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Stellingen behorende bij het proefschrift
Architectures for Real-Time On-Board Synthetic Aperture Radar Processing
door
Laurens Bierens

. If DSP hardware designers would use "processing speed per units of processor
volume and power consumption" as a measure for the processing performance of their
hardware instead of "operations per seconds", then the popularity of DSP boards

would decrease dramatically.

. A designer does not serve the application of an algorithm if he writes out multi-
indexed formulas and equations in full low-level detail. only showing his ability in
performing difficult actions, but he serves it well if he uses graph manipulations.
which allows him to concentrate on typical application specific constraints.

. Rapid prototyping of'a VLSI implementation using DSP boards is only profitable if a
hardware designer has extensive experience with these DSP boards and their
development tools. Otherwise realization of the VLSI implementation itself is the

cheapest way of rapid prototyping.

. It does not make sense to specify a radar signal processing system in full detail, if the
specifications of the radar front-end keep changing.

. The term "pulse compression" is an inheritance from the days that knowledge about
digital signal reconstruction techniques was limited. Nowadays it merely narrows the

scope of radar system engineers.

. If electrical engineering would be propagated more as the basics of what secondary
school pupils concerns (Nintendo, MTV, Internet, house music), then more of them

would choose to study it.

- Just as the sensitivity of the inversion of a matrix can be disturbed by its small
singular values. so can the sensitivity of a large social inversion process be disturbed
by insignificant individuals in society. A poignant example is the murder on the
[sraeli prime-minister Yitzhak Rabin committed by the law student Yigal Arxy’r.

. The fact that fashion reverts to the past, implies that being behind the fashion will
always give a lead.

. If during rush-hour on statjons the train compartments would have a direct connection
with the platforms (as is often the case with subways). instead of with narrow and
crowded gangways. then the delays of the trains would be reduced dramatically.

10.Due to the expected increase in the use of Windows 95. memory chips are currently
reliable objects for investment.
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CHAPTER 1

INTRODUCTION

1.1 Objective and Motivation

This thesis is about the design of architectures for real-time on-board Synthetic Aperture Radar
(SAR) processing. A SAR is a side-looking imaging radar on a moving platform, in general an
aircraft or satellite. The SAR principle is based on synthetically generating an effective long
antenna by signal processing rather than using a long physical antenna. The actual physical
antenna length is in most cases relatively small. Generating a SAR image requires two-
dimensional signal processing techniques. The model of the SAR system that we use consists
of a SAR acquisition system and a SAR reconstruction system. The acquisition system maps the
information of the Earths surface onto a 2D SAR echo signal. The reconstruction system maps
the 2D SAR echo signal onto a SAR image. SAR processing or SAR imaging usually refers to
the SAR reconstruction system.

Real-time on-board SAR processing

The work presented in this thesis is strongly related to the PHARUS system. PHARUS stands
for Phased Array Universal SAR and is a fully polarimetric C-band airborne SAR with an active
antenna array [HSKP92]. The PHARUS system uses a phased array antenna, which provides
in a flexible design and a compact and light-weight antenna system. The latter allows the user
to mount the PHARUS system on a small aircraft. The use of a small aircraft will improve the
operational cost/benefit ratio of an airborne SAR. Typical applications of the PHARUS system
range from agricultural classification and geophysical mapping to typical defense applications as
surveillance, reconnaissance and Fixed/Moving Target Indication (FTI/MTI). Moreover, there
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is the perspective of using PHARUS as a demonstrator for ESA’s future Advanced SAR (ASAR)
system, a polarimetric spaceborne SAR system. At the moment of writing the PHARUS system
has concluded its first test-flight successfully.

The motivation for the work presented in this thesis was the need for a real-time on-board
SAR processor for the PHARUS system. The specifications of the real-time on-board SAR
processor depend on the application. We give a representative, albeit incomplete, listing of
applications of the PHARUS system for which a real-time on-board SAR processor is essential.

Surveillance, reconnaissance: Surveillance and reconnaissance are typical defense applica-
tions, but it may also be important for e.g. coast guarding and pollution monitoring. The
main requirement is the fast detection of suspected objects or events. The processing time
is thus critical, in that it must be real-time, and processing must be performed on-board
the platform. If the platform is small, e.g. a fighter or an Unmanned Airborne Vehicle
(UAV), then low power dissipation and small processor volume are additional constraints.

SAR data transmission: On-board processing is mandatory, due to the extremely broadband
communication links that are needed for the transfer of the uncompressed radar data to
the Command & Control Centers below. In defense application, the transferred data
may be (partly) corrupted due to jarnming. On-board processing of the SAR data (in
combination with image processing) is a rigorous form of data compression. It allows
one to send only small banded signals to the Command & Control Centers. These small
band communication links are, in potential, less sensistive to jamming.

FTI/MTI: FTI/MTI require high geometric resolution SAR images, often combined with real-
time target detection ability. Moreover, for MTI purposes also the phase of the image
is needed to obtain information about the movement of the detected objects. Roughly,
the same constraints hold for FTI/MTI as in surveillance and reconnaissance, with the
addition that processing capacity is more critical. This is due to the higher geometrical
resolution (for both FTI and MTI purposes) and the higher pulse repetition frequency (for
MTI purposes) that are required.

On-line system monitoring: Despite the application specific requirements, it is generally
preferable that a SAR system includes an on-board real-time SAR processor, so that on-
line monitoring is possible. A SAR system might malfunction due to technical defects,
or the surface area illuminated by the antenna might be wrongly chosen. Since SAR data
acquisition requires expensive missions, an early discovery of malfunctioning or a wrong
flight trajectory can save the operator a lot of expenses.

From the list we can determine some preliminary specifications for a real-time on-board SAR
processor for the PHARUS system. First of all, the processor must meet the specified processing
speed in all cases. During the movement of the platform, the Earths surface is being illuminated
by the SAR antenna. Obviously, we have some delay time between illuminating a point of the
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Earths surface and displaying the SAR image pixel corresponding to this point. We say that
SAR processing is performed in real-time if this delay time is not more than O(10) seconds,
and is independent of the size of the illuminated area.

The second specification is that the SAR processor size must be small and have limited
power consumption. High-performance real-time on-board SAR processors do already exists,
see e.g. [DJCM92, Mer95]. However, their size and power consumption is substantial, in that
they will not fit in small platforms such as fighters and UAVs. Our intention is to develop
hardware for real-time on-board SAR processing that potentially fit in these small platforms.
We even opt for a real-time on-board satellite SAR processor in the near future.

A third specification is that the SAR reconstruction system is linear. Reduction of computa-
tional complexity in SAR processing is often obtained by simplification of the SAR acquisition
system model, which leads to non-linear SAR reconstruction systems, see e.g. [CPR89, Mor92].
These simplifications may lead to non-linearities in the SAR image. An example is the occu-
rance of side-lobes at (sometimes unpredictable) positions far from the main-lobe of a point
target response. These are assumed to be negligible for several imaging purposes. However,
for MTI purposes it is essential to have an accurate model of the SAR reconstruction system.
Moreover, it is desirable to have a linear system model of the reconstruction system, so that the
analysis of the phase history of point targets is straight-forward. For this reason, we consider
the model of the SAR acquisition and reconstruction system presented in [WLJ82] as optimal,
since it describes the impulse response in terms of linear operations, namely 2D convolutions.

Approach of the work

Our approach in designing a real-time on-board SAR processor is to emphasize on small and
high speed hardware. Low power consumption is considered as an additional constraint. The
specifications of the SAR acquisition system are given, however, we do not address the IF and
RF system configuration, the atmospheric influences, nor the antenna system specifications.
The SAR processing specifications are based on the PHARUS antenna system configuration,
although, we do allow for some flexibility. They also depend on the operation modes of
PHARUS, but operation modes may change. Therefore we will use the specifications as a
guidance: they determine the design approach of the real-time on-board SAR processor , but
they do not prescribe the absolute specifications of the real-time SAR processor.

Consequently, this thesis will not end up with a design of a real-time on-board SAR processor.
We determine the critical processing steps required for real-time on-board SAR processing, and
propose an effective VLSI-based solution for it. The critical processing step within this real-
time on-board SAR processor appears to be 1D correlation/convolution of long discrete signals
with a high effective data rate. The solution that we propose, reduces the size of the required
hardware for the critical processing step from several DSP boards to a few chips. Obviously,
power consumption also reduces proportional to this reduction. The design approach is generic,
and may even bring real-time on-board satellite SAR processing within reach.
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1.2 Outline of this Thesis

We give a brief overview of this thesis per chapter. The objectives and the motivation of the
work have been presented in this chapter.

In chapter 2 we briefly review the basics of SAR processing. The impulse responses of the
SAR acquisition and reconstruction systems that we derive are based on the model presented
in [WLJ82]. The SAR basics are addressed in terms of Doppler bandwidth and resolution.

In chapter 3 we determine the SAR processor parameters. We give the relations between the
SAR processor parameters on the one hand and the SAR system specifications and the required
image resolution on the other hand. We present two illustrative examples: a real-time on-board
airborne SAR processor for the PHARUS system and for real-time on-board spaceborne SAR
processor for the ERS-1 system.! We analyze the SAR processing data flow with respect to the
SAR system specifications and the required SAR image specifications. Based on this analysis,
we show how and where data reduction within the data flow can be achieved, without affecting
the SAR image specifications. We conclude this chapter with the notification of the critical
processing step within the SAR processing: the 1D correlation/convolution.

The 1D convolution problem is addressed in chapter 4. We introduce the multirate convolu-
tion system to solve the long convolution problem. It is known that multirate filter banks have a
close relationship with short-time Fourier transforms and fast convolution schemes [Vet88]. We
elaborate this relationship in terms of combined algorithm development and architecture design.
The result is a design methodology that allows direct mapping of an algebraic specification of
signal processing algorithms - here multirate convolution - onto prototyping architectures or
dedicated VLSI processors. This mapping is obtained by transformations of graphical represen-
tations rather than by manipulating multi-indexed formulas.

In chapter 5 we show the exact relationship between the multirate convolution system
and block-signal processing algorithms. The latter are traditionally used to solve the long
convolution problem, the so-called overlap-add and overlap-discard methods. Here we exploit
the graphical representation to map the long convolution onto a highly regular architecture based
on short FFTs. This is in fact a schematic description of the multirate convolution system.

In chapter 6 we implement the multirate convolution system in an efficient VLSI hardware
architecture. The first stage in the design trajectory is the design of a prototype architecture of
the convolution processor based on off-the-shelf DSP components. This stage is essential to
gain hands-on experience in the mapping of the system onto hardware. Based on the prototype
architecture a single-chip convolution processor is designed. The chip convolves up to a
maximum of 8 Ksamples convolution length with an effective data rate of 2 Msamples/sec.
This performance compares roughly to an off-the-shelf DSP board. However, it is obvious that
the size and power consumtion of a DSP board is much more than the size and power consumtion
of a single chip. Moreover, the convolution data rate of our chip can be increased by parallel

UERS-1 is a satellite Remote Sensor of the European Space Agency (ESA).
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processing. The used arithmetic is based on a hybrid floating point data format.
In chapter 7, we round off this thesis. We briefly address how the main results of this
thesis are implemented. Also we give some hints for solving some open problems: motion

compensation and autofocusing.



CHAPTER 2

INTRODUCTION TO SAR
PROCESSING

2.1 Introduction

The performance of the SAR processing strongly depends on the parameters of the SAR antenna
systemn, such as wavelength, antenna size, etc.. But the platform parameters are as important as
the antenna system parameters. Examples of platform parameters are speed and altitude as well
as unpredictable platform motions. All have their impact on the signal processing effectiveness,
and that is what this chapter is about: the description of SAR in terms of system parameters,
such that we can determine processing strategies.

In this chapter we will concentrate on purely predictable SAR system parameters and their
impact on the processing of SAR data. In fact, these parameters are basic to the SAR principle.
The movement of the SAR platform with a certain constant speed introduces a Doppler effect.
This Doppler effect is implicitly exploited in enhancing the resolution of a SAR image in the
direction of the movement. This principle was first mentioned by Sherwin in 1952 [SR62], and
has been validated in later years by e.g. Cutrona et al [CVLH61].

However, the system parameters introduce also some unwanted side-effects, such as range
migration and range-dependent attenuation. The first effect is caused by the fact that the echo
signal of a point on the ground, is shift-variant in range direction. Only in case of low-quality
SAR imaging this effect might be negligible. Otherwise we have to introduce 2D processing
techniques to compensate the range migration effect. The second effect is a result of the free
space attenuation of the electromagnetic waves. The analysis of the attenuation in relation with
transmitted power and system noise gives the boundary condition of the maximum range of the
SAR system.
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SAR system
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Impulse Acquisition system Reconstruction system SAR system

impulse response

Figure 2.1: The modelling of the impulse response of the SAR system. A denotes the impulse
responses of the SAR acquisition system, which includes the transmitter, the atmosphere, the
receiver, and the A/D conversion. R denotes the impulse response of the reconstruction system:
the SAR imaging system.

The SAR system specifications can be determined from the so-called SAR system impulse
response. To determine the SAR system impulse response, it is generally assumed that the
imaged surface contains a single point target, which is illuminated by the antenna beam. The
mathematical equations required to reconstruct the point target can be obtained from the analysis
of the radar returns from this point target. The complete system is shown in figure 2.1, where
A stands for the impulse reponse of the data acquisition system and R stands for the impulse
response of the reconstruction system, also called the SAR imaging system.

The objective is now clear: find a mathematical description of the SAR acquisition system
A and determine from this the reconstruction system R. Of course, in the ideal world R would
be the inverse function of A. However, in the real world this inversion is hardly possible due to
system limitations such as the limited bandwidths in both range and azimuth direction and the
appearance of thermal noise within the echo signal.

The viewpoint we take in this chapter is the classical Doppler viewpoint, which is well-
understood and well-described in the literature (excellent references are e.g. [Cut70, Olig9,
CMO1]). We do not intend to introduce any novel viewpoint on the SAR principle, we shall
however strive for a novel viewpoint on development of fast and small hardware architectures
for the SAR processing. Nevertheless, in appendix A we will give a brief description of SAR
from a matrix algebraic viewpoint, see [BD92].

The line of thought of this chapter is along the step-wise analysis of SAR data, leading to a
parametric description of the impulse response of the ideal SAR system. The Doppler viewpoint
is reviewed in section 2.2, where also some fundamental conditions of the SAR parameters are
examined. In section 2.3 the signal processing technique known as pulse compression is
reviewed. It achieves enhancement of the resolution in the radar look-direction. In section 2.4 it
is shown how the Doppler effect can be exploited to enhance the resolution in the flight direction.
Including the range migration in this description results in a model of the SAR system impulse
that is presented in [WLJ82].
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flight trajectory

Figure 2.2: Geometry of the SAR system.

2.2 Doppler Analysis

In this section we take a closer look at the fundamentals of synthetic aperture radar. We analyze
the radar returns in terms of Doppler shifts. This will lead to the high-resolution imaging
property of SAR. In the analysis we assume perfect conditions, i.e. we describe the steps
that are required in SAR processing mathematically, thereby neglecting the inaccuracies due to
range-dependent attenuation, range migration and unwanted platform motions.

Geometry

The geometry of the SAR system that we will consider is shown in figure 2.2. The moving
platform will be an aircraft. Let points in 3D space be specified in Cartesian coordinates
(z,y, z). The earths surface is represented by the zy-plane, and the antenna platform is moving
with speed v along the straight flight trajectory {(z,y, z)|y = 0,z = k}, where h is the altitude
of the platform above the earths surface. The relation between the platform’s z-coordinate and
its speed is given by z = vt, where ¢ is the time variable. The elevation of the antenna beam is
measured by the angular inclination 6, relative to the z-axis. The squint of the SAR antenna is
the deviation of the radar look-direction from the yz-plane. It is measured by the squint angle
7, see figure 2.2. During the flight the SAR continuously transmits pulses and receives their
echoes. The points on the ground that are illuminated by the successive pulses during the flight
are referred to as ground swath. In SAR processing it is customary to use the terms range and
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Figure 2.3: The simplified geometry in azimuth of the SAR system. A is the beamwidth of
the physical antenna in azimuth. The point target is within the antenna beam as long as the
z-coordinate of the antenna position is within the interval (Tmin, Tmaz)-

azimuth. Range is defined as the distance between the antenna and a point on the zy-plane.
Azimuth is defined as the direction along the line of flight of the aircraft.

The SAR signal space is usually taken to be temporal and two-dimensional, that is, it is
expressed by the 2D time variable (¢',t). The variable ¢’ is related to the round-trip of the
transmitted signal and is roughly confined to time-intervals of ©(10~*) seconds. The variable
t is related to the movement of the platform and is confined to time intervals in the order of
seconds or more. They are linearly related to the two spatial variables of the so-called object
space: the terrain that is to be imaged. The 2D object space is characterized by the range and
azimuth variable (R, z). In the following we derive the relations between the variables.

The 2D echo signal

Let p(t) be a single pulse, non-zero in the time interval (—7,/2, 7,/2) and zero otherwise, where
Tp is the pulse width. The pulse is transmitted in range direction. Let f,; be the pulse repetition
frequency, then the time interval between two subsequent transmitted pulses, also called the
inter-pulse time, is Tp, 5 = 1/ fprs. Lett;,1=---,—1,0,1,- -, be the time instants at which the
pulses are transmitted, using a carrier frequency w,. For each z, the transmitted signal is then

si(t) = p(t —ti)exp(jwet) @1

It is convenient for the Doppler analysis to assume that y = 0, see figure 2.3. The case v # 0
will be discussed in section 2.4. Furthermore, let z; = vt; be the z-coordinate of the antenna
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position at ¢; and assume, for convenience, that to = 0 and thus also zo = 0. Consider a point
target on the ground with z-coordinate zero. The distance between the antenna position and the
point target is function of the time, and denoted as R(¢). The nominal range Ry is defined as
the distance between the antenna and the point target at to, and thus in this case Ro = R(0).

Let D be the length of the physical antenna in azimuth and let A = 27 ¢/w. be the wavelength
of the carrier wave, then the physical half-power beamwidth in azimuth is A = A/D [Cut70].
In practice, ( is small, thus the spatia/ beamwidth of the antenna beam in azimuth at distance
Ry, say L;ium, approximates

Litum = BRo = RoA/D 22

Let Zrmin/mas = Vlmin/maz = + L Litum =+ RoA/2D, see figure 2.3, then the pulse transmitted
at ; 1s reflected back to the antenna if z,.;, < z; < T,q.. We consider all z for which the latter
inequality holds.

If the atmospheric attenuation is assumed zero, then, for each 7, the echo signal is a shifted
version of s;(t), where the shift is determined by the round-trip delay of the transmitted signal.
Let c be the speed of light, then the round-trip delay of the pulse transmitted at ¢; is 2R(t;)/c.
For each i, the echo signal received by the antenna is then

Si(t == 2R(t,)/c) jand p(t —t; — 2R(t,)/c) exp(—ijZR(t,-)/c) (23)

In the latter expression we have omitted the term exp(jw.t), since it bears no additional infor-
mation of the point target and is removed by demodulation. Thus, the 1D echo signal of the
subsequent pulses is the summation

D si(t —2R(t:)/c) ~ Zp(t —t; — 2R(t;)/c) exp(—jw.2 R(t;)/c) 24

1

However, since SAR is an imaging radar, we rather work with a 2D echo signal. If we use the
substitution ¢ — ¢; « t', for all z, with t' < Ty, then we can write the 2D echo signal as

e(t't;) A& si(t +t; —2R(L:)/c) ~ p(t' — 2R(t:)/c) exp(—jw.2R(t:)/c) @5)

In practice, this means that for each transmitted pulse, the pulse echo is acquired until the next
pulse is transmitted. The acquisition time per pulse echo is thus limited by the inter-pulse time.

Doppler frequency

If the distance between the signal source and the signal receiver changes in time, then it induces
a frequency shift of the received signal, known as the Doppler shift or Doppler frequency. This
Doppler frequency is proportional to the change in distance between source and receiver. Since
the radar moves during the transmission of the subsequent pulses, the distance R(;) changes
in t; and thus the phase of the echo signal changes in ¢;. This induces a Doppler shift in the
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(40

(@ (®)
Figure 2.4: The phase history ¢(t), (a), and the Doppler frequency f,(t), (b), of a point target.

azimuth direction of the echo signal. Thus, since the echo signal is discrete in the azimuth
direction, the sampling frequency f,, s must satisfy the Nyquist criterion to prevent aliasing. At
this point, though, we are only interested in the Doppler shift in azimuth. We simply assume
that f,, s satisfies the Nyquist criterion. To simplify the Doppler analysis we consider the echo
signal time-continuous in azimuth, thereby omitting the index i, i.e., t = ¢; and z = ;.

Since the Doppler shift is completely determined by the phase history of the point target
@(t) = —w 2 R(t)/c, it is sufficient to use the simplified echo signal

e(t) = exp(—jw:2R(t)/c) 2.6)
Then the Doppler frequency can be derived as the derivative of the phase history
1d 2d
fut) = 5-gelt) = >3 R0) @
In general Ay > |z|, for all Z,ir, < T < Zonaz, then, from figure 2.3, we have
242 44
e JR 12— B e, 2.8
R(t) Ri+«z R°+2Ro 838+ 2.8
Thus we can approximate equation (2.8) as
v2t?
t) = — 29
R(t) = Fotgp 2.9)

up to an error term O(v*t*/8 R,). This means that the phase (t) is approximately quadratic in
t, and the Doppler frequency approximates to

fat) = —— (2.10)



18 INTRODUCTION TO SAR PROCESSING

The phase and the Doppler frequency of the echo signal of the point target are shown in
figure 2.4.a and 2.4.b, respectively. The corresponding Doppler bandwidth B, is the difference
between the minimum and maximum of the Doppler frequency

2v2(tma:r - tmin) _ 2U-Lillum 2v

By = |fultmez) — fi(tmin)| = N =Sk - D 2.11)

2.3 Pulse Compression

In the previous section we neglected the pulse width 7,. This is allowed if we can accomplish
a sufficiently small pulse width 7, so that p(t) approaches a dirac signal. In practice, however,
the minimum feasible pulse width is relatively large, due to physical limitations in antenna and
transmitter components. Still, there are a number of design considerations which must be taken
into account [Sko85]. The two most important considerations in SAR are:

o The signal energy must be high enough to detect targets (resolution cells) at the specified
range and in the presence of noise.

o The range resolution must meet its specification. Often it is specified that the range
resolution must be equivalent to the azimuth resolution.

The combination of these two items implies a very short pulse with high peak power. This is
not feasible in practical radar systems.

