convolvers [Vai93, PV95] and adaptive filtering [GV92].

I Observe that the structure of digital conelation is almost equivalent to the structure of digital convolution.
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At this moment however, the multi¡ate signal processing theory lacks application-specific
views, i.e. it is not yet common to use the multi¡ate signal processing theory as a tool to solve
the numerous digital signal processing problems, although some attempts have been made as we
have said above. Generally, multirate signal processing theory focuses on multi¡ate filter bank
systems. However, long convolution with high data rates is a difficult problem, a¡rd multi¡ate
signal processing is a way to reduce complexity substantially.

Thus we investigate the usage of multirate signal processing in relation with long convo-
lutions. The successive steps will lead to a description of an optimized multirate convolution
system. An approach based on algebraic manipulations that led to simila¡ convolution systems,
referred to as perfect convolution filter banks, was presented in [Ste9 1]. The methodology that
we propose, however, is akin to the method of combined algorithm development and a¡chi-
tecture design as described in [Dep93] and the method of engineering algorithms as proposed
in [McW92, MP92]. This methodology allows direct mapping of an algebraic speciñcation of
signal processing algorithms - hers a multi¡ate convolution - into prototyping architectures or
dedicated VLSI processors. The mapping is obtained through graphical manipulations rather
than by manipulating multi-indexed formulas.

In this chapter we derive the fundamentals of our methodology. We present the relationship
between the graphical manipulations of the algorithm and its equivalent algebraic representations
from multi¡ate signal processing theory. It is known that mulrirate convolution is close to block-
signal processing. In fact, if we embed the Discrete Fourier Transform (DFI) in the multi¡ate
convolution system hierarchically, we can show that it is equivalent to overlap-add or overlap-
disca¡d convolution tOS89]. This point of view is taken in the next chapter, where we derive
a convolution architecture based on block-signal processing. Both chapters end up with two
descriptions of the optimized multirate convolution system, the ñrst derived form a multi¡aæ
signal processing point of view, the second from a block-signal processing point of view.

The outline of this chapter is as follows. First we give the preliminaries in section 4.2. In
section 4.3 we introduce the multirate convolution system from an algorithmic view point rather
tha¡r from the traditional frlter bank viewpoint. The concepts a¡e extended in section 4.4, where
the DFT becomes an important aid to speed up computattons.

4.2 Notations and Preliminaries

In this section we give some notations and preliminaries of multi¡ate signal processing. It is not
the inæntion to give an overview of multi¡aæ signal processing. Rather this section seryes as a
basis for the following sections in this chapter.

Consider the M-channel multi¡ate system of figure 4.1. Each rntå channel contains subse-
quently an advance z^, an N-fold decimator, a constant multiplication factor d^, an N-fold
expander and a delay z-^ . T\e signal on input is either denoted as a vector x or a series X(z).
The signal on output is denoted as y or Y(z).
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Figure 4.1: Basic M-channcl multi¡ate system with N-fold decimators/expanders and channel

multiplicationfactors il^,for r¡¿:0, -.- rM - l.Byconventionweuseadvances (z)oninput
and delays (z-1) on output.

Ths input of the N-fold decirnation in the rntr branch is z^ X(z). The ou@ut of the N-fold
decimation is denoted as lz^X(z))1¡,'. A mafrix description of the successive steps (delay and

-fü-fold decimation) on the rntå bra¡rch is illustrative. I*,tZbe the unitary shift operator

Z=

The. box denotes the (0,0)¿å entry and serves as a reference of conter. Then Ztx is the vector
notation of z^X(z)

f..- o,"-tllãlø",+r ...] : [... t-t @ûx¡ -.-]Zn
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The box denotes thc .zeroth entry, Let N1 be the N-fold decim¿tíon operatot

)"_,*-"

Ì"-'*'*

Then the vector notation of the .fl-fold decimation lz^ X (z)l¡¡'¡ is

l'-. *^-*Fifr*+N .'.1 : [... t-t@"t .'.]Z-Nr

Similarly, N1 is the -lf-fold expander: N1 : Ni. tne ouþut of the iü-fold expander on the rnúå

branch, including the delay z--, is

nth entr!

l"' *^-n 0 "' 0 r^0 " ' 0c*+N "'ld,^ : Z-NLìI',NîZ-*

-- --N-l zqoc N-l zeros

Finally, the vector form of t'(z) is

M-l

["' v-t @ vr "' J : l"' r-t @ tt " '] I z-Nr d^N1z-^
mJ)

l,et T be the sys'tem transfer matrix,

Z^N¡ÇN¡Z-^ (4.3)

I
0

ó

tr
0

0
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Observe that for all rn

(m,m)th enhy

Z-N1N1Z-- : diag{...,0, 1,0,'..,0, 1,0,'..,0, 1,0,.'.}

-'-
Hence, T is a diagonal matrix

T diag{.. -,t0,..-,fr-r,Fo-1,...,úN-1,f0,...,ú,v-r,...}

where

,,, : Ï dn*ttN¡ I{- - lM -"+ll
k=o ":l N | Ø'4)

Now we can state the following properties of multirate systems restricted to this special case:

¡ If N < M utd if the d^ are chosen such that T : I, then the system has the so-called
perfect reconstruction property, i.e. Y (z) : y1"¡.

¡ If 1ü : M the¡ the system is said to be maximally decimated. If a maximally decimated
system also is perfect reconstructing , then d^ : 1 for all m.

o If N > M, moreover, then I{u: g (and thus tn:0) for n : M,-..,1[ - 1, and
consequently Y(z) I X(z).

Observe that if the multirate systom is maximally decimated then the left-hand side of the system
(the advance/channel splitting and the decimation) and the the right-hand side (the delay/channel
combining and the expansion) are in fact a serial-to-parallel conversion and a parallel-to-serial
conversion, respectively.

4.3 Multirate Convolution Systems

In the previous section we have introduced a multi¡ate system which splits a signal into M
cha¡rnel signals which has reduced data rate. Furthermore, conditions have been determined
under which the original input signal can be reconstructed from the decimated Mchannel signals.
As the cha¡rnel signals have reduced data rates one could ask whether it is possible to Eansform
a complex operation on the incoming signal into M smaller operations on the decimated channel
signals. This can have many advantages in real-time digital signal processing, where data rates
of incoming signals might be much higher than the maximum processing speed of ha¡dwa¡e
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CONVOLUTION

NETWORK

Figure 4.2: General form of a maximally decimated multi¡ate convolution system. The con-
voluúon network performs an operation on the N incoming N-fold decimated channel signals
a"(z) and ø,(z) resulting in 1ü output cha¡rnel signals U,(z), such thatY(z) : A(z)X(z).

components. Moreover, long data lengths can also be a poæntial problem since memory size
is often limited. Both problems frequently occur in radar signal processing, as we have seen
in chapter 3. The main operation is convolution of a¡r incoming rada¡ echo signal with a
reference signal. We will consider the case that both the incoming echo signal, say X(z), and
the reference signal, say A(z), are split up into M channel signals and a¡e /ü-fold decimated.
We will confine to the maximally decimated case, i.e. M : N. The objective is now to find
a convolution network in which the channel signals are fed. The convolution network has an
ouþut of tr{ cha¡rnel signals, from which an oulput signal Y(z) can be constructed such that
Y(z) : A(z)X(z). This multi¡aæ convolution system is shown in ñgure 4.2.

Our starting point will be the observation that the signals A(z) nd X(z) can be writúen as

N-1
A(z): la.(zN)"-",

n=0

./v-1

X(z) = lx^(rN)'-' (4.5)
z=0

The N functions a,"(z) and x^(z) are known as the polyphase components of order N of A(z)
and X(z), respectively [CR83, Vet87, Vai90]. The núÀ polyphase components are obtained
as r^(z) : lz"X(z)l¡N and a.(z) : lz"A(z)l¡N, which are the ouÞuts of the núh N-fold
decimators in figure 4.2. Observe that the vector notation of the polyphase components are
obtained in the previous section, see equation (4.1).
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The linea¡ convolution Y(") : A(z)X(z), in terms of the polyphase components of A(z)
and X(z), is

Y(") : (4.6)

Observe that equation (4.6) looks very similar to a multiplication of two polynomials of order
¡{ - l. The only difference is that instead of having scalar coefficients, these polynomials have

polyphase coefficients o.("N) and z,(zN). Therefore it is convenient to introduce the following
convention. Irnt H (z) : lil;t h¡"(zN ) z-h be an arbitrary polynomial in z in polyphase notation.
Introduce the va¡iable u) : zN. Then we can express 1l(z) equivalently as an order 1[ - 1

polynomial in z with coefficients å,(u.,)

H(") h"(w)z-" (4.7)

In order to distinguish the two notations we will wnte H(z;u') if we mean equation (4.7).

Observe that z-r represents a unit-delay and thus u-l represents the delay z-N.
Equation (4.7) looks very similar to an -l{ - 1 order polynomial, with only difference that

its coefficients a¡e series in u. Applying the variable substitution to both sides of equation (4.6)
grves

Y(z;w) : A(z:w)X(z;w) (4.8)

A(z;u) and X(z;ur) are in fact as polynomials of order 1ü - I in z, thus their product,
see equation (4.8), must be a polynomial of order 2N - 2 in z. But by convention Y(z;u) ^
ÐI=ì U"@)"-' is of order N- 1 which implies that this interpretation is notvalid. Nevertheless,

we can interpret A(z1w) and X(z;tr) as order N - 1 polynomials and still satisfy equation
(4.8), as we will show.

Define an intermediatepolynomial Y(z;u) of order 2N -2as
2N-2

?e;u) : D î^@),-"
n=0

N-l
î^(u) : I a^(w)t^-*(w)

n=0

Observe that these coefficients are the result ofalinear convolution ofthe I{ coefficients {ø"(to)}
and {2"(u)} of A(z;u) and X(z;w), respectively, and thus A(z;w)X(z;w) = Y(z;u). V/e

(þ*""t".1" ") (Þ- ,^1"'¡"-^)

N-t
-\--/J

n=0

^ (Þ- o^(-),-") (b' ",r-1,-")

with coefficients

(4.e)

(4.10)
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can expand ?Q;u) as

2N-2
?e;w) : D î*@)r-^

m=O

N-l N-2: Dî^@)"-^ + "-* Dî*+x(u)z-^ (4.11)

Again let zN ,- w then we have

if n:0,...,N-z î"(-)*w-rîn+¡r(w) = y"(.)
ifn=N-l î,(ù:v*(w) Ø'12)

Hence ? þ; u) = Y (z; u') and thus equation (4.1 1) can be written as

A(z;w)X(z;.): lu.(w)z-*:Y(z;w) (4.13)
u=0

rWhat we have shown is that Y(z;tr) is equivalentto A(z;w)X(zito) which was shown

by infioducing the intermediate order 2N - 2 polynomial Y(z;w). In practice, an(w), n :
0,...,N-l,areobtainedbyfirstcalculatingî"(.),n-0,"',2N-2,byperformingthe
linea¡ convolution operation ofequation (4.10). The fact that the polynomials are polynomials

in to does notcorrupttheproperties the linearconvolution. Secondly, U"(w) n - 0, " , N - 1

is calculated directly by applying equation (4.12).

The linear convolution network

rùy'e can now derive a convolution network to be used in ñgure 4.2. To this end we represent

equation (4. 10) recursively [Kun88]

where f(-)(ur) is the result of the mth recursive step. The recu¡sive representation is useful

when an algorithm is highly regular (which is the case for convolution). In that case, data

dependencies and regularities can easily be recognized.
The recursion has a computational flow graph or dep e nde nc e graph rcpresentation [Kun88]

shown in figure 4.3.a, where each node performs a multiply-add operation of polynomials in ur,

shown in figure 4.3.b. For convenience, the branch within the dependence gaph that belongs

to a zero input has been omitted. Usually the data samples involved in dependence graphs are

scala¡s. In our case, however, the data samples are polynomials in ur.

5l

( forn -0,.' ,m,if m-0," ,N-1
î9@) : î('-t)(u)¡a,,(u)x,,-n(u), { rort :rÍt'- N+1,"',N-1, (4.14)

I if m: N,"',2N -2
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a'(w)

x.-lw)

fli-'l*t lål*r

Figure 4.3: Linea¡ convoluúon network (a) and a node (b). The network performs the linear
convolution ofthe sequences {a"(to)} and {2"(ur)} and constructs the ouçut sequence {U"(w)¡
via the intermediate sequence {î"(.)\.

The next step is to include the operation of equation (4.10) that maps the 2N - | oulputs
of the dependence graph to the N outputs of the convolution network. In practice this mea¡rs

that the N - 1 outputs of the dashed lower triangle in figure 4.3.a a¡e multiplied by u-l and
added to the lú - 2 outputs of the dashed upper triangle. The complete dependence graph is a
typical realization of a convolution network that has input ø"(u) and ø^(to) and ouþut y,(ta),
with r¿ : 0, . . . , N - 1. Since we have used the linea¡ convolution to derive this network we
will refer to it as the linea¡ convolution network.

The data flows within the linear convolution network only involve operations on polynomials
in u or equivalentl¡ using the fact that zN ,- -, operations in zN. In practice this means that
we can run the complete linea¡ convolution network with a factor /t reduced data rate. Observe
that the l{-fold decimators at the input of the multirate convolution system take ca¡e of the
data reduction before the polyphase components a¡e fed into the convolution network. Hence
the linea¡ convolution network is indeed a realization of the convolution network that we were
looking for, with inputs and ouÞuts running at reduced data rates.

(b)(a)
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¡ o(z)

t r(r)

t ilr (z)

(a)

r (z)

Figure 4.4: A typical example of algorithmic engineering: by manipulating of the linea¡
convolution network (a) the circular convolution network (d) can be derived. The key rule is
that dependencies of the inærmediate convolution networks (b) and (c) are equivalent to the
initial and resulting network (a) and (d), respectively.

-n

¡o(t)

¡r(z)

(d)
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The circular convolution network

Another realization of the convolution network can be obtained by using a ci¡cular convolution
rather thari a linea¡ convolution. Instead of going through the algebraic derivations we derive
this network graphicall¡ with as starting point the linear convolution network of flgure 4.4.a.

The va¡iable ur has been replaced by z, i.e. implying that the network runs on a factor
N reduced data rate. The basic fundamentals of the derivation of computing networks by
manipulating of a dependence graph are given in [Kun88], and are worked out to a methodology
in [Mc]V92, MP92l, referred to as algorithmic engineering. In the next chapter we will give
more examples of the concept of algorithmic engineering.

The linea¡ convolution network can be split-up in two parts given in figure 4.4.b. The lower
triangle can be assumed as a linea¡ operation on the N - 2 input elements r,(z) followed by a

delay z-r on all -f{ - 2 ouÞut elements. This allows us to relocate the delay operators to all input
branches. Now the 1ü - 2 output elements of the lower triangle a¡e added to the Iü - 2 ouþut
elements of the upper triangle, which is depicted in figure 4.4.c. Recall that the n¿å outputs of
both triangles a¡e achieved recursively. [æt therecursions be ofthe form

upper triangle, î|fr),^(") : ûlå:,])(") + *P,^(r),fot n :0,-- . ,m

lowerrriangle: în,^þ): g*;,liçl + "li[,^1r¡,forr¿: 
m*r,.'.,2N -2

where cfl,, (z¡ ano cfl),-12) are some updaæ polynomials. obtaining the mth polyphase
component A,^(z) of Y(z) is then simply the addition of the results of the recursions y^(z) :
|li,l,"(") +îf.i,:)Ø. However, it is easy to see that A^Q) can also be obtained by first

recursively computing g|,Lf"l and then recursively computing gf.i,*)t"l with initial value

îf:),^Q) : yß,1^(").Graphically, this can be represented by superimposing the lower triangle
onto the upper tria:rgle, as is shown in figure 4'4.d. This network is another realization which
can be used within the multirate convolution system.

As we shall now show, this realization partly performs a circular convolution IOS89]. L,et

be given the2N - l polynomialelements î*("),m - 0,.' ,2N - 2 andthe,À/polynomial
coefficientsa,,(z),n -0,..',¡{-Ll-ntfr^(z),m:0,.'.,2N-2,betheresultof thei¡
ci¡cula¡ convolution

N-1

î^Q) | a^(z)î6-,)mo¿(zrv-r)(z) (4.15)
n=0

The recursive form ofequation (4.15) is

19) f"¡ î9-') (") ¡ a^(z)î6-^)moa(z,v-r¡(z) (4.16)

The dependence graph of equation (416) is shown in figure 4.5.a. Obviously, if we are only
interested in the polynomial results !,,(z), for rn : l,{,-.. ,2N - 2, then we only have to
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v&,

vÁz)

x12)

ìþ.,

îø

*-'l¿ *t,r

(a) (b)

Figure 4.5: Circula¡ convolution network (a) and a node (b). The network performs the ci¡cula¡
convolution of the sequences {a,(ur)} and ie"(u.')} with as ourpur result {î"(trl)}. Observe
that the lower square of the circula¡ convolution network has been derived from the linea¡
convolution network, see figure 4.4.

compute the lower dashed rectangle. This part of the dependence graph is equivalent to the
dependence graph offrgure 4.4.d, ifwe let

(4.17)

Observe that the ci¡cula¡ convolution network has the same complexity in ærms of polynomial
multþly-add operations. However, one advantage might be that it does not require delay-add
operations at the output.