The key solution to this problem is to transmit a pulse with a specific waveform, such that
a long pulse can be ransmitted with high energy but low peak power. After receiving the echo
the resolution and signal-to-noise ratio can be enhanced by means of signal processing: the
so-called pulse compression. In radar, pulse compression is generally performed by means of a
so-called matched filter, i.e., the received echo signal is correlated by a replica of the transmitted
pulse. The principle of matched filtering has its origin in information theory [Nor63], and is
used to detect a known signal in the presence of noise.

We briefly summarize the principle of matched filtering for our case. For a concise derivation
of the matched filter principle, we refer to [Pap84]. Let p(2) be the transmitted pulse and let n(t)
be additive white noise with zero-mean. Let e(t) = p(¢ — t,) + n(t) be the received echo signal
of the shifted pulse, reflected by some point target in the antenna beam. Note that the distance
between the antenna and the point target is proportional to the shift ¢,. The objective is now
to detect the pulse echo within the signal e(t) and to localize it. This can be accomplished by
filtering the received signal with the matched filter having the impulse response k(t) 2 p*(—t).
Lety(t) = h(t)* p(t —t,) + h(t) * n(t) & y,(t) + ya(t) be the output of the matched filter. Then
the matched filter maximizes the ratio between |y, (t,)|* and the expected noise power E|y,(t)[*
at the output of the matched filter. The peak is located at t,,.

However, the matched filter does not enhance resolution per se. Resolution enhancement
by matched filtering can be accomplished by transmitting a waveform with an autocorrelation
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function that approximates a dirac function. Many waveforms are known [Del70], but commonly
used in SAR is the linear frequency modulated (FM) pulse, also known as the chirp signal. Let
p(t) be a linear frequency modulated pulse with frequency varying linear in time, ot/7, and
pulse width 7,. Then we define

p(t) = exp(jat®), for —ir, <t <im (2.12)

-

and zero otherwise. « is called the chirp-rate. The bandwidth of a linear FM pulse is B, = a,/.
Matched filtering of the chirp results in a sinc-function

/p‘(-r)p(t —71)dr =~ sinc(27 B,t) 2.13)

Two examples are given in figure 2.5. Observe that the waveform is the same as in figure 2.7,
which is the reason why the matched filter is also commonly used for azimuth compression.
Furthermore we can see that for larger time-bandwidth product 7, B, the spectrum of the linear
FM pulse becomes more and more rectangular.

It remains to derive the range resolution after the received pulse echo has been processed by
the matched filter. Here we use the fact that for large time-bandwidths 7, B,, the power spectrum
is approximately rectangular with bandwidth B, [Del70]. The resolution is then defined as the
half-power width of the sinc, which approximates 1/B,. The range resolution, say p,, is then
the two-way spatial half-power width of the compressed pulse

mec

pr = i¢/B, = (2.14)

2aT,

Observe that the ratio between the width of the pulse, 7,, and the width of the compressed pulse,
1/B,, equals the time-bandwidth product 7, B,. Therefore the time-bandwidth product of the
pulse is also called the pulse compression ratio.

2.4 Azimuth Compression

Before we proceed with the exploitation of the Doppler bandwidth in SAR imaging we introduce
the optimum azimuth resolution. Consider the situation as shown in figure 2.6 where there are
two adjacent point targets with equal nominal range Ro. Let their z-coordinates be 0 and
& = v&, respectively. We assume that throughout the time that the point targets are within
the antenna beam, the azimuth echo signal is acquired. The optimum azimuth resolution' of
a side-looking imaging radar is the minimum spatial distance & between two adjacent point
targets, for which they still can be discriminated within the echo signal in azimuth direction. We

We assume that resolution of a radar image is user specified within certain boundaries, one of them being the
optimum resolution, that is, it is the best one can get given the system parameters.



20 INTRODUCTION TO SAR PROCESSING

chirp, real part
i
:L.S 0.4 -03 02 -0.1 0 0.1 02 03 04 0.5
time (usec)
spectrum
. IF i
E
S 05F b
g
S0 40 30 20 -0 0 10 20 30 4
frequency (MHz)
correlation result
!
£o0s
i} I —
-05 04 03 -0.2 01 1] 0.1 02 03 04 0.5
time (asec)
(@)
chirp, real pant
1
o W\]\/ \/\M
25.5 2 -1.5 -1 0.5 0 0.5 1 15 2 35
time {usec)
spectrum
'ﬁ 1F v v
._E
05k
§
50 40 <30 220 -10 0 10 20 30 40
frequency (MHz)
correlation result
1
£ 05
0.5 04 0.3 0.2 0.1 o 0.1 0.2 0.3 0.4 0.5
Lime (usec)
()

Figure 2.5: Two examples of linear FM pulse: (a) 7, = 1 usec, o = 6.28 x 10'* and 7, B, = 20
and (b) 7, = 5 psec, a = 3.14 x 10" and 7, B, = 250.
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Figure 2.6: Two adjacent point targets with equal nominal range R and at relative distance &
in azimuth direction. L;,, is the length of the antenna beam in azimuth at nominal range Ro.

assume that this is the spatial half-power beamwidth of the antenna (either a real aperture or a
synthetic aperture antenna) on the ground. We usually denote the optimum azimuth resolution
by p, whereas the azimuth resolution of the SAR image is denoted by &. The difference
between p and &z is that p is a SAR acquisition system parameter and & is a SAR reconstruction
system parameter. Le., in our case p is given, and & is specified (either by the designer of the
reconstruction system or by the end-user), with the condition that & > p.

A radar system that images the 2D radar echo signal without resolution enhancement in
azimuth is called a real aperture radar or a side-looking airborne radar (SLAR) system. Let p
be the optimum azimuth resolution of this system at nominal range Ry, then, according to the
definition of the optimum azimuth resolution,

p = Liwm = RoA/D 2.15)

Despite the relatively narrow azimuth beam 3 = A/D, in SLAR systems p can be quite bad,
typically O(100) m for airborne systems. This is caused by the relatively large nominal range
Rp. The resolution in range can be much better, typically O(1) m. Moreover, p depends on
system parameters as wavelength and range, which is not desirable.

Optimum azimuth resolution of SAR

Using SAR we can achieve a much higher azimuth resolution, typically O(1) m for airborne
systems, which is also independent of the wavelength and the nominal range. There are many
viewpoints from which the SAR principle can be derived, all yielding "more or less" the same
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expressions. We do not wish to be complete here, in that we simply adopt one viewpoint which is
illustrative in our opinion. For other viewpoints we refer to, e.g., [Cut70, Har70, Hov80, CM91].
Substitute equation (2.9) into equation (2.6), then the echo signal of a single point target is

A v
e(t) = exp N 2R

We assume that e(t) is defined in the interval (£;min, tmas) and is zero otherwise. In [Del70], it was
shown that if the time-bandwidth T, B, of e(2) is sufficiently large (say > 10, see [CM91]), then
the power spectrum of e(t) approximates a rectangular with bandwidth B,. Note that the power
spectrum of e(t) is the Fourier transform of r(t) = e*(—t) * e(t). Thus, conversely, if r(t) has
a rectangular real Fourier transform with bandwidth By then r(t) ~ sinc(27 Byt). We consider
the width of the main lobe of |r(t)[?, which is approximately 1/B;, as the optimum temporal
azimuth resolution. Then the optimum azimuth resolution of the SAR, say p,, approximates to
p. = v/ By. Using equation (2.11) for the Doppler bandwidth, we obtain

(2.16)

pa = v/Bs = D/J2 2.17)

which is the usual expression for the optimum azimuth resolution of SAR. Better resolution in
azimuth can thus be accomplished by filtering the echo signal with

' AT v*t?
a(t) = e"(—t) = exp (JTZRO) (2.18)
We refer to a(t) as the impulse response of the 1D azimuth filter.

An advantage of SAR over SLAR is that p, is independent of the nominal range and
wavelength. It depends only of the length of the physical antenna. The latter should be no
surprise: the smaller the antenna, the larger the Doppler bandwidth, see equation (2.11), and thus
the smaller p,. The duration of the time interval needed to acquire echo signal, T, = t,00 — tmin,
is called the synthetic aperture time or simply aperture time. For convenience, we assume that
tmin = —1T, and tn,., = 4T,. Cormresponding to this synthetic aperture time the synthetic
aperture length is defined as

La = Tmaz — Tmin = 'UT,, = -RO)‘/D = Li”um (219)

We can also relate the synthetic aperture length with the optimum azimuth resolution p,. From
equation (2.11) follows that T, = 1 ByARo/v?. Thus, with p, = v/Bj;, we have

L, = vT, = 1ByARo/v = {ARo/pa (2.20)

If we compare the optimum azimuth resolution p of SLAR with the optimum azimuth
resolution p, of SAR, we have achieved a resolution improvement factor p/p,. Using p =
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Figure 2.7: Simulated azimuth echo signal (real part) with antenna pattern and its real aperture
resolution (dashed line) and the synthetic aperture resolution. The used radar parameters are:
A =0.057m, v =100 m/sec, Ry = 10 km, and T, = 1 sec.

Lijjym = vT, and p, = v/ By, it follows that this improvement is equal to the time-bandwidth
product T,B;. This resolution improvement factor can be up to O(10*) in practical SAR
systems. It is illustrated in figure 2.7, where we have used simulated azimuth echo data.

As we have mentioned implicitly, obtaining the autocorrelation signal from the echo signal
yields the optimum azimuth resolution p,. Observe that, if we model the point target by a
dirac function, then the echo signal e(?) is, in fact, the impulse response of the simplified SAR
acquisition system. To accomplish a high resolution SAR image, the received echo signal
should thus be correlated by the known impulse response of the SAR acquisition system. The
correlation of the received echo signal with the known impulse response ¢e(t) is called azimuth
compression. A useful side-effect of the azimuth compression is that it is equivalent to matched
filtering, which is an optimum detector of a known waveform (such as the impulse response) in
the presence of noise, see section 2.3.
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Depth of focus

The depth of focus is a phenomenon that results from the range dependence.As we have shown
above, for each nominal range R, we should use a different azimuth filter. Consider the azimuth
echo signal corresponding to nominal range Ko. Suppose that the azimuth filter is optimal for
nominal range Ry + éR, i.e., we have a mismatch 6 in nominal range. Itis useful to know the
effect of the mismatch in nominal range on the reconstructed signal. The depth of focus is the
relation between the mismatch in nominal range and the azimuth resolution.

From equation (2.16) we see, that the mismatch éR in nominal range corresponds to a
mismatch & in the phase of the impulse response of a point target at nominal range Ry and the
azimuth filter. Let

47 2
1) = ——— 2.21
o(t) X 2R 221
be the phase history of a point target at nominal range R,y. Then the phase mismatch is
4 v 47 v2?
o = -~ 4+ 2.22)

X 2(Ro+6R) ' X\ 2R,

If |6R| < Ry, then the phase mismatch approaches & = —(t)éR/Ro. Observe that |p(t)] is
maximum for ¢ = ¢,,in/mez = {To. Thus

|6 Ro| rv2T?2
= + lTa. —_— = 2 5 22
From equation (2.20) we have T, = ! ARy /vp,. Substitute T}, in equation (2.23), then we obtain
A
= —1& 2.24
ol = g19%l 224)
If we allow a maximum phase mismatch of + 7 /4 [CM91], then we have
2 2

joR| < = 2.25)

From the Jatter term we derive what is called in the literature the depth of focus
ARy 2 4p%/X (2.26)

The depth of focus is a criterion for the maximum mismatch in nominal range of the azimuth
filter and the azimuth echo signal that is allowed, given the wavelength and optimum azimuth
resolution. In practice, this means that we can use one azimuth filter assigned to nominal
range Ry to process the azimuth echo signals assigned to an interval of the nominal range
(Ro — 1ARy.z, Ro + LA Ryy). For example, if A = 0.057 m (the wavelength corresponding to
C-band) and p, = 2 m, then the depth of focus is A R4,y = 140 m.
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Figure 2.8: The geometry in azimuth of the SAR system with non-zero squint angle (2) and the
non-constant range R(t) of a single point target as function of the time (b).
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Range migration

Until here we have used the simplified echo signal e(t), thereby neglecting the shift in p(t' —
2R(t)/c). It allowed us to analyze the Doppler frequency of an echo signal in azimuth of a
single point target along a straight line parallel to the z-axis. However, in general this is not the
case, especially if the squint angle is non-zero. In this section we derive the general descriptions
of the SAR acquisition system A and SAR reconstruction system R for non-zero squint angle .

Consider the geometry in azimuth of the SAR system in figure 2.8.a. Assume between
tmin = —1T, and t,,.; = 1T, a point target with z-coordinate z, is illuminated by the antenna
beam. We assume that at ¢ = 0 the distance between the antenna and point target is the nominal
range Ry, thus z, = Ry sin y. Let x = vt and define t, = x,/v. From figure 2.8.a we can derive
the extended version of equation (2.8)

R(t) = \/R3costy + (2, — &)2 = \/R} — 2z Rosiny + 2 227)

Let |siny| < 1, then we have Ry < /|22 Rosin~y — #?|. Thus R(t) approximates to

242
R(t) = Ro—vtsiny + % & R+ AR() (228)

In figure 2.8.b R(t) is shown as function of ¢. The linear decline of R(t), called the range walk,

depends on the squint angle -y, and the non-linear decline of R(t), called the range curvature,

depends on the aperture time 7,. The range migration is illustrated in figures 2.8.a and 2.8.b.
Substitution of R(t) into equation (2.5) gives

e(t,t) = p(t'—2AR(t)/c)exp (—j4rAR(t)/)N) (2.29)

To simplify the notation, we have applied a shift ' — 2 Ry/c « ¢’ in equation (2.29). This does
not affect the analysis, as the location of the origin of ¢ is only a matter of reference. Equation
(2.29) is the 2D echo signal of a single point target. If we model the point target by a dirac
function and if we neglect the atmospheric attenuation, system losses, etc., then e(#, ) is, in
fact, the 2D impulse response of the SAR acquisition system A.

At this point we obtain the 2D impulse response of the SAR reconstruction system R. The
first step of the reconstruction is the range compression.> Let g(t',t) be the 2D echo signal,
correlated with a replica of the transmitted pulse p(t'). Assume that p(t') is the chirp signal with
bandwidth B,, as described in section 2.3.

g(t',t) = /p'(—r)e(t'— T,t)dr
~ sinc 27 B,(t' — 2AR(t)/c)) exp (—jAr AR(t)/)) (2.30)

’In SAR it is customary to use the term range compression for pulse compression.
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Observe that the peak of the position of the sinc-peak varies in ¢, due to the range migration.
Obviously, this shift can be eliminated by convolving g(', ) over ¢’ with a dirac signal (¢’ +
2AR(t)/c). Let g'(t', t) be the echo signal after the range migration compensation, then

gt = /6(1' + 2AR(t)/c)g(t' — T, t)dr
9(t' +2A(t)/,t) ~ sinc 2w B,t') exp (—j4r AR(t)/)) (2.31)

Another side-effect of the range migration we must take into account is that the Doppler
spectrum (i.e., the spectrum in azimuth direction) is shifted. This frequency offset, say fy,
is called the Doppler centroid, as it is the center of the Doppler spectrum. The Doppler
centroid is the constant term in the derivative of the phase history of the point target. Let
@(t) = —4r AR(t)/ ) be the phase history, see equation (2.30), then

1d 2d 2usiny  2v%t
—— () = —=— - =
g’ ® g M) X AR,

Thus fq. = 2vsin /). The second term is recognized as the Doppler frequency shift f,(2), see
section 2.2. The derivate of the Doppler frequency shift f,(¢) is also called the Doppler rate
fr = —2v*/)Ro. Note that the Doppler bandwidth is still fi(tmaz) = fa(tmin) = Ba.

A consequence is that the azimuth filter should also contain this frequency offset. Then, using
the azimuth filter a(t) derived in section 2.4, the 1D azimuth filter in this case is a(t) exp(27 fu.t).
Thus, convolving ¢'(t', t) with this azimuth filter over ¢, gives the reconstructed signal r(t',t)

(2.32)

r(tt) = f a(r)exp(2r fut)g' (£t — T)dr = sinc(27B,t')sinc(2rBat)  (2.33)

Observe that we have derived the sinc functions sinc(2r B,t') and sinc(27 Byt) earlier in sec-
tions 2.2 and 2.4, respectively.

Of course, we can also combine the compensation for the range migration and the azimuth
compression. Then we should use the 2D azimuth compression filter

a(t',t) = a(t)exp(2m fit)8(t' +2AR(t)/c) (2.34)

Obviously, the 2D impulse response of the SAR reconstruction system is thus p*(—t)a(t, t).
Notice that this impulse response represents, in fact, a 2D matched filter.

We have stated in section 2.1, that in the ideal world R would be the inverse of A. The
reconstruction system R as we have determined, approaches the inverse A™', if B, and B, both
approach infinity. Indeed, in designing high resolution SAR systems, bandwidth increment has
in general a high priority. The impulse response of the reconstruction system, the 2D matched
filter, is optimum in terms of signal-to-noise ratio, however, it does not minimize the square
error of the desired signal (the reflectivity map of the imaged surface) and the reconstructed
SAR image. In appendix B we propose an alternative filter, that performs suboptimum in terms
of signal-to-noise, but yields the minimum mean square error.



CHAPTER 3

SAR PROCESSOR
SPECIFICATIONS

3.1 Introduction

Typical developments of the last decade in the field of SAR processing can be divided into two
areas: two-dimensional high-resolution SAR processing algorithms, e.g., [Cen88, FS90, CPR91,
RRB*94], and dedicated real-time SAR processing hardware, e.g., [Mor92, DICM92, Bie93].
In the first area the ongoing progress in the general purpose computer hardware is exploited
by development of complex two-dimensional SAR processing algorithms. The objective is to
achieve high-resolution SAR images, whereas processing speed is of minor importance. In the
second area dedicated hardware is developed for real-time on-board airborne SAR processing.
Although it has lower priority in real-time on-board SAR processing, image quality becomes
more and more important. For example, in [Mor92, Bie93] an attempt is made to balance
between algorithm and architecture design, which should lead to an optimal SAR processor.

The objective of this chapter is to give a brief introduction in the design aspects of a real-
time SAR processor. We translate the SAR acquisition system parameters determined in the
previous chapter, to SAR processing parameters. We do not intend to design a generic real-time
SAR processor, in that, we restrict ourselves to antenna systems having small squint angles and
narrow azimuth antenna beamwidth (both in the order of a few degrees). The justification of this
restrictions is in the fact that the work presented in this thesis is strongly related to the PHARUS
system. PHARUS stands for Phased Array Universal SAR and is a fully polarimetric C-band
airborne SAR with an active antenna array. The PHARUS system employs yaw steering to
minimize the squint angle, and has a small azimuth antenna beamwidth in the order of 2°. More
details about the PHARUS system are given in section 3.3.
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Figure 3.1: Typical airborne SAR processing chain.

Due to the small squint angle and the narrow beam, range migration effects are limited.
As a consequence, we can perform the basic SAR processing algorithms (range and azimuth
compression) using 1D fast convolution techniques. The azimuth compression approach is
related to the so-called Hybrid Correlation approach [WLJ82]. It performs a 2D convolution,
hereby utilizing fast convolution in azimuth direction and time domain convolution in range
direction. This approach has the advantage that data flows and memory management remain
relatively simple, so that we can focus on the design of srmall and high speed SAR processing
hardware. Since the approach is straight-forward, the processing is robust and the effects on the
SAR image quality are well-understood.

Our lead is a typical airborne SAR processing chain, shown in figure 3.1. In section 3.2 we
translate the SAR parameters to SAR processing parameters. We describe them per functional
block, except for the motion compensation and the autofocusing, which are beyond the scope
if this thesis. We simply assume that motion compensation and/or autofocusing is performed
and that it satisfies our needs. Nevertheless, in appendix C a brief description of motion
compensation and autofocusing aspects are given. In section 3.3 we show the usefulness of the
processing parameters by a design example: a real-time SAR processor for PHARUS. The result
of this section is a set of specifications for real-time SAR processing hardware, such as range
and azimuth compression data rates, number of looks, filter sizes and data reduction factors. In
section 3.4 we show that our approach does not only apply to the PHARUS system. We specify
areal-time SAR processor for the ERS-1 satellite SAR system.
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3.2 SAR Processing System Parameters

In this section we assume that the raw SAR data is sampled in range and azimuth. we assume
that sampling frequencies in range and azimuth, say f, and f,, respectively, satisfy the Nyquist
criterion. Thus, let B, be the pulse bandwidth and let B; be Doppler bandwidth, then f. > B,
and f, > B;.! Note that in section 2.2 we have interpreted the pulse repetition frequency fp,s
as the azimuth sample frequency. In many airborne SAR systems, however, f, s is substantially
larger than the Doppler bandwidth. The azimuth sample frequency f, is then obtained by
bandpass filtering and decimation of the azimuth echo signals, i.e., f,,; is then a multiple of
fa- It is assumed that the reception time per pulse echo is limited and thus the length of the
pulse echo is limited. We denote the length of the discrete pulse echo by NV,. In practice, N, is
O(10%) up to O(10%).

Range compression

Let the transmitted pulse be the chirp signal as defined in equation (2.12), with pulse width 7,
and bandwidth B,. Let ¢, be the sampling period in range, then the length of the discrete pulse
replica is N, = 7,/t.. The advantage of discrete range compression is that the pulse shape can
easily be modified. For example, we can use a shorter pulse replica. A property of the chirp
signal is that its bandwidth is proportional to its length. Recall that the optimum range resolution
pr 1s inverse proportional to the pulse bandwidth, see equation (2.14). Thus, a shorter pulse
replica vields a degraded resolution. In this way we can specify a suboptimum range resolution,
say &r > p,, which is accomplished by correlating the received pulse echoes with a pulse replica
with length reduced with a factor é&/p,. This is illustrated in figure 3.2.a. Moreover, since the
bandwidth of the pulse replica is also reduced with a factor ér/p,, the range sample frequency
might also be reduced after the range compression. Thus, if we require a suboptimum range
resolution, data reduction (and thus data rate reduction) can be achieved.

Another important advantage of discrete range compression is that it allows the application
of weighting. By windowing the pulse replica, the peak side-lobe ratio (PSLR) can be improved.
The PSLR is defined as the ratio of the largest side-lobe peak to the main-lobe peak [CM91]
and is usually expressed in dB. Some examples of pulse compression and weighting are shown
in figure 3.2.b. Clearly, reduction of side-lobes results in an increase of the resolution. The
increment factor of the resolution for different types of windows can be found in [Sko85].