4.4 Multirate Convolution and the DFT

In this section we employ DFT techniques to speed up the multirate convolution system. It
is well known that discrete convolution can be performed efficiently in the frequency domain.

a"(z) (- o^(") for n = 0,..., N - 1

ar{z)
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Moreover, using the Fast Fourier Transform (FFI) to compute the DFI will even decrease the

computational complexity of the convolution network in terms of polynomial multiplications.
Furthermore we show that the multi¡ate convolution system ca¡r be considered as a multi¡ate
systom with DFI fllter banks. The latter was first observed by [Por80] for thc case that A(z) is

of order ¡/ - 1, and in [Vet88] it was shown that the system works for A(z) of any order.

In [Por80, Vet88] however, this observation has been made from the viewpoint of a multirate
system with DFT analysis/synthesis ñlær banks a¡rd additional channel filærs. It was stated that
under certain conditions the multirate system can be considered as an overlap-add/overlap-
disca¡d convolution system based on short-time Fourier transforms.2 We have shown in the
previous section that the relation between the multi¡ate systems and the overlap-add/overlap-
disca¡d convolution method can be explained without using the short-time Fourier tra¡sform
and without reference to any kind of filter ba¡rk. In fact, we will show in this section that
introducing the DFT within the multi¡ate convolution system that we have proposed is nothing
more than a fast convolution of two polynomial sequences. Moreover, other transforms could
be used as well, for example, Mersenne or Fermat number tra¡lsforms [Rad72, A875, AC77l.

The DFT for polynomial sequences

Our starting point is the DFT for a polynomial vector. It is customary to write expressions
related to the DFTin terms of Ww, defrned âs ur1y a exp(-j2rlN). Given apolynomial
vector x(z) : lxs(z) --. ,*-t(")1, then its N-point DFT is also a polynomial sequence
X(x) : ÍXr(") -.- Xw¿(")| with components

X^(z):
N-lt
a=0

x"(z)Wft" (4.18)

Conversely, rf X(z) is given then its ,rü-point IDFT is x(z), with components

x"(z) : X^(z)W¡¡^" (4.19)

The DFT and IDFT ca¡l also be expressed in matrix notation. tæt Wry be the ll x Iú DFT matix

r N-l

;,å

111
tWNW
IW Wfr

1

wff-')
v/*@-o

w$-iltr-r¡

W./y : (4.20)

t WtT t) W4N 1)

2In 
[Vet88], though, the starting point is a general multfuate system with analysis/synthesis banks without using

the short-timeFourier transform. However, this general case is only briefly pointed out and not discussed explicitly.
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Then the matrix forms of equations (4.18) and (4.19) a¡e

DFT: X(z) : x(z)W,y (4.21)

IDFr: x(z) : #t,,,*t (4.22)

Convolution networks and the DFT

Using the DFT matrix alternative DFT domain convolution networks can be obtained. Observe
that the linear convolution network performs the linea¡ convolution of two N-dimensional
polynomial vectors a(z) : loo(") -.. "¡u-t(")landx(z) 

: lxs(z) '.. ,r-r(r)l. l-et j(z)be
the 2N - l-dimensional polynomial vector with components given in equation (4.10). Then

î(r) is the linea¡ convolution g(r) : a,(z) *x(z). l*ty(z) : lyo(z) ... y*-r(r)1, then the
relation between j(z) and y(z) is

y(z) : 9e) l--3- I ro.rt¡
¡z-rl7y-1 l0l

Define the polynomial vectors ae(z) and xo(z) of length M, as

u(") : l"o(") --. o*-r(")0 ... 01, and xs(z) : lx6(z) ... rn¡-t(")O -.. 0l

where M : 2N - 1, and let thei¡ M-point DFTs be As(z) : aa(z)w v and x6(z) : xo(z)Yl v.
Then from the Fourier theory we know that i(z) can be obtained as follows

1ge) : ¡(t'{r) Ø xo(r))w.M Øz4)

where I denotes element-wise multiplication. With the observation that

xe(z) : x(z)[I,v l0], zs(z) : a(z)[rry l0] (4.25)

we can express equation (4.24) as

t,v(z) ißaxrN t0lwM)s (a(z)tIN t0lwM)) l=#- f <+.zot

Equation (4.26) expresses the linear convolution property of the DFT for polynomial vectors.
A similar expression can be obtained for the circula¡ convolution. Let be given

î(t) : [z-ta{z) - ",-tr*-r(z) xs(z) ..' *r-r(r)]
and denote lç"¡ : rN ¡aî,(z) its M-point DFT. LÆt the ci¡cula¡ convolution be $(z) : a(z) o

î(z). Again, from the Fourier theory we know that $(z) can be obtained as follows

^1ie) : ¡(o,r"lø11,¡)w; Ø.2i)

s7
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(b)

Figure 4.6: Alternative línea¡ convolution network (a) ,and circular convolution netwo¡k (b)

using the DFT. The multiplications represents polynomial multiplications.
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Defi.nethethe N - I x N - l unitaryshiftmatrixZ¡¡-1 as

ÍZx-t|,, : { å
if j:¿-1
otherwise

(4.28)

(4.2e)

(4.30)

then 1(z) can be obtained as

î(z) :.t,l l;#; l*]
Observe that

v("): î(,)[*]
Now equation (4.30) can be expressed as

v(z) : i (øe,t' I rNrwM) ø (.r,r l-+^l',] *,)) *r I * ]ro,'r
Equation (4.3 1) expresses the circula¡ convolution property of the DFT for polynomial vectors.

Both equations (4.26) and (a.31) are algebraic representations of alternative convolution
networks. Theycanbeembeddedinñ,gure4.Z,suchthatweobtainthetwomulti¡ateconvolution
systems of figures 4.6.a and 4.6.b. The structures of both multi¡ate convolution systems based

on the DFT have many advantages in terms of implementation. We not only have split up the
long convolution operation into smaller linea¡ or ci¡cular convolution operations but, if we use

the FFT to compute the DFT, we have now also decreased the computational complexity in
ærms of polynomial multiplications.

Relationship to M-channel filter banks

The structures of figure 4.6 can be interpreted as M-channel multirate systems with polynomial
DFT transformation a¡rd N-fold decimatiorVexpansion, where M : 2N - 1. These systems are

extensively studied in e.g. [Vet8ó, SV86], where they a¡e refe¡red to as uniform DFT filær bank
systems. The extension in our description is that the M channel signals a¡e filtered by channel
filters-4",(z). Infact,thechannelfiltersaretheMentriesof theDFTvector A(z) of thevector
a¡(z). This interpretation is illustrated in figure 4.7.

Figve 4.7 is equivalent to figure 4.6.a if we put

eo,, (z) : 
{ å 

t::i=Tl;.. :5-t,, r¡,^(z) : r for m : 0,"', M - |
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Figure 4.7: Filter bank representation of the multi¡ate convolution systems based on the DFL
The channel ñlters A- (z) a¡e the entries of the M -point DFT of the vector a(z).

a¡rd it is equivalent to figure 4.6.b if we put

eo,rr(z)
form:0r'.,rN -z
fotm: ¡{-1,...,M -I

In the latter case we take as input of the DFI the M-dimensional polynomial vector

î'(") : lro(") ...n/v-r z-ras(z) ... "-'r¡o-rl
rather than Î(z), as was it assumed in figure 4.6.b. However, the only difference in the overall
transfer function of the multi¡ate convolution system is the delay z-@ -1) .

4.5 Concluding Remarks

The use of the multirate convolution system instead of direct linear convolution has the advantage
that it breaks up the long convolution in N2 smaller convolutions (the polynomial multiplications
within the nodes in the convolution network). It runs at a factor N reduced processing speed
as a result of the ,^l-fold decimators. The overall computational complexity is not reduced, but
effrcient a¡chitectures can be used which exploit the parallel structure of the convolution network
and fast algorithms can be used for the small convolutions. Moreover, the convolutions within
the nodes can be structured using the same multi¡ate convolution system. This hierarchical
approach can be repeated in principle, until the last convolution operation is nothing more than
an atomic scalar multiplication (of course X(z) and,4(z) must then be causal and of finiæ
order).

The multirate convolution systems have well-known equivalents in digital signal processing
theory. The linea¡ a¡rd circula¡ convolution nefworks can be interpreted as the overlap-add
and overlap-disca¡d convolution methods, respectively [OS89]. Both split the long linear
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convolution problem into multiple small convolution problems. The advantage of our multiraæ
signal processing view is that, unlike the algebraic derivation, the convolution network shows

a high degree of parallelization and regularity. In the next chapter we give formal relations

between multi¡ate signal processing and overlap-add and overlap-disca¡d from a block-sigral
processing point of view Again wc will use graph manipulations to clarify the formalisms

derived with algebra.

6l



CHAPTER 5

CONVOLUTION AND
BLOCK.SIGNAL
PROCESSING

5.1 Introduction

In the previous chapter we have developed some algebraic methods based on multirate signal
processing to solve the long linear convolution problem. In the literature it was often mentioned
that multirate signal processing has lots of opportunities in efficient a¡chitecture design for con-
volution with high data rates and large convolution sequences [Por80, Vet88, Ste91]. However,
these descriptions remains highly algebraic. They emphasize merely the theoretical behavior
of such systems rather than the mapping of the proposed methods onto efficient algorithms
a¡rd architectures. The point of view is now b/oc,t- signal processing, which is raditionally the
method to solve large convolution problems, see e.g. [AB74]. We start with the introduction
of block-signal processing to solve the convolution problem, the so-called overlap-add and

overlap-discard methods tOS 891.
'We 

use a formal methodology to come from the algebraic block-signal processing description
to the efficient architectural realization. As mentioned in the previous chapter, this formal
methodology is close to algorithmic engineering [McW92, MP92]. Algorithmic engineering
is closely related to systolic design lKun88l. The concept of systolic structures was originally
seen as an a¡chitectural paradigm. However, systolic a¡chitectures as defined in [Kun88] are

nothing more than structures of algorithms which could never provide realistic a¡chitectures.
It is thus better to speak of systolic algorithms, and algorithmic engineering is a method to
derive or Eansform such algorithmic sfuctures. Once a systolic algorithm is developed the
process'of mapping it onto an ¿uray of parallel processors can be formalized. Examples of
complex algorithms that can be handled in this way a¡e matrix multiplication, QR- and SVD-
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decompositions, solving linear equations, and the like.
The key is to describe the algorithm graphically in a dependence graph, like the one in

the previous chapter. The dependence graph can be determined from the recursive form of
the algorithm and shows the dependencies between the operations within the algorithm. The
dependence graph can then be projecúed onto a signal flow graph. Whereas in a dependence
graph a node rcpresents essentially a function (e.g. multþly-add), in a signal flow graph a
node represents a processor element. This processor element is not necessarily a physical
processor, it might be a communicating function on an abstract level. The advantage of a
signal flow graph is that formal methodologies exist to map signal flow graphs into arrays of
processors [Bu90, D[IW93].

In the convolution networks the operations within the dependence graph were polynomial
multiply-add operations. Here we have scalar multiply-add operations, as we show in section 5.2.
In section 5.3 we map the dependence graph into a signal flow graph, in which we recognize the
block structue of the overlap-add and overlap-discard methods. At the point that we introduce
the short FFT in the signal flow graph, we may consider them equivalent to the linea¡ convolution
networks. In appendix D we already have shown that this holds from an algebraic point of view,
and we have now derived the one-to-one relationship from an algorithmic point of view. In
section 5.4 we exploit the properties of the short FFT to come to ou¡ final signal flow graph. It
is in fact a highly regular and schematic description of the multi¡aúe convolution system based,
presented in the previous section. The mapping onto an efficient hardwa¡e architecture is now
sEaight-forward, as we will show in the next chapter.

5.2 The One-Dimensional Convolution Problem

Considertwofinitescalarsequencesa: [oo'.'¿tv"-r]andx= lro ...rrv,_r],with,nl. < I{,.
I¡tthescalarsequencey: lgo ...y¡,¡"-tl,with llr: N.+N"- l bethei¡linea¡convolution
Y:a*x,then

N"-1

Un: Doo'n-o (5.1)
É=0

In the previous section we have already mentioned that the linea¡ convolution operation can be
described recursively [Kun88]. The recursive form ofequation (5.1) is

I fork -0,...,n,if n -0,'. ,N"-l
yf) : yf-t) + atcrn-ht { rork -0,..,No-l,7fn: No,...,Àt- I (5.2)

I fork : n - Nr* 1,...,N. - l,ifz - N,,...,N, - 1

From equation (5.2) the dependence graph of figure 5.1.a can be derived. Each node in the
graph performs a multiplication and an addition (figure 5.1.b). The computational complexity
of the linear convolution in the time domain is the number of nodes in the dependence graph,
which is 1{,11".
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(a) O)

Figure 5.1 : Dependence graph for convolution (a) and the elementary operation (b).

FFT besed linear convolution

From a compuøtional point of view it is more efficient to transform the sequences to frequency

domain first using the DFT, where the computational complexity for convolution is much lower,

and then perform an inverse transformation. Iæt y be given, then its Nv-point DFT is the scalar

sequence Y : lYo . . . Ylvr-t], where Y- is deñned as

Nv-l
Y^: Dr"Wp; (5.3)

¿=0

and W¡¡u : exp(i2r lNs). Conversely, if Y is given then its Nr-point IDFT is y, where g, is
defined as

1 Ns-l

un: +Ðy^wñiI rv 
-=0

As in the previous chapter we can use the matrix notation of the DFT. L,et WN, be the -fü,

DFT matrix, then the matrix notations of equations (5.3) and (5.4) are

DFT: Y : yWr,
1IDFT: y : :YWir,

l\v

(s.4)

xN,

(5.5)

(5.6)
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I-et Á and X be defined as

A: all¡'" l0]W7y,, X : x[I¡v. l0]W¡v,

then Y is the element-wise product

Y : AøX = ("[I"" lO]w"") s(x[Ily" l0]W"")
The linea¡ convolution result is now the Nr-point IDFT of Y

, : +;"wtu, : ü (t"'rN" lolwr,)s (x[Iry, l0 ]wN"))wil, (s.e)

If the DFTs of a and x are given then their linea¡ convolution result in DFT domain
can be computed using flu multiplications, which is far less complex then computing the

linear convolution in the time domain. However, the computation of the Nu-point DFTs and

IDFT using the straight-forwa¡d matrix-vector multiplications in equation (5.9) requires {
multiplications. But if the DFT size would be a power of.2 we can use Fast Fourier Tiansform
(FFI) to compute the DFT. In order to distinguish between the computation of the DFT directly
and computation of the DFT by the FFT, we introduce the N-point FFT matrix F¡¡. The N-point
FFT matrix Fp is only defined if Iü is a power of 2. Let N be the smallest power of 2 larger or

equal to N* then equation (5.9) can be represented as

ylr,v, I0l : *(t"'rN. l0lFN)s(a[rry.|0]FN))Fi

(s.7)

(s.8)

(s.10)

The computational complexity of an /ü-point (I)FFTisr |N log N, so that the total computational

complexity required to compute y using the FFT is then (2(N log N), whereas the computational
complexity of the di¡ect computation of y : ¿ * x is {?(ÀP).

Thus, performing the convolution by using the FFT is far more efficient in terms of com-
putational complexity, especially if N, and N, are large. However, a problem with large FFT
sizes occu¡s when the convolution algorithm must be implemented in ha¡dwa¡e. Commercially
available FFT processors cannot cope with sequences having lengths larger than 1024 samples.

A solution would be the use of DSP processor boards, but these have the disadvantage that they
are not optimized in terms of memory management, ha¡dwa¡e volume and power consumption.

Therefore, in the next sections we will analyzs the convolution algorithm and ry to find an

algorithm that can be mapped optimally onto available ha¡dwa¡e architectures.

5.3 Sectioning of Large Convolution Problems

In the previous section we have considered the general description of convolution in the time
domain and in the frequency domain. However, when vectors are too large, which can be the

lFor conveniency, the base 2 logarithm 2log is denoted as log.
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Yo YIr.tr-l

^Ml-l ^N-Ml ^N-l

\-----v--l \-v-'l
xo xMz-t

Figure 5.2: Dependence graph for convolution with clusterin g of ML x M1 nodes.

case in many applications, the direct implementations of the time domain or frequency domain
algorithms will be inefficient and impractical, especially when dedicated architectures are used.

The¡efore we can vse overlap-add or overlap-discard methods to section one or both sequences

in smaller subsequences [OS89]. In this section wo shall first focus on the overlap-add method.
The overlap-discard method can be derived from the overlap-add method as we will show.

Block-signal processing: overlap-add

l,€t a and x be defined as in the previous section, but assume for convenience that N" : N, : N.
The analysis can be adapted sraightforwardly for the case that N" I N,. Furthermore assume
that we have some convolution a¡chitecture for M1-dimensional vectors only (either in time
domain or frequency domain), with Ml ( N. For convenience we assume that N is a multiple
af M1, say IÍ - MzMt a¡d that Ml is a power of 2. Then we can section our convolution
problem as follows. [æt for m : 0,. . . 

, Mz - I the M1-dimensiona] vectors a* and x- be
defined as

I^ : fã*M, amM¡¡t ... a6¡qu1-t), X^ : fr^Mt zmMl¡t . . . ø1m1r¡v¡-rl

From [4874] we know that substitution of

lc A fuM1 !k2, kz:0,...,Mt-l
n A n1M1 ¡n2, nz:0,...,Mt-l

I z¡c-Mr-u Y zN-z
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corvotùtion î:i'

(b)(a)

Figure 5.3: Signal flow graph derived from the dependence graph (a) and the processing element
(b). The blocks labeled with OA perform the overlap-add operation of the2M1- l-dimensional
vectors $,. This operation is illusEated in figure D.1 in appendix D.

in equation (5.1) implies the application of the overlap-add convolution method. Hence

M2-l Mt-L

AnlM¡¡n2 : D D aktMr+hrnlMy!n2-(k1M¡!þ)
,L¡ =0 /r2=0

M2-t Mt-l
: D D aktMt+k2r(n1_k1)M1!n2_k2

ßl=0 À2=0

(5.1 1)

The interpretation in the dependence graph from figure 5.2 is as follows. Obviously equation
(5.11) can be interpreted as the clustering of M1 x Mt nodes. The arithmetic operation within
a node is recognized as a convolution of two M¡-dimensional vectors of length M1. Now we
can derive a signal flow graph [Kun88] of the dependence graph, where we assume that the
processing element performs the convolution operation within one cluster, see figure 5.3.a. The
processing element is shown in figure 5.3.b. The blocks labeled with OA perform the overlap-
addoperationofthe2Ml-l-dimensionalvectors$^. ThisoperationisillustratedinfigureD.lin
appendix D. The resulting vectors yn are Mydimensional and are the non-overlapping sections
of the vector

Y : A*x : þo ...!zvr_r) (s.r2)
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F=2Ml-poi¡tFFT

I =2Mr-pointIFFT

Figure 5.4: Processing element of the signal flow graph. The short convoluúon is performed in
frequency domain.

Observe thatthe computationalcomplexity of time domain convolution with overlap-addhas
not changed comp¿¡red to the time domain convolution without overlap-add (if we assume that
the computational complexity of the overlap-add operation is negligible). But if we use the FFT
to perform the short convolution, then it becomes more efñcient. Since Mr is a power of 2, the
nearest power of 2to ZMt - L is2My, so that we can draw an altemative processing element as

in figure 5.4. The computational complexity of this node is given as Mt(2+3logZ$). Hence,

the overall computational complexity is given as MMî(2+3log2M1),which is lesser than the

computational complexity of the direct linea¡ convolution Iü2 : M? M|(where we assume that
Mt > 2 -l 3log2M1, implying that M1 > 32). However, the computational complexity is still
more than the long FFT domain convolution. The signal flow graph of figure 5.3.a represents

the usual way to implement the overlap-add convolution method.

We can now optimize the signal flow graph by the observation that within the processor

element of figure 5.4 all vectors a- and xm Ítre transformed Mz ttmes, respectively. However,
it is more efficient to make use of the linearity of the FFI operation, which implies that we

can transform each vector once at the input side. In the same way we can inverse transfo¡m
each vector ]- at the ouþut side. This results in the signal flow graph in figure 5.5.a, which
is equivalent to the signal flow graph in figure 5.3.a, but requires far less transformations. The
a¡ithmetic operation within a processing element is now only an element-wise multiplication in
stead of a convolution.

If we analyze the structure of the signal flow graph of figure 5.5.a we recognize that the
kernel has exactly the same structüe as the original dependence graph. Moreover, since the

multiplication operator within the processing element operates element-wise, the complete
kernel as a whole operates element-wise. tæt the vectors A^, X^ andY^ be the 2M1-point
FFTs of the vectors r-, x,,. and 9-, respectively (see ñgure 5.5.a). Then the kernel can be
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f zwz I zw-t

4DY.

(b)

Figure 5.5: Signal flow gaph of the overlap-add in frequency domain (a) and the processing
element (b).

represented as

M"-l?^: Lo,8x--,
n=0

(5.13)

From the signal flow graph we see that the number of 2M¡-points (I)FFTs is given as 4M2 - l.
The number of multiplications within the kernel is given as 2lu$M1. Hence, the overall
computational complexity is given by M{4M2 - l)logLM1 + zMM}.

Relation to the linear convolution network

At this moment we can easily explain the relationship with the multi¡aæ convolution system.
Fot m : 0,. .., Mz- 1 define [,4-]r A A,o,¡ anddefine the 2M1 x 2M1 diagonal matrix

D,, ^ diag {An ,or'- - 
r An 2M,i} (s.14)
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Then equation (5.13) can be expressed using the diagonal matrices D-

?^ : Y'"^r^-, (5.15)
n=0

The advantage of equation (5.15) is that we can write it in matrix form

I oo Du,-t o I
[1. .. ?ru,-rf : [x0... x¡ø,-t) I I ts.rel

L 0 Do Du,-t l
Observe that equation (5.16) represents an ordinary matrix-vector multiplication. However,
in this form it can also be interpreted as a straight-forward representation of a block signal
processing application (namely overlap-add convolution) in matrix form.

Now define the .Il x I( L man:rx (r,¿ as

e *," : lt* 1"-tl* | ... I z-tr-t)¡^ ]

Then from equation (5.16) a z-domain representation can be derived as

îþ) ^ [1. ... lrr-rf Ç'rr,,rr,_,

I Do Du.-t o I: lxo...xu,-t] I lc"*,,rr,-,L0 Do Du,¡l
(t,n. .. . Au,-rl Clr,,r,)s (lxo ... x u,-ri Clrr,,*,)

: (nT:' o^,-'"1 * lb'r-,--l\,í- / \ -=o 
'm- 

la As(z) 6 Xs(z) (5.17)

The inverse FFT of 11r¡ it

firtø¡r;*, : fi{o,tz) ø xo(z))t;u, a i(z) (s.18)

But this equation is equivalent to equation (4.24) in section 4.4 if we consider the fact that
F2¡4, = W2¡4,,

Following the steps in section 4.4 this equation results in the multi¡ate convolution system
based on the linear convolution network with the DFT, given in figure 4.6.a. In fact, figure 5.5
and figure 4.6.aarc equivalent. Moreover, reconsider that As(z) and Xs(z) are

As(z) = a(z)[l¡a,10]Fz¡¿,, Xs(z) : x(z)fl¡a,10]Fv, (5.19)
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where

r(z) : T' ^^"-^ = Íøo(") ... ou,-r(")l (5.20)
n=O

Mz-l
x(z) : D *^t-^ = fxs(z) ... rM,-r(z)l (5.21)

m=0

In equations (5.20) and (5.21) again the polyphase components a^(z) and x^(z) appearl T\e
second last line of equation (5.17) can then be interpreúed as a polyphase decomposition of a
and x represented as an order M2 - 1 polynomial in z with 2M1-dimensional vector coefficients.
So we have found a formal way to describe thç multi¡ate convolution nstwork of the previous
chapær in terms of blocks (2M¡-dimensional vectors), but also the way back. This novel result
is extremely important in understanding multiraæ convolution systems in terms of processing
behavior (by means of the signal flow graph representation).

Block-signal processing: overlap-discard

We have now shown that the figure 5.5 and figure 4.6.a are both representations of the same
realizations of the overlap-add convolution algorithm. But then it must be possible to give a
signal flow graph from the realizations of the overlap-discard convolution algorithm as given in
figure 4.6.b. As a starting point we take equation (4.27),in which we have introduced the FFT
matrix

îe) : fi{"'ta ø lp¡)r;,, (s.22)

Recall equation (4.29), then we have

llr¡ : î(z)F2¡a,: x(z)[ ,-tzurllu,]Frr, (5.23)

In order to derive a signal flow graph substitute equation (5.21) into the expression for î(z),
which gives

z-rZ¡a, ll¡arf

7l

x^fz-^

I ur-t l-l tx^z-^l 1s.z+¡
l-=o J
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Define for nt, : 00. . ., Mzthe ZMtvector Îm as

and substitute î- into equation (5.24) then wa get

Mz

(s.2s)

(s.26)Ì(") : Dî^"-^

Iæt us follow the reversed derivation of equation (5.17) for nsþ) Ø 112), which should lead

to a similar expression as in equation (5.16):

'a sþ) ø 1 þ) 
: ff 

"^ 
),,.rf:ï ;;), t,,tc',, u,+,)

I no Dur-t 0 Ir^ rl - lrt= lxo.'.7u,1I lÇLr,pr,
I o Do Du,-t ]

a [1, 1,,"_,]C,,r,,,r, 6.n)

Combining this result with equation (5.22), then for rn : 0r. . . ,2M2 - I we ca¡r define the
2M1 -dimensional vçctor

î(") = h,lç, ... 1,,,-,fC',*,,,,,ü,,

: 
lhU,rr,, 

... ;hî,*-,Fi,,1ct ,,,*,
: lîo 

... îrr*rf e'r*,,rr" (5.2s)

Moreover, applying equation (5.22) results in the expression for y(z)

y(z) : po ...îrr_r]e,r*,rr,l# 
]

þ't# I u,'-, t# ll e',,,,,
: 

lYo "'lr*,-rf C'r,r*,: !C'r,,rr, (5.2g)
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Relation to the circular convolution network

We can summarizing the results for the overlap-disca¡d convolution algorithm as follows. The
kernel of the signal flow graph is determined by equation (5.27), where we recognize the matrix
notation of a block convolution structure as in equation (5.16), given as

Du,-t 0 I

I ts.rol
Do Dvr-t I

In fact, the kernel structure is the same as in figure 5.5.a. The only difference is that the

dimension in the horizontal direction is increased by one. For rn : 0,.-' , Mz,the vectors 1^
are the 2M¡point FFTs of Î- which is related to x- according to equation (5.25). In practice
this means that Î,, is

73

r= = r ,^ ,lDo
Lro 

... vzu,_t) lxo ... v*,) 
Ilo

î-a{
[0-..0 xo...x¡wt-t) if m:0
[t¡u--,...îN-r0'..0] ifm:Mz (5.31)

lr@-r)r, "' rmMt-r rmMt "' t(n+t)Mt-t I otherwise

v^ : fir?^r;r,l#]

From equations (5.28) and (5.29) we can determine y-, for n'¿ : 0,. ' . ,ZMz- I, from 1- as

follows

(s.32)

In words, perform the 2M1-point IFFT of Y- and disca¡d the first Mr entries of the IFFT result.
The signal flow graph ofthe overlap-discard convolution algorithm can now be determined as in
figure 5.6, with processor element as in figure 5.5.b. From the signal flow graph we see that the

number of 2M1-points (I)FFTs is given as 4M2 -f I which is 2 more than required for overlap-
add. The number of multiplications within the kemel is given as 2M1M2(M2 a 1), which is
2M1M2 more than required for overlap-add. Hence, the overall computational complexity for
overlap-discard is given as Mt(4 Mz t l) log2 M1 + zMt M2(Mz* 1 ). On first sight the overlap-
disca¡d convolution algorithm is somewhat more expensive than the overlap-add algorithm
in terms of computational complexity. However, in the next sections we will show that the

additional overhead due to the actual overlap-add operation (the "OA"-block in ñgure 5.5.a) is
more expensive than the additional overhead due to the actual overlap-discard operation (the

"OD"-block in frgure 5.6) in terms of hardware.

5.4 Short Length FFT Processing

In this section we consider the kernel of both signal flow graphs of the overlap-add and the

overlap-discard. Observe that the kernels of both signal flow graphs have the same structure.
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I zwz I zwt

tt ......'.......- IÞl Im

Figure 5.6: Signal flow g¡aph of the overlap-discard in frequency domain. The blocks labeled
with OD perform the discard operation of the2Mt - l-dimensional vectors i*. 'I'tris operation
is illustrated in figure D.2 in appendix D.

The only difference is the dimension: the signal flow graph of the overlap-add contains M|
processor elements, the signal flow graph of the overlap-discard contains Mr(Mz a 1) processor
elements. However, in both we recognize a linea¡ convolution-like structure, which is confirmed
if we reconsider equations (5.16) and (5.30). For this reason it is possible to implement the FFT
mat¡ix to perform the kernel operation efficiently. We will show this for the overlap-add kcmel
only, since the structure is the same for the overlap-disca¡d kemel.

Recall equation (5.13) and observe that it can be written as

[%,, ' ' ?^,rr,-r) : \t ¡,0,.,o ..' An2u,-t]8 [x--,,0 .-. X^-n,zMt-r]
n=0

fur-t Mz-l I
l\ ,+",rX^-,,' ... D A*,r*r-rX^-n,zM¡-t I fS.lll
| '=o n=o I

r .j ../t 
xçrÉ.t

f"
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x;

Figure 5.7: Kemel of the signal flow graph of the overlap-add in frequency domain and the

processing element. The slices represent signal flow graph of a convolution.

But we can also construct an2M2 - | x 2M1 maúx

(s.34)

Hence, the vectors ?'^ a"convolution results

[4]- : ?r,^ =Eo^,^*o-,,^

Nowfor m:0,..',Mz - 1 define the vectors

A!^ : lA^,o "' Aur-rp), X'^ : lX^,o "' Xrur-t,ol

then

?'^ : A!^*x'^ (s.3ó)

Now we can draw the kernel of the signal flow graph in figure 5.5 as in figure 5.7, where each

mth slice represents the mth linea¡ convolution.
This result can also be derived more formally from the matrix notation of equation (5.16).

Observe that we can deflne a2Ml2M2 - 1) t zMr(zMz - 1) permuøtion matix2 P, and a

2Permutation matricæ have the property that they are orthogonal.

I %,0 ?rr',-rp I I f; I

Ln; 
-.?i,-,]:l^: ^: Inl^,' I

LYo,zur-t Yzu"-z,zur-t J L Y'r.r,-t J

(5.35)
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Figure 5.8: The frequency domain description of one slice from the kernel of the signal flow
graph of the linea¡ convolution in frequency domain with overlap-add.

M1M2 x MlM2permutation matrix P", such that

[1å . ?,*,-) : [1,... ?,r,_r)Pu

[r; .x'r,-r] [x0... xu,-r]P"

Combining equations (5.16) and (5.38) gives3

[1; ?rr,-]: lxo ...xv,_r
Du,-t o I

lPi
Do Drrrl

(s.37)

(s.38)

Aoo

0

lP-

Ao2Mt

,40,0

0

: [r¿ . x,r,_rf

: ld:,. X; ... A'r,_r* X'r"-f
sThe large matrix in the second line of equation (5.39) is block-diagonal.

(5.3e)
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This linea¡ convolution operation can again be performed efficiently using the FFT matrix.
Assume again for convenience that Mz is a power of 2, then the nearest power of 2 to ZMz - |
is2Mz. Then equation (5.36) can equivalently be performed as follows

77

?'* 1:
2Mz

({d;Ítr,l 0 lFz¡¿,) s (x;t rr, l llwrr,)) Fîr, (s.40)

This results in a kemel as it is shown in figure 5.8. Embedding the kernel within the overlap-add
signal flow graph results in the three-dimensional signal flow graph of figure 5.9, in which each

polygon represents a2Mypoint or ZM2-point (I)FFL

Some notes on computational complexity

The computational complexity of this algorithm can now be determined as follows. The number
of ZM1-point (I)FFTs is still given us 4M2 - 1. Observe that the kernel operation contains 2M
slices, where each slice consists of three 2Mz-point (I)FFTs and2Mz multiplications. Hence, the

overall computational complexity is then given as M1(4M2 - l)log2M1 + 6MtMzlog2Mz *
4MtM2 for the overlap-add algorithm and M1(4M2* l)log2M1+6MtM2log2M2+4MtM2
for the overlap-discard algorithm.

We can now summarize the expressions for the subsequent algorithms that we have de-

veloped. 'We assume that the worst-case realization of the linear convolution algorithm is the

time domain convolution, which require s 14? lu[î operations, and the best-case realization is the

frequency d om ain convolution which require s 3 M 1 M 2 lo g(2 M 1 M2) I 2 M t Mz computations.a

In table 5.1 the computational complexities of the subsequent algorithms a¡e listed. Algorithm
A refers to the signal flow graph in figure 5.3.a with processing element in frgure 5.4. Algorithm
B refers to the signal flow graph in figure 5.5.a. Algorithm C refers to the three-dimensional
signal flow graph in figure 5.9.

In figure 5.10 the computational complexities are plotted as function of N : M1M2 (for
convenience only the overlap-add case is shown). It appears that algorithm C requires twice
as much operations as the best-case, independently of the convolution length (figure 5.10.a).

However, for sequences which have lengths N < 216 algorithm B has less computational
complexity. The reason is that if M1 or M2 is large, then algorithms A and B will perform
as the best-case algorithm. In the limit case that Mt : N or M2 - 1, we have that these

algorithms are equivalent, i.e., they are all representations of the one-dimensional frequency

domainconvolution. AdifferentcaseisifwerequirelhatMt: Mz(fr9ne5.10.b). Inthatcase
we see that algorithm C requires fa¡ less operations than algorithms B and C for all N.