Azimuth compression

Given the 1D azimuth filter as defined in equation (2.18). Let t, be the sampling period in
azimuth, and observe that the filter length is the aperture time 7}, then the length of the discrete
1D azimuth filter is IV, = T, /t,. Equation (2.20) gave the relationship between the aperture

'Note that the sample frequencies are defined for complex signals.
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Figure 3.2: Pulse compression with a pulse replica length 7, = 5 usec (straight line) and
T, = 2.5 psec (dotted line) (a), and the effect of weighting: uniform weighting, PSLR=13 dB

(straight line), cosine weighting, PSLR=23 dB (dashed line) and hamming weighting, PSLR =
43 dB (dotted line) (b).
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time 7T, and the optimum azimuth resolution p,. If we specify a suboptimum azimuth resolution
& > p,, then the aperture time is reduced to T, = *!ARo/é&cv. Thus a factor éz/p, reduction of
the discrete azimuth filter length is obtained. Similar to the range compression, this also yields
a factor &/ p, bandwidth reduction after azimuth compression, and thus data reduction can be
achieved.

The update rate of the azimuth filter depends on the depth of focus. Given the suboptimum
azimuth resolution &, then the depth of focus is A Ry,; = 4&x%/). Let ¢, be the sampling period
in range, then the sampling distance in range is d- = ict,. Then updating of the azimuth filter
is only required for every Ngf & ARy,¢/d subsequent range bins.

As we have mentioned in section 2.4, range migration compensation might be required. It
depends on the maximum decline of R(t) = Ro + AR(t). Let é& be the suboptimum range
resolution. Then a sufficient criterion is that compensation is necessary if the maximum value
of AR(t) over the interval (—1T,, 4T,) exceeds ér/4 [CMI1]. Thus

2m2
v Ty = ﬁ
8Ry — 4

T, |sin y| + (3.1)

Substitute T, = 1A\ Ro/vée into equation (3.1), then we obtain that range migration compensation
is necessary if

Mo (| L)
?(|sm|+87[) > & (32)

This expression is called the range migration criterion. Given that A and +y are system parameters
and that Ry is bounded by some maximum R,,,., we conclude that the range migration criterion
depends on ér and 4.

The range migration compensation can be performed in various ways. We only consider the
straight forward method, that is, we perform the azimuth compression with the discrete version
of the 2D azimuth filter, see equation (2.34), which performs range migrations correction and
azimuth compression all at once. Let AR.,.;; be the maximum decline of R(t) over the interval
(—4iT,,1T,) and let d- be the sample distance in range, then the size of the discrete 2D azimuth
filter in range is Npyig = ARpig/d.

Corner turning memory

The comer turning memory is a device to store the range compressed data set. In general,
azimuth compression is performed on batches of azimuth echo samples, whereas the acquisition
of the azimuth echo samples is a continuous process at the rate of the azimuth sample frequency.
The function of the corner turning memory is briefly addressed here, where we consider the
following preliminaries. A range line refers to a discrete range compressed pulse echo. An
azimuth line refers to a the set of azimuth echo samples that corresponds to a specific range.
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Thus, the i** components of subsequent range lines forms the i** azimuth line. We have N, — N,
azimuth lines, which is the number of effective samples that results from the range compression
operation. In general we assume that an azimuth line is finite, which is then referred to as
an azimuth batch. The azimuth compression operates on azimuth batches, thereby using an
overlap-discard approach. The overlap is determined by the azimuth filter length N,. The
function of the corner turning memory is then: collect N, range lines and write all N, — N,
azimuth batches sequentially to the azimuth compression.

It is now obvious, that during the writing of the azimuth batches to the azimuth compression,
new range lines keep coming. Thus the corner turning memory should be dual-ported, and have
sufficient storage capacity to store the new range lines while writing the batches. This implies
a "ping-pong" memory structure: range lines are written in the "ping"-part of the memory and
azimuth batches are read from the "pong"-part of the memory. When the "ping"-part is full and
the "pong"-part is empty, they interchange the "ping" and "pong" functionality.

However, we must take into account the overlap IV,. Therefore, from hardware point of
view it is useful to use the concept of banking. This concept is explained by the following
example. Assume that the overlap is 50 %, and thus N, = 2N,, and consider the corner turning
memory with three banks. Each bank has size N, — N, x N,. Assume that at a certain moment
banks 1 and 2 have been filled, and bank 3 is still empty. At this point we start writing range
lines into bank 3, and in the mean we read the azimuth batches from banks 1 and 2. Obviously
we have a limited time to read the azimuth batches, namely N,/ f,, which is the acquisition time
of N, range lines. When the banks 1 and 2 have been read and bank 3 has been filled, the range
lines are written into bank 1 and the azimuth batches are read from bank 2 and 3. This concept
can readily be extended to more banks.

Obviously the output data rate is higher than the input data rate, thus we have a mismatch
between input and output data rate induced by the overlap. This effect is best described by the
utilization of the corner turning memory U, which is the ratio of the required input data rate
and the required output data rate. Observe that the utilization is completely determined by the
azimuth batch length N, and the length of the overlap N,

Ny — N,
U = A 3.3)
The measure of the utilization is in percents %.

The utilization is an important design parameter. For example, if the utilization approach
100 % we have large N, relative to N,. In general this means that the acquisition time N,/ f,
(which is the time required to acquire N pulse echoes) can be large. If we use the rough
estimation that azimuth compression of the azimuth batch requires N,U/ f, seconds, then we
have a latency

L = N(1+U)/f, (34

The latency £ is a measure for the time between the first appearance of a point on the ground
within the antenna beam and the imaging of that point on the display. Conversely, if we require



34 SAR PROCESSOR SPECIFICATIONS

a small latency, the utilization will be small. In that case V, is small relative to V,, but then the
efficiency of the processing drops dramatically.

Speckle reduction

A surface area within a SAR image with a constant backscatter coefficient op appears as a noisy
signal with mean 7, [UMF82]. This noise is referred to as speckle noise. Let z be the intensity
of a SAR image pixel with mean Z and variance v2. To improve the visual appearance of an
image, it is desirable to cluster the observed intensities z closer around z, which is equivalent
to reducing the standard deviation. If we assume that we have N; independent reahzauons 255

n =0,---, N, — 1 of an image pixel then the mean of the average zy, = (1/N)) Th'y' 2, is
unchangcd
1 Ni—- 1 N-
ZN, = Z Zm = Z Ez, =z 3.5)
n=0

whereas the standard deviation vy, is reduced by a factor /V,. This can be derived as follows

i
1/12\,‘ = E(ZN‘ _EM)Z = E(ZN, —Z = 12 Z E(Z,1 —Z) (I/IV‘)VZ (3.6)

n=0

The most widely used method to obtain V; independent realizations of a single pixel is to
generate multi-look images. Let the time instant t,, n = 0, - - -, NV}, be defined as

n

. =_ | [
t, = —iT,+ N T, (€N))
Then the aperture (—1T,,1T,) is subdivided into N; subapertures (¢,-1,%,), n = 1,---, N}.
The subaperture time is then 7,/N;. Azimuth compression with each subaperture results in NV,
independent images which are added incoherently. The resolution is then determined by the
length of a single subaperture, and thus decreased by a factor N, compared to the single look
image. However, from equation (2.11) we know that subdividing the aperture in NV, is equivalent
to subdividing the Doppler band into /N, subbands. Hence, the multiple looks can be generated
by azimuth compression with the full aperture (and thus full Doppler bandwidth) and filtering
with a bandpass filter to subdivide the Doppler bandwidth in JV, subbands. Let the frequency

fn,m=0,---, Ny, be defined as

fo = %(m—%’n) (3.8)

Then the n'* bandpass filter has bandwidth B, = 2v?T,/ARyN; and is defined over the fre-
quency band ( f,—1, f»). Both principles are illustrated in figure 3.3. The complexity of azimuth
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(@) (b)

Figure 3.3: Multiple look azimuth compression with V; = 3 (a) and full-resolution single look
azimuth compression with N; = 3 Doppler bandpass filters (b). The bandwidth of the bandpass
filters is equal to the bandwidth of the subapertures.

compression is mainly determined by the length of the data signal. The complexity of both
multiple look azimuth compression approaches are roughly determined by the azimuth compres-
sion. The bandpass filters in figure 3.3.b are in general short, thus the filtering complexity can
be assumed negligible. Since the approach shown in figure 3.3.a requires V; times an azimuth
compression, its complexity will be N times larger than the complexity of the approach shown
in figure 3.3.b.

Geometric correction

The main geometric distortion in a SAR image is caused by the non-linear relationship between
the temporal variable in range ¢’ and the spatial ground variable y. A side effect of the non-linear
relationship between t' and y is that the range resolution mapped on the ground, say &y, will
vary within the swath. Let ¢ = arccos(h/R), then this increase is due to the relationship
dy = &/sin ¢, see figure 3.4. &y would be worse than & for ¢ < 7/2. The mapping of the
SAR image onto a rectangular grid on the ground plane is also referred to as slant-to-ground
conversion.

3.3 Real-Time SAR Processing for PHARUS

In this section we derive the system parameters of a real-time on-board SAR processor for the
PHARUS system [HSKP92]. The PHARUS system is a fully polarimeteric C-band airborne
SAR. It has an active antenna array that consist of 48 Transmit/receive (T/R) modules. Each
T/R module has its own digital control unit that controls the phase and amplitude. It supports
the internal calibration of the antenna, in that, the T/R modules can be interchanged without
affecting the antenna beam. The antenna array has three clusters, each containing sixteen T/R
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Figure 3.4: Relationship between slant range resolution & and ground range resolution dy.

modules. Each cluster control calculates the individual settings per T/R module, depending on
the position of the module within the array, the required tapering, required beam steering, etc..
The antenna is modular, in that, clusters can be added.

An important property of the PHARUS antenna is that beam can be electronically steered.
For example, the drift of the aircraft can be compensated by yaw steering. But it can also be
used for advanced SAR modes, such as spotlight SAR and scan SAR. Spotlight SAR increases
the maximum aperture length by pointing the beam at a fixed spot on the ground, so that azimuth
resolution can be increased. Scan SAR illuminates multiple strips on the ground, so that the
maximum swath width increases.

The PHARUS is fully polarimetric, which means that each transmitted pulse can have a
horizontal polarization or a vertical polarization. The antenna receives both horizontal and
vertical polarized pulse echoes. In general, the polarization will switch from pulse to pulse,
thus we obtain four SAR echo data sets, usually denoted as HH, HV, VH, and VV (the first
capital stands for the polarization of the transmitted pulse, the second capital stands for the
polarization of the antenna during the recepetion of the pulse echo). The four data sets results
in four geometrically identical images. However, objects and areas within the image may differ
in their radiometric appearances, which is important for forest and agriculture classification
purposes and contrast enhancement of images.

SAR processor specifications

We assume that for on-board processing purposes it is sufficient to process one channel (in
general this is either the VV or HH data sets). The SAR processing specifications, see table 3.1,
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SAR parameters
wavelength A 0.057 m
pulse bandwidth B, 45 MHz R
Doppler band B, 146 Hz
squint angle 7 <3
pulse width T 12.8 usec
minimal range Roin | 7km
maximal range R.oz | 16 km
nominal speed v 150 m/sec
range sampling frequency fr 50 MHz
azimuth sampling frequency f, 625 Hz

Table 3.1: PHARUS system parameters.

are based on the PHARUS high-resolution non-polarimetric mode, specified in [Ott94]. In this
mode the highest input data rate of the SAR processor is expected. For this reason we consider
the figures corresponding to this mode representative for the feasibility of a real-time SAR
processor. In this application we omit the slant-to-ground conversion. It will be addressed in
the next section, and can be easily applied here.

The length of the pulse replica is N, = 640. Let W, = Rin — Rmaz = 9 km be the swath
width in range, and let & = !c/f, = 3 m be the sample distance in range. Then the number of
pulse echo samples per pulse echo is N, = N, + W, /d- = 3640. The number of samples that is
written to the corner turning memory is N, — N, = 3000. The effective data rate of the range
compression is the number of samples that has to be processed within one azimuth sampling
perod D, = N, f, = 2.3 MHz.

From equations (2.14) and (2.17) follows that the optimum range and azimuth resolutions of
PHARUS are p, = 3.0 m and p, = 1.0 m, respectively. However, it is desirable to have square
resolution cells, thus requiring an azimuth resolution & = 3m. Let B, be the Doppler bandwidth
that corresponds to &, then B, = v/& = 49 Hz. Thus we can construct N; = |Bs/B,] = 3
non-overlapping subapertures to generate multiple look images. However, a rule of thumb is that
up to 50 % overlap between adjacent subapertures is allowed, thus we can increase the number
of looks to N; = 5. We propose the multiple look generation scheme shown in figure 3.3.b.

One might conclude that decimation of the azimuth sampling frequency is allowed from
the fact that the azimuth sample frequency is sufficiently larger than the Doppler bandwidth.
However, noise energy from outside the Doppler band may appear inside the Doppler band,
due to aliasing. We can overcome this problem by prefiltering with a bandpass filter, but then
we meet the following problem. The PHARUS system has a range dependent squint angle
7. Yaw steering of the antenna beam only yields zero squint for a specific range. For smaller
or large range the yaw steering yields a non-zero squint angle. The squint angle induces a
variable Doppler centroid |fz| < 275 Hz. The bandpass filter should thus have a variable
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SAR processing parameters
range compression data rate D, 2.3 Msamples/sec
number of pulse echo samples N, 3000
number of pulse samples N, 640
number of looks N, 5
data reduction in azimuth ny 4
azimuth compression data rate D. 10 Msamples/sec
number of samples per azimuth batch N, 940
depth of focus Ny | 23
max. size 2D azimuth filter in range Nopig | 8
max. size 2D azimuth filter in azimuth N, 470
latency L 9 sec

Table 3.2: Real-time SAR processor parameters for PHARUS.

center frequency. After filtering, we can decimate the azimuth echo signal with a decimation
factorny = | f,/B4] = 4.

For the worst-case situation (|y| = 3° and maximum range) range migration must be
compensated. From equation (2.20), we have the aperture time for maximum range is 7, = 3
sec. Thus, using equation (2.28), we have the maximum decline ARni, of R(t) over one
aperture AR, = AR(3T,) — AR(—14T,) = vT,sin |y| = 23 m. The size of the 2D azimuth
filter that corresponds to maximum range is then N, = T, f,/n| = 470in azimuth and N,,;, = 8
in range. Furthermore, from equation (2.26), we have the depth of focus AR,y = 70 m, and
thus ng_{ =231

The overlap that we have to take into account in designing the corner turning memory is
the size of the 2D azimuth filter in azimuth before data reduction n| N,. Let N, be the azimuth
batch size after datareduction. A trade-off between latency and utilization leads to an utilization
U = 50 %, and thus Ny = 940, and a latency £ = n|Ny(1 4+ U)/f, = 9 sec. In this case the
data rate for azimuth compression after the data reduction is D, = N (N, — Np) fo/n U = 10
Msamples/sec.

The specifications for a real-time SAR processor for PHARUS are summarized in table 3.2.
One must realize, however, that designing a real-time SAR processor is more than the deter-
mination some performance figures. Perhaps the most bounding constraints in the design are
the specification of the specific hardware components. Therefore, these figures should be inter-
preted as representative for the PHARUS system, which gives an impression of the dimensions
of the parameters of a real-time SAR processor. In [Bie94a] a similar study is presented, based
on preliminary specifications of PHARUS.
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3.4 Real-Time SAR Processing for ERS-1

In satellite SAR huge amounts of data are involved, typically in the order of 100 Mbytes for
imaginga 100 x 100 km surface. This figure will increase more and more in future SAR systems.
The communication system and the intermediate storage must handle this increasing amount of
data as well. Furthermore, ground stations must process, broadcast and archive the SAR data
and therefore show the tendency to become more and more expensive and time-consuming due
to this data increment.

An attractive solution to reduce the communication requirements is to perform SAR process-
ing on-board the satellite. In combination with image compression techniques (e.g. JPEG), it is
the most rigorous kind of raw SAR data reduction. For example, an ERS-1 SAR image contains
63 Mbytes whereas a batch of raw ERS-1 SAR data contains 300 Mbytes. Image compression
techniques can be used to achieve an even higher data reduction ratio. The advantages of data
reduction by using on-board SAR processing and image compression can be summarized as
follows:

Intermediate data storage: As a result of the compression rates achieved, more data can be
stored on-board and less ground stations will be required. Moreover, the SAR can collect
data from parts of the earths surface which are not within the reach of a ground station at
that moment.

Direct broadcast facility: Since the satellite transmits the end-product down to earth, the end-
user has the SAR image directly available. This means that a processing and broadcasting
facility at the ground stations are not required. The end-users also receive the most
up-to-date information.

Fast archiving: The image received by a ground station can be monitored immediately and, as
a consequence, can be archived immediately.

In this section we will derive the specifications of a real-time on-board satellite SAR processor
based on ERS-1 specifications. The objective is to optimize the function specifications and the
processing performance parameters given the requirements and the specified SAR parameters.

SAR processing specifications

The specifications of the real-time SAR processor are based on the ERS-1 product specifica-
tions [ESA92]. Typical SAR parameters are listed in table 3.3. Based on the defined parameters
we can give the specifications of a real-time SAR system. For the on-board processing we will
consider the so-called "fast delivery" product specifications:

e required ground range resolution: fy<33m
e required azimuth resolution: &=33m
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SAR parameters
wavelength A 0.057m
Doppler bandwidth By 1300 Hz
pulse bandwidth B, 15.5 MHz
squint angle ¥ =~ 0°
pulse width Tp 37.1 usec
minimum range Roin | 850 km
maximum range Rpaz | 890 km
nominal speed v 7000 m/sec
nominal altitude h 800 km
range sampling frequency fr 19 MHz
azimuth sampling frequency f, 1700 Hz

Table 3.3: ERS-1 system parameters.

e no. of looks: N =3
e ground range swath width: W, = 100 km

From equation (2.14) follows that the optimum range resolution after pulse compression is
pr = 9.7 m. Consider the angles ¢min = arccos(h/Rmin) and ¢pae = arccos(h/Ropqs), see
figure 3.4. The ground resolution is then §y = p,/sin ¢nin = 29 m at minimum range and
&y = p,/sin $nar; = 22 m at maximum range, and thus meets the specification. After the
range compression, the effective number of samples per pulse echo that must be written in the
corner turning memory is N, — N, = 5000. The effective data rate required for the range
compression is defined as the number of range samples that is processed within the inter-pulse
time D, = N, f, = 9.7 Msamples/sec.

The length of the pulse replica is N, = 700. Let W, = R,.in — Rz = 40 km be the swath
width in range and let &~ = ic/f, = 7.9 m be the sample distance in range. Then the number
of pulse echo samples is N, = N, + W, /dr = 5700. Observe that the specified minimum and
maximum ranges correspond to a ground swath width W, = 100 km.

Recall equation (2.20), which gives the subaperture length that corresponds to a required
azimuth resolution é&r at range Ry. We include an increment factor cp that allows azimuth filter
weighting to increase the PSLR, without affecting the required resolution

ARy

L: = 0 3.9

We shall assume that ¢p = 1.5 (Hamming window). A three look image requires three successive
apertures of length L,. Let B, be the equivalent Doppler bandwidth per aperture, then, from
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Figure 3.5: Multilook azimuth compression with frequency translation over — f,¢y, 0, and f, s,
respectively, lowpass filtering, decimation with a factor n|, azimuth compression and multiple
look summation.

equation (2.11), follows

2vL, v
B. =3 = %%

(3.10)

Since B, < B, for each look the bandwidth (and thus the sample frequency) can be reduced.
Substitute &z = 33 m, then the required Doppler bandwidth per look is B, = 320 Hz.

The antenna beam of ERS-1 is yaw steered, yielding zero squint angle . Substituting &z,
p- and the system parameters in equation (3.1), leads to the conclusion that range migration
compensation is not required. From equation (2.26) we have the depth of focus ARy = 76
km. Observe that the depth of focus is larger than the swath width in range W, thus one azimuth
filter is sufficient for azimuth compression of the complete data set. The subaperture length
corresponding to range 4( Rz — Rmin) = 870 kmis L, = 1.1 km.

The critical azimuth sampling frequency required for the processing is determined by the
required Doppler bandwidth per subaperture B,. The decimation factor after proper band
filtering is n; = |f,/B.] = 5. However, in general, off-the-shelf decimation hardware
components require powers of 2, and therefore we will set n) = 4.

To reduce the data rate we split the azimuth echo signal in three channels and mix the three
Doppler bands to baseband, see figure 3.5. We can now use low-pass filters with real taps, and
then decimate the data rate with factor n; = 4. An additional advantage is that the Doppler
bands of the three channels are mixed to baseband, so we can use one azimuth filter for all
three signals. Let d&c = v/f, = 4.1 m be the sample distance in azimuth, then the length of the
decimated azimuth filter is N, = L,/n|dr = 67. Directly after the azimuth compression, the
samples are squared and summated.

Let N, be the azimuth batch size after data reduction, then we specify (somewhat heuristi-
cally) an utilization U = 90 %, thus N, = 670. The latency is £ = n|Ny(1 + U)/f, = 2.3
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SAR processing parameters
range compression data rate D, | 9.7 Msamples/sec
number of pulse echo samples N, | 5700
number of pulse samples N, | 700
number of looks N |3
data reduction in azimuth n |4
azimuth compression data rate D, | 8.5 Msamples/sec
number of samples per azimuth batch Ny | 275
size 1D azimuth filter in azimuth N, | 67
number of image pixels in ground range N, | 6100
latency L |23sec

Table 3.4: ERS-1 SAR processor parameters.

sec. In this case the data rate for azimuth compression after the data reduction is D, =
Ni(N; — Np) fa/n U = 8.5 Msamples/sec.

It remains to do the slant-to-ground conversion. Itis desirable to have square pixels, mapped
on the zy-plane. The pixel size in azimuth is njdc = 16.4 m. Therefore the image must be
interpolated? in range to obtain the required ground range pixel size dy = 16.4 m. One ground
range image line in azimuth is constructed by interpolation multiple subsequent slant range
image lines. Let N, = W, /dy = 6100 be the image size in ground range direction, thus after
the interpolation.

The specifications for a real-time SAR processor for ERS-1 are summarized in table 3.4.
These figures gives a good impression of the performance of a real-time on-board SAR processor
for the ERS-1 satellite. In [BvHvB94] a demonstrator on-board processor based on these figures
was presented.