4This ståtement is not valid for N - M¡ M2 < 8. Therefore we will æsume that Il = M¡ M2 ) 8.
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Figure 5.9: Three-dimensional signal flow graph of a convolution algorithm that consists of
FFTs and multiplications. Instead of long FFTs in one-dimension short FFTs a¡e used in two-
dimensions. The polygons represent the FFTs. For convenience the overlap-add operation is
omitted.
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log(N)

(b)

Figure 5.1.0: Computational complexity as function of log N, where wç used the expressions

of table 5.1. In the plots only the overlap-add case is shown. In (a) we did not have conditions

fot M1 and Mz, i.e. the computåtional complexities for each possible trü is minimized over all
combinations of {M1, M2}. In O) we have introduced condition that M1 : ¡4r.
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Compuøtional Complexity

worst-case M?MT
overlao-add A MM;(2 -t 3ros2Mt)
overlap-discard A MrMz(Mz + 1)(2 -l3los2M1)
overlap-add B MtØMz - l)log2M1+zMrM;
overlap-disca¡d B MtØMz'f l)loeZMt + 2MrM;
overlap-add C MtØMz - l)log2Mt * 2MtMzlogLM2 * 4MtMz
overlap-disca¡d C Mr(4M2 t l) loe2Mt * 2MtMzlogLM2 + 4Mt Mz

best-case 3MtMzloeZMtMz *2MtMz

Table 5.1: Computational complexities of the subsequent realizations of the linear convolution.
The convolution length is given ôs Iú : Mt Mz, where Mt and M2 are powers of 2.

5.5 Concluding Remarks

In this chapter we have used the graph manipulations to elaborate a formal relation between mul-
tirate convolution systems and block-signal processing. The starting point was the dependence
graph of the long convolution problem. The dependence graph is projecæd onto two slightly
different signal flow graphs, which a¡e in fact graphical representation of the overlap-add and

overlap-discard methods. We have shown, by means of formal "algebraic manipulations" and

by means of illusfative "graph manipulations", that this representation is equivalent to the opti-
mized multirate convolution system, which has been obtained in the previous chapter. However,
we prefer the representation from a multi¡aæ point of view rather than the block-signal process-

ing point of view. The multirate point of view allows us to combine our processing structures

with novel multi¡ate processing schemes, such as has been done in e.g. [CPR89, GV92]. In
chapter 7 we propose some novel di¡ections for futu¡e resea¡ch in this a¡ea. It remains now to
show the power of the graphical representation in designing ha¡dwa¡e a¡chitectures. This will
be the subject of the next chapter.



CHAPTER 6

HARDWARE
ARCHITBCTURE DESIGN

6.1 fntroduction

Vy'e ended the previous chapters with a schematic description of the multirate convolution
system. In this chapter we show that the multi¡ate convolution system, indeed, can be mapped

easily into efficient parallel ha¡dwa¡e a¡chitectures. The specifications of an "efficient" ha¡dware
architecture a¡e determined by the application. In ou¡ case it will be part of a ¡eal-time on-boa¡d
SAR processor, and perform either the range or azimuth compression, see chapter 3. From the

application point of view, we derive the following requirements of the a¡chitecture:

o The processor size and power consumption must be small. Especially for on-boa¡d
satellite processing, these factors are ha¡d limits.

o The input signals have lengths up to 5 Ksamples. In the future, however, signal lengths
will even grow. We set the maximum convolution on 8 Ksamples.

¡ Effective data rates vary from 2.3 Msamples/sec up to 10 Msamples/sec. Our design goal

is thus 10 Msamples/sec, but the system must be suitable for higher data rates in the future.

Nowadays it is customary to use off-the-shelf DSP components to solve long convolution
problems. They have the advantage of being programmable and thus flexible. They are often
specified by benchmarks, such as the processing time of an N-point FFT or the number of
MOPS (Mega Operations per Seconds) or GOPS (Giga Operations per Seconds). A major
disadvantage, however, is that they require a complex infrastructure, which includes VO connol
and protocols, high speed data busses, high speed memory and memory control, intermediate
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buffering, etc.. Due to the required infrasfructure, board size and power consumption are

substantial. Moreover, increase of the number of processors does not lead to a linea¡ increase
in processing capacity. The extra overhead required for the multi-DSP infrastructu¡e is due to
the decline of the ideal linea¡ increment. Our experience is that DSP boards a¡e best specified
by a rade-off between their benchma¡ks and overhead due to the required infrastructure. Doing
so, we conclude that the smallest DSP boa¡d solution that meets the specifications listed above,
contains an equivalent size of six Euro 6 board, and has O(100) W power consumption lCat92l.

Therefore we propose an alternative, namely a VLSI implementation of the multirate convo-
lution system. Due to the structured data flow of the multirate convolution system, we can focus
on the accu¡acy and the dynamic range, which are important aspects in SAR processing. The re-
sult will be a floating point single-chip convolution processor. It can perform an 8K convolution
with an effective data rate of 2 Msamples/sec, thus the required 10 Msamples/sec effective data
rate can be achieved with only 5 chips. The additional overhead due to the parallelization of
the processor is negligible. A rema¡kable side-effect is that our VLSI implementation requires
twice as much computations compared to a straight-forwa¡d implementation in DSP boa¡ds.
Nevertheless, it is cheaper in terms of overall performance, volume and power consumption
and, in many cases, also in terms of accuracy and dynamic range.

Essential in the design trajectory of the intended VLSI architecture, is the design of a
prototype architecture. A prototype a¡chitectr¡¡e is based on off-the-shelf components. It is
used to solve typical hardwa¡e a¡chitecture design problems, such as balancing between VO
data rate and processing data rates, determination of a trade-off between processing flexibility
and performance, modula¡ity and parallelization possibilities.

In section 6.2 we give an algorithmic specification of the convolution schemes developed
in the previous section. In section 6.3 we express the hardware specifi,cations in terms of
processing parameters, such as data rate, signal length, required memory. In section 6.4 we
specify a dedicated VLSI a¡chitecture for the convolution system. Here we show that the
multi¡ate convolution system can be mapped onto a single-chip ha¡dware a¡chitecture.

6.2 Algorithm Specification

The algorithms that we consider are represented in algorithms I utd2, see pages 84 and 85. V/e
assume the more general case than in the previous chapter. [æt a and x be the sequences to be
convolved, with lengths N" and ÀI,, respectively, and let y : a * x be thei¡ convolution. Given
Mr as in section 5.3. We assume that ¡ú" : MoMt and N" : M,Mt with M¡ a power of 2.
In case of SAR processing, the reference can be either the pulse replica or the azimuth frlter,
and the data is either the pulse echo signal or the azimuth echo signal. V/e will use a 2M1-point
(I)FFI and a2M2-point (I)FFT, where Mz is also a power of 2. Moreover, we assume that M"
and M, a¡e chosen such thatLM2 is the nearest power of 2 to both M" + M" - I and Mn + M",
i.e., we can use identical FFT sizes in both overlap-add and overlap-discard algorithms.
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Figure 6.1: Simplified signal flow graph of the convolution algorithm. The numbers within the

blocks refer to the stages of the algorithm.

The relation of the algorithmic description and the signal flow graph description is briefly
pointed out in figure 6.1. The figure is a schematic interpretation of ñgure 5.9. Moreover,
the overlap-add/overlap-discard operation is also added to the scheme. The numbers of the

blocks in figure 6.1 refer to the stages of the algorithmic descriptions. Observe that each block
schematically represents a for-loop (see the algorithms I and 2 on pages 84 and 85) in which
the basic operation is an Q)FFT. In fact, figures 5.9 and 6.1 clearly show the parallel and regular
structure of the algorithm.

Based on the signal flow graph we can design several hardware architectures. The design

consideration will now be the hardware specifications. For example, if performance is crucial
and processor volume is less important, then the several blocks can be implemented in a

pipelined a¡chitecture. Moreover, within each block the available parallelism, see figure 5.9,

can be exploited. On the other hand, if we require compact processor hardware, the hardwa¡e
can be reused by executing the various FFTs and IFFTs sequentially on it. The processor itself
can still be a parallel processor. As we have mentioned in the introduction of this chapter,
our final goal is a single chip processor. The basis for the next sections is thus an iterative
a¡chitecture.

83
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Algorithm I : Overlap-Add Convolution Algorithm

STAGE l: lor m :0 : M" - |
{A^,o,... ,An4Mt-r} Y {o^*rr'.. ,a1n¡r¡u¡r}

end
forrn:0:M"-l

{X^,o,.'. ; X*2Mt-r} lE {r-rrr...,t1m¡tlM¡r}
end

STAGE2:forn:0:2Mt-l
{A!o,*,..., ALr,_n} lE {A0,,,..., Av.-¡n\

end
forr¿:D:2M1 -l

{xó,,,. ..,xiv.r_t,} l9 {xo,.,...,xv,-t,,}
end

STAGE 3: for r¿ : 0 :2Mt - |
lorm:A:2Mz-I

?i,r*A!^,^x x,^,^
end

{7o,", " ' ,?rr,-r,nI '{ll {?¿,^,"' ,?/*,-r,^}
end

STAGE 4: for m : 0 : M" + M, - 2

{î^,o,"' ,î^4Mt-t} 'E {?-,o,"' ,?^,r*,-r)
end

STAGE5: lorm:0: M"+ M"-I
forn:0:M1 -l

gmMt*n 
- 

î'n,n I Ûm-l,MtIn
end

end
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Algorithm 2 : Overlap-Discard Convolution Àlgorithm

STAGE l: for rn:0 : Mo - |
{A^,0,..', A,¡?u,-,r} l! {o*rr, "' .ø(matJnrr}

end
for rn : 0: M,

{1^,0, "',Î^p*t-t¡ lY {a6-r)M), " ',r6ar¡u1-'}
end

SITAGE 2: for r¿ : A :2Mt - L

{A6,*,... ,AL*,-r'} l! {Ao,,,.'. ,Aa"-t,n}
end
forn:0:2Mt-l

{16r," ' ,î[y"-l^] lE {îo,*,"' ,î*",*}
end

STAGE 3: for n. = O :2Mt - 7

lor m: O:2M2 - I
Y*o*A!^,"xXl^

end

{io,*,. .. ,?r*"-r,n} 
tl{r 

{i1,", -.- ,?'r*,-r,n}
end

STAGE 4: lar m = 0 : M" j M, - L

{î^,r,"' ,î^p6-r} I{! {î^,0,'" ,?^au,-t}
end

STAGE 5 : for rn : 0 : M" + M" - |forn:0:Mt-I^
!mM1|n + Am'M¡¡n

end
end
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6.3 PrototypeArchitecture

The hardware specification is that the processor must be as small as possible, so we choose the
iterative a¡chitecture, as it is shown in figure 6.2.a. In ñgure 6.2.b the data flow per stage is
shown. We use off-the-shelf components (FFT processor, multiplier, memory etc.). We have
to exploit the parallel and regular structure rather than ha¡dware technology. At this point, our
methodology proves its usefulness, in that, it leads to an effrcient mapping of the algorithm onto
the available a¡chitecture.

Processing parameters

Vy'e start with definition of the processing parameters from which we cÍm derive the ha¡dwa¡e
specifications. The effective data rate D is defined as

DA no. of data samples to be processed

processing time

The effective data rate describes, in fact, the throughpul of a component, whereas the component
itself is described as a black-box.l The advantage of the defrnition of the effective data rate is
that we do not have to specify a component by its internal specifi.cations (no. of operations,
clock frequencies, erc.). I.e., we have shielded the extemal behavior of a processor from its
internal activities, so that we can concentrate on the design of the a¡chitecture.

læt us assume that we have an off-the-shelf FFT processor and multiplier, with data raûes

o Dy1: the data rate of the FFT processor in 2M1-point mode

o D¡2: the data rate of the FFTprocessor in 2M2-point mode

r D-: the data rate of the complex multiplier

To increase the data rate we can place P¡ FFT processors and P,, complex multipliers in parallel.
Furthermore, we assume that the memory is dual ported, and that VO speed of the memory is
fast enough. To determine the required number of components we introduce the processing time
per stago 4, where i is the stage number. At this moment we can determine fr in ærms of Mn,
M", Mt and M2 and the effective data rates. Furthermore we define a parameter A as

^ ^ lt incaseofoverlap-discard

I O incase ofoverlap-add

This parameter allows us to express 7¡ independent of the two algorithms.

ÌData busses a¡e also considered as components.
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(a)

lrl!:!:!:i:::i::i:lll ¡ßy

[---] '.

(b)

Figure 6.2: Iterative ha¡dwa¡e architecture (a) and the data flow of each stage (b).
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STAGE 1 : The number of 2M¡point FFTs is M 
" + M" + A. Thus ?r is

ry 2Mt(M"+ M, + L)
P¡D¡I

STAGE 2: Tlrc number of 2M2-point IFFTs is 4Mr. Thus ?z is

T. SMtMz
P¡D¡z

STAGE 3: In stage 3 the processing time is determined by the minimum of the processing
speed of the multiplication and the 2M2-point IFFT. The number of multiplications is
4M1M2, and the number of 2M2-pointIFFTs is 2Mr. Thus ?¡ is

. l4MtMz 4MrM2)t3 : mln 
I P-D- ' P'D; I

STAGE 4: The number of 2M¡pointIFFTs is Mo + M" - 1 + A. Thus 7a is

ry zMt(M"lM"-1+A)
P¡D¡T

STAGE 5: The processing time is now determined by the speed of the additions in case of the
overlap-add algorithm. In that case we will assume that the additions can be performed
at the VO speed of the memory. In case of the overlap-disca¡d algorithm the data rate is
only determined by the VO speed of the memory. Therefore we will assume that T5 = 0
for both algorithms (which is a direct consequence of the assumption that the VO speed
of the memory is no bottleneck.

To determine the overall data rate D of the ha¡dware a¡chitecture we assume that the incoming
signal to be processed is {ø"}, i.e. the signal {a,} can be inûerpreted as an ,À[.-øps FIR ñlter.
Then

D: y"
DÌ=t ?.'

If we assume that P*D^ ) P¡D¡;, i : 1,2, (i.e., the multiplication is always faster than the
FFT processing) then equation (6.1) becomes

D: 

- 

N"PJ

2M(D îl (2M" + 2M" - | + 2L) + 6D f; Mr)

(6.1)

(6.2)

In the latter step we have used the fact that 2M2 is the smallest power of 2 that is greater
than M" + M, - I + A. If we assume optimum matching of M", M" and M2 then2M2 x
Mo+M"-1+¡.
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2Mt 2Mz U

(x^tPr)
No

(maximum)
memory capacity

(samples)

t6 16 8.10', 128 - N" 5t2
16 64 2.r0' 512 - N" 2K
t6 256 4.10' 2I{ - N" 8K
16 1K l . l0:2 81( - ¡{, 32K
64 16 ¿. tu' 5r2 - N. 2I{
64 64 4-10" ,¿K _ N" 8I{
64 256 1.10' 81( - /V; 32K
64 1K 31 32K - N" t28K
256 16 4.10" 2K-N" 8K
256 64 1.10r 8/l - N" 32K
256 256 32 32K - N" r28K
256 1K 8 l3lK - N" 5241{
1K 16 1.10' ð,K - -¿V" 32K
1K 64 31 32K - N" t28K
1K 256 8 t3tl{ - N" 524K
1K IK 2 524K - N" 2M

Table 6.1: Performance figures and memory requirements for an architecture with a single-chip

state-of-the-art FFT processot. M1, M2, Àt and the memory capacity are represented by no. of
complex samples. The data rate D is represented by the no. of complex samples per second.

Hardware design

To illustrate the performance of an implementation in ha¡dware with off-the-shelf components

we have simulated the architecture using the specifications of a single-chip state-of-the-art FFT
processor tGEC93al. The FFT processor has 4 modes: 16 point, 64 point, 256 point artd 1024

point. The data rates for these modes a¡e Dli = 10 Msamples/sec, i : 1,2. The performance

figures and memory requirement a¡e listed in table 6.1. Observe that the data raúe increases

linearly with the number of FFT processors in parallel. The number of parallel FFI processors

is limited by the VO data rate D¡¡r,: P¡; < l)rpl)¡,|. tn o* case, the VO data rate is

D , /o :20 Msamples/sec, thus the maximum number of parallel FFT processors is 2.

Choose for simplicity Mt : Mz, i.e., we use only one FFT mode. Furthermore, the

multiplier runs at D- : 20 Msamples/sec [GEC93b], thus one multiplier is sufficient P^ = 7.

Recall that the convolution length is specified at N, + I/" + t : 8 Ksamples. Then we have

that the FFT processor shorfd operate in 256 point mode. From the table we then read that the

maximum data sequence length is N" :32 Ksamples. Since the actual data sequence length is

less than 8 Ksamples, we have that the utilization of the processor (the number of actual samples
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divided by the number of processed samples) is low: less than 25 7o. However, if subsequent

data sequences, say x0, . . . 
, x¿-l , are convolved with a frxed reference sequence, say a, then

we can construct a long data sequence * : [*o .'. x,-r] and convolve it with a. The adjacent
convolution results y, : â * xi have an overlap of 1{" samples. However, in general we aro not
interesæd in the flrst and last ¡rr" - 1 samples of yo. The principle is shown in figure 6.3.a. If
the length x approaches 32K - ¡f", then the utilization of the processor approaches 100 7o.

From table 6. 1 we obtain the effective data rate of the convolution processor D : 32 N 
" 

P ¡ --
2.0 Msamples/sec. Thus we do not reach the specified data rate of 10 Msamples/sec. However,
a simple mechanism is used to increase the data rate by putting multiple convolution processors

in parallel with negligible additional overhead. Each convolution processor has an EN-IN and
EN-OUT input and a READY-IN a¡¡d READY-OUT output, see frgure 6.3.b. The convolution
processor has the ability to enable its input buses REF and DAT. If ENJN is set, the convolution
processor enables REF and DAT. Initially, one of the convolution processor has enabled input
buses REF and DAT, and the other convolution processors have disabled input buses REF and
DAT. When the input data has been read into convolution processor, it disables its input buses

REF and DAT and generate a READY-IN signal, which is the ENIN of next convolution
processor. This mechanism can be readily applied to the ouÞut bus OUT. A convolution
processor can only write its convolution result if its output bus OUT is enabled by an EN-OUT
signal. If the convolution result has been written, its output bus OUT is disabled and a

READ-OUT signal is generated, which is the EN-OUT of the next convolution processor. The
next convolution processor can then write its convolution result to the output bus. This simple
mechanism allows us to consider the array of convolution processors as a single convolution
processor, with an effective data rutÊ, proportional to the number of convolution processors
within the array.

Evaluation

In general, off-the-shelf FFT processors use block-floating point data format. During the design
of the prototype architecture it appeared to be a major problem to implement the block-exponent
administration in ha¡dware. It requires typically combined control and data path logic. We
have implemented this in Programmable Logic Devices (PLDs) [Alt93] for they allow a high
degree of design flexibility. However, it appears that mapping of combined control and data
path functions onto multiple PLDs, results in much data communication between PLDs. These
aspects made it extremely difñcult to mÍmage the design trajectory of the prototype a¡chitecture.
Moreover, due to the block-floating point data format, the communication busses are wide (in
our case 40 bits), and obviously, the required working memory is large. The conclusion is that
an implementation of the convolution processor using off-the-shelf DSP components is not fully
satisfying, especially if it must be fast and small and have low power consumption, a¡rd if it
must also meet stringent dynamic range and accuracy specifications.
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reference

echo data

conv. resuìt

32 Ksamples

usefirl part ouçutdaø

(a)

(b)

Figure 6.3: In (a) the simplified timing diagram of the convolution of the subsequent data

sequences x¿, i : 0r. . . ,tu - 1, with the reference sequence a is shown. Since we are only
interestedinthebodysamplesoftheresultsyi,theoverlapscanbediscarded. In(b)aconvolution
processor array is shown. REF and DAT represent input data buses for the reference data and

the echo data, respectively, and OUT represents the output data bus for the convolution results.

The READYIN and ENIN signals are used to enable/disable the input data buses and the

READY-OUT and EN-OUT signals are used to enable/disable the ouçut data buses.



92 HARDWARE ARCHITECTURE DESIGN

6.4 Dedicated VLSI Architecture

In this section we present a dedicated VLSI a¡chitectu¡e fo¡ the convolution processor. The

specifications are mainly based on the prototype a¡chitecture described in previous section, in
that, the chip has 2 Msamples/sec effective data rate and supports parallel processing without
additional overhead. However, in the prototype a¡chitecture rrve were forced to use a block-
floating point data format (due to the format used in the FFT processor). If we stick to this daø
format, we definitely meet the same problems as in the prototype architecture design trajectory:

much overhead due to block-exponent administration and large word widths. Therefore, we
propose a hybrid floating point data format2 for the VLSI archiæcture. The basic processing

operation is now a 128-point FFT, thus a maximum convolution length of 8 Ksamples is

allowed. The 128-point FFT is realized in radix 2 processor elements for it has a simple
structure. Therefore, we put our main effort in the following items:

o designing parallel structures for multiple radu-2 processors on chip

¡ determination of trade-off between accuracy and dynamic range of the VO at the ono hand

and the intemal arithmetic accuracy at the other hand

The proposed a¡chitecture, including the finite precision arithmetic operations, is modelled in
Matlab, a high level programming tool for numerical analysis. The functionality and the

accuracy a¡e evaluated by simulations, using several representative data sets, including real
SAR data. The feasibility of the a¡chitecture in terms of chip a¡ea is validated based on standard

cell libra¡ies of the ASIC design tool COMPASS [COM94].

Global architec'ture description

The global sEucture of the hardware architectu¡e is shown in figure 6.4. Its main part is a 128

point FFT processing core, containing a fully parallelized tadix2 processor array as well as

the FFT working memory. Input and output registers take ca¡e of VO buffering to guarantee a

continuous I/O throughput. The VO data rate and the effective FFT processing data rate are both
20 Msamples/sec., such that optimum balancing between VO data raæ and FFT processing data
rate is achieved. The size of the convolution working memory is 16 Ksamples, which cannot
yet be implemented efficiently into on-chip RAM using standa¡d cell. However, since the VO
load of the convolution working memory is not the limiting factor, it can be implemented in
external RAM without affecting the effective convolution data rate.

2A hybrid floating point number consists of three pafs: mantissa for the real part, mantissa for the imaginary
part, and one exponent.
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Figure 6.4: The global structure of the ha¡dwa¡e a¡chitecture. The a¡chitecture consists of an

external memory and a chip core, including the FFT processing core.

The FFT processing core

The basic operation of our FFT processing core is an FFT stage operation based on radix 2.

An optimum FFT stage operation requires high speed dual ported mcmory accesses, which is
often a bottleneck in the design of FFT processing ha¡dware. Due to this fact increasing the

rudix 2 performance will not lead automatically to a propofional increment of the FFT stage

performance. To overcome this problem we propose a chip implementation of the FFT algorithm
based on the FFT algorithm proposed by Singleton [Sin67]. This algorithm has the same data

path for each FFT stage operation. The purpose was to efficiently perform large FFTs using

a dedicated radix2 processor with limited amount of RAM. The latter problem was solved by
using externat sequential data storage (magnetic tapes or disk files). The proposed configuration
consists of a single radix 2 processor and 4 extemal input files a¡rd 4 external ouþut files.

Nowadays in high speed FFT processing memory access time is often the bottleneck rather
tha¡l a limited amount of RAM. The algorithm proposed by Singleton uses separate memory
units allowing us to perform multiple memory accesses in parallel, which decrease the speed

requirements of the memory units. The same principle holds for a VLSI implementation of the

radix 2 processor including the sequential data storage, where the latter can be implemented

93
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Figure 6.5: The FFT processor including the 2 radix 2 processing cores which achieve full
parallelism.

efficiently using 4 FIFOs rather than 8 sequential register files. Moreover, in [Sto71] it was
shown that the structure of this algorithm can be mapped onto a fully pa¡allel radix 2 processor
array, where the processing speed ofthe FFT stage operation depends linearly on the number of
radix 2 processors. The number of FIFOs remains 4 per radix 2 processor. The memory access
(i.e. the FIFO VO handling) is realized using wiring rather than addressing resulting in optimum
utilization of the parallel radix 2 processors. In figure 6.5 an example is given of the ha¡dwa¡e
a¡chitecture of our proposed parallel radix2 processor array using 2ndix 2 processing cores
and 8 FIFOs.

The radix 2 processor

In this section we will propose the a¡chitecture of the radixZ processing core that will be used
in our parallel radix 2 processor array. Its data path is based on a hybrid floating point data
format that consists of two mantissas (real and imaginary) and a single exponent. In many DSP
applications, and especially in SAR processing, dynamic range in combination with preservation
of accuracy is essential. We will show that our floating point data format behaves as optimally
as full floating point data formats in terms of dynamic range and accuracy. However, a major
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Figure 6.6: The a¡chitecture of the radix 2 processor. The exponent is bypassed from input
scaling & rounding block to output scaling & rounding block.

advantage above full floating point data format is that it ca¡r be implemented using small, simple
ard efficient fixed point a¡ithmetic hardwa¡e structures with little scaling overhead.

The proposed radix2 processing core a¡chitecture is shown in figure 6.6. The arithmetic
operations a¡e assumed fixed point, whereas the scaling & rounding is assumed part of the data
path. Inputs o and ó represent the two data inputs of the radix 2 and input c represents the
coefficient input. The exponent widths of ¿ a¡rd ó are equal and sufficiently large. Furthermore
the coefficient c has no exponent since the coefficients are all part of the unit ci¡cle, i.e. thei¡
dynamic range is constant. Observe that for this reason the multiplication result of ¿ and c has
the same exponent as the exponent of ¿. Therefore the exponent handling which should be
required for the floating point a¡ithmetic operations can be relocated to the input of the r:a¡dix 2
Processrng core.

After a ñxed point operation such as scaling and multiplication the word width becomes
substantially larger. At first sight this implies an increment in accuracy which obviously requires
large arithmetic ha¡dwa¡e. However, this increment in accuracy is only virtual in that the number
of significant bits of the ouçut of a fixed point operation is always less or equal than the minimum
number of significant bits of the inputs of the fixed point operation. This implies that the word
width at the ouþut of the fixed point operation can be rounded without loss of accuracy, as we will
show now. The starting point is a concise error analysis based on the simplified data flow shown
in figure 6.7. The samples are assumed real but the extension to the complex case is sEaight
forward. Furthermore we assume that the inputs ø and ó and the coefflcient c are stochastically
independent. The fact that the actual coefficients c a¡e deterministic does not affect this analysis.
Let a, b a¡ld c be wide sense stationary with zero mean a¡ld let them be uniformly distributed
between - I a¡ld 1. Then the expected signal power is given as Ea2 : EI] : E¿ : | 13, with E
the expectation oPerator. Assume that ¿, ó and c are represented in m, n and p bits, respectively.
Lr;teo,e6and e"beuniformlydistributederrornoisein¿, öand c,respectively,then le"l <2-^,
l"ul-32-" and le"l <2-e. Then theexpected errorpowerof ¿, óand cisEezo: Ol3)2-2^,
Eez": (1 l3)2-2n and Ee2" : (7 l3)2-2e, respectively.
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Figure 6.7: The simplified model of the data flow in the radix 2 processor with inputs a, ó,

coeffi.cient c, intermediate result d and ouþut r.

Thus, after the multiplication the error-to-signal ratio is

Êezo¡EÊ : EellEaz +EellEê : /-2m *2-2p

The expected error power of the output r after the addition is:

Ê"? : Ee2o + Ee! : Llg (2-2^ + z-'o) + 0 lÐ2-2'
È Qll (Z-z{^+o'8) ¡ 2-2(n+0'8) + 2-2n)

From equaúon (6.4) follows that the number of significant bits in the ouçut will never be more
tha¡ the minimum value of min{rn 10.8,n,p + 0.8}, which is the minimum number of bits
required to represent the ouþut r. Conversely we can state that it has no use to represent the

inputs with different accuracy, so the number of bits to reprosent the different inputs and the

output must be the same, i.e., m : n - p. T\e inputs ø and ó a¡e scaled to a single exponent.

From equation (6.4) it follows that the ouÞut errors in rr and 12 are determined by the largest
input error in a, b and c, implying that a and b can be rounded to the original word width
after scaling. Furthermore the multiplication result will never have more signiñcant bits than

the number of bits of the least significant input. Since we have stated before that all bits in
the coefficients are significant we know that all significant bits will be in the upper half of the

result. This implies that we a¡e also allowed to round after the multiplication. In fact also afær
addition the result can be rounded. However, the increment after an additiory'subtraction is 1 bit,
so that tho additional rounding hardwa¡e is relatively expensive with respect to the increment.
Moreover, depending on the appearance of an overflow bit, either the result should be rounded
or the overflow bit should be eliminated. This operation is performed at the output of the radix
2 processor by the scaling & rounding unit.

Simulation results

The parallel radix 2 processor Íuray of frgure 6.5 (including the radix 2 processing core a¡chiæc-
ture of figure 6.6) is simulated to verify the results of the error analysis. The data formats were
specified on 12 bits real and imaginary mantissa width for both data and coefficient samples and

(6.3)

(6.4)
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Figure 6.8: The number of error bits plotted versus the number of FFT stages. The simulation

results contain approximately 0.4 bits more elror noise than the theoretical values.

8 bits exponent width for the data sa¡nples. After the complex multiplication (see ñgure 6.6)

the result is rounded to 13 bits (a complex multiplication includes an addition, introducing an

overflow bit). After the additiory'subtraction the results are scaled and rounded from 14 bits to

12 bits, which was the original data format.

The accuracy of the proposed hardwa¡e a¡chitectu¡e has been simulated for several FFT
lengths. It has been compared with the accuracy for full floating point FFT hardware, which
was obtained in |ù/ei69l. The simulation results are shown in figure 6.8. It has been found
that, indepently of the FFT length, our FFT processor ha¡dwa¡e is 0.4 bits less accurate than the

full floating point FFT ha¡dwa¡e. For our application (SAR processing) a convolution length

of 8K is required, implying 128 points FFTs [Boe95]. Each data sample passes 28 (I)FFT

stages, which results in a loss of accuracy of 3.2 bits, see figure 6.8. Thus our 12 bits floating
point FFT architecture has 8 bits accuracy. The FFTprocessor ha¡dwa¡e was also simulated as

a part of the fast convolution hardwa¡e a¡chitecture, see figure 6.4. Two representative input
data sets has been fed into the simulated architecture, see figures 6.9 a¡rd 6.10. It was found

that the ouq)ut accuracy has about 8 bits accuracy in all cases, which verified our expectations.

For completeness wo give a brief notification. The relocation of the rounding behind the
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multþlication to the output (see ñgure 6.6) will improve the overall accuracy with (?(10-1) bits.
However, in terms of additional ha¡dware it will cost approximately an extra complex adder.
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sample number

Figure 6.9: Simulation ofthe convolution a¡chitectu¡e using random data. The accuracy ofthe
input data is 8 bits, the internal accuracy of the a¡chitecture is 12 bits. The error in the ouþut
data is approx. 50 dB below the convolution result, implying a convolution accuracy of approx.

8 bits. The error is obtained by comparing the amplitude of the simulated convolution result

with the amplitude of full floating point convolution result computed with Matlab.
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Figure 6.10: Simulation of the convolution architecture using real SAR data. The data is part
of an scene with crop fields in which corner reflecters are placed (the peak in the data). The
accuracy of the input data is 8 bits, the internal accuracy of the archiæcture is 12 bits. The
error in the output data is approx. 50 dB below the convolution result, implying a convolution
accuracy of approx. 8 bits. It is clearly shown that despite the increase in dynamic range due to
the appearance of the peak within the convolution result, the accuracy remains 8 bits. This is
due to the use of floating point data format.
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6.5 Concluding Remarks

In this chapter we have presented the design of a ha¡dwa¡e VLSI architectures of the multi¡ate
convolutionsystem. Itresultedfromthemappingofthegraphicalrepresentationofthemulti¡aûe
convolution systems obtained in chapters 4 and 5. Two hardware implementations are proposed:

A prototype architecture: A protofype architectue is proposed, to handle typical ha¡dware
design problems, such as finding a trade-off between VO data rate, processing data
rate, flexibility, performance, modularity and parallelization. It is based on off-the-
shelf DSP components (FFT processor and complex multiplier [GEC93a, GEC93b]) and
Programmable Logic Devices (PLDÐ [Alt93]. It resulted in a hardware a¡chitecture
design which is realized at the moment of writing.

A VLg architecture: Based on the ha¡rds-on experience gained in the design of the prototype
a¡chitecture, we have presented a ha¡dware VLSI a¡chitectu¡e. The feasibility in terms of
accuracy is validated by simulations of a softwa¡e model of the VLSI archiæcture. Hereby
we have used real SAR data. Based on standa¡d cell libra¡ies (0.6 p) of the ASIC design
tool COMPASS [COM94], the feasibility of a single-chip implementation is validated
in [Boe95].

Implementation of the multirate convolution system in a VLSI architecture allows more design
freedom in terms of VO and FFT data rate balance, accuracy and dynamic range compared
to an implementation in off-the-shelf DSP components. 'We have focused on the efficient
implementation and the a¡ithmetic accuracy of the convolution processor. The result is a
floating point convolution processor a¡chitecture including a parallel FFT processor core based
on the FFT algorithm proposed by Singleton [Sin67]. Although this algorithm was developed
three decades ago, its efficiency in terms of memory management a¡ld data flow management
have gained renewed interest [BCM94].

A rema¡kable side-effect is that our VLSI implementation requires twice as much com-
Putations compared to a straight-forwa¡d implementation in DSP boa¡ds. Nevertheless, it
performs much better than a DSP board solution in terms of processing speed, volume and
power consumption3 and, in many cases, also in terms of accuracy and dynamic range.

3Although in some cases a single DSP board has higherprocessing speed, the chip has higher processing speed
per units of hardware size and per units of power concumptíon. For example, a good measure would be the
processing speed per m2 of printed circuit board area and per Watt power concumption.
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CHAPTER 7

CONCLUDING REMARKS

In this thesis we have inEoduced a schematic design methodology for designing efñcient ha¡d-

wa¡e a¡chitectures for multi¡ate convolutions. Other multirate signal processing systems can be

similarly designed. The design method uses graphical representations of algebraic substitutions

and equivalencies. Graph manipulation is much simpler than equation manipulation, in partic-

ular when the equations are written out in full low-level details. It is known that multirate filter
banks and fast convolution schemes have a close relationship. Using the graph manipulation

techniques that we have developed, this relationship has been made explicit in a clarifying and

illustrative manner. The design methodology allows direct mapping of the multirate convolution
algorithm onto prototype a¡chitectures or dedicated VLSI processors.

In many complex real-time signal processing applications, such as radar, sona¡ and medical

imaging, a schematic design methodology is desirable in which typical application specific

const¡aints such as processing speed, processor size and memory utilization can easily be taken
into account. The nature of our design methodology is that it partitions a complex signal pro-
cessing algorithm into small, less complex sub-algorithms. It leads to a highly structured design

uajectory of algorithms and architectures for complex real-time signal processing applications.
In the end, this approach leads to an effective gain in design time and reduces design risks and

complexity.
We have demonstrated the usefulness of the methodology by designing a multirate convolu-

tion processor which is applied in range and azimuth compression for real-time SAR processing.