3.5 Concluding Remarks

In this section we have specified the processing parameters for real-time on-board SAR process-
ing for the airborne SAR system PHARUS and the satellite SAR system ERS-1. Obviously,
data rates of azimuth and range compression remain the most challenging problem in designing
real-time SAR processor hardware, see tables 3.2 and 3.4. Using dedicated or commercially
available state-of-the-art DSP boards can perform the range and azimuth compression, but con-
straints in processor size and power consumption may not be met. Obviously, these constraints
are tight, especially if the processing should be performed on-board a satellite.

Off-the-shelf components can be used to perform the bandpass filtering, interpolation,
pythagoras processing. Implementation of the comer turning memory is straight-forward,

ZFor example, cubic spline interpolation.
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depends mainly on the commercially available memory components. Most effort should be
in designing of dedicated range and azimuth compression hardware. For example, range and
azimuth compression with an effective data rate of 10 Msamples/sec implemented in commer-
cially available state-of-the-art DSP boards [Cat92], will have O(100) W power consumption.
The size will be approximately equivalent to six Euro-6 boards, but this may be too optimistic.
In this estimation we did not take into account I/O data handling.

With this in mind, we focus in the next three chapters on the design of efficient convo-
lution hardware architectures. We do not follow the conventional approach in designing the
convolution hardware. This will not lead to satisfying reduction of processor size and power
consumption. Our approach starts with an extensive analysis of the convolution problems, and
leads to a generic solution for long convolutions running on extremely high effective data rates.
It will reduce the amount of hardware required for range and azimuth compression to a few
dedicated chips.



cHAPTER 4

CONVOLUTION AND
MULTIRATE SIGNAL
PROCESSING

4.1 Introduction

In this chapter we will concentrate on one of the critical steps in SAR processing, namely the
convolution required for the range and azimuth compression.! Although much is written on fast
convolution algorithms (see e.g. [B1a85]), in SAR processing the required convolution length
in combination with the data rate remains a challenging complexity.

As we have mentioned in the previous chapter, in SAR processing signals can have lengths
of several Ksamples. In the future, this number will increase to more than 10 Ksamples. The
reference signal (the pulse replica or the azimuth filter, as described in the previous chapters)
can have lengths up to 1 Ksamples. For range compression, processing time may not exceed
the inter pulse time, which is in the order of mseconds. Performing the convolution in the
time domain would then require an effective data rate of the processor of several GFlops.
Performing the convolution in the frequency domain would still require an effective data rate of
several hundreds of MFlops. The problem becomes even tougher if the processor size must be
minimized.

In this chapter we introduce novel techniques that will lead to fast convolution algorithms
and architectures. To this end we rely on multirate signal processing. Multirate signal processing
was originally applied in telecommunications [BD74]. Since then, research effort has increased,
especially in designing aliasing free multirate filter banks, see e.g. [CR83, Vet87, Vai90]. In
the late 80’s the research effort moved to applications, such as FIR filtering with multirate filter
banks [Vet88], filter bank convolvers [Vai93, PV95] and adaptive filtering [GV92].

!Observe that the structure of digital correlation is almost equivalent to the structure of digital convolution.
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At this moment however, the multirate signal processing theory lacks application-specific
views, i.e. it is not vet common to use the multirate signal processing theory as a tool to solve
the numerous digital signal processing problems, although some attempts have been made as we
have said above. Generally, multirate signal processing theory focuses on multirate filter bank
systems. However, long convolution with high data rates is a difficult problem, and multirate
signal processing is a way to reduce complexity substantially.

Thus we investigate the usage of multirate signal processing in relation with long convo-
lutions. The successive steps will lead to a description of an optimized multirate convolution
system. An approach based on algebraic manipulations that led to similar convolution systems,
referred to as perfect convolution filter banks, was presented in [Ste91]. The methodology that
we propose, however, is akin to the method of combined algorithm development and archi-
tecture design as described in [Dep93] and the method of engineering algorithms as proposed
in [McW92, MP92]. This methodology allows direct mapping of an algebraic specification of
signal processing algorithms - here a multirate convolution - into prototyping architectures or
dedicated VLSI processors. The mapping is obtained through graphical manipulations rather
than by manipulating multi-indexed formulas.

In this chapter we derive the fundamentals of our methodology. We present the relationship
between the graphical manipulations of the algorithm and its equivalent algebraic representations
from multirate signal processing theory. It is known that multirate convolution is close to block-
signal processing. In fact, if we embed the Discrete Fourier Transform (DFT) in the multirate
convolution system hierarchically, we can show that it is equivalent to overlap-add or overlap-
discard convolution [OS89]. This point of view is taken in the next chapter, where we derive
a convolution architecture based on block-signal processing. Both chapters end up with two
descriptions of the optimized multirate convolution system, the first derived form a multirate
signal processing point of view, the second from a block-signal processing point of view.

The outline of this chapter is as follows. First we give the preliminaries in section 4.2. In
section 4.3 we introduce the multirate convolution system from an algorithmic view point rather
than from the traditional filter bank view point. The concepts are extended in section 4.4, where
the DFT becomes an important aid to speed up computations.

4.2 Notations and Preliminaries

In this section we give some notations and preliminaries of multirate signal processing. It is not
the intention to give an overview of multirate signal processing. Rather this section serves as a
basis for the following sections in this chapter.

Consider the M-channel multirate system of figure 4.1. Each ' channel contains subse-
quently an advance z™, an N-fold decimator, a constant multiplication factor d,,, an N-fold
expander and a delay z=™. The signal on input is either denoted as a vector x or a series X (z).
The signal on output is denoted as y or Y(z).
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Figure 4.1: Basic M-channel multirate system with N-fold decimators/expanders and channel
multiplication factors d,,, for m = 0,---, M — 1. By convention we use advances (z) on input
and delays (z_;) on output.

The input of the N-fold decimation in the m** branch is z™ X (z). The output of the N-fold
decimation is denoted as [2™ X (z)];~. A matrix description of the successive steps (delay and
N-fold decimation) on the m** branch is illustrative. Let Z be the unitary shift operator

—

I—i@c
oo o

The box denotes the (0, 0)** entry and serves as a reference of center. Then Z™x is the vector
notation of z™ X (z)

["'Im—lzm+l"'] = ["'-’13—111 ...]Zm
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The box denotes the zeroth entry. Let N| be the N-fold decimation operator

0

v N — 1 zeros
0

.: N — 1 zeros
0

Then the vector notation of the N-fold decimation [2™ X (z)];n is

[+ Zmen [Em]Tmen ] = [+ 21 [F0]o -] 27N, 4.1)

Similarly, Ny is the N-fold expander: N; = Nf. The output of the N-fold expander on the m**
branch, including the delay z™™, is

mth entry
[ N0 - 02 0 - 0zmpn -] dm = Z"N;duNjZ™™

N-1 zeros N-1 zeros

Finally, the vector form of Y'(z) is

M-1
[ ya[w]w -] = [ za[@]o -] D0 Z™NidaNiZ™™
m=0
Let T be the system transfer matrix,
y = xT 4.2)
Then
M-1
T = Y Z'Nd,NjZ7" 4.3)

m=0
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Observe that for all m

(m,m)"' entry

Z"N\N;Z™™ = diag{---,0,1,0,---,0,1,0,---,0,1,0,---}

——r

N -1 zeros N -1 zeros

Hence, T is a diagonal matrix
T = dlag{ )t07"'7tN—la1"' 7tN—17t01"'7tN—17"'}

where

Kn—1 _
Mw @.4)

t, = k;() d‘n-H\:Ny I{n = [ N

Now we can state the following properties of multirate systems restricted to this special case:

o If N < M and if the d,, are chosen such that T = I, then the system has the so-called
perfect reconstruction property, i.e. Y (z) = X(z).

o If N = M then the system is said to be maximally decimated. If a maximally decimated
system also is perfect reconstructing, then d,, = 1 for all m.

e If N > M, moreover, then K,, = 0 (and thus ¢, = 0) forn = M,---,N — 1, and
consequently Y'(z) # X(z).

Observe that if the multirate system is maximally decimated then the left-hand side of the system
(the advance/channel splitting and the decimation) and the the right-hand side (the delay/channel
combining and the expansion) are in fact a serial-to-parallel conversion and a parallel-to-serial
conversion, respectively.

4.3 Multirate Convolution Systems

In the previous section we have introduced a multirate system which splits a signal into M
channel signals which has reduced data rate. Furthermore, conditions have been determined
under which the original input signal can be reconstructed from the decimated M channel signals.
As the channel signals have reduced data rates one could ask whether it is possible to transform
a complex operation on the incoming signal into M smaller operations on the decimated channel
signals. This can have many advantages in real-time digital signal processing, where data rates
of incoming signals might be much higher than the maximum processing speed of hardware
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Figure 4.2: General form of a maximally decimated multirate convolution system. The con-
volution network performs an operation on the NV incoming N-fold decimated channel signals
an(z) and z,(z) resulting in N output channel signals y,(z), such that Y (2) = A(2) X (z).

components. Moreover, long data lengths can also be a potential problem since memory size
is often limited. Both problems frequently occur in radar signal processing, as we have seen
in chapter 3. The main operation is convolution of an incoming radar echo signal with a
reference signal. We will consider the case that both the incoming echo signal, say X(z), and
the reference signal, say A(z), are split up into M channel signals and are /N-fold decimated.
We will confine to the maximally decimated case, i.e. M = N. The objective is now to find
a convolution network in which the channel signals are fed. The convolution network has an
output of NV channel signals, from which an output signal Y'(z) can be constructed such that
Y (z) = A(z)X(z). This multirate convolution system is shown in figure 4.2.
Our starting point will be the observation that the signals A(z) and X (z) can be written as

N-1 N-1
A(z) = Z a. (V) X(2) = E za(2N)z " 4.5)
n=0 n=0
The N functions a,(z) and z,(z) are known as the polyphase components of order N of A(z)
and X(z), respectively [CR83, Vet87, Vai90]. The n'* polyphase components are obtained
as n(z) = [z"X(z)];n and aq(2) = [2"A(2)];n, which are the outputs of the n‘* N-fold
decimators in figure 4.2. Observe that the vector notation of the polyphase components are
obtained in the previous section, see equation (4.1).
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The linear convolution Y (z) = A(z)X(z), in terms of the polyphase components of A(z)
and X(z), is

N-1 N-1
Y(z) = (E an(zN)z_") (2 a:n(zN)z_"> 4.6)
n=0 n=0
Observe that equation (4.6) looks very similar to a multiplication of two polynomials of order
N — 1. The only difference is that instead of having scalar coefficients, these polynomials have
polyphase coefficients a,,(z"V) and z,,(z"V). Therefore it is convenient to introduce the following
convention. Let H(z) = S>N7! h(z™)z* be an arbitrary polynomial in zin polyphase notation.
Introduce the variable w = 2. Then we can express H(z) equivalently as an order N — 1

polynomial in z with coefficients h,(w)

N-1
H(z) = Z_joh,.(w)z-" @7

In order to distinguish the two notations we will write H(z; w) if we mean equation (4.7).
Observe that z~! represents a unit-delay and thus w™ represents the delay z=V.

Equation (4.7) looks very similar to an N — 1 order polynomial, with only difference that
its coefficients are series in w. Applying the variable substitution to both sides of equation (4.6)

gives

N-1 N-1
Y(zw) = A(z;w)X(z;w) & (Z an(w)z_“> (Z a:,,(w)z‘") 4.8)
n=0 n=0
A(z;w) and X(z; w) are in fact as polynomials of order N — 1 in z, thus their product,
see equation (4.8), must be a polynomial of order 2V — 2 in z. But by convention Y (z; w) &
YNy, (w)z ™ is of order N —1 which implies that this interpretation is not valid. Nevertheless,
we can interpret A(z; w) and X (z; w) as order N — 1 polynomials and still satisfy equation
(4.8), as we will show.
Define an intermediate polynomial Y (z; w) of order 2N — 2 as

~ 2N-2
Y(zzw) = E Jn(w)z™" 4.9)
n=0
with coefficients
N-1
Gm(w) = Zan(w)zm_n(w) 4.10)
n=0

Observe that these coefficients are the result of a linear convolution of the NV coefficients {a,(w)}

and {z,,(w)} of A(z; w) and X (z; w), respectively, and thus A(z; w)X(z; w) = Y(z;w). We



4.3 Multirate Convolution Systems 51

can expand Y (z; w) as

R 2N-2
Pzw) = 3 gnlw)e”
m=0
N-1 N-2
= Y Jn(w)z™ + z=N E Imen(w)z™™ 4.11)
m=0

m=0

Again let zV «— w then we have

ifn=0,---,N =2 Go(w) + 0 gasn(w) = yn(w)

ifn=N-1 Jn(w) = yn(w) (4.12)
Hence Y (z; w) = Y (z; w) and thus equation (4.11) can be written as
Az w)X(zw) = Z yo(w)z™ = Y(z;w) 4.13)

n=0

What we have shown is that Y (z; w) is equivalent to A(z w)X (z; w) which was shown
by introducing the intermediate order 2N — 2 polynomial 17(z; w). In practice, yn(w), n =
0,---,N — 1, are obtained by first calculating §,(w), n = 0,---,2N — 2, by performing the
linear convolution operation of equation (4.10). The fact that the polynomials are polynomials
in w does not corrupt the properties the linear convolution. Secondly, y.(w)n =0,---, N —1
is calculated directly by applying equation (4.12).

The linear convolution network

We can now derive a convolution network to be used in figure 4.2. To this end we represent
equation (4.10) recursively [Kun88]

forn=0,---,m,ifm=0,---,N—1
ﬂ:)(w) = ﬂ,(,;”-l)(w)+a,.(w)xm_,.(w), forn=m—-N+1,.--,N—1, (4.14)
1fm=N’.’2N_2

where §(™)(w) is the result of the m** recursive step. The recursive representation is useful
when an algorithm is highly regular (which is the case for convolution). In that case, data
dependencies and regularities can easily be recognized.

The recursion has a computational flow graph or dependence graph representation [Kun88]
shown in figure 4.3.a, where each node performs a multiply-add operation of polynomials in w,
shown in figure 4.3.b. For convenience, the branch within the dependence graph that belongs
to a zero input has been omitted. Usually the data samples involved in dependence graphs are
scalars. In our case, however, the data samples are polynomials in w.
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Figure 4.3: Linear convolution network (a) and a node (b). The network performs the linear
convolution of the sequences {a,(w)} and {z,(w)} and constructs the output sequence {y,(w)}
via the intermediate sequence {y,(w)}.

The next step is to include the operation of equation (4.10) that maps the 2N — 1 outputs
of the dependence graph to the N outputs of the convolution network. In practice this means
that the N — 1 outputs of the dashed lower triangle in figure 4.3.a are multiplied by w~! and
added to the N — 2 outputs of the dashed upper triangle. The complete dependence graph is a
typical realization of a convolution network that has input z,,(w) and a,,(w) and output y,(w),
withn = 0,---, N — 1. Since we have used the linear convolution to derive this network we
will refer to it as the linear convolution network.

The data flows within the linear convolution network only involve operations on polynomials
in w or equivalently, using the fact that 2"V « w, operations in zV. In practice this means that
we can run the complete linear convolution network with a factor NV reduced data rate. Observe
that the N-fold decimators at the input of the multirate convolution system take care of the
data reduction before the polyphase components are fed into the convolution network. Hence
the linear convolution network is indeed a realization of the convolution network that we were
looking for, with inputs and outputs running at reduced data rates.
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Figure 4.4: A typical example of algorithmic engineering: by manipulating of the linear
convolution network (a) the circular convolution network (d) can be derived. The key rule is
that dependencies of the intermediate convolution networks (b) and (c) are equivalent to the

initial and resulting network (a) and (d), respectively.
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The circular convolution network

Another realization of the convolution network can be obtained by using a circular convolution
rather than a linear convolution. Instead of going through the algebraic derivations we derive
this network graphically, with as starting point the linear convolution network of figure 4.4.a.
The variable w has been replaced by z, ie. implying that the network runs on a factor
N reduced data rate. The basic fundamentals of the derivation of computing networks by
manipulating of a dependence graph are given in [Kun88§], and are worked out to a methodology
in [McW92, MP92], referred to as algorithmic engineering. In the next chapter we will give
more examples of the concept of algorithmic engineering.

The linear convolution network can be split-up in two parts given in figure 4.4.b. The lower
triangle can be assumed as a linear operation on the N — 2 input elements z,(z) followed by a
delay z~! on all IV — 2 output elements. This allows us to relocate the delay operators to all input
branches. Now the N — 2 output elements of the lower triangle are added to the N — 2 output
elements of the upper triangle, which is depicted in figure 4.4.c. Recall that the n** outputs of
both triangles are achieved recursively. Let the recursions be of the form

upper trangle: 5 (z) = g~V (2) + ¢®) (2),forn =0,---,m

up,m up,m up,m

lower triangle: 7\") (z) = ?71(:,;2(2) +c™ (2).forn=m+1,---,2N —2

ylow,m low,m

where c{?), (z) and ¢} | (2) are some update polynomials. Obtaining the m* polyphase

component y,,(z) of Y'(z) is then simply the addition of the results of the recursions y..(z) =

g (2) + @{Z,’f;z)(z) However, it is easy to see that y.,,(z) can also be obtained by first

recursively computing gﬁ:‘{(z) and then recursively computing ‘1}1(33' ,_nz)(z) with initial value
i) (2) = §4m). (2). Graphically, this can be represented by superimposing the lower triangle
onto the upper triangle, as is shown in figure 4.4.d. This network is another realization which
can be used within the multirate convolution system.

As we shall now show, this realization partly performs a circular convolution [OS89]. Let
be given the 2V — 1 polynomial elements Z,(z), m = 0,---,2N — 2 and the N polynomial
coefficients a,(z), n = 0,---,N — 1. Let 5, (z), m = 0,---,2N — 2, be the result of their
circular convolution

N-1

In(2) = Y a(2)Zmnymoden-1)(2) (4.15)

n=0
The recursive form of equation (4.15) is

=(n =(n—1 -
fn)(z) = ySn, )(Z) + an(z)x(m—n)mod(ZN—l)(z) (416)

The dependence graph of equation (4.16) is shown in figure 4.5.a. Obviously, if we are only
interested in the polynomial results g,,(z), for m = N,---,2N — 2, then we only have to
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Figure 4.5: Circular convolution network (a) and a node (b). The network performs the circular
convolution of the sequences {a,(w)} and {Z,(w)} with as output result {7, (w)}. Observe
that the lower square of the circular convolution network has been derived from the linear
convolution network, see figure 4.4.

compute the lower dashed rectangle. This part of the dependence graph is equivalent to the
dependence graph of figure 4.4.d, if we let

2 wlz,a(2) form=0,---,N -2

wn(2) & Tm-n41(2) form=N—1,---,2N —1

= undetermined form=0,---,N -2 4.17)
) < Vgomile)  forme= Ne1ee, 20=1

a,(z) — an(2) forn=0,---,N—1

Observe that the circular convolution network has the same complexity in terms of polynomial
multiply-add operations. However, one advantage might be that it does not require delay-add
operations at the output.

4.4 Multirate Convolution and the DFT

In this section we employ DFT techniques to speed up the multirate convolution system. It
is well known that discrete convolution can be performed efficiently in the frequency domain.



56 CONVOLUTION AND MULTIRATE SIGNAL PROCESSING

Moreover, using the Fast Fourier Transform (FFT) to compute the DFT will even decrease the
computational complexity of the convolution network in terms of polynomial multiplications.
Furthermore we show that the multirate convolution system can be considered as a multirate
system with DFT filter banks. The latter was first observed by [Por80] for the case that A(z) is
of order N — 1, and in [Vet88] it was shown that the system works for A(z) of any order.

In [Por80, Vet88] however, this observation has been made from the viewpoint of a multirate
system with DFT analysis/synthesis filter banks and additional channel filters. It was stated that
under certain conditions the multirate system can be considered as an overlap-add/overlap-
discard convolution system based on short-time Fourier transforms.2 We have shown in the
previous section that the relation between the multirate systems and the overlap-add/overlap-
discard convolution method can be explained without using the short-time Fourier transform
and without reference to any kind of filter bank. In fact, we will show in this section that
introducing the DFT within the multirate convolution system that we have proposed is nothing
more than a fast convolution of two polynomial sequences. Moreover, other transforms could
be used as well, for example, Mersenne or Fermat number transforms [Rad72, AB75, AC77].

The DFT for polynomial sequences

Our starting point is the DFT for a polynomial vector. It is customary to write expressions
related to the DFT in terms of Wy, defined as wy 2 exp(—j27/N). Given a polynomial
vector xX(z) = [zo(z) --- Tn-1(2)], then its N-point DFT is also a polynomial sequence
X(z) = [Xo(2) --- Xn-1(2)], with components

N-1
Xm(2) = 3 za(2)WR" (4.18)

n=0
Conversely, if X (z) is given then its N-point IDFT is x(z), with components
1 N-1
Ta(2) = N > X (z)WR™ (4.19)

m=0

The DFT and IDFT can also be expressed in matrix notation. Let Wy be the /V x N DFT matrix

Wi wE oo Wi
Wy = [0 WER o owh o WY (4.20)
B iel) 12 N-U)(V~
1 W]{] ) WN( 1 W]S] 1)(N-1)

2In [Vet88], though, the starting point is a general multirate system with analysis/synthesis banks without using
the short-time Fourier transform. However, this general case is only briefly pointed out and not discussed explicitly.
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Then the matrix forms of equations (4.18) and (4.19) are
DFT: X(z) = x(z)Wx 4.21)
IDFT:  x(z) = %X(Z)W?v “4.22)

Convolution networks and the DFT

Using the DFT matrix alternative DFT domain convolution networks can be obtained. Observe
that the linear convolution network performs the linear convolution of two N-dimensional
polynomial vectors a(z) = [ao(z) --- an-1(z)] and X(z) = [zo(z) -+ zn-1(z)]. Let §(z) be
the 2N — 1-dimensional polynomial vector with components given in equation (4.10). Then
¥(z) is the linear convolution §(z) = a(z) * x(z). Let y(z) = [yo(2) - -+ yn-1(2)], then the
relation between §(z) and y(z) is

¥z) = §() [ . A ] (423)

Z_IIN_l | 0
Define the polynomial vectors ap(z) and Xo(z) of length M, as
ay(z) = [ao(z) -+ an—1(2) 0 --- 0], and xXo(2) = [zo(z) - zn-1(2)0 --- O]

where M = 2N —1, and let their M-point DFTs be Ao(z) = a9(z)War and Xo(z) = Xo(z)Wy.
Then from the Fourier theory we know that y(z) can be obtained as follows

3(z) = 2-(4ulz) @ Xo(2)) Wiy (4.29)
where @ denotes element-wise multiplication. With the observation that
xo(z) = x(2)[In|0], ao(z) = a(z)[In|0] 4.25)
we can express equation (4.24) as

7 = g7 (I [01W) © I [01Wa)) | o | 620

Equation (4.26) expresses the linear convolution property of the DFT for polynomial vectors.
A similar expression can be obtained for the circular convolution. Let be given

X(z) = [z7'zm(z) -+ z7'zno1(2) zo(2) -+ znoa(2)]

and denote X (z) = WX (z) its M-point DFT. Let the circular convolution be §(z) = a(z) o
X(z). Again, from the Fourier theory we know that §(z) can be obtained as follows

¥(z) = %(Ag(z)®5\((z)) Wi, @.27)
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Figure 4.6: Alternative linear convolution network (a) and circular convolution network (b)
using the DFT. The multiplications represents polynomial multiplications.
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Define the the N — 1 x N — 1 unitary shift matrix Zy_; as

1 ifj=i—-1
[Znlis = { 0 otljaerwise (4.28)
then X(z) can be obtained as
X(z) = x(2) 0 I 4.29)
- Z_lZN_l N )
Observe that
2 0
y(z) = ¥(2) [ H] (4.30)

Now equation (4.30) can be expressed as

1

7o) = 5 (@G0 W) & (x) | =g

Z_IZ‘\I_l

o) & e

Equation (4.31) expresses the circular convolution property of the DFT for polynomial vectors.