Both range and azimuth compression are being considered as the critical processing steps for
such systems, especially when processor size is limited and low power consumption and high
processing speed are required. Applying our design methodology has resulted in an efficient
VLSI convolution processor. It is expected that a real-time on-boa¡d SAR processor based on
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this convolution processor is up to a factor 10 smaller (in volume and power consumption) than
a SAR processor based on commercially available DSP boa¡ds, e.g. fCat92, Mer95l.

If we express the performance of a convolution processor in terms of processing speed
per unit of processor volume and per unit of power consumption, then the performance of the
VLSI convolution a¡chitecture outperforms a straight-forwa¡d DSP board implementation. A
rough estimate is that the processing speed of our convolution chip compares to one state-
of-the-art DSP board. However, it is readily seen that volume and power consumption are

substantially smaller. Nevertheless, in terms of computational complexity, the VLSI a¡chitectu¡e
is approximately twice as expensive. This should not be a surprise for hardware designers. One
might save a few computations in an algorithm but, in general, this will corrupt the regular
structure of the implementation in hardwa¡e architecture. In our case, this means that the
trade-off between paralellization, control, VO data rate and memory management would be lost.
Moreover, we have shown that our VLSI architecture meets the stringent specifications of rada¡
signal processing on accuracy and dynamic range by using a hybrid floating point format. It is
difficult to meet these specifications with a DSP boa¡d solution, due to the block-floating point
format that is often used.

This gives reason to state that designers of hardwa¡e a¡chitectures should not express the costs
of a DSP a¡chitecture in terms of computational complexity, but in terms of overall petformønce.
The latter may include for example, effective data rate, processor volume, power consumption,
accuracy, and dynamic range. Of course, the exact definition of the overall performance depends
on the application, in that it does not make sense to implement, for ex¿rmple, a SAR processor in
dedicated VLSI ha¡dware when off-line processing is required. However, in chapter I we have
listed a number of on-boa¡d SAR processing applications for small platforms, such as fighærs
a¡ld unmanned airborne vehicles. In the near futu¡e these applications will come within reach,
when dedicated VLSI a¡chitectures (and especially the convolution architecture) are used. This
list can be extended with, for example, applications for on-boa¡d satellite SAR processing.

Implementation of the results

At this moment the results of the work presented in this thesis are applied in a number of
related projects at TNO Physics and ElecÍonics Laboratory. The realization of the prototype
architecture presented in section 6.3 is almost frnalized. Vy'e estimate that the processor will fit
onto a single Euro 6 Printed Ci¡cuitBoa¡d, and will show less than 20 rW of power consumption.
The processor will be part of a real-time on-boa¡d SAR processor for the PHARUS system. The
first version of the SAR processor (the so-called "Real-Trme SAR Testbed" [vHDvB+94]) will
be operational in early '96.

The realization of the VLSI convolution processor specified in section 6.4 will sta¡t in
late'95. The VLSI convolution processor will be especially applicable for miniatu¡ized real-
time SAR processor a¡chitectures. Moreover, the VLSI convolution processor can be applied
directly in many other DSP applications that require small, low power and high performance
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Figure 7.1: Schematic block diagram of iterative autofocusing including an integrated azimuth

compression/subband analysis system.

convolvers. We hope that it will prove the feasibility of a real-time SAR processor on-boa¡d

small platforms, such as small ai¡crafts, UAVs and saællites. In the latter case, the Netherlands

Agency for Aeronautics has commissioned TNO Physics and Elecüonics Laboratory to carry

out a feasibility study of a real-time on-boa¡d "focused" satellite SAR processor, which will be

based on the presented design methodology.

Future investigations

In this thesis we have not addressed the implications of motion erors on the real-time on-board
SAR processor specifications. In practice, we must compensate for the motion errors induced
by, for example, turbulence and drift. Motion parameters can be obtained from accurate GPS

or INS position and motion measurements, or they can be estimated directly from the echo

data using autofocusing techniques, see appendix C. The mapdrift autofocusing method has a

close relationship to subband filtering, which is commonly used in multi¡ate ñlter banks. For
example, the multiple looks required for the mapdrift autofocusing can be obtained by baadpass
filtering the compressed azimuth echo signal. If these bandpass filters divide the frequency
band uniformly (or at least a part of it), we have an analysis filter bank as is used in multirate
filter banks. The multiple look images can then be interpreted as channel signals, which was
also observed in [CPR89]. It would be desirable to perform an efficient autofocusing scheme
on the channel signals, eventually running on reduced data rates. Since we used a multirate
convolution system to do the azimuth compression, we can possibly integrate it with the analysis
of the subband channels.

In appendix C we have also shown that mapdrift autofocusing in general requires some
iteration steps. If we embed these ìteration steps in an integrated azimuth compression/subband
analysis,werecognizethesimilaritywithadaptivefilterschemes,seefigureT.l. Theengineering
of adaptive filters might then be applicable in our scheme. For example, in [GV92] adaptive
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filtering in subbands is proposed, which is computationally efficient due to decimation of
the channel signals. Moreover, in [ES92] block-adaptive filtering schemes are proposed with
effrcient use of short-time FFTs. Clearly, these schemes have much in common with our iterative
autofocusing scheme, and it should be investigated how we can exploit these techniques in SAR.



APPENDIX A

A MATRIX ALGEBRAIC
VIEWPOINT OF SAR

In this appendix we introduce matrix algebra in the SAR processing. For many years SAR data

has been analyzed using naditional radar signal processing terminology, such as Doppler shifts,
pulse waveforms, and the like. This kind of analysis has been useful for some reasons:

. It illustrates the historical development of SAR processing, see for example section 2.4.

o It explains the several steps of the multi-dimensional SAR processing using analogies in
the physical world, such as Doppler shifts, antenna beamwidth and focusing.

¡ It allows simplifications of the SAR formulations, so that the SAR reconstruction system
approximates a set of linea¡ shift-invaria¡rt filters (the matched ñlters).

We have addressed these points extensively in chapter 2, and so did most of SAR experts in the
past, e.g., [Sko70, Hov80].

The maftix algebraic viewpoint is relatively new in the field of SAR (as it is in many
signal processing applications). The fact that data amounts are so huge makes one sceptic
to the usefulness of matrices in SAR, because thei¡ dimensions must be gigantic. Indeed,
these dimensions are gigantic, typically O(l}e x 10e), which make the matrices useless in the
processing itself. Howeve¡ they can be extremely useful in analysis of the SAR data, and
provide us with novel SAR processing approaches. Since it goes beyond the scope of the
resea¡ch project, we do not fully elaborate all relevant maftix algebra.

The acquisition matrix

Here we give a description of the SAR acquisition system impulse response determined in
chapter 2. Recall the acquisition system impulse response of equation (2.29) , a¡rd consider the
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following preliminaries:

1. Weusethesubstitution (¿',¿) +- (2rf c,xfu),so thattheimpulseresponseisfunctionof
the spatial va¡iables (r, ø) rather than ofthe temporal variables (f', f).

2. In chapter 2 we assumed that ,Ro was constant, whereas here it is considered variable.
This aspect makes the impulse response shift-variant for shifts ,Re in r. To denote this
shift-varia¡lce we add ,Ra to the list of variables (if applicable), separated by a semi-colon,
and we omit the subscript s.

3. The imaged surface is constituted by a set of points, described by their nominal range r?,

and thei¡ ¿-coordinate X. Define the reflectivity function p(R, X),0 < p(R,X) < I that
assigns to each point on the imaged surface an intensity value. The SAR reconstruction
system estimates the reflectivity function.

4. In the remainder of this chapter we do not annotate the dimensions of mafices, vectors,

etc.. We simply assume that they all have appropriaæ dimensions.

tæt s(r, z; R) denote the 2D impulse response of the SAR acquisition system, and let e(r, c)
denote the received echo signall, then thei¡ relationship is described as

e(r,x) : I I rf, - R,ï - X; R)p(R,X)dRdX (4.1)

From equation (2.29) we have

s(r -.R,:L - X:R): p(r - R- L,R(a - X;R))exp(-j4r\,R(" - X;R)l\ (A.2)

In this chapter we simplify the notation, using

b(r - R,r - XiÊ) o p(" - R- À,R(ø - X: R))

c(x - X;.R) ^ exp(- j4rA,R(x - X; R)lÀ)

Then equation (4.1) becomes

e(r,r) : I I u? - R,r - x; R)c(x - x; R)p(R, x)dadx (4.5)

The discrete version of equation (4.5) can be obtained in two steps. The first step is to
sample e(r, r) in range and azimuth, thereby assuming that the sampling criteria in range and

lNote that in section 2.4 the echo signal e(l/, l) was the impulse response.

(4.3)

(4.4)
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azimuth hold. Læt r¿ and r¡ be the discrete spatial instants in range and azimuth, respectivelf
and let e¡,¡ be the (i, j)'â component of the discrete echo signal, then

e;,¡ a e(r¿,ù : | |t{r,- R,rj - X;R)c(r¡ - X;R)p(R,X)dRdX (4.6)

In fact, we already have introduced e¿,; in section 3.1.
The next step is to consider the reflectivity function only at the uniformly spaced discrete

points (.R-, X"). l-nt dR and dX be the distance between adjacent points (,8-,X,) in range
and azimuth, respectively, and let ù and d¿ be the spatial sample distance of e;,¡ in range and
azimuth,respectively.'Weassumethatthefollowingconditionshold: dR < d'and clX < &.To
simplify our analysis, however, we restrict us to the case that dR: ù and dX : &. Moreover,
weassumethatr¿:.R-andrj:Xnifi:mandj:n,respectively.Theseassumptionsdo
not affect the generality of our analysis. Thus we ca¡l write

I:(r¿ - R^,rj - Xni R^) : b(rr-^,x¡-*i R^) a- b¡-^,j-n* (A.7)

c(x¡ - X^; R^) : c(x¡-^i R^) 4 cj-mim (A.S)

l-et p^,n 4 p(R^,X"), then equation (A.6) becomes

ei,i : 
ÐÐOr-^,t-n;^cj-n;^p^,n 

(4.9)

Equation (4.9) can be written in matrix notation. tæt the echo vector e a¡rd the reflectivity
vector p be defined as

e - l.-. .t,¡ e¿+t,j ..- ei,j+re;+r,j+r'..]

f'" p,n,,, pnrlt,n "' pm,nll Pm+t,n+t '"f
Then we can write equation (4.9) in matrix notation [BD92]

e - pS (4.10)

S is referred to as the acquisition matrix. observe that the terms ó¿--,¡- n:n a¡nd, cj-nin refer to
range and azimuth. We can also construct the banded matrix Br.-, and the diagonal matrix C
related to range and azimuth, respectivel¡ as follows

B¡-,, a *- mth rou:
(4.11)

h,j-n;mat

Cj-n ¿ diag{' " jcj-ntn,cj-n:m+rt...) (4.12)
1

(m,nt)th entry
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The acquisition matrix S can then be written as

S_ (A.13)

As we can see now, the acquisition matrix S is, in fact, a block-convolution matrix, and each

block is itself a convolution matrix (albeit somewhat distorted). The mat¡ix S thus approximates
a 2D convolution.

The reconstruction matrix

As we have mentioned, p contains the discrete reflectivity function, and is thus the unknown
signal to be estimated. Let H be a reconsEuction mafrix, then p : eH is an estimate of
p. We will now describe the SAR reconstruction in terms of matrix algebra. In deriving a

reconstruction matrix H, we anticipate to practical constraints (e.g., the dimension of the matrix
S and the complexity of matrix algorithms). The SAR reconstruction matrix that we consider
is based on matched filtering the data, see section 2.4. If we neglect the range migration then
B¡-, : Bs for all j - n. Observe that Bo is a convolution matrix. Thus S can be approximaæd
as

S_ ^BC (4.14)

There exist two permutation matrices P1 and Pz, such that PrCPz is block-diagonal, with
convolution matrices C- on the rnth diagonal block-entry tBD92]:

PICP2 :
Cm+l

AC (4.1s)

l-etHnr¡1 be the reconstruction matrix based on lD matched filtering in both range and azimuth,
then we have

H¡rpt : B*C" : B-(PiPIC PzPL)- : B.Påe-Pi (A.16)

:

CrBr :

CoBo CrBr

CoBo

Be
Cr:
Co Cr

Co
Be

e^
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The matrix B* represents the lD discrete range compression operation and the matrix C repre-
sents the lD azimuth compression.

From section 2.4 we know that range migration compensation can be performed after the

range compression. We show that this is also true if we use matrix algebra, not by deriving
exact expressions, but by analyzing the matrix structures. l,rot @^- j a B"-¡Bð and consider the

following map

y _ u@¡_,

l-&t u,n be the rn¿l' entry of u, and let e- be deflned as

en: [0...010...0]
*'h lntrg

Then equation (4.17) can be expanded as

Y: u@¡-n: uB^-¡Bi - )ìu-e-B,,-¡Bfi

Observe that e-8,-; yields the rnth row of B;-,. Define the finite vector

b¡-n; a lln;-n^ h¡-n^ "']
then

ê^Bn-j [0 .. 0 b¡-,,- 0 .' . 0]

From equations (4.3) and (4.7) we have

:

o ¡-,,;,n
0 ¡-n,m+l

br,j-,,,u, : p(r¿ - L,R(a¡-"; R^))

Thus b;,1-,,,, is, in fact, thediscrete shifted pulse, with shift LR(x¡-";R*). I.et0¡-n; 4
e-8,-¡8fi and let N¡-,r,, be the nea¡est integer to lAß(ø¡-,; R^)lle. Then 0 ¡-ni^ has peak
value at the m¿å position if j - n: 0, and at (m - N¡-^;-)râ position for non-zero j - r¿. From
equation (4.18) we have

(A.22)

Thus 9¡-^;- is the mrâ row of O

@j-n :

1-n

(4.17)

(4.18)

(4.1e)

(A.20)

( .21)

( .23)
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In equation (4.23) we have depicted the position of the peak by the drawn line, whereas
the dotted line depicts the main diagonal. Observe that the peak position converges to the
main diagonal forincreasing rn. Obviously,if m increases, .R- increases and thus the shift
lA-R(ø¡-"; ,E-)l decreases, see equation (2.28). At this point we can determine the matrix after
range compression

SB*
Cror :

Cq@e C1@1 ( .24)

Co@o 
:

The matrix C¡-, is a diagonal matrix, with c¡-n;^ on the (rn, rn)tÄ entry. Thus

(A.2s)

We are interested in the phase history of each point on the ground, which is in the components
c¡-n¡n. If we assume that the peak values of @¡-. a¡e sufficiently larger than non-peak values,
thenwemayassumethatthecomponents cj-n;mrro,N lieonthepeakpositionof C¡-,@¡-,. As
we see in equation (A.25), in general the peak positions do not lie on the diagonal, except for
thecase j -n:0.

Lnte ¡-^^beC¡-n@¡-nfor the (m, * - Nj-n ^)'å entries (the peak values), and let the other
entries of C¡- n be zero, and let C be defined as

e^ ( .26)

.. :

e,:
eo et

eo
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(A.28)

rapresents the convolution with the 2D impulse responsç of the SAR system after pulse com-

pression, see equation Q.30). l-etEunbe the reconstruction matrix that takes into account the

range migration corection, then we have

Hurz : B*Ô* : B.(PlP1ÕP2Pl)t : B.Påõ.PÏ (4.29)

0

õ-,0
A õ-,,

:

0



APPENDIX B

DECONVOLUTION SYSTEMS

In chapter 2 we have taken the classical radar signal processing viewpoint to enhance resolution.
A disadva¡tage of this viewpoint, however, is that it is somewhat outdated. For example, pulse
compression, as we have described in section 2.3, is an inherita¡lce from the days that radars

only were used to detect targets. The main problem to solve was to detect as many as possible
targetsl, such as ai¡craft, missiles and vehicles. Nowadays, we should formulate the problem in a
more generic way like a minimum mean square enor problem: minimize the mean square error
between the desi¡ed signal and the estimation obtained from an obsewed signal in the presence

of noise. This might lead to a classical solution (for example a matched filter), but might also
lead to novel solutions. In this appendix we consider the resolution problem as a deconvolution
problem. We obtain a generic form of a deconvolution filter by means of modern linea¡ algebra
techniques, e,g., Singular Value Decomposition (SVD) and rank reduction [GvL89].

Linear Convolution Systems

We consider a linear system with input [. . . ,-t @ "t 
. . .] -d observed ouþut signal

l.-. a-, @ ,r ...]. Th" box identifies the entry-at the zeroth position. The relationship
between the input and output signal is

M-l
!^: D un-n(trn (B.1)

rn=0

rThe term point tdrg¿, is also an example of this inherit¡nce.
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Thus the system performs a linear convolution operation of the signal u and a finite signal
a : loo .-. ov-t).Equation (8.1) can be written in maEix notation

lso"'3r¡o-r] : f"r-,' @ ",r-,]

lao "' ap-r] lro . . . ,r-t]

aM-l

'. o¡rt -,
aO , o¡,t -t

@:
aO

(B.2)

(8.3)

(B.4)

The operator is banded and Toeplitz [GvL89].
In practical situations, however, linea¡ convolution operation is limited: either the observed

signal or the the input signal is windowed. Vy'indowed observation signals occur typically in
rada¡ a¡rd acoustics, where the du¡ation window is related to an observation inærva]. Windowed
input signals typically occur in filter applications, in which frnite signals are available. Consider
both cases, thus assuming that either the observation window or the input window has length
N, with M < N. Then, from equation (8.2), the following matrix equations are obtained

aMt 0

@
aMl

a0

Equations (8.3) and (8.4) are underdetermined md overdetermined, respectively [GvL89].