Both equations (4.26) and (4.31) are algebraic representations of alternative convolution
networks. They can be embedded in figure 4.2, such that we obtain the two multirate convolution
systems of figures 4.6.a and 4.6.b. The structures of both multirate convolution systems based
on the DFT have many advantages in terms of implementation. We not only have split up the
long convolution operation into smaller linear or circular convolution operations but, if we use
the FFT to compute the DFT, we have now also decreased the computational complexity in
terms of polynomial multiplications.

Relationship to M-channel filter banks

The structures of figure 4.6 can be interpreted as M-channel multirate systems with polynomial
DFT transformation and N-fold decimation/expansion, where M = 2N — 1. These systems are
extensively studied in e.g. [Vet86, SV86], where they are referred to as uniform DFT filter bank
systems. The extension in our description is that the M channel signals are filtered by channel
filters Ay, (z). In fact, the channel filters are the M entries of the DFT vector A(z) of the vector
ay(z). This interpretation is illustrated in figure 4.7.

Figure 4.7 is equivalent to figure 4.6.a if we put

1 form=0,---,N—1

(%) = {0 form=N,---,M—1" rom(z) =1 form=0,---,M -1
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Figure 4.7: Filter bank representation of the multirate convolution systems based on the DFT.
The channel filters A, (z) are the entries of the M-point DFT of the vector a(z).

and it is equivalent to figure 4.6.b if we put

0 form=0,---,N—-2

eom(z) =1 form=0,---,M—-1, rom(z) = { 1 foom=N-1,---,M—1

In the latter case we take as input of the DFT the M-dimensional polynomial vector
X(2) = [zo(2) -+ znvo1 27 '20(2) -+ 27 N ]

rather than X(z), as was it assumed in figure 4.6.b. However, the only difference in the overall
transfer function of the multirate convolution system is the delay z=(V=1),

4.5 Concluding Remarks

The use of the multirate convolution system instead of direct linear convolution has the advantage
that it breaks up the long convolution in N? smaller convolutions (the polynomial multiplications
within the nodes in the convolution network). It runs at a factor N reduced processing speed
as a result of the N-fold decimators. The overall computational complexity is not reduced, but
efficient architectures can be used which exploit the parallel structure of the convolution network
and fast algorithms can be used for the small convolutions. Moreover, the convolutions within
the nodes can be structured using the same multirate convolution system. This hierarchical
approach can be repeated in principle, until the last convolution operation is nothing more than
an atomic scalar multiplication (of course X(z) and A(z) must then be causal and of finite
order).

The multirate convolution systems have well-known equivalents in digital signal processing
theory. The linear and circular convolution networks can be interpreted as the overlap-add
and overlap-discard convolution methods, respectively [OS89]. Both split the long linear
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convolution problem into multiple small convolution problems. The advantage of our multirate
signal processing view is that, unlike the algebraic derivation, the convolution network shows
a high degree of parallelization and regularity. In the next chapter we give formal relations
between multirate signal processing and overlap-add and overlap-discard from a block-signal
processing point of view. Again we will use graph manipulations to clarify the formalisms
derived with algebra.



CHAPTER 3

CONVOLUTION AND
BLOCK-SIGNAL
PROCESSING

5.1 Introduction

In the previous chapter we have developed some algebraic methods based on multirate signal
processing to solve the long linear convolution problem. In the literature it was often mentioned
that multirate signal processing has lots of opportunities in efficient architecture design for con-
volution with high data rates and large convolution sequences [Por80, Vet88, Ste91]. However,
these descriptions remains highly algebraic. They emphasize merely the theoretical behavior
of such systems rather than the mapping of the proposed methods onto efficient algorithms
and architectures. The point of view is now block-signal processing, which is traditionally the
method to solve large convolution problems, see e.g. [AB74]. We start with the introduction
of block-signal processing to solve the convolution problem, the so-called overlap-add and
overlap-discard methods [OS89].

We use a formal methodology to come from the algebraic block-signal processing description
to the efficient architectural realization. As mentioned in the previous chapter, this formal
methodology is close to algorithmic engineering [McW92, MP92]. Algorithmic engineering
is closely related to systolic design [Kun88]. The concept of systolic structures was originally
seen as an architectural paradigm. However, systolic architectures as defined in [Kun&8] are
nothing more than structures of algorithms which could never provide realistic architectures.
It is thus better to speak of systolic algorithms, and algorithmic engineering is a method to
derive or transform such algorithmic structures. Once a systolic algorithm is developed the
process of mapping it onto an array of parallel processors can be formalized. Examples of
complex algorithms that can be handled in this way are matrix multiplication, QR- and SVD-
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decompositions, solving linear equations, and the like.

The key is to describe the algorithm graphically in a dependence graph, like the one in
the previous chapter. The dependence graph can be determined from the recursive form of
the algorithm and shows the dependencies between the operations within the algorithm. The
dependence graph can then be projected onto a signal flow graph. Whereas in a dependence
graph a node represents essentially a function (e.g. multiply-add), in a signal flow graph a
node represents a processor element. This processor element is not necessarily a physical
processor, it might be a communicating function on an abstract level. The advantage of a
signal flow graph is that formal methodologies exist to map signal flow graphs into arrays of
processors [Bu90, DHW93].

In the convolution networks the operations within the dependence graph were polynomial
multiply-add operations. Here we have scalar multiply-add operations, as we show in section 5.2.
In section 5.3 we map the dependence graph into a signal flow graph, in which we recognize the
block structure of the overlap-add and overlap-discard methods. At the point that we introduce
the short FFT in the signal flow graph, we may consider them equivalent to the linear convolution
networks. In appendix D we already have shown that this holds from an algebraic point of view,
and we have now derived the one-to-one relationship from an algorithmic point of view. In
section 5.4 we exploit the properties of the short FET to come to our final signal flow graph. It
is in fact a highly regular and schematic description of the multirate convolution system based,
presented in the previous section. The mapping onto an efficient hardware architecture is now
straight-forward, as we will show in the next chapter.

5.2 The One-Dimensional Convolution Problem

Consider two finite scalar sequencesa = [ap - -+ an,—1]andX = [zo -+ zn,_1], With N, < N.
Let the scalar sequence y = [yo - - - yw,—1], with N, = N, + N, — 1 be their linear convolution
y = a *Xx, then
Na—1
Yn = Z AkTn—k 5.1)
k=0

In the previous section we have already mentioned that the linear convolution operation can be
described recursively [Kun88]. The recursive form of equation (5.1) is

fork=0,---,n,ifn=0,--- N, — 1
y® = 3¢ 4 gz, fork=0,---,N, — lLifn=N,,--- N, — 1 (52
tork=n—-N+1,--- N, — Lifn=N.,---,N, — 1
From equation (5.2) the dependence graph of figure 5.1.a can be derived. Each node in the
graph performs a multiplication and an addition (figure 5.1.b). The computational complexity

of the linear convolution in the time domain is the number of nodes in the dependence graph,
which is N, N,.
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Figure 5.1: Dependence graph for convolution (a) and the elementary operation (b).

FFT based linear convolution

From a computational point of view it is more efficient to transform the sequences to frequency
domain first using the DFT, where the computational complexity for convolution is much lower,
and then perform an inverse transformation. Let y be given, then its V,-point DFT is the scalar
sequence Y = [Y; --- Yy,_1], where Y,, is defined as

. Ny—1
Vo = 3 yaWE (5.3)
n=0

and Wy, = exp(j27/N,). Conversely, if Y is given then its N,-point IDFT is y, where y is
defined as
1 M=l
o= 3 2 YaW 54
Y m=0
As in the previous chapter we can use the matrix notation of the DFT. Let Wy, be the V, x N,
DFT matrix, then the matrix notations of equations (5.3) and (5.4) are

DFT: Y = yWy, (5.5)

1
IDFT:  y = Y W}, (5.6)
Yy



5.3 Sectioning of Large Convolution Problems 65

Let A and X be defined as

A =a[ly, [0]Wy,, X = x[Iy,|0]Wy, (5.7
then Y is the element-wise product
Y = A®X = (a[In, |0]Wy,) ® (x[In, | 0]Wy,) (5-8)
The linear convolution result is now the N,-point IDFT of Y’
1 x 1 t 4
y = FyY Wy, = oA ((alTw, [0]Wy,) ® (X[ Ly, | 0]Wy, )) Wi, (5.9)

If the DFTs of a and x are given then their linear convolution result in DFT domain
can be computed using N, multiplications, which is far less complex then computing the
linear convolution in the time domain. However, the computation of the N,-point DFTs and
IDFT using the straight-forward matrix-vector multiplications in equation (5.9) requires Nj
multiplications. But if the DFT size would be a power of 2 we can use Fast Fourier Transform
(FFT) to compute the DFT. In order to distinguish between the computation of the DFT directly
and computation of the DFT by the FFT, we introduce the N-point FFT matrix Fy. The N-point
FFT matrix Fy is only defined if N is a power of 2. Let N be the smallest power of 2 larger or
equal to N, then equation (5.9) can be represented as

Yy, |0] = % ((al1n. | 0]FN) @ (alIn, | 0]FN)) Fy (5.10)

The computational complexity of an N-point ()FFTis' N log NV, so that the total computational
complexity required to compute y using the FFT is then O(N log N'), whereas the computational
complexity of the direct computation of y = a = x is O(N?).

Thus, performing the convolution by using the FFT is far more efficient in terms of com-
putational complexity, especially if NV, and N, are large. However, a problem with large FFT
sizes occurs when the convolution algorithm must be implemented in hardware. Commercially
available FFT processors cannot cope with sequences having lengths larger than 1024 samples.
A solution would be the use of DSP processor boards, but these have the disadvantage that they
are not optimized in terms of memory management, hardware volume and power consumption.
Therefore, in the next sections we will analyze the convolution algorithm and try to find an
algorithm that can be mapped optimally onto available hardware architectures.

5.3 Sectioning of Large Convolution Problems

In the previous section we have considered the general description of convolution in the time
domain and in the frequency domain. However, when vectors are too large, which can be the

I For conveniency, the base 2 logarithm 2log is denoted as log.
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Figure 5.2: Dependence graph for convolution with clustering of M; x M; nodes.

case in many applications, the direct implementations of the time domain or frequency domain
algorithms will be inefficient and impractical, especially when dedicated architectures are used.
Therefore we can use overlap-add or overlap-discard methods to section one or both sequences
in smaller subsequences [OS89]. In this section we shall first focus on the overlap-add method.
The overlap-discard method can be derived from the overlap-add method as we will show.

Block-signal processing: overlap-add

Leta and x be defined as in the previous section, but assume for convenience that N, = N, = N.
The analysis can be adapted straightforwardly for the case that N, # N,. Furthermore assume
that we have some convolution architecture for M;-dimensional vectors only (either in time
domain or frequency domain), with M; < N. For convenience we assume that N is a multiple
of M), say N = M,M,; and that M, is a power of 2. Then we can section our convolution

problem as follows. Let for m = 0,---, M, — 1 the M;-dimensional vectors a,, and x,, be
defined as
Ay = [amM| AmM,+1 " ° a(m+l)M|—1]7 Xm = [zmM| TmMy+1 " a(m+l)M|—l]

From [AB74] we know that substitution of

k& EMi+k, k=0, ,M-1
n & n1M1+n2, n2=0,"',1w1—1
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Figure 5.3: Signal flow graph derived from the dependence graph (a) and the processing element
(b). The blocks labeled with OA perform the overlap-add operation of the 2 M; — 1-dimensional
vectors §,. This operation is illustrated in figure D.1 in appendix D.

in equation (5.1) implies the application of the overlap-add convolution method. Hence

My—1 M, -1
YnuMi4n, = Z E Qky My +ky Ty My+ny— (ki My +k,)

k=0 k;=0

M;—1 M, -1

Z Z Cky My +ky T(ng—k )My +mp—k; (5.11)
k=0 k=0

The interpretation in the dependence graph from figure 5.2 is as follows. Obviously equation
(5.11) can be interpreted as the clustering of A} x M; nodes. The arithmetic operation within
a node is recognized as a convolution of two M,-dimensional vectors of length M;. Now we
can derive a signal flow graph [Kun8§] of the dependence graph, where we assume that the
processing element performs the convolution operation within one cluster, see figure 5.3.a. The
processing element is shown in figure 5.3.b. The blocks labeled with OA perform the overlap-
add operation of the 2 M —1-dimensional vectors y,,. This operation is illustrated in figure D.1 in
appendix D. The resulting vectors y,, are M;-dimensional and are the non-overlapping sections
of the vector

y =a¥x = [y Yoyl (5.12)
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Figure 5.4: Processing element of the signal flow graph. The short convolution is performed in
frequency domain.

Observe that the computational complexity of time domain convolution with overlap-add has
not changed compared to the time domain convolution without overlap-add (if we assume that
the computational complexity of the overlap-add operation is negligible). But if we use the FFT
to perform the short convolution, then it becomes more efficient. Since M, is a power of 2, the
nearest power of 2 to 2M; — 1 is 2M;, so that we can draw an alternative processing element as
in figure 5.4. The computational complexity of this node is given as M;(2 +3log 2M;). Hence,
the overall computational complexity is given as M, MZ(2 +3log 2 M; ), which is lesser than the
computational complexity of the direct linear convolution N? = M2 M2 (where we assume that
M, > 2 + 3log2M,, implying that M; > 32). However, the computational complexity is still
more than the long FFT domain convolution. The signal flow graph of figure 5.3.a represents
the usual way to implement the overlap-add convolution method.

We can now optimize the signal flow graph by the observation that within the processor
element of figure 5.4 all vectors a,, and x,,, are transformed M, times, respectively. However,
it is more efficient to make use of the linearity of the FFT operation, which implies that we
can transform each vector once at the input side. In the same way we can inverse transform
each vector y,, at the output side. This results in the signal flow graph in figure 5.5.a, which
is equivalent to the signal flow graph in figure 5.3.a, but requires far less transformations. The
arithmetic operation within a processing element is now only an element-wise multiplication in
stead of a convolution.

If we analyze the structure of the signal flow graph of figure 5.5.a we recognize that the
kernel has exactly the same structure as the original dependence graph. Moreover, since the
multiplication operator within the processing element operates element-wise, the complete
kernel as a whole operates element-wise. Let the vectors A, X, and ?m be the 2M;-point
FFTs of the vectors a,,, X,, and y,,, respectively (see figure 5.5.a). Then the kernel can be
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Figure 5.5: Signal flow graph of the overlap-add in frequency domain (a) and the processing
element (b).
represented as
e Mg—l
Y = Y Av®Xpon (5.13)

n=0

From the signal flow graph we see that the number of 2 M;-points (I)FFTs is given as 4 M, — 1.
The number of multiplications within the kernel is given as 2M?M;. Hence, the overall
computational complexity is given by M;(4M, — 1)log2M, + 2M; M?.

Relation to the linear convolution network

At this moment we can easily explain the relationship with the multirate convolution system.
Form =0,---, M, — 1 define [A,,]x & A, and define the 2M; x 2M,; diagonal matrix

Dm 4 diag {An1,01 S AnL,2M|—l} (5'14)
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Then equation (5.13) can be expressed using the diagonal matrices D,,,

- Mz—l
Y = Y XuDnor (5.15)

n=0
The advantage of equation (5.15) is that we can write it in matrix form
Do -+ Dpy 0
[Yo YzMz—z] = [Xo - Xng1] (5.16)
0 Do - D
Observe that equation (5.16) represents an ordinary matrix-vector multiplication. However,
in this form it can also be interpreted as a straight-forward representation of a block signal

processing application (namely overlap-add convolution) in matrix form.
Now define the K x K L matrix (., as

(xr = [IK |z g | --- |z—(L—l)1K]
Then from equation (5.16) a z-domain representation can be derived as
= T = t
Y(z) & [YO Y2M2—2] <2M|,2M2—1
Do - Dayy 0

(Xo - Xn,1] <;M.,2Mz—l
0 DO DMz—l

= ([A0 - Ary1] Ganng) @ (1Xo -+ Xngo1] Gongyons,)

M,-1 M;—1
( Z Amz-'m) ® ( E vxmz_m)
. m=0

m=0
A Ay(z) ® Xo(z) (5.17)
The inverse FFT of Y (z) is
I 5 s 1 . _
mY(z)FzM, = Z—M(Ao(z)opxo(z))lrm A §(2) (5.18)

But this equation is equivalent to equation (4.24) in section 4.4 if we consider the fact that
Faom, = Wap,.

Following the steps in section 4.4 this equation results in the multirate convolution system
based on the linear convolution network with the DFT, given in figure 4.6.a. In fact, figure 5.5
and figure 4.6.a are equivalent. Moreover, reconsider that Ag(z) and X(z) are

Ao(z) = a(z)[In, |0]F2n,,  Xo(z) = x(2)[Yng, | 0 ]F2n (5.19)
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where
a(z) = i_oamz'"' = [ao(2) -+ ary-1(2)] (5.20)
My—1
x(z) = Z_ Xm2™™ = [zo(2) -+ Tap-1(2)] (5.21)

In equations (5.20) and (5.21) again the polyphase components a.,(z) and z,,(z) appear! The
second last line of equation (5.17) can then be interpreted as a polyphase decomposition of a
and x represented as an order M, — 1 polynomial in z with 2 M, -dimensional vector coefficients.
So we have found a formal way to describe the multirate convolution network of the previous
chapter in terms of blocks (2M;-dimensional vectors), but also the way back. This novel result
is extremely important in understanding multirate convolution systems in terms of processing
behavior (by means of the signal flow graph representation).

Block-signal processing: overlap-discard

We have now shown that the figure 5.5 and figure 4.6.a are both representations of the same
realizations of the overlap-add convolution algorithm. But then it must be possible to give a
signal flow graph from the realizations of the overlap-discard convolution algorithm as given in
figure 4.6.b. As a starting point we take equation (4.27), in which we have introduced the FFT
matrix

§(z) = %M(Ao(z)@af(z))rgm (5.22)

Recall equation (4.29), then we have
X(z) = %(2)Far, = X(2)[ 27" Zng, | Tng, [Fang, (5.23)

In order to derive a signal flow graph substitute equation (5.21) into the expression for X(z),
which gives

x(z)

My—1
( Z xmz*"‘) [27'Zp, | Ing, |

m=0
Ma—1

S 27" 2 X | X |27
m=0

M,
E ZMI Xm._12_m

m=l1

My—1
3 xmz‘"‘] (5.24)
=0
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Define for m = 0, - - -, M, the 2M; vector X,, as

im 4 [ZM| XMa-1 ! 01 ifm= Mz (525)

[ ZpgXm-1 | Xm | otherwise

and substitute X,,, into equation (5.24) then we get
M,
X(z) = Z Kmz™™ (5.26)
=0

Let us follow the reversed derivation of equation (5.17) for Ag(z) ® X (), which should lead
to a similar expression as in equation (5.16):

N My—1 M
A(2) @ X(z) = (E Amz_m) ® (E sz_m)
m=0 m=0
= ([0 - AlCrrnn) ® (IXo -+ XaglCongpi1)
Dy - Dag 0
. = t
= [XO v XMZ] Te, . C2M|,2M2
0 " Dy - Dpgyy
a [170 ?ZMZ_I] Coonans 5.27)

Combining this result with equation (5.22), then for m = 0,---,2M,; — 1 we can define the
2 M;-dimensional vector

()

]_ = = t *
I [Yo YZM;—I] <2M,,2M2F2M|

<N

1 = 13 1.
[_2 7 YoFou, - A Y2M2—1F2M|] Camty 204,
= = 1
= [J’o yZMz—l] Comy 20, (5.28)

Moreover, applying equation (5.22) results in the expression for y(z)

¥(2) [§o §2M2—1] Camn 2n [ & ]

B[] o[ 1

= [}’o y2M2—l] Gw..zM2 = Y(jw.,mz (529)
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Relation to the circular convolution network

We can summarizing the results for the overlap-discard convolution algorithm as follows. The
kernel of the signal flow graph is determined by equation (5.27), where we recognize the matrix
notation of a block convolution structure as in equation (5.16), given as

_ _ R N Do - Dayi 0
[yo ymz_l] = [®o - Zag] (5.30)
0 Do -~ Dpy:

In fact, the kernel structure is the same as in figure 5.5.a. The only difference is that the
dimension in the horizontal direction is increased by one. For m = 0, - - -, M3, the vectors b.¢ -
are the 2M;-point FFTs of X,, which is related to x,, according to equation (5.25). In practice
this means that X,,, is

[0--- 0z -+ zp,-1] ifm=0
£m & { [zn-m --- zNo1 0 -0 0] ifm =M (5.31)
Zm-1)M, " TmM-1 TmM, *° J3(m+1)M,—1] otherwise

From equations (5.28) and (5.29) we can determine y,,,, form = 0,---,2M; — 1, from ?m as
follows

1 = 0

Ym = Z—MYWFZM' [ oy ] (5-32)
In words, perform the 2 M;-point IFFT of Y ,,, and discard the first M, entries of the IFFT result.
The signal flow graph of the overlap-discard convolution algorithm can now be determined as in
figure 5.6, with processor element as in figure 5.5.b. From the signal flow graph we see that the
number of 2M,-points (I)FFTs is given as 4M; + 1 which is 2 more than required for overlap-
add. The number of multiplications within the kernel is given as 2M; M, (M, + 1), which is
2 M, M, more than required for overlap-add. Hence, the overall computational complexity for
overlap-discard is given as M; (4 M + 1) log 2M; +2M; My(M, +1). On first sight the overlap-
discard convolution algorithm is somewhat more expensive than the overlap-add algorithm
in terms of computational complexity. However, in the next sections we will show that the
additional overhead due to the actual overlap-add operation (the "OA"-block in figure S.5.a) is
more expensive than the additional overhead due to the actual overlap-discard operation (the
"OD"-block in figure 5.6) in terms of hardware.

5.4 Short Length FFT Processing

In this section we consider the kernel of both signal flow graphs of the overlap-add and the
overlap-discard. Observe that the kernels of both signal flow graphs have the same structure.
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Figure 5.6: Signal flow graph of the overlap-discard in frequency domain. The blocks labeled
with OD perform the discard operation of the 2M; — 1-dimensional vectors §,.. This operation
is illustrated in figure D.2 in appendix D.

The only difference is the dimension: the signal flow graph of the overlap-add contains M?
processor elements, the signal flow graph of the overlap-discard contains M, (M, + 1) processor
elements. However, in both we recognize a linear convolution-like structure, which is confirmed
if we reconsider equations (5.16) and (5.30). For this reason it is possible to implement the FFT
matrix to perform the kernel operation efficiently. We will show this for the overlap-add kernel
only, since the structure is the same for the overlap-discard kernel.

Recall equation (5.13) and observe that it can be written as

N = M;-1

[Ym,o Ym,zM.-l] = > [Ano - Anzmi<1] @ [Xmmcnp -+ Xomonamy 1]
s
My—1 M;—1

D> Ao Xpmno 0 D Anam-1Xmn2M, -1 (5-33)

n=0 n=0
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Figure 5.7: Kemel of the signal flow graph of the overlap-add in frequency domain and the
processing element. The slices represent signal flow graph of a convolution.

But we can also construct an 2M, — 1 x 2M; matrix

- t f’o,o ok Y/ZM;—Z.O ?;
[Yo Y2M2—2] = : : L (5.34)
Yoom—1 oo+ Yamp22m11 ?;Ml—l
Hence, the vectors ?;n are convolution results
_, R My—1
Vo), = Yim = 2 Anm Ko (5.35)
Now form = 0, - - -, M, — 1 define the vectors
Al = [Amo - AMp—10), X = [Xmo -+ Xnmyo10]
then
Y., = A +X' (5.36)

Now we can draw the kernel of the signal flow graph in figure 5.5 as in figure 5.7, where each
mth slice represents the m*" linear convolution.

This result can also be derived more formally from the matrix notation of equation (5.16).
Observe that we can define a 2M; (20, — 1) x 2M;(2M, — 1) permutation matrix? P, and a

ZPermutation matrices have the property that they are orthogonal.
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Figure 5.8: The frequency domain description of one slice from the kemel of the signal flow
graph of the linear convolution in frequency domain with overlap-add.

M M, x My M, permutation matrix P, such that
=/ =/ = =
Yo Vo] = [Yo o Yamoa] Py (5.37)
[X(I) ;vl.—l] = [Xo - Xm]Pe (5.38)

Combining equations (5.16) and (5.38) gives®

’ ’ Dy -+ Dy 0
Yo - Yaryoa] = [Xo -+ Xap] Pe P,
0 Do -+ Dy
[ 400 o+ Aoz 0 O T
0 Aop coo Agaa 1
— [X(’, X;\/l;—l] :
O Ago -0 Apaa - 0

E 0 Aop e Agang -1

= [Abx X§ - Ay * Xy, ] (5.39)

3The large matrix in the second line of equation (5.39) is block-diagonal.



5.4 Short Length FFT Processing 77

This linear convolution operation can again be performed efficiently using the FFT matrix.
Assume again for convenience that M, is a power of 2, then the nearest power of 2 to 2M, — 1
is 2M,. Then equation (5.36) can equivalently be performed as follows

—

1 , ) .
Yo = 5z (AT 10]F) © (X0 [ Tng | 0JFors)) P, (5:40)

This results in a kernel as it is shown in figure 5.8. Embedding the kernel within the overlap-add
signal flow graph results in the three-dimensional signal flow graph of figure 5.9, in which each
polygon represents a 2M;-point or 2M,-point (I)FFT.

Some notes on computational complexity

The computational complexity of this algorithm can now be determined as follows. The number
of 2M;-point (I)FFTs is still given as 4 M, — 1. Observe that the kernel operation contains 2 M,
slices, where each slice consists of three 2 M;-point (I)FFTs and 2 M, multiplications. Hence, the
overall computational complexity is then given as M (4M, — 1)log2M; + 6 M1 M, log2M, +
4 M; M2 for the overlap-add algorithm and M, (4M> + 1) log 2M; + 6 M1 M, log 2 M, +4 My M2
for the overlap-discard algorithm.

We can now summarize the expressions for the subsequent algorithms that we have de-
veloped. We assume that the worst-case realization of the linear convolution algorithm is the
time domain convolution, which requires M? M7 operations, and the best-case realization is the
frequency domain convolution which requires 3M; M, log(2 M My) + 2M M, computations.“
In table 5.1 the computational complexities of the subsequent algorithms are listed. Algorithm
A refers to the signal flow graph in figure 5.3.a with processing element in figure 5.4. Algorithm
B refers to the signal flow graph in figure 5.5.a. Algorithm C refers to the three-dimensional
signal flow graph in figure 5.9.

In figure 5.10 the computational complexities are plotted as function of N = MM, (for
convenience only the overlap-add case is shown). It appears that algorithm C requires twice
as much operations as the best-case, independently of the convolution length (figure 5.10.a).
However, for sequences which have lengths N < 2!® algorithm B has less computational
complexity. The reason is that if M; or M, is large, then algorithms A and B will perform
as the best-case algorithm. In the limit case that M; = N or M, = 1, we have that these
algorithms are equivalent, i.e., they are all representations of the one-dimensional frequency
domain convolution. A different case is if we require that M; = M, (figure 5.10.b). In that case
we see that algorithm C requires far less operations than algorithms B and C for all V.

4This statement is not valid for N = M; M, < 8. Therefore we will assume that N = M; M, > 8.
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Wik Ve

Figure 5.9: Three-dimensional signal flow graph of a convolution algorithm that consists of
FFTs and multiplications. Instead of long FFTs in one-dimension short FFTs are used in two-
dimensions. The polygons represent the FFTs. For convenience the overlap-add operation is
omitted.
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Figure 5.10: Computational complexity as function of log IV, where we used the expressions
of table 5.1. In the plots only the overlap-add case is shown. In (a) we did not have conditions
for M, and M, i.e. the computational complexities for each possible /V is minimized over all
combinations of {Mj, M;}. In (b) we have introduced condition that M; = M,.
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| Computational Complexity ]
WOrst-case MEM?

overlap-add A M, M; (2 4+ 3log2M,)

overlap-discard A | MyM,(M, + 1)(2 4+ 3log2M;)

overlap-add B M;(4M; — 1) log 2M; + 2M, Mj

overlap-discard B | M;(4M, + 1)log 2M; + 2 M, M7

overlap-add C M, (4M, — 1) log 2 My + 2M1 M, log 2M, + 4AM M,
overlap-discard C | M (4M; + 1)log2 M, + 2M1 M, log2 M, + 4My M,
best-case IMi M, log2My M, + 2Mi M,

Table 5.1: Computational complexities of the subsequent realizations of the linear convolution.
The convolution length is given as N = M; M,, where M; and M, are powers of 2.

5.5 Concluding Remarks

In this chapter we have used the graph manipulations to elaborate a formal relation between mul-
tirate convolution systems and block-signal processing. The starting point was the dependence
graph of the long convolution problem. The dependence graph is projected onto two slightly
different signal flow graphs, which are in fact graphical representation of the overlap-add and
overlap-discard methods. We have shown, by means of formal "algebraic manipulations" and
by means of illustrative "graph manipulations", that this representation is equivalent to the opti-
mized multirate convolution system, which has been obtained in the previous chapter. However,
we prefer the representation from a multirate point of view rather than the block-signal process-
ing point of view. The multirate point of view allows us to combine our processing structures
with novel multirate processing schemes, such as has been done in e.g. [CPR89, GV92]. In
chapter 7 we propose some novel directions for future research in this area. It remains now to
show the power of the graphical representation in designing hardware architectures. This will
be the subject of the next chapter.



CHAPTER 6

HARDWARE
ARCHITECTURE DESIGN

6.1 Introduction

We ended the previous chapters with a schematic description of the multirate convolution
system. In this chapter we show that the multirate convolution system, indeed, can be mapped
easily into efficient parallel hardware architectures. The specifications of an "efficient" hardware
architecture are determined by the application. In our case it will be part of a real-time on-board
SAR processor, and perform either the range or azimuth compression, see chapter 3. From the
application point of view, we derive the following requirements of the architecture:

e The processor size and power consumption must be small. Especially for on-board
satellite processing, these factors are hard limits.

e The input signals have lengths up to 5 Ksamples. In the future, however, signal lengths
will even grow. We set the maximum convolution on § Ksamples.

o Effective data rates vary from 2.3 Msamples/sec up to 10 Msamples/sec. Our design goal
is thus 10 Msamples/sec, but the system must be suitable for higher data rates in the future.

Nowadays it is customary to use off-the-shelf DSP components to solve long convolution
problems. They have the advantage of being programmable and thus flexible. They are often
specified by benchmarks, such as the processing time of an /N-point FFT or the number of
MOPS (Mega Operations per Seconds) or GOPS (Giga Operations per Seconds). A major
disadvantage, however, is that they require a complex infrastructure, which includes I/O control
and protocols, high speed data busses, high speed memory and memory control, intermediate
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buffering, etc.. Due to the required infrastructure, board size and power consumption are
substantial. Moreover, increase of the number of processors does not lead to a linear increase
in processing capacity. The extra overhead required for the mult-DSP infrastructure is due to
the decline of the ideal linear increment. Our experience is that DSP boards are best specified
by a trade-off between their benchmarks and overhead due to the required infrastructure. Doing
so, we conclude that the smallest DSP board solution that meets the specifications listed above,
contains an equivalent size of six Euro 6 board, and has O(100) W power consumption [Cat92].

Therefore we propose an alternative, namely a VLSI implementation of the multirate convo-
lution system. Due to the structured data flow of the multirate convolution system, we can focus
on the accuracy and the dynamic range, which are important aspects in SAR processing. The re-
sult will be a floating point single-chip convolution processor. It can perform an 8K convolution
with an effective data rate of 2 Msamples/sec, thus the required 10 Msamples/sec effective data
rate can be achieved with only 5 chips. The additional overhead due to the parallelization of
the processor is negligible. A remarkable side-effect is that our VLSI implementation requires
twice as much computations compared to a straight-forward implementation in DSP boards.
Nevertheless, it is cheaper in terms of overall performance, volume and power consumption
and, in many cases, also in terms of accuracy and dynamic range.

Essential in the design trajectory of the intended VLSI architecture, is the design of a
prototype architecture. A prototype architecture is based on off-the-shelf components. It is
used to solve typical hardware architecture design problems, such as balancing between I/O
data rate and processing data rates, determination of a trade-off between processing flexibility
and performance, modularity and parallelization possibilities.

In section 6.2 we give an algorithmic specification of the convolution schemes developed
in the previous section. In section 6.3 we express the hardware specifications in terms of
processing parameters, such as data rate, signal length, required memory. In section 6.4 we
specify a dedicated VLSI architecture for the convolution system. Here we show that the
multirate convolution system can be mapped onto a single-chip hardware architecture.

6.2 Algorithm Specification

The algorithms that we consider are represented in algorithms 1 and 2, see pages 84 and 85. We
assume the more general case than in the previous chapter. Let a and x be the sequences to be
convolved, with lengths NV, and IV, respectively, and let y = a * x be their convolution. Given
M, as in section 5.3. We assume that N, = M, M; and N, = M, M, with M, a power of 2.
In case of SAR processing, the reference can be either the pulse replica or the azimuth filter,
and the data is either the pulse echo signal or the azimuth echo signal. We will use a 2M;-point
(DFFT and a 2 M,-point (I)FFT, where M, is also a power of 2. Moreover, we assume that M,
and M. are chosen such that 2.V is the nearest power of 2 to both M, + M, — 1 and M, + M,,
ie., we can use identical FFT sizes in both overlap-add and overlap-discard algorithms.
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Figure 6.1: Simplified signal flow graph of the convolution algorithm. The numbers within the
blocks refer to the stages of the algorithm.

The relation of the algorithmic description and the signal flow graph description is briefly
pointed out in figure 6.1. The figure is a schematic interpretation of figure 5.9. Moreover,
the overlap-add/overlap-discard operation is also added to the scheme. The numbers of the
blocks in figure 6.1 refer to the stages of the algorithmic descriptions. Observe that each block
schematically represents a for-loop (see the algorithms 1 and 2 on pages 84 and 85) in which
the basic operation is an (I)FFT. In fact, figures 5.9 and 6.1 clearly show the parallel and regular
structure of the algorithm.

Based on the signal flow graph we can design several hardware architectures. The design
consideration will now be the hardware specifications. For example, if performance is crucial
and processor volume is less important, then the several blocks can be implemented in a
pipelined architecture. Moreover, within each block the available parallelism, see figure 5.9,
can be exploited. On the other hand, if we require compact processor hardware, the hardware
can be reused by executing the various FFTs and IFFTs sequentially on it. The processor itself
can still be a parallel processor. As we have mentioned in the introduction of this chapter,
our final goal is a single chip processor. The basis for the next sections is thus an iterative
architecture.
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Algorithm 1 : Overlap-Add Convolution Algorithm

STAGE I: form=0: M, -1

{Am,l)v R Am.2M|—1} Fﬂ {amMu Tty a'(m+l)M|—l}
end
form=0:M;,—-1
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end
STAGE 2: forn =0:2M, — 1
{Az),m . 7A£Mz—l,n} F‘LT {A‘lm T AMn—l.n}
end

forn=0:2M; -1
(Ko Xirgtn} = {Xoms > Xnty-1,n}
end
STAGE 3: forn=0:2M; — 1
form=0:2M,—1
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end '
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end
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end

STAGES: form =0: M, + M, — 1
forn=0:M —1
YmMi+n < Jmn + Im-1,M+n
end
end
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Algorithm 2 : Overlap-Discard Convolution Algorithm

STAGE 1: form=0: M, -1

{Amor Amami1} X {@mdyy -+ » Gmi1)My—1)
end
form=0: M,
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end

STAGE 2: forn=0:2M; — 1
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end
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end
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b n — Am,n X Xm,‘n
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end
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end
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end

STAGE S5: form =0: M, + M, —1
forn =0: M, —lA
YmM+n gm,M|+n
end
end
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6.3 Prototype Architecture

The hardware specification is that the processor must be as small as possible, so we choose the
iterative architecture, as it is shown in figure 6.2.a. In figure 6.2.b the data flow per stage is
shown. We use off-the-shelf components (FFT processor, multiplier, memory, etc.). We have
to exploit the parallel and regular structure rather than hardware technology. At this point, our
methodology proves its usefulness, in that, it leads to an efficient mapping of the algorithm onto
the available architecture.

Processing parameters

We start with definition of the processing parameters from which we can derive the hardware
specifications. The effective data rate D is defined as

no. of data samples to be processed
processing time

D &

The effective data rate describes, in fact, the throughput of a component, whereas the component
itself is described as a black-box.! The advantage of the definition of the effective data rate is
that we do not have to specify a component by its internal specifications (no. of operations,
clock frequencies, etc.). ILe., we have shielded the external behavior of a processor from its
internal activities, so that we can concentrate on the design of the architecture.

Let us assume that we have an off-the-shelf FFT processor and multiplier, with data rates

o Dy;: the data rate of the FFT processor in 2 M;-point mode
o Dj,: the data rate of the FFT processor in 2M,-point mode
e D,.: the data rate of the complex multiplier

To increase the data rate we can place Py FFT processors and P,, complex multipliers in parallel.
Furthermore, we assume that the memory is dual ported, and that I/O speed of the memory is
fast enough. To determine the required number of components we introduce the processing time
per stage T;, where : is the stage number. At this moment we can determine T; in terms of M,,
M., M, and M, and the effective data rates. Furthermore we define a parameter A as

A A 1 in case of overlap-discard
- 0 in case of overlap-add

This parameter allows us to express 7; independent of the two algorithms.

!Data busses are also considered as components.
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Figure 6.2: Iterative hardware architecture (a) and the data flow of each stage (b).
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STAGE 1: The number of 2M;-point FFTs is M, + M, + A. Thus Tj is

n _ 2Mi(Mi+ M, +A)
' PDp
STAGE 2: The number of 2M,-point IFFTs is 4M,. Thus T is
SM\M,
T S
? PsDjp

STAGE 3: In stage 3 the processing time is determined by the minimum of the processing
speed of the multiplication and the 2M,-point IFFT. The number of multiplications is
4 MM, and the number of 2 M,-point IFFTs is 2M;. Thus T3 is

0 {4M|M2 4M1M2}
min

ho= 7.D,.’ P,D,

STAGE 4: The number of 2M;-point IFFTs is M, + M, — 1 4+ A. Thus T} is
2M1(Ma. + Mz: i 1 + A)
PiDp

Ty =

STAGE §: The processing time is now determined by the speed of the additions in case of the
overlap-add algorithm. In that case we will assume that the additions can be performed
at the I/O speed of the memory. In case of the overlap-discard algorithm the data rate is
only determined by the I/O speed of the memory. Therefore we will assume that 75 ~ 0
for both algorithms (which is a direct consequence of the assumption that the I/O speed
of the memory is no bottleneck.

To determine the overall data rate D of the hardware architecture we assume that the incoming
signal to be processed is {x,}, i.e. the signal {a,} can be interpreted as an N,-taps FIR filter.
Then
N,
D = —/—— 6.1
Z?:l T“ ( )
If we assume that P,,D,, > P;D fi» t = 1,2, (i.e., the multiplication is always faster than the
FFT processing) then equation (6.1) becomes
N P;
2My (D7) (2M, + 2M, — 1+ 2A) + 6D3, My)
N.P;

4M; Mz (2D7) +3D};)
In the latter step we have used the fact that 2M, is the smallest power of 2 that is greater
than M, + M; — 1 + A. If we assume optimum matching of M,, M, and M, then 2M, ~
M, + M, —1+A.

6.2)
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2M, | 2M, D N, memory capacity
(XN Py) | (maximum) (samples)
16 16 8-10° 128 — N, 512
16 64 2-10° 512— N, 2K
16 | 256 | 4-10° | 2K — N, 8K
16 1K 1-10° 8K — N, 32K
64 16 2-10° 512—- N, 2K
64 64 4 -10? 2K — N, 8K
64 | 256 1-10° 8K — N, 32K
64 1K 31 32K — N, 128K
256 | 16 4 -10? 2K — N, 8K
256 | 64 1-10° 8K — N, 32K
256 | 256 32 32K - N, 128K
256 | 1K 8 131K — N, 524K
1K 16 1-10¢ 8K — N, 32K
1K 64 31 32K — N, 128K
1K | 256 8 131K — N, S24K
1K 1K 2 524K — N, 2M

Table 6.1: Performance figures and memory requirements for an architecture with a single-chip
state-of-the-art FFT processor. M, M3, N, and the memory capacity are represented by no. of
complex samples. The data rate D is represented by the no. of complex samples per second.

Hardware design

To illustrate the performance of an implementation in hardware with off-the-shelf components
we have simulated the architecture using the specifications of a single-chip state-of-the-art FFT
processor [GEC93a)]. The FFT processor has 4 modes: 16 point, 64 point, 256 point and 1024
point. The data rates for these modes are Dy; ~ 10 Msamples/sec, « = 1,2. The performance
figures and memory requirement are listed in table 6.1. Observe that the data rate increases
linearly with the number of FFT processors in parallel. The number of parallel FFT processors
is limited by the I/O data rate D;jo: Ppi < [DI/O/D!i]. In our case, the I/O data rate is

Dy/0 = 20 Msamples/sec, thus the maximum number of parallel FFT processors is 2.

Choose for simplicity M; = M,, ie., we use only one FFT mode. Furthermore, the
multiplier runs at D,,, = 20 Msamples/sec [GEC93b], thus one multiplier is sufficient: 7, = 1.
Recall that the convolution length is specified at N; + N, + 1 = 8 Ksamples. Then we have
that the FFT processor should operate in 256 point mode. From the table we then read that the
maximum data sequence length is N, = 32 Ksamples. Since the actual data sequence length is
less than § Ksamples, we have that the utilization of the processor (the number of actual samples
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divided by the number of processed samples) is low: less than 25 %. However, if subsequent
data sequences, say Xo, - - - ,Xn—1, are convolved with a fixed reference sequence, say a, then
we can construct a long data sequence x = [Xp --- X,_1] and convolve it with a. The adjacent
convolution results y; = a * x; have an overlap of NV, samples. However, in general we are not
interested in the first and last IV, — 1 samples of y;. The principle is shown in figure 6.3.a. If
the length x approaches 32 K — N, then the utilization of the processor approaches 100 %.

From table 6.1 we obtain the effective data rate of the convolution processor D = 32N, Py =
2.0 Msamples/sec. Thus we do not reach the specified data rate of 10 Msamples/sec. However,
a simple mechanism is used to increase the data rate by putting multiple convolution processors
in parallel with negligible additional overhead. Each convolution processor has an EN_IN and
EN_OUT input and a READY_IN and READY_OUT output, see figure 6.3.b. The convolution
processor has the ability to enable its input buses REF and DAT. If EN_IN is set, the convolution
processor enables REF and DAT. Initially, one of the convolution processor has enabled input
buses REF and DAT, and the other convolution processors have disabled input buses REF and
DAT. When the input data has been read into convolution processor, it disables its input buses
REF and DAT and generate a READY_IN signal, which is the EN_IN of next convolution
processor. This mechanism can be readily applied to the output bus OUT. A convolution
processor can only write its convolution result if its output bus OUT is enabled by an EN_OUT
signal. If the convolution result has been written, its output bus OUT is disabled and a
READ_OUT signal is generated, which is the EN_OUT of the next convolution processor. The
next convolution processor can then write its convolution result to the output bus. This simple
mechanism allows us to consider the array of convolution processors as a single convolution
processor, with an effective data rate proportional to the number of convolution processors
within the array.