The pseudo-inverse

The objective of this section is to find a deconvolution matrix that deconvolves either the
under determined or overdetermined finite linea¡ convolution system, if possible. Since we are
mainly interested in radar echo signals we consider the underdetermined system. However,
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the techniques that we present in this section also apply to the overdetermined system. [.€t
u:lq-¡ø @ "' ,ry-r] andy - lyo "'yr-rlandletAbethe N x P underdetermined

convolution matrix, then equation (B.3) becomes

y - uA @.5)

ktHbea¡rPxNmatrix,suchthatû:yHisa¡lestimateofu.WecallHthedeconvolution
matrix. The optimum deconvolution matrix H is the one that minimizes the mean square

enor llû - ull2. The H that solves this minimization problem is the pseudo-inverse matrix
A+ [GvL89]. In the overdetermined case the classical solution is often referred to as the

right-inverse A-(AA.¡-t. However, a requirement must then be that A has full rank. If A
is singular then a natural substitute for the right-inverse is the pseudo-inverse. In [Fel93] the

right-inverse is decomposed in a matched filter, represented by A* and a side-lobe cancellation

filter, represented by (A A.)-1.
In practical systems, however, A can be ill-conditioned, which makes the pseudo-inverse

sensitiveto noise. This ca¡r be shown asfollows. l-eton, n:0,"',¡{ - I bethe singular
values of lt. l-ntø,^: (2tr lN)m and let s- : lA(ja^)1,n1,:0,.", N - 1, be samplepoints
of the power spectrum A(ju) of a. Then the singular values of A approach s- if N approaches

infinity, see [GS58] . Thus, if ,^{ ---+ oo then

oo : max{s0, " ' , s¡v-r}, oN-r : min{ss, "' , s¡¡-r} (8.6)

The condition x{A} of A is defined as the ratio of its largest and smallest singular values

rc{A}: oo : max{so'"''s¡s-r} 
.,.7)oN-t mtn{Sq,.",s,,V-l}

If rc{A} is large (> 1) then the mat¡ix A is called ill-conditioned. Most ñnite signals (except in
case when a is white) have some stopband properties, so A is in most cases ill-conditioned.

The condition of a matrix is important in the presence of noise. Using an ill-conditioned
matrix can decrease the signal-to-noise ratio dramatically. An SVD analysis will illusEate this.
tæt A has full column rank and let A : Q>V- be its SVD. Assume that u is a Wide Sense

Stationary2 ('WSS) signal with zero mean and va¡iance ú", *d let n an additive noise signal
with zero mean and va¡iance û. l*tu and n be uncorrelated, and let the corrupted observation
signal be î : u A * n. The expected signal-to-noise ratio SNRI; is

sNR,:ffi:"##:+*8t (88)

2A signal u is called Wide Sense Stationary signal if its expectation and second-moments are stationary, i.e.,
Eun = conslanú, for all n, and Ezlu- = Eutu'¡*^-n, for all È, and it also satisfies El,r" 12 < oo, for all n.
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where we used the fact that if Q is orthogonal a¡rd u is WSS with va¡iance vl and zerc-mean,

thenuQis alsoWSS withvariance v2,andzero-mean. Letû:94+ : uAA+ +nA+ bethe

deconvolved signal, then

sNRû:ffi:ffiff : N4(Þ. "t')-'

The increase of the signal-to-noise ratio after using the pseudo-inverse is then

(B.e)

(8.11)

(B.10)

Observe that 4 solely depends on the singular values of A. Obviousl¡ if A is ill-conditioned,

then the small singular values of A can cause a severe decrease of signal-to-noise ratio: r¡ 11 l-

Observe that we have found a measure for the signal-to-noise increase of a deconvolu-

tion operation. The deconvolution maEix, the pseudo-inverse A+, is in general not Toepliø,

correqponding to time variant filtering. If we interpret the set of singular values of A as a repre-

senøtion of the power specüum3 of the matrix A, then the pseudo-inverse A+ can be inærpreted

as a maftix with an inverted power spectrum of A.

Reduced rank estimation

A way to overcome this degradation 4 is to approximate A by a matrix with lower rank,

see [GvL89]. Let q < rank{A}, and let An the rank g matrix satisfying llA - Arll : øc' Then

Af is an approximation of the pseudo-inverse A+. Let ûn : $ Af,' then

n::ì+: "'(Þ,"')

sNR¡": ffi :q#

We can now determine the signal-to-noise increase 4o if we perform the deconvolution with the

reduced rank pseudo-inverse Af,

sNRr-
?o:5Ç:ørv (8.12)

Thus n. ( n.

3The spectrum of a square matrix is defined as the set of eigenvalues of the matrix [GvL89]' If we consider the

autocorrelation matrix R = A*4, then the set of eigenvalues of R coincides with the set of squared singular values

of A.

-l tN-r \ -l

(r "f)

(:"') 
'(Þ,,,-,)
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In [Sch91] a method is described for ñnding a trade-off between mean squa¡e signal eror
and noise sensitivity. [,et ûn : S Af and consider the mean square error

Ellû, -,rllt : Ellu(,1,,1,f - r)ll'+ Ellnnf ll'? a ."(c) + e^(q) (8.13)

The terms e"(q) and e,(q) can be written in terms of singular values o; a¡rd va¡iances ú, *¿ 4
as follows 

e"(q) : Eil,re(> >l - Ðil, : e - ùú, (8.14)
q-l

"(q) : rllnv>fQll'z : úDq' (8.1s)
i-0

Then the optimum q minimizes the mean square error

min e"(q) + ."(q) (8.16)

(8.17)

The solution ûo is referred to as the reduced rank estimate.

Time-invariant deconvolution filters

A problem not add¡essed yet is the dimension of the system. In practice M and 1ü can be
0(103) and O(lOa), respectively. This means that the computation of Af is hardly possible.
Moreover, since we deal with pulsed radar signals, several echo signals $ must be processed
subsequently. Time-invariant filtering would then be preferable. This is possible, as we shall
now show. Given the P x N convolution matrix A

A:

aM-r 0

: ..

latl
L__il

aM-l

ooo
l¡t1ü'beanintegerthatsatisfies M < N'< NandletP': N,+ M - 1. Wecandefinethen
a P' x N' convolution matrix A, that slides along the diagonal of A

(8.18)
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Then, using the Ha¡rkel matrices

Y

9N N+l

@
u1

ûx'-t
û ¡t'

U¡v-t

uN-p' UN-N, UN-N,+I

Ut

Az

Ao

Yt

9N-w'

U:

tlo :

ut-M
u2-M

nO

nl

,¡¡i -¡¡,

ul
uz

uN'-l
uN,

,t-,

N:

we can rewrite the matrix notation of the convolution problem of equation (8.3), including the

additive noise, as

? : u¡,+N (B.ie)

Instead of a linea¡ system with input and ouçut vectors, we have constructed an equivalent

linear system with input and output matrices. The dimension of the convolution matrix A,

however, is much smaller tha¡r the dimension of A.
The reduced rank deconvolution matrix Af, is now obtained by minimizing the mean square

enorEllÛo-UlltrA€"(q)+€"(q)overall0<q<rank{A}.Thereducedrankestimationis
now a matrix rather than a row vector

nt nN'-l
n2 nN,

??N-N,+l nN-l

ûÍ')
^ll)ui

:

^ tlluiv'-N'+l

^(N'_1)uñ'-t'
^(N l)uñ,

¿Íflli'r

(B.20)

Obsewe that Û does not have Hankel structure, whereas U has Hankel structure. Structure

preservation may be an additional constraint to the estimation problem. It is beyond our scope

to investigate the implications of this consftaint to the estimation problem. VÍe refer to tCHV95l
for an approach that solves a simila¡ problem with preservation of the structure.

If we assume that for all samples u¡, theestimate û[e) is sufficiently accurate for all p,.then

we might as well take rhe p'À coùmn of Ûo as an estimãte of the p¿ä column of U. Læt ûfol -O
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aÍo) d"noæ the pta rows of Ûf and A!, respectively. Then

ûf) : z1)i'

IJ,taf'r) A [aÍr)]r, k:0,...,ff,- 1. Equation @.21)
operation. Then, after rearranging, it can be written as

(8.21)

represents a in fact a convolution

(8.22)

syo)

f'Í') " ' ¿Í1)r-r,l : [rûo "' û¡¡-r]

Here werecognizea convolution matrix, a¡rd thus we may writeequation (8.22) as aconvolution
operation

(8.23)

where aþ)* ¡t 
"(a) 

vi6 entries in reversed order. Thus we have derived a time-inva¡iantdecon-
volution filter of length Il'. The solution t[r) is as optimum as the solution obtained from the de-
convolution matrix Af, in terms of mean square error. The application of a deconvolution-fllter,
however, is more efficient in terms of computational complexity compared to the deconvolution
matrix.

A worked example

We terminate this section with an example to illustrate the techniques that we have developed
above. Considerthediscretechirpsignalaoflength M:3l,seefigureB.l.a,anditsspectrum
in figure B.l.b. Construct an P x ,À{ convolution matrix A where we choose 1{ : 100 (and thusp:130). Theobserved signali: uA*nhas length 100. Fortheanalysis of thesignal-to-
noise ratio we assume that both input signal u and noise n a¡e wSS with variance 4, : 24.
Using the pseudo-inverse matrix A+ to estimate the input signal results in a severe decrement of
the expected signal-to-noise ratio: ? : 0.036. Thus we reduce the ra¡rk of the pseudo-inverse,
which leads to an optimized reduced rank pseudo-inverse Af,, where the optimized reduced
rank is q : 56. The decrement of the expected signal-to-noise ratio is now 7n : 0.52,which is
approx. a factor 14 less than 7.

Suppose that, for some reason, the dimension of A is too large. Then we can constuct an
N' x P'convolution matrix A, where we choose N' : 40 (and thus p' :70). Again we reduce
the rank of the pseudo-inverse, leading to Af,, where, in this case, q : 23. T]ne reduced rank
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time-invariant deconvolution filter is then AÍo)-, *h"t", in this example, p :35. The fllær

a[r)* *U its spectrum a¡e shown in figure 8.l.c and B.1.d. Observe t]rat the spectrum of a[n)*
estimates the inverse spectrum of a within a certain band. The bandwidth is approximately
determined by the q largest singular values of A, using the relationship between the SVD and
the spectrum [GS58].

The results of the estimators are shown in figure B.2. As input signal we have used two dirac
signals. The dotted lines a¡e the estimates in absence of additive noise. The straight lines are the
results in the presence of additive noise. For completeness we also add the estimates achieved
with the matched filter. Observe that this estimaúe is superior in the terms of signal-to-noise
increment, but the two di¡ac signals cannot be distinguished. The signal-to.noise decrement as

a result of the pseudo-inverse is clearly seen. The reduced rank estimates are both compromises
befween the estimates obtained by using the matched filær and the pseudo-inverse.
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(b)(a)

-20 -t5 -t0

(c) (d)

Figure B.1: The real part of the disc¡ete chþ signal a (a), its spectrum (b), the reduced rank
time-invariant filter a[r) (c) an¿ its spectrum (d).
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APPENDIX C

MOTION COMPENSATION

In chapters 2 and 3 we have assumed that the flight najectory was ideal, in that u is constant

and the plaform moves along a straight line. In general, this will not be the case, especially for
ai¡bome SAR. For example, due to air turbulence the flight fiajectory will be some high order

polynomial around the ideal straight line. To model the conesponding phase error we sta¡t with
an analysis of the distofed range Æ(r) toti891. In this section we derive the all formulations
for the time continuous case. The extension to the discrete case is snaight-forward. Without
lack of generality we set 7 : 0. We assume that the enor R(ú) - R(t) can be expressed in an

along-track error â(t) - z(f) along the ¿-axis and an across-track error r(t) in the yz-plane, see

figure C.1. Furthermore, the nominal range corresponding to the distorted flight trajectory is

& : Æo + Ar%. From figure C.l we soe that

R(¿) : (c.1)

If lâ(¿)l < F¿ + r(t) then equation (C.2) approximates to

Ê(t) : Âo+"1t¡ -H = r(ú) .H (c.2)

where A.Ra : Ã.o - fio is the error in the nominal range.

Across-track motion compensation

Within the SAR processing chain we can divide the motion compensation in two pafs: across-

ftack motion compensation and along-track motion compensation. At this point we assume

(Êo+'1t¡¡r +û)(t)2
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Figure C.l : Ideal (dashed) and distorted (sfraight) SAR geometry. It is assumed that the antenna
is at position ø(ú) and has distance ,R(l) to a specific point target with nominal range .R6. The
actual situations is that the artenna position is â(f ), has distance ,R(f ) to the point target, which
has a nominal .*ge ,Êo.

that the distorted flight trajectory is known. Recall the 2D echo signal afær pulse compression,
equation (2.30), and include the motion parameters, assuming that range migration is negligiblel

0(t',t) sinc(arr(l' -2r(t)lc))exp(je(t))
The distorted phase is

,þ(t) : -* Gat- 1g)
^ \., 2R4)

I'et ,þ,(t) and g"(l) be the phase terms due to the across-Eack motion and

motion, respectively, such that V(t) : Q,(t) + p.(t), then

4rp,(t) : -T"(¿),

Observe that the peak of the sinc-function varies with the distorted trajectory in range r(ú),
seeflgureC.2. Thuswemustdelay þ(t',t)intwith2r(t)lcseconds. Inpractice,thismeansthat
the discrete signal for each azimuth instant j must be interpolated in range. Follows the phase

correctioninrangeusingtheacross-trackphaseenorg"(t). I-Êtg'(t',ú)betheechosignalafter
the across-track motion compensation

s' (t', t) : 0 (t' + 2r (t) I c, t) exp(- j tþ,(t)) : sinc(aro t' ) exp(j Q "(t)) (c.s)

rWe have omitted the constånt exp(- jar lcRa).

(c.3)

(c.4)

the along-Íack

4zr î(t\2
,Þ"1t¡ : -T zío-
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azimuú

minal tnjectory

Figure C.2: The variation of the echo peak with the distorted trajectory in range r(ú) after pulse
comPressron.

Along-track motion compensation

Remains the along-track motion compensation of i¡'(t',t). I.et Aø(t) : à(t) - x(t), then it is
desi¡able to express the distorted along-track phase

.: /¿\ _ 4r î(t)2 _ atr þ(t) + Aø(t))2
Yo\L) _ _Tril _ _T 

2R,

This term can be obtained by approximation of the term î(Ð' I ñn,as we will show now.
that

Au a ó,(o) -u,, ¿ 
$a1r¡1,-0, t n #t(r)1,=,

and recall that ø(ú) : uú, then we can wrrte

ì:(t): ¡,¿ : (u+Ao)t*iitt2¡þf +---
z1r¡ (r***;,+[*+ )

If lAr%l ( Ro then equation (C.7) approximates to

A-r : 
"o' 

(t - "#)' (c.8)

We can also assume that the distortion Aø(t) : ã(t) - x(t) is caused by a distortion in the
nominal speed: ô(f) - u. Define

(c.6)

Observe

(c.7)

(c.e)
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Assume that AuA,R¿ ( uÄo, óAPo < u,R¡ and öAÃo < u.Ro, then, from equations (C.8) and

(C.9), we have that î'(ù'I ño approximates to

i(t), _ ã(t)2 (, ¡no\t _ "(t)2 (., _LRo Àu ù . ü '2
A" ,% \^ 2R4 ) R4 \' ffi + î * 

^'+ 
** + "') (c'10)

Or,

a,x(t): "(,)(l_ ^#+]t+*u. ) (c.lr)

Thus, indeed the distorted along-track phase approximates to

,þ"(t) : -!("(t) ! !"(t))z - -¿" "2(t 
+ -L!(t)/")z ç.tz)

^ 
zRo 

^ 
2Rn

We know that tt¡e ideal phase of the echo signal would be

v"(t) : -+# : ,þ"(t - a,r(t)lu) (c.13)

Thus g'(f', t) can be expressed as

0'(t',t) : sinc(arpl') exp(jq"(t + Lx(t)lu)) : s(t',t + L,r(t)lu) (C.14)

In practice, this mea¡rs that the discrete signal must be interpolated in azimuth using the map

t¡ <- t¡ - Lr(t¡)lu.
A requirementfor motion compensation is that r(l) and Ac(t) are known, either by measure-

ment (using motion and position sensors like INS and GPS) or by estimation. The along-track
position enor Au (t) depends on 4,R6, Au and the flrst, second, etc., derivates of ô(f). In
general, A.Ro ca¡r be eliminated by the exact measurement of the time of pulse tra¡lsmission and

start time of the AID conve¡sion of the received echo. The along-track speed error components

can be obtained by an exact measurement of the ø-position locked on a time reference. The

across-track position error crur be obtained from the across-track position measurement.