Evaluation

In general, off-the-shelf FFT processors use block-floating point data format. During the design
of the prototype architecture it appeared to be a major problem to implement the block-exponent
administration in hardware. It requires typically combined control and data path logic. We
have implemented this in Programmable Logic Devices (PLDs) [Alt93] for they allow a high
degree of design flexibility. However, it appears that mapping of combined control and data
path functions onto multiple PLDs, results in much data communication between PLDs. These
aspects made it extremely difficult to manage the design trajectory of the prototype architecture.
Moreover, due to the block-floating point data format, the communication busses are wide (in
our case 40 bits), and obviously, the required working memory is large. The conclusion is that
an implementation of the convolution processor using off-the-shelf DSP components is not fully
satisfying, especially if it must be fast and small and have low power consumption, and if it
must also meet stringent dynamic range and accuracy specifications.
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Figure 6.3: In (a) the simplified timing diagram of the convolution of the subsequent data
sequences X;, z = 0,---,n — 1, with the reference sequence a is shown. Since we are only

interested in the body samples of the results y;, the overlaps can be discarded. In (b) a convolution
processor array is shown. REF and DAT represent input data buses for the reference data and
the echo data, respectively, and OUT represents the output data bus for the convolution results.
The READY_IN and EN_IN signals are used to enable/disable the input data buses and the
READY_OUT and EN_OUT signals are used to enable/disable the output data buses.
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6.4 Dedicated VLSI Architecture

In this section we present a dedicated VLSI architecture for the convolution processor. The
specifications are mainly based on the prototype architecture described in previous section, in
that, the chip has 2 Msamples/sec effective data rate and supports parallel processing without
additional overhead. However, in the prototype architecture we were forced to use a block-
floating point data format (due to the format used in the FFT processor). If we stick to this data
format, we definitely meet the same problems as in the prototype architecture design trajectory:
much overhead due to block-exponent administration and large word widths. Therefore, we
propose a hybrid floating point data format? for the VLSI architecture. The basic processing
operation is now a 128-point FFT, thus a maximum convolution length of 8 Ksamples is
allowed. The 128-point FFT is realized in radix 2 processor elements for it has a simple
structure. Therefore, we put our main effort in the following items:

e designing parallel structures for multiple radix 2 processors on chip

o determination of trade-off between accuracy and dynamic range of the I/O at the one hand
and the internal arithmetic accuracy at the other hand

The proposed architecture, including the finite precision arithmetic operations, is modelled in
MatLab, a high level programming tool for numerical analysis. The functionality and the
accuracy are evaluated by simulations, using several representative data sets, including real
SAR data. The feasibility of the architecture in terms of chip area is validated based on standard
cell libraries of the ASIC design tool COMPASS [COMY4].

Global architecture description

The global structure of the hardware architecture is shown in figure 6.4. Its main part is a 128
point FFT processing core, containing a fully parallelized radix 2 processor array as well as
the FFT working memory. Input and output registers take care of 1/O buffering to guarantee a
continuous I/O throughput. The I/O data rate and the effective FFT processing data rate are both
20 Msamples/sec., such that optimum balancing between I/O data rate and FFT processing data
rate is achieved. The size of the convolution working memory is 16 Ksamples, which cannot
yet be implemented efficiently into on-chip RAM using standard cell. However, since the I/0
load of the convolution working memory is not the limiting factor, it can be implemented in
external RAM without affecting the effective convolution data rate.

2A hybrid floating point number consists of three parts: mantissa for the real part, mantissa for the imaginary
part, and one exponent.
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external memory

—

Figure 6.4: The global structure of the hardware architecture. The architecture consists of an
external memory and a chip core, including the FFT processing core.

The FFT processing core

The basic operation of our FFT processing core is an FFT stage operation based on radix 2.
An optimum FFT stage operation requires high speed dual ported memory accesses, which is
often a bottleneck in the design of FFT processing hardware. Due to this fact increasing the
radix 2 performance will not lead automatically to a proportional increment of the FFT stage
performance. To overcome this problem we propose a chip implementation of the FFT algorithm
based on the FFT algorithm proposed by Singleton [Sin67]. This algorithm has the same data
path for each FFT stage operation. The purpose was to efficiently perform large FFTs using
a dedicated radix 2 processor with limited amount of RAM. The latter problem was solved by
using external sequential data storage (magnetic tapes or disk files). The proposed configuration
consists of a single radix 2 processor and 4 external input files and 4 external output files.
Nowadays in high speed FFT processing memory access time is often the bottleneck rather
than a limited amount of RAM. The algorithm proposed by Singleton uses separate memory
units allowing us to perform multiple memory accesses in parallel, which decrease the speed
requirements of the memory units. The same principle holds for a VLSI implementation of the
radix 2 processor including the sequential data storage, where the latter can be implemented



94 HARDWARE ARCHITECTURE DESIGN

Figure 6.5: The FFT processor including the 2 radix 2 processing cores which achieve full
parallelism.

efficiently using 4 FIFOs rather than 8 sequential register files. Moreover, in [Sto71] it was
shown that the structure of this algorithm can be mapped onto a fully parallel radix 2 processor
array, where the processing speed of the FFT stage operation depends linearly on the number of
radix 2 processors. The number of FIFOs remains 4 per radix 2 processor. The memory access
(i.e. the FIFO I/O handling) is realized using wiring rather than addressing resulting in optimum
utilization of the parallel radix 2 processors. In figure 6.5 an example is given of the hardware

architecture of our proposed parallel radix 2 processor array using 2 radix 2 processing cores
and 8 FIFOs.

The radix 2 processor

In this section we will propose the architecture of the radix 2 processing core that will be used
in our parallel radix 2 processor array. Its data path is based on a hybrid floating point data
format that consists of two mantissas (real and imaginary) and a single exponent. In many DSP
applications, and especially in SAR processing, dynamic range in combination with preservation
of accuracy is essential. We will show that our floating point data format behaves as optimally
as full floating point data formats in terms of dynamic range and accuracy. However, a major
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Figure 6.6: The architecture of the radix 2 processor. The exponent is bypassed from input
scaling & rounding block to output scaling & rounding block.

advantage above full floating point data format is that it can be implemented using small, simple
and efficient fixed point arithmetic hardware structures with little scaling overhead.

The proposed radix 2 processing core architecture is shown in figure 6.6. The arithmetic
operations are assumed fixed point, whereas the scaling & rounding is assumed part of the data
path. Inputs a and b represent the two data inputs of the radix 2 and input c represents the
coefficient input. The exponent widths of a and b are equal and sufficiently large. Furthermore
the coefficient ¢ has no exponent since the coefficients are all part of the unit circle, i.e. their
dynamic range is constant. Observe that for this reason the multiplication result of a and ¢ has
the same exponent as the exponent of a. Therefore the exponent handling which should be
required for the floating point arithmetic operations can be relocated to the input of the radix 2
processing core.

After a fixed point operation such as scaling and multiplication the word width becomes
substantially larger. At first sight this implies an increment in accuracy which obviously requires
large arithmetic hardware. However, this increment in accuracy is only virtual in that the number
of significant bits of the output of a fixed point operation is always less or equal than the minimum
number of significant bits of the inputs of the fixed point operation. This implies that the word
width at the output of the fixed point operation can be rounded without loss of accuracy, as we will
show now. The starting point is a concise error analysis based on the simplified data flow shown
in figure 6.7. The samples are assumed real but the extension to the complex case is straight
forward. Furthermore we assume that the inputs a and b and the coefficient c are stochastically
independent. The fact that the actual coefficients c are deterministic does not affect this analysis.
Let a, b and c be wide sense stationary with zero mean and let them be uniformly distributed
between -1 and 1. Then the expected signal power is given as Ea? = E¥? = EZ = 1/3, with E
the expectation operator. Assume that a, band c are represented in m, n and p bits, respectively.
Let e,, e, and e. be uniformly distributed error noise in a, band c, respectively, then |e,| < 2™,
lee] < 27" and |e.| < 277. Then the expected error power of a, band c is Ee2 = (1/3)272™,
Ee2 = (1/3)272" and Ee? = (1/3)2-%, respectively.
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— D

Figure 6.7: The simplified model of the data flow in the radix 2 processor with inputs a, b,
coefficient c, intermediate result d and output r.

Thus, after the multiplication the error-to-signal ratio is
Ee3/Ed? = Eel/Ea® + Ee?/E = 27°™ 4 27% 6.3)
The expected error power of the output r after the addition is:

Ee2 = Ee}+Eef=1/9 (27" +27%) + (1327
~ (1/3) (2—2(m+0.8) + 2‘2(P+0-3) 1 2—211) (6.4)

From equation (6.4) follows that the number of significant bits in the output will never be more
than the minimum value of min{m + 0.8,n,p + 0.8}, which is the minimum number of bits
required to represent the output r. Conversely we can state that it has no use to represent the
inputs with different accuracy, so the number of bits to represent the different inputs and the
output must be the same, i.e., m = n = p. The inputs a and b are scaled to a single exponent.
From equation (6.4) it follows that the output errors in r; and r; are determined by the largest
input error in @, b and c, implying that a and b can be rounded to the original word width
after scaling. Furthermore the multiplication result will never have more significant bits than
the number of bits of the least significant input. Since we have stated before that all bits in
the coefficients are significant we know that all significant bits will be in the upper half of the
result. This implies that we are also allowed to round after the multiplication. In fact also after
addition the result can be rounded. However, the increment after an addition/subtraction is 1 bit,
so that the additional rounding hardware is relatively expensive with respect to the increment.
Moreover, depending on the appearance of an overflow bit, either the result should be rounded
or the overflow bit should be eliminated. This operation is performed at the output of the radix
2 processor by the scaling & rounding unit.

Simulation results

The parallel radix 2 processor array of figure 6.5 (including the radix 2 processing core architec-
ture of figure 6.6) is simulated to verify the results of the error analysis. The data formats were
specified on 12 bits real and imaginary mantissa width for both data and coefficient samples and
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Figure 6.8: The number of error bits plotted versus the number of FFT stages. The simulation
results contain approximately 0.4 bits more error noise than the theoretical values.

8 bits exponent width for the data samples. After the complex multiplication (see figure 6.6)
the result is rounded to 13 bits (a complex multiplication includes an addition, introducing an
overflow bit). After the addition/subtraction the results are scaled and rounded from 14 bits to
12 bits, which was the original data format.

The accuracy of the proposed hardware architecture has been simulated for several FFT
lengths. It has been compared with the accuracy for full floating point FFT hardware, which
was obtained in [Wei69]. The simulation results are shown in figure 6.8. It has been found
that, indepently of the FFT length, our FFT processor hardware is 0.4 bits less accurate than the
full floating point FFT hardware. For our application (SAR processing) a convolution length
of 8K is required, implying 128 points FFTs [Boe95]. Each data sample passes 28 (DFFT
stages, which results in a loss of accuracy of 3.2 bits, see figure 6.8. Thus our 12 bits floating
point FFT architecture has 8 bits accuracy. The FFT processor hardware was also simulated as
a part of the fast convolution hardware architecture, see figure 6.4. Two representative input
data sets has been fed into the simulated architecture, see figures 6.9 and 6.10. It was found
that the output accuracy has about 8 bits accuracy in all cases, which verified our expectations.
For completeness we give a brief notification. The relocation of the rounding behind the
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multiplication to the output (see figure 6.6) will improve the overall accuracy with O(107!) bits.
However, in terms of additional hardware it will cost approximately an extra complex adder.
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Figure 6.9: Simulation of the convolution architecture using random data. The accuracy of the
input data is 8 bits, the internal accuracy of the architecture is 12 bits. The error in the output
data is approx. 50 dB below the convolution result, implying a convolution accuracy of approx.
8 bits. The error is obtained by comparing the amplitude of the simulated convolution result
with the amplitude of full floating point convolution result computed with MatLab.
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Figure 6.10: Simulation of the convolution architecture using real SAR data. The data is part
of an scene with crop fields in which corner reflecters are placed (the peak in the data). The
accuracy of the input data is 8 bits, the internal accuracy of the architecture is 12 bits. The
error in the output data is approx. 50 dB below the convolution result, implying a convolution
accuracy of approx. 8 bits. It is clearly shown that despite the increase in dynamic range due to
the appearance of the peak within the convolution result, the accuracy remains 8 bits. This is
due to the use of floating point data format.
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6.5 Concluding Remarks

In this chapter we have presented the design of a hardware VLSI architectures of the multirate
convolution system. Itresulted from the mapping of the graphical representation of the multirate
convolution systems obtained in chapters 4 and 5. Two hardware implementations are proposed:

A prototype architecture: A prototype architecture is proposed, to handle typical hardware
design problems, such as finding a trade-off between I/O data rate, processing data
rate, flexibility, performance, modularity and parallelization. It is based on off-the-
shelf DSP components (FFT processor and complex multiplier [GEC93a, GEC93b]) and
Programmable Logic Devices (PLDs) [Alt93]. It resulted in a hardware architecture
design which is realized at the moment of writing.

A VLSI architecture: Based on the hands-on experience gained in the design of the prototype
architecture, we have presented a hardware VLSI architecture. The feasibility in terms of
accuracy is validated by simulations of a software model of the VLSI architecture. Hereby
we have used real SAR data. Based on standard cell libraries (0.6 ) of the ASIC design
tool COMPASS [COM94], the feasibility of a single-chip implementation is validated
in [Boe93].

Implementation of the multirate convolution system in a VLSI architecture allows more design
freedom in terms of I/O and FFT data rate balance, accuracy and dynamic range compared
to an implementation in off-the-shelf DSP components. We have focused on the efficient
implementation and the arithmetic accuracy of the convolution processor. The result is a
floating point convolution processor architecture including a parallel FFT processor core based
on the FFT algorithm proposed by Singleton [Sin67]. Although this algorithm was developed
three decades ago, its efficiency in terms of memory management and data flow management
have gained renewed interest [BCM94].

A remarkable side-effect is that our VLSI implementation requires twice as much com-
putations compared to a straight-forward implementation in DSP boards. Nevertheless, it
performs much better than a DSP board solution in terms of processing speed, volume and
power consumption® and, in many cases, also in terms of accuracy and dynamic range.

3 Although in some cases a single DSP board has higher processing speed, the chip has higher processing speed
per units of hardware size and per units of power concumption. For example, a good measure would be the
processing speed per m? of printed circuit board area and per Watt power concumption.



CHAPTER 7

CONCLUDING REMARKS

In this thesis we have introduced a schematic design methodology for designing efficient hard-
ware architectures for multirate convolutions. Other multirate signal processing systems can be
similarly designed. The design method uses graphical representations of algebraic substitutions
and equivalencies. Graph manipulation is much simpler than equation manipulation, in partic-
ular when the equations are written out in full low-level details. It is known that multirate filter
banks and fast convolution schemes have a close relationship. Using the graph manipulation
techniques that we have developed, this relationship has been made explicit in a clarifying and
illustrative manner. The design methodology allows direct mapping of the multirate convolution
algorithm onto prototype architectures or dedicated VLSI processors.

In many complex real-time signal processing applications, such as radar, sonar and medical
imaging, a schematic design methodology is desirable in which typical application specific
constraints such as processing speed, processor size and memory utilization can easily be taken
into account. The nature of our design methodology is that it partitions a complex signal pro-
cessing algorithm into small, less complex sub-algorithms. It leads to a highly structured design
trajectory of algorithms and architectures for complex real-time signal processing applications.
In the end, this approach leads to an effective gain in design time and reduces design risks and
complexity.

We have demonstrated the usefulness of the methodology by designing a multirate convolu-
tion processor which is applied in range and azimuth compression for real-time SAR processing.
Both range and azimuth compression are being considered as the critical processing steps for
such systems, especially when processor size is limited and low power consumption and high
processing speed are required. Applying our design methodology has resulted in an efficient
VLSI convolution processor. It is expected that a real-time on-board SAR processor based on
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this convolution processor is up to a factor 10 smaller (in volume and power consumption) than
a SAR processor based on commercially available DSP boards, e.g. [Cat92, Mer95].

If we express the performance of a convolution processor in terms of processing speed
per unit of processor volume and per unit of power consumption, then the performance of the
VLSI convolution architecture outperforms a straight-forward DSP board implementation. A
rough estimate is that the processing speed of our convolution chip compares to one state-
of-the-art DSP board. However, it is readily seen that volume and power consumption are
substantially smaller. Nevertheless, in terms of computational complexity, the VLSI architecture
is approximately twice as expensive. This should not be a surprise for hardware designers. One
might save a few computations in an algorithm but, in general, this will corrupt the regular
structure of the implementation in hardware architecture. In our case, this means that the
trade-off between paralellization, control, I/O data rate and memory management would be lost.
Moreover, we have shown that our VLSI architecture meets the stringent specifications of radar
signal processing on accuracy and dynamic range by using a hybrid floating point format. It is
difficult to meet these specifications with a DSP board solution, due to the block-floating point
format that is often used.

This gives reason to state that designers of hardware architectures should not express the costs
of a DSP architecture in terms of computational complexity, but in terms of overall performance.
The latter may include for example, effective data rate, processor volume, power consumption,
accuracy, and dynamic range. Of course, the exact definition of the overall performance depends
on the application, in that it does not make sense to implement, for example, a SAR processor in
dedicated VLSI hardware when off-line processing is required. However, in chapter 1 we have
listed a number of on-board SAR processing applications for small platforms, such as fighters
and unmanned airborne vehicles. In the near future these applications will come within reach,
when dedicated VLSI architectures (and especially the convolution architecture) are used. This
list can be extended with, for example, applications for on-board satellite SAR processing.

Implementation of the results

At this moment the results of the work presented in this thesis are applied in a number of
related projects at TNO Physics and Electronics Laboratory. The realization of the prototype
architecture presented in section 6.3 is almost finalized. We estimate that the processor will fit
onto a single Euro 6 Printed Circuit Board, and will show less than 20 W of power consumption.
The processor will be part of a real-time on-board SAR processor for the PHARUS system. The
first version of the SAR processor (the so-called "Real-Time SAR Testbed" [vHDvB*94]) will
be operational in early "96.

The realization of the VLSI convolution processor specified in section 6.4 will start in
late '95. The VLSI convolution processor will be especially applicable for miniaturized real-
time SAR processor architectures. Moreover, the VLSI convolution processor can be applied
directly in many other DSP applications that require small, low power and high performance
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J subband analysis

autofocusing paramelers

Figure 7.1: Schematic block diagram of iterative autofocusing including an integrated azimuth
compression/subband analysis system.

convolvers. We hope that it will prove the feasibility of a real-time SAR processor on-board
small platforms, such as small aircrafts, UAVs and satellites. In the latter case, the Netherlands
Agency for Aeronautics has commissioned TNO Physics and Electronics Laboratory to carry
out a feasibility study of a real-time on-board "focused" satellite SAR processor, which will be
based on the presented design methodology.

Future investigations

In this thesis we have not addressed the implications of motion errors on the real-time on-board
SAR processor specifications. In practice, we must compensate for the motion errors induced
by, for example, turbulence and drift. Motion parameters can be obtained from accurate GPS
or INS position and motion measurements, or they can be estimated directly from the echo
data using autofocusing techniques, see appendix C. The mapdrift autofocusing method has a
close relationship to subband filtering, which is commonly used in multirate filter banks. For
example, the multiple looks required for the mapdrift autofocusing can be obtained by bandpass
filtering the compressed azimuth echo signal. If these bandpass filters divide the frequency
band uniformly (or at least a part of it), we have an analysis filter bank as is used in multirate
filter banks. The multiple look images can then be interpreted as channel signals, which was
also observed in [CPR89]. It would be desirable to perform an efficient autofocusing scheme
on the channel signals, eventually running on reduced data rates. Since we used a multirate
convolution system to do the azimuth compression, we can possibly integrate it with the analysis
of the subband channels.

In appendix C we have also shown that mapdrift autofocusing in general requires some
iteration steps. If we embed these iteration steps in an integrated azimuth compression/subband
analysis, werecognize the similarity with adaptive filter schemes, see figure 7.1. The engineering
of adaptive filters might then be applicable in our scheme. For example, in [GV92] adaptive



105

filtering in subbands is proposed, which is computationally efficient due to decimation of
the channel signals. Moreover, in [ES92] block-adaptive filtering schemes are proposed with
efficient use of short-time FFTs. Clearly, these schemes have much in common with our iterative
autofocusing scheme, and it should be investigated how we can exploit these techniques in SAR.



APPENDIX A

A MATRIX ALGEBRAIC
VIEWPOINT OF SAR

In this appendix we introduce matrix algebra in the SAR processing. For many years SAR data
has been analyzed using traditional radar signal processing terminology, such as Doppler shifts,
pulse waveforms, and the like. This kind of analysis has been useful for some reasons:

o Itillustrates the historical development of SAR processing, see for example section 2.4.

o It explains the several steps of the multi-dimensional SAR processing using analogies in
the physical world, such as Doppler shifts, antenna beamwidth and focusing.

e It allows simplifications of the SAR formulations, so that the SAR reconstruction system
approximates a set of linear shift-invariant filters (the matched filters).

We have addressed these points extensively in chapter 2, and so did most of SAR experts in the
past, e.g., [Sko70, Hov80].

The matrix algebraic viewpoint is relatively new in the field of SAR (as it is in many
signal processing applications). The fact that data amounts are so huge makes one sceptic
to the usefulness of matrices in SAR, because their dimensions must be gigantic. Indeed,
these dimensions are gigantic, typically O(10° x 10%), which make the matrices useless in the
processing itself. However, they can be extremely useful in analysis of the SAR data, and
provide us with novel SAR processing approaches. Since it goes beyond the scope of the
research project, we do not fully elaborate all relevant matrix algebra.

The acquisition matrix

Here we give a description of the SAR acquisition system impulse response determined in
chapter 2. Recall the acquisition system impulse response of equation (2.29) , and consider the
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following preliminaries:

1. We use the substitution (t',t) — (2r/c, z/v), so that the impulse response is function of
the spatial variables (r, z) rather than of the temporal variables (', t).

2. In chapter 2 we assumed that Ry was constant, whereas here it is considered variable.
This aspect makes the impulse response shift-variant for shifts Ry in r. To denote this
shift-variance we add R, to the list of variables (if applicable), separated by a semi-colon,
and we omit the subscript o.

3. The imaged surface is constituted by a set of points, described by their nominal range R,
and their z-coordinate X . Define the reflectivity function p(R, X), 0 < p(R, X) < 1 that
assigns to each point on the imaged surface an intensity value. The SAR reconstruction
system estimates the reflectivity function.