Autofocusing

Estimation of the motion parameters is commonly referred to as autofocusing. Above we have

determined the across-track motion error r(t) and the along-track motion enor Ac(ú). If these

errors are not known, then still the motion compensation can be performed. In that case we

approximate the distorted phase 9(f) by a series in Í. Its coefficients ca¡l then be estimated from
the echo data.
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The first step is to derive expressions for these coefficients. Observe that we can write

"(¿) 
: u"(ú)f, where u"(t) is referred to as the across-track speed distortion. Expand u,(ú)

a¡ound f : 0, as we did before with û(ú), then we find

r(¿) : u,tI \it,t2 * li),t3 ¡ "' (c.1s)

Then, substitution of equations (C.15) and (C.10) in the distorted phase, see equation (C.a), and

collecting the third-order and higher-ordercomponents in the series ((ú), gives

ø(Ð -T (,r. *(' - * *+.+)¿'+((r)) (c.r6)

Two rema¡ks a¡e in order here:

o The across-tack speed distortion introduces a Doppler centroid

(c.17)

In fact, this Doppler centroid may also contain a component as a result of an unknown
squint angle.

o The quadratic term in g(f ) approxrmates to

t¿" = J,-ftøø1,_o: -+

u2 /- ar% 2Lo ó,Ao\ b * Lu')z
tÊ.\'- À" +;- ,, ): zRo

if the following condition holds

l_Ae _,2L,u _, ó,&l
I a' u' ,2 

1

In that case we have

- 
^r% 

2L,ut- 
Æo 

+;

=#*'++$Pcr

(c.18)

(c.le)

ù,Rn_L_ -u : l'u-+#*+! (c.20)

With equations (C.17) and (C.20), we can write equation (C.16) as

(c.2t)

The unknown parameters in the zeroth and the first order coefficients are thus l¿. and At-r', and
a¡e also called,the autoþcus parameters. It is not necessary to obtain more autofocus paraneters
for the estimation the higher order coefficients, as we show by the mapdrift autoþcus method
that we discuss hereafter.

,þ(t) : -T (-r^t,", * @#* ((r))
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Mapdrift autofocus

Most autofocusing techniques ¿ue based on mapdrift, which we now describe briefly. Mapdrift
autofocusing is sufficient for slow varying motion errors. Other autofocusing approaches,
such as contrast optimization, speckle processing, Vy'igner-Ville distribution method, binary
multiplexing and reflectivity displacement method are proposed in [FW85, 8G88, EGCJ89,
Mor9Ol. Since it goes beyond the scope of this thesis to describe them we refer to these

references for details a¡rd evaluations. An evaluation and comparison of some methods a¡e
given in e.g. [G888, BBOW92, Ott9l].

Iæt the distoræd azimuth echo signal be given as

o@: exp(je(t)) - exp (-tT(-r^t,.,-þ-#+((r))) ç.22)

where we have omitted ú and ,R6 for convenience. Then the uncompensated azimuth compressed
signal i(t) obeys

t^1-l^
f (¿) 1",_ OO)o(t - r)dr

"-it"
¡0: I þþ)a(t -

: rr(l+t(t¡
r)dr r 

lo+'" 
0{Òo{, - r)dr

(c.23)

The mapdrift approach is based on the fact that the peaks of Ê1(f) and î2(t) are mutually
displaced, say with a factor A?, which is proportional to At,' [8G88, Ott89]. This can be
shown by expanding f1(ú) as follows

Ë""-'(
/qn

exp 
\-rT

))

)*
The integral in equation (C.24) cannot be computed analytically, but it is clear that lÊl(t)l is
maximum if

which occurs at

2tu2 -;(2uLu'¡ L.un)To- )f¿.Ra : 0

+ _ +- _ 2u\u'+ Lun ,, , Àf¿.Ro
o-þr- 

2u2 ,-at 2u2

(c.24')

(c.2s)

(c.26)
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Doing the same analysis onî2(t), we frnd that lÊ2(ú)lis maximum at

+ _ +^ _ _2u\,u' + Lun ,7 - Àf ¿"Ro
" - úz - Zu2 2-a | 

2tS2

It thus follows that

)r,\r'j lns ,f,\T:fi-t2:: u, z-u

Once AT is obtained from evaluating Ê1(t) and i2(f), A,u'is readily obtained as

L,o' : -o 
(, t
\

If AT < lT",then Â,u'approximates to2

.LTL,u' È f",

ttltz: u+

1

f¿. (t, + tù-Lsno

As we have shown, the mapdrift based approach is based on the fact that motion parameters

a¡e determined by an error Är." in the nominal speed. By subdividing the apertue (-+T",LT")
into two so-called subapertures (-¡T",0) and (0, å?"), we can obtain two SAR images (so-called

/oolcs), which have a mutual displacement A?, which can be measu¡ed. Via some algebraic
manipulations it was shown that 

^7 
is proportional to the error Au'. In fact, if we divide the

aperture into more subapertures, higher order errors in the nominal speed can be determined.
Generally, the order of the estimated error is one less than the number of subapertures used. An
extensive discussion of a mapdrift based method with arbitrary number of subapertures is given
in [BG88]. However, increasing the number of subapertures implies a decrement of bandwidth
(and thus resolution) per look, leading to a more and more inaccurate estimate of A?.

It remains to estimate the Doppler cent¡oid offset /¿". Observing that

(c.n)

(c.28)

(c.2e)

(c.30)

(c.31)

(c.32)

the Doppler centroid obeys

More details about specific Doppler centroid estimation methods and their evaluations are given
in [LHCW85, Jin86, Mad89]. It should be stated that Doppler centroid estimation as an isolated
problem only occurs in satellite SAR processing, since the satellite orbit is relatively stable in

AT*+n

2We æsume that the solution Lu = -2a - aLT f To makes no sense.
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terms of across-track and along-frack motions. In airborne SAR the main problem will almost
always be the actual motion compensation as we have discussed in this section.

A simulated autofocus example is shown in figure C.3. It should be noticed that, in
general, autofocus algorithms require a number of iterations. This means that autofocus can

be computationally very intensive. In [Bie94b] an autofocus algorithm is presented that can

be implemented efñciently in hardware architecture. The algorithm search low resolution
SAR images for high conffast a¡eas. The computationally intensive mapdrift autofocusing is
only performed on these small areas. The autofocusing parameters are then fed into the high
resolution SAR imaging algorithm.



APPENDIX D

OVBRLAP.ADD/DISCARD
CONVOLUTION NETWORKS

In this appendix we show that the linea¡ and circula¡ convolution networks have two well-known
equivalents in classical digital signal processing. [æt us first attalyzr- the linea¡ convolution
network. Recall equation (a.11) withw *- zN

2N-2 N-l
?Q;-))_*,,: Ðtan(zN)rn-n("N¡"-^:?þ) (D.t)

m=0 n=O

The coefficients a,(zN) and a^-n(zN ) are the polyphase components of Aþ) and X(z), i.e.
they are order N - 1 polynomials in zN,

a^(zN): I an¡*wz-kN, x^-n(zN): D r^-n+t"¡,tz-kN
&=-æ ß=-æ

Substitution these expressions into equation (D.1) gives

zN-zN-r/ * \ / - \
?Q) 

-Ð, : (*=_t_'"*o',-*J (_à x*-n¡r,Nz-kN 
)z-^

æ æ 2N-2N-1

D t ttantrNrm-'*(k-qwz-^z-hN (D.2)
*=-æ l=-æ m=0 n=O

The last step includes a rearangement of the summations. We will now analyze equation (D.2)
from the inner summation to the outer summation.

Obviously, the inner double summation is recognized as an order 2N - 2 polynomial in z.
The 2N - 1 coefficients of this polynomial are recognized as the linea¡ convolution result of
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.ç111ç.
.r1T1r.

. t 1 1 1 t r r'¡*¡ =,Ï-ar*xr*r-r

1111111111Ì1111 
"""' 

v

Figure D.1 : The overlap-add method for construction the long linear convolution result y using

short length 2N - | Iinea¡ convolutions. In this example N : 4.

two length 1ü sequences with scala¡ elements ¿n+¿¡¡ Íìnd rn-n+(t -r)N, n : 0, ' ' ' , ¡f - 1. tæt

these length N sequences be defined as ar and x¡-¡, then the inner double summation is the

z-domain representation of the linea¡ convolution result a¡ + x¡-¿.
The next observation is that the sequences &¡ ând x¡-¡ are in fact non-overlapping subse-

quences of the sequences a : {"¡U :..., -1,0, 1,. "} and x : {t¡U : "', -1,0, 1, "'}.
But then the inner triple summation is in fact the z-domain representation of the addition of the

linea¡ convolution results â¿ * X¡-¡ over /. Hence, the inner triple summation is still an order
2N -2polynomial in z, and thus the z-domain representation of a length 2N - | sequence with
scala¡ elements. The latter statement implies that all convolution results a¡ x x¡-¡ with index k
has a mutual zero delay factor.

Now let * A DË-- â¡ * X¡-¿ and let YiQ) be the z-domain representation of yf. Then

equation (D.2) can be simplified as

?e): iv;1,¡.0* (D.3)
È=-æ

Hence, in time domain equation (D.3) is nothing more adding the length 2N - | sequences y'*

with mutual factor 1/ delay, as is shown in figure D.l for the case that I{ : 4. This mutual
factor I{ delay causes an overlap of N - I samples between subsequent sequences y'* and J¿+r.
The linea¡ convolution network can be described algorithmically, by introducing recursions
in two dimensions. This description is shown in algorithm 3 in which we can recognize the
overlap-add convolution method for solving a long linear convolution using multiple short linea¡
convolutions [OS89].

æ
l'¡-, =,)_a r 

*x r-r-r

oo

r't= I8¡*xr-rÞæ

+
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Algorithm 3 : Overlap-Add

a-+{a¡}, x--{x¡}
for all k

for all I
y,;,) : yí"(,-t) +â¡ +x¡_¡

end
y(A) : y(i'-t) + !,*+ 6t ¡,t

end

The same analysis can be made for the ci¡cula¡ convolution network, and this will lead to the
overlap-discard convolution method tOS89l. We will briefly give a description of the analysis
similar to the linear convolution network, without going in too much details. Given the 2N - I
polynomial coefficients î^(r*) and the ,a{ - 1 polynomial coefficients a,(zN). l-ntfr^QN)Ae
thei¡ ci¡cula¡ convolution results, given by equation (4.15)

N-1

î^("r) : \ a.(zN)î6_¿)mod(2N_r)(zN)
n=0

Remind that for the ci¡cular convolution network we were only intereste a infi ^þN) for m :
¡{ - 1, ...,2N - 2. Observe that

(m-n)mod(zN-l) : rn-r, for m: N -1'"''zN -l' (D.4)n=0r-..,N-l
The z-domain representation is then

^ 2N-2 N-l
?Q) : t la,(zN)î^_^("N)"-^ (D.5)

rn=N-l n=0

From equation (4.17) follows that

î,^(r*) Ë "-*,*,*- t¡Nz-kN (D.6)
Ë=-æ

Hence, equation (D.5) can be expressed

^ 
æ æ 2N-2N-l

Y(") : t t t Ðan+twx^-n+t+(k-t-t\Nz-nt"-kN (D.7)
[=-æ l=-æ m=N-l n=0
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îii111t -99
Yi-1 =,) " rgxt_r_r

-99Ji=-)"r9*r-r
t-æîii1111

iiilllf i'rå,eî.*',

""' 1T1111t111T1111""' y

Figure D.2: The overlap-disca¡d method for construcúon the long linea¡ convolution result y
using short length 2Iü - I circular convolutions. In this example I{ : 4.

[æt Î¿-¿ be the length 2N - | sequence with scala¡ elements ïm-n*tt(k-r-r¡r,r for n'L - n :
0, . . . ,2N - 2. Introduce the combined ci¡cula¡ convolution and discard operation o. Then we
can define the length Iü sequence y'f as the summation over I of the last ¡{ element of the results

of circularly convolving of a¡ and î¡-¡, given as yl ^ a¡ o î¡-¡. The triple inner summation is
then the z-transform of the subsequence of yf. In fact, we have disca¡ded the frrst N - I samples.
Thus in time domain equation (D.7) is nothing more than adding the length N sequences y'f

with mutual factor.l{ delay, as is shown in figure D.2for the case that N : 4. This description
is shown in algorithm 4 in which we can recognize the overlap-discard convolution method for
solving a long linear convolution using multiple short ci¡cula¡ convolutions tOS89l.

Algorithm 4 : Overlap-Discard

a--{a¡}, x---+{1¡}
for all k

for all I
y,{,) : yl(,-t) + â¿ oî¡_¡

end
y(å) : y('b-r) + y'l* 6rN

end

+
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SAMENVATTING

In dit proefsch¡ift hebben we een schematische ontwerpmethodiek geintroduceerd waarmee

efficiënte ha¡dware architecturen kunnen worden ontworpen ten behoeve van multi¡ate con-
volutiesystemen. Deze methodiek is ook toepasbaar op andere multirate signaalbewerkings-
systemen. De ontwerpmethodiek gaat uit van een graflsche beschrijving van een algoritme in
plaats van een algebraïsche beschrijving. Het voordeel hiervan is dat een grafische beschrijving
zich veel makkelijker laat manipuleren dan een algebraïsche beschrijving, vooral wanneer de

laatste volledig in detail worden uitgeschreven. Het is bekend dat multirate filterbanken en con-
volutiesystemen veel overeenkomsten vertonen. Door middel van de graf,sche manipulatie die
we hebben ontwikkeld zijn deze overeenkomsten op een eenvoudige en illustratieve wijze expli-
ciet gemaakt. Bovendien kan een multirate convolutie-algoritme met behulp van deze grafische
ontwerpmethodiek direct in een prototype architectuur of in dedicated VLSI processors worden
geimplementeerd.

In veel complexe real-time signaalbewerkings-toepassingen als radat, sonar en medical
imaging, is behoefte aan een schematische ontwerpmethodiek die rekening houdt met typische
toepassings-specifieke beperkingen als verwerkingssnelheid, processoromvang en geheugen-

beheer. Het uitgangspunt va¡ onze ontwerpmethodiek is dat complexe signaalbewerkings-
algoritmes opgedeeld worden in kleinere, minder complexe sub-algoritmes. Uiteindelijk leidt
deze aanpak tot winst in ontwerptijd en reduceert het de ontwerprisico's en complexiteit.

We hebben de bruikbaarheid van onze ontwerpmethodiek aangetoond in het ontwerp van
een multirate convolutiesysteem, toegepast in de range-compressie en azimutcompressie ten
behoeve van real-time SAR processing. Range-compressie en azimutcompressie zijn de kri-
tische onderdelen van een real-time SAR processor, met name als beperkte omvang, laag
vermogensverbruik en hoge verwerkingssnelheid de ontwerpeisen zijn. Het toepassen van
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onze ontwerpmethodiek heeft geresulteerd in een efficiënte VLSI convolutie-processor. Naar
verwachting zal een real-time on-board SAR processor gebaseerd op deze convolutie-processor
tot een factor I 0 kleiner zijn (zowel qua omvang als veÍnogensverbruik) dan een SAR processor
gebaseerd op commercieel verkrijgbare DSP-kaarten, zie onder meer fCat9Z, Mer95l.

Onze VLSI convolutie-processoris veel krachtigerdan een DSP-kaa¡timplementatie, als we
de performance van een convolutie-processor uitdrukken in termen van verwerkingssnelheid per
eenheid van processoromvang en per eenheid van vermogensverbruik. Een grove schatting is dat
de verwerkingssnelheid van onze convolutie-chip vergelijkbaa¡ is met de verwerkingssnelheid
van één state-of-the-a¡t DSP-kaart. De omvang en het vermogensverbruik zijn echter veel
kleiner, en dat ondanks het feit dat onze VLSI convolutie-processor ca. twee keer zo veel
bewerkingen uitvoert. Bovendien hebben we laten zien dat onze VLSI architectuur voldoet
aan de stringente radar signaalverwerkings-specificaties ten aanzien van nauwkeurigheid en

dynamisch bereik door middel van het gebruik van een hybride floating point formaat. Met
een DSP-kaa¡t oplossing is het in het algemeen moeilijk om aan deze specificaties te voldoen
doordat deze vaak het block-floating point formaat gebruiken.

Dit geeft ons de motivatie om te stellen dat ontwerpers van hardwa¡e-architecturen de kosten
van een DSP a¡chitectuu¡ niet horen uit te drukken in termen van complexiteit, maar in termen
va¡ overall peformance. Hieronder vallen bijvoorbeeld verwerkingssnelheid, processorom-
vang, vermogensverbruik, nauwkeurigheid en dynamisch bereik. De exacte definitie van overall
performance wordt natuurlijk bepaald door de toepassing het is niet zinvol om bijvoorbeeld een

SAR processor te implementeren in dedicated VLSI hardwa¡e als slechts off-line verwerking
vereist is. In de inleiding hebben we een aantal real-time SAR toepassingen genoemd (verken-
ning, SAR data transmissie, fixed/moving target indication en on-boa¡d systeem monitoring) die
wenselijk zouden zijn aan boord van kleine platformen zoals straaljagers en unmanned airbome
vehicles. Deze zullen in de nabije toekomst mogelijk zijn als dedicated VLSI architecturen
(en vooral de convolutie-architectuur) worden gebruikt. Deze lijst kan worden aangevuld met
bijvoorbeeld toepassingen voor SAR processing aan boord van een satelliet.
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