4. In the remainder of this chapter we do not annotate the dimensions of matrices, vectors,
etc.. We simply assume that they all have appropriate dimensions.

Let s(r,z; R) denote the 2D impulse response of the SAR acquisition system, and let e(r, z)
denote the received echo signal', then their relationship is described as

e(riz) = [ [s(r= Rz - X: R)p(R, X)dRAX (A1)
From equation (2.29) we have
s(r— R,z — X;R) = p(r — R— AR(z — X; R))exp(—j4rAR(z — X; R)/)) (A2)
In this chapter we simplify the notation, using

b(r— R,z —X;R) & p(r— R— AR(z — X; R)) (A3)

c(z — X; R) 2 exp(—j4rAR(z — X; R)/\) (A4)
Then equation (A.1) becomes
e(r,z) = //b(r — R,z — X; R)e(z — X; R)o(R, X)dRdX (A.5)

The discrete version of equation (A.5) can be obtained in two steps. The first step is to
sample e(r, z) in range and azimuth, thereby assuming that the sampling criteria in range and

'Note that in section 2.4 the echo signal e(t', t) was the impulse response.
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azimuth hold. Let r; and z; be the discrete spatial instants in range and azimuth, respectively,
and let e; ; be the (1, 7)** component of the discrete echo signal, then

ei; A e(riyz;) = //b(r.-—R, z; — X; R)c(z; — X; R)p(R, X)dRAX  (A6)

In fact, we already have introduced e; ; in section 3.1.

The next step is to consider the reflectivity function only at the uniformly spaced discrete
points (R, X,). Let dR and dX be the distance between adjacent points (R, X,,) in range
and azimuth, respectively, and let dr and dr be the spatial sample distance of e; ; in range and
azimuth, respectively. We assume that the following conditions hold: dR < d-and dX < dz. To
simplify our analysis, however, we restrict us to the case that dR = d- and dX = dr. Moreover,
we assume thatr; = R, and z; = X, if ¢ = m and j = n, respectively. These assumptions do
not affect the generality of our analysis. Thus we can write

I)(T; . Rnn T; — X'n; Rm) = b(ri—myzj—n; Rm) . bi—m,j—n;m (A'7)
c(z; — Xom; Bm) = o(Tjom; Rn) 2 Ci—mim (A.8)

Let prn 2 p(Rm, X,), then equation (A.6) becomes
€; = EZ bi—m,j—n;m Cj—n;m Pm,n (A9)

Equation (A.9) can be written in matrix notation. Let the echo vector e and the reflectivity
vector p be defined as
e = [ eijeit ot €l Eiplipl
P = [ P Pmtln " Pmyntl Pl sl ]
Then we can write equation (A.9) in matrix notation [BD92]
e = pS (A.10)

S is referred to as the acquisition matrix. Observe that the terms i —m,j—r;m and ¢j_n;m Tefer to
range and azimuth. We can also construct the banded matrix B;_,, and the diagonal matrix C
related to range and azimuth, respectively, as follows

0 -
B - A . b],j—n;m—l - (A 11)
’ bO,j~n;m bl,j—n;m = m‘h row '
bO,j—n;m+1
L 0 -
Ci-n 2 diag{ -+, ¢j—nm; Conmsr, -} (A.12)

[
(m, m)”l entry
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The acquisition matrix S can then be written as

C;B,
S = CoBo C.B; (A.13)

CoBo

| 0

As we can see now, the acquisition matrix S is, in fact, a block-convolution matrix, and each
block is itself a convolution matrix (albeit somewhat distorted). The matrix S thus approximates
a 2D convolution.

The reconstruction matrix

As we have mentioned, p contains the discrete reflectivity function, and is thus the unknown
signal to be estimated. Let H be a reconstruction matrix, then p = eH is an estimate of
p. We will now describe the SAR reconstruction in terms of matrix algebra. In deriving a
reconstruction matrix H, we anticipate to practical constraints (e.g., the dimension of the matrix
S and the complexity of matrix algorithms). The SAR reconstruction matrix that we consider
is based on matched filtering the data, see section 2.4. If we neglect the range migration then
B;_. = Bo for all j — n. Observe that By is a convolution matrix. Thus S can be approximated
as

Bo

G G 2 BC (A.14)
By .

Co

| 0

There exist two pcrm_utation matrices P; and P, such that P,CP, is block-diagonal, with
convolution matrices C,, on the m** diagonal block-entry [BD92]:

B 0
P.CP; — Crm o aT (A.15)

0

Let Hps 1 be the reconstruction matrix based on 1D matched filtering in both range and azimuth,
then we have

Hyr = B'C* = B*(P{P,CP,P})" = B"P.C P! (A.16)
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The matrix B* represents the 1D discrete range compression operation and the matrix C repre-
sents the 1D azimuth compression.

From section 2.4 we know that range migration compensation can be performed after the
range compression. We show that this is also true if we use matrix algebra, not by deriving
exact expressions, but by analyzing the matrix structures. Let ©,_; 2 B,._;B{ and consider the
following map

y = u0,., (A.17)
Let u,, be the m*" entry of u, and let e, be defined as
en = [0---010--- 0]
1

mth entry

Then equation (A.17) can be expanded as

y =u®,_, = uB, ;B; = Y une,B, ;B} (A.18)

Observe that e,,B,._; yields the m** row of B;_.. Define the finite vector
b:i—n'.m = [bO.j—n;m bD.j-n:m o ] (A-19)
then
eB.; = [0---0bj_pm 0 --- 0] (A.20)
From equations (A.3) and (A.7) we have
bijmm = P(ri — AR(zj_n; Rm)) (A21)

Thus b; ;. 1s, in fact, the discrete shifted pulse, with shift AR(z;_n; Rr). Let 0 pm 2
e,.B,_;Bg and let A;_,..,, be the nearest integer to |AR(z;_n; R,,)|/dr. Then 8;_,.,, has peak
value at the m*” position if j — n = 0, and at (m — Nj_,.,,)** position for non-zero j — n. From
equation (A.18) we have

emGJ-_n = 0,-_,,;," (A.22)

Thus 6;_,., is the m** row of ®;_,

0 y .
j—nm
0,_.

8, (A23)
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In equation (A.23) we have depicted the position of the peak by the drawn line, whereas
the dotted line depicts the main diagonal. Observe that the peak position converges to the
main diagonal for increasing m. Qbviously, if m increases, R, increases and thus the shift
|AR(z;_n; Ry)| decreases, see equation (2.28). At this point we can determine the matrix after
range compression

. GO
SB* = Co®, C;0; (A.24)

CoOy

The matrix C;_, is a diagonal matrix, with c;_,.., on the (m, m)" entry. Thus

C=nin &
® _ J—mm Y j—nym _
Cj_,; i-n = i 9 -
Cimnim+1 ¥ j—nim+1

(A25)

We are interested in the phase history of each point on the ground, which is in the components
Cj—n;m- If we assume that the peak values of @ ;_,, are sufficiently larger than non-peak values,
then we may assume that the components ¢;_;m now lie on the peak position of C;_,©;_,. As
we see in equation (A.25), in general the peak positions do not lie on the diagonal, except for
thecase j —n = 0.

Let éj_n be C;_,®;_, for the (m,m — ./\/",-_,,;m)"‘ entries (the peak values), and let the other
entries of éj_n be zero, and let C be defined as

C & C C (A.26)
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Figure A.1: The structure of C. The block-entries are convolution matrices. The band structures
are due to the range migration.

Then, using the permutation matrices Py and P; as in equation (A.15) we obtain

" Cmo _
Cni Cwsidio (A.27)

m1,1

The structure of this matrix is shown in figure A.1. Each "block-column” C,.., defined as
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(A.28)
0
represents the convolution with the 2D impulse response of the SAR system after pulse com-

pression, see equation (2.30). Let Hasr, be the reconstruction matrix that takes into account the
range migration correction, then we have

Hyr = B*'C = B*(P!P,CP:P.)" = B'PiC P! (A29)



APPENDIX B

DECONVOLUTION SYSTEMS

In chapter 2 we have taken the classical radar signal processing viewpoint to enhance resolution.
A disadvantage of this viewpoint, however, is that it is somewhat outdated. For example, pulse
compression, as we have described in section 2.3, is an inheritance from the days that radars
only were used to detect targets. The main problem to solve was to detect as many as possible
targets’, such as aircraft, missiles and vehicles. Nowadays, we should formulate the problem in a
more generic way, like a minimum mean square error problem: minimize the mean square error
between the desired signal and the estimation obtained from an observed signal in the presence
of noise. This might lead to a classical solution (for example a matched filter), but might also
lead to novel solutions. In this appendix we consider the resolution problem as a deconvolution
problem. We obtain a generic form of a deconvolution filter by means of modern linear algebra
techniques, e.g., Singular Value Decomposition (SVD) and rank reduction [GvL89].

Linear Convolution Systems

We consider a linear system with input [+ u_, u; ---] and observed output signal
[~ y-1[wo] w1 ---]. The box identifies the entry at the zeroth position. The relationship

between the input and output signal is

M-1
Yn = D Unomlm (B.1)

m=0

"The term point farget is also an example of this inheritance.
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Thus the system performs a linear convolution operation of the signal u and a finite signal
a=[ap --- ap—,]. Equation (B.1) can be written in matrix notation

ap—1

anp -1

[ y-1 [Ta]m ] — [ u_y [to] us ] o S - (B.2)

ap

The operator is banded and Toeplitz [GvL89].

In practical situations, however, linear convolution operation is limited: either the observed
signal or the the input signal is windowed. Windowed observation signals occur typically in
radar and acoustics, where the duration window is related to an observation interval. Windowed
input signals typically occur in filter applications, in which finite signals are available. Consider
both cases, thus assuming that either the observation window or the input window has len gth
N, with M < N. Then, from equation (B.2), the following matrix equations are obtained

ap—1 0

[vo - yno1] = [UI—M uN—l] _ £ (B.3)

ap -1
- 0 ao -
ag - dp-1 0
[vo -~ ypa] = [uo - un_i] K ) h . (B.4)
0 ap - apm-1

Equations (B.3) and (B.4) are underdetermined and overdetermined, respectively [GvL89].

The pseudo-inverse

The objective of this section is to find a deconvolution matrix that deconvolves either the
under determined or overdetermined finite linear convolution system, if possible. Since we are
mainly interested in radar echo signals we consider the underdetermined system. However,
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the techniques that we present in this section also apply to the overdetermined system. Let
u=[uj_p - -+ uy_1]andy = [yo --- yp—1] and let A be the N x P underdetermined
convolution matrix, then equation (B.3) becomes

y = uA (B.5)

Let H be an P x N matrix, such that i = y H is an estimate of u. We call H the deconvolution
matrix. The optimum deconvolution matrix H is the one that minimizes the mean square
error ||@ — u|?>. The H that solves this minimization problem is the pseudo-inverse matrix
A* [GvL89]. In the overdetermined case the classical solution is often referred to as the
right-inverse A*(A A*)~!. However, a requirement must then be that A has full rank. If A
is singular then a natural substitute for the right-inverse is the pseudo-inverse. In [Fel93] the
right-inverse is decomposed in a matched filter, represented by A* and a side-lobe cancellation
filter, represented by (A A*)~!

In practical systems, however, A can be ill-conditioned, which makes the pseudo-inverse
sensitive to noise. This can be shown as follows. Let o,, n = 0,---, N — 1 be the singular
values of A. Let w,, = (2r/N)m and let s, = |A(jwm)|, m =0,---, N — 1, be sample points
of the power spectrum A(jw) of a. Then the singular values of A approach s, if N approaches
infinity, see [GS58] . Thus, if N — oo then

oo = max{sp,---,sn-1}, On_1 = min{so,--,SN_1} (B.6)
The condition x{A} of A is defined as the ratio of its largest and smallest singular values

c(a) = 2o o max{so, e on) (B.7)
ON_-1 mm{so, E ,51\'_1}

If k{A} is large (>> 1) then the matrix A is called ill-conditioned. Most finite signals (except in
case when a is white) have some stopband properties, so A is in most cases ill-conditioned.

The condition of a matrix is important in the presence of noise. Using an ill-conditioned
matrix can decrease the signal-to-noise ratio dramatically. An SVD analysis will illustrate this.
Let A has full column rank and let A = Q XV~ be its SVD. Assume that u is a Wide Sense
Stationary? (WSS) signal with zero mean and variance 2, and let n an additive noise signal
with zero mean and variance v2. Let u and n be uncorrelatcd and let the corrupted observation
signalbe y =u A +n. The cxpectcd signal-to-noise ratio SNRA i

_EuAR  EmQEP 123
SNRy = Emp ~  NZ  C NA % ®9

2A signal u is called Wide Sense Stationary signal if its expectation and second-moments are stationary, i.c.,
Eup, = constant, for all n, and Eu}u,, = Eu, u;+m_", for all k, and it also satisfies E|u, |2 < oo, forall n.
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where we used the fact that if Q is orthogonal and u is WSS with variance v2 and zero-mean,
then u Q is also WSS with variance v2 and zero-mean. Leti = §A* =uA A" + nA™ be the
deconvolved signal, then

-1
EluAAT?  EuQTEHPE o2 (A
NRA = =5 — Ly .—2 R
SNRa = Euare = EmvETE N #\% ®9)

1=0

The increase of the signal-to-noise ratio after using the pseudo-inverse is then

zos - (54) ()
n = = N g; o; (B.IO)
SNRy %) &

y i=0

=)

Observe that 77 solely depends on the singular values of A. Obviously, if A is ill-conditioned,
then the small singular values of A can cause a severe decrease of signal-to-noise ratio: 7 < 1.

Observe that we have found a measure for the signal-to-noise increase of a deconvolu-
tion operation. The deconvolution matrix, the pseudo-inverse AT, is in general not Toeplitz,
corresponding to time variant filtering. If we interpret the set of singular values of A as a repre-
sentation of the power spectrum® of the matrix A, then the pseudo-inverse A" can be interpreted
as a matrix with an inverted power spectrum of A.

Reduced rank estimation

A way to overcome this degradation 7 is to approximate A by a matrix with lower rank,
see [GVL89]. Let g < rank{A}, and let A, the rank g matrix satisfying ||A — A,|| = oy. Then
A7 is an approximation of the pseudo-inverse A%, Letii, = A}, then

-1
ElluAAf|? % L=
SNRl.lq = —E|rAq+“2— = qu—3L ga’; (Bll)

We can now determine the signal-to-noise increase 7, if we perform the deconvolution with the
reduced rank pseudo-inverse A:

SNR; AN o B
— SNRU: = gN (Za,?) (2 a;2> (B.12)
y

Thus 7, < 7.

3The spectrum of a square matrix is defined as the set of cigenvalues of the matrix [GvL89]. If we consider the
autocorrelation matrix R = A*A, then the set of eigenvalues of R coincides with the set of squared singular values
of A.
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In [Sch91] a method is described for finding a trade-off between mean square signal error
and noise sensitivity. Let i, = § A;’ and consider the mean square error

Elld, —ul’ = Ellu(AA; —DI* +E[InAT|* 2 e.(q) +ealg) (B.13)

The terms ¢,(q) and €,(g) can be written in terms of singular values o; and variances 2 and v2
as follows

e(q) = EuQ(ES{ —DJ2 = (P— g2 ®.19)

g—1
€ (q) ElnVEIQI* = 12 o2 (B.15)

1=0

Then the optimum ¢ minimizes the mean square error
mqin €(q) + €n(q) (B.16)

The solution i, is referred to as the reduced rank estimate.

Time-invariant deconvolution filters

A problem not addressed yet is the dimension of the system. In practice M and N can be
O(10°) and O(10*), respectively. This means that the computation of A} is hardly possible.
Moreover, since we deal with pulsed radar signals, several echo signals ¥ must be processed
subsequently. Time-invariant filtering would then be preferable. This is possible, as we shall
now show. Given the P x N convolution matrix A

I ap—1 0

- . (B.17)

apM-1

0 agp

Let N’ be an integer that satisfies M < N’ < N andlet P’ = N’ + M — 1. We can define then
a P’ x N’ convolution matrix A, that slides along the diagonal of A

0
A = (B.18)
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Then, using the Hankel matrices

Yo yl s Ny
= (7 2 s g
Y = ; : )
L In—N' GN-N41 -0 N
gy W U ces upol
Uo-pMm ut u2 tto UNe
U = .
| un_p cc UN-N' UN_N'41 ° UN-1
i no ny s NN
ni n2 e ny:
N =
| nN_N' MN-N'41 Tt BN

we can rewrite the matrix notation of the convolution problem of equation (B.3), including the
additive noise, as

Y = UA+N (B.19)

Instead of a linear system with input and output vectors, we have constructed an equivalent
linear system with input and output matrices. The dimension of the convolution matrix A,
however, is much smaller than the dimension of A.

The reduced rank deconvolution matrix A;" is now obtained by minimizing the mean square
error E||U, — U|[% 2 €,(q) + €.(g) over all 0 < ¢ < rank{A}. The reduced rank estimation is
now a matrix rather than a row vector

. (1-M - (0 (1 L (N'-1

_ S0-m) o PSRN |, 2

0, = 2-M i 2 N’ (B.20)
(1M . (0) ) L (N'—1
“5\’—19') uS\F)—N’ Ug\l)—N'+l e uSV—I )

Observe that U does not have Hankel structure, whereas U has Hankel structure. Structure
preservation may be an additional constraint to the estimation problem. It is beyond our scope
to investigate the implications of this constraint to the estimation problem. We refer to [CHV95]
for an approach that solves a similar problem with preservation of the structure.

If we assume that for all samples u, the estimate 12,("’) is sufficiently accurate for all p, then

we might as well take the p** column of U, as an estimate of the pt* column of U. Let ﬁg”) and
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gfl”) denote the p** rows of fJ; and A;, respectively. Then

a? = 2Py’ B21)
Let o) & [a()], k = 0,---,N' — 1. Equation (B.21) represents a in fact a convolution
operation. Then, after rearranging, it can be written as
0
" Q.Sp ) 0
(pN'-1)
@ - o] = o vl | 4 (B22)
a(@0)
a;
0 ' g(E{zr’.l;"—l)

Here we recognize a convolution matrix, and thus we may write equation (B.22) as a convolution
operation

i = 2?7 xy (B.23)

where gg”)H is gg”) with entries in reversed order. Thus we have derived a time-invariant decon-
volution filter of length N’. The solution ﬁg”) is as optimum as the solution obtained from the de-
convolution matrix A;‘ in terms of mean square error. The application of a deconvolution-filter,
however, is more efficient in terms of computational complexity compared to the deconvolution
matrix.

A worked example

We terminate this section with an example to illustrate the techniques that we have developed
above. Consider the discrete chirp signal a of length M = 31, see figure B.1.a, and its spectrum
in figure B.1.b. Constructan P x N convolution matrix A where we choose N = 100 (and thus
P = 130). The observed signal § = u A + n has length 100. For the analysis of the signal-to-
noise ratio we assume that both input signal u and noise n are WSS with variance 12 = 242,
Using the pseudo-inverse matrix A" to estimate the input signal results in a severe decrement of
the expected signal-to-noise ratio: 7 = 0.036. Thus we reduce the rank of the pseudo-inverse,
which leads to an optimized reduced rank pseudo-inverse A}, where the optimized reduced
rank is ¢ = 56. The decrement of the expected signal-to-noise ratio is now ng = 0.52, which is
approx. a factor 14 less than 7).

Suppose that, for some reason, the dimension of A is too large. Then we can construct an
N' x P' convolution matrix A, where we choose N’ = 40 (and thus P’ = 70). Again we reduce
the rank of the pseudo-inverse, leading to A;", where, in this case, ¢ = 23. The reduced rank
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time-invariant deconvolution filter is then a{")~, where, in this example, p = 35. The filter
a(P)~ and its spectrum are shown in figure B.1.c and B.1.d. Observe that the spectrum of a{”~
estimates the inverse spectrum of a within a certain band. The bandwidth is approximately
determined by the ¢ largest singular values of A, using the relationship between the SVD and
the spectrum [GS58].

The results of the estimators are shown in figure B.2. As input signal we have used two dirac
signals. The dotted lines are the estimates in absence of additive noise. The straight lines are the
results in the presence of additive noise. For completeness we also add the estimates achieved
with the matched filter. Observe that this estimate is superior in the terms of signal-to-noise
increment, but the two dirac signals cannot be distinguished. The signal-to-noise decrement as
aresult of the pseudo-inverse is clearly seen. The reduced rank estimates are both compromises
between the estimates obtained by using the matched filter and the pseudo-inverse.
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Figure B.1: The real part of the discrete chirp signal a (a), its spectrum (b), the reduced rank
time-invariant filter a{ (c) and its spectrum (d).
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Figure B.2: Four estimates of two input dirac signals in the absence (dotted lines) and presence
(straight line) of additive noise, obtained by the pseudo-inverse (a), the reduced rank pseudo-
inverse (b), the reduced-rank shift invariant deconvolution filter (c) and the matched filter (d).



APPENDIX C

MOTION COMPENSATION

In chapters 2 and 3 we have assumed that the flight trajectory was ideal, in that v is constant
and the platform moves along a straight line. In general, this will not be the case, especially for
airborne SAR. For example, due to air turbulence the flight trajectory will be some high order
polynomial around the ideal straight line. To model the corresponding phase error we start with
an analysis of the distorted range R(t) [01i89]. In this section we derive the all formulations
for the time continuous case. The extension to the discrete case is straight-forward. Without
lack of generality we set v = 0. We assume that the error £(t) — R(t) can be expressed in an
along-track error #(t) — z(t) along the z-axis and an across-track error r(t) in the yz-plane, see
figure C.1. Furthermore, the nominal range corresponding to the distorted flight trajectory is

Ry = Ry + AR,. From figure C.1 we see that

R(t) = (Ro+r(t)}+3(t) C.1)
If |2(t)] < R+ r(t) then equation (C.2) approximates to
A) = R 8y &y
R(t) = Ro+r(t)+ Y N r(t) + YN (C2)

where ARy = ﬁ,o — Ry is the error in the nominal range.

Across-track motion compensation

Within the SAR processing chain we can divide the motion compensation in two parts: across-
track motion compensation and along-track motion compensation. At this point we assume
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nominal tmjectory

Figure C.1: Ideal (dashed) and distorted (straight) SAR geometry. It is assumed that the antenna
is at position «(t) and has distance R(¢) to a specific point target with nominal range Ro. The
actual situations is that the antenna position is z(t), has distance R(t) to the point target, which
has a nominal range R)

that the distorted flight trajectory is known. Recall the 2D echo signal after pulse compression,
equation (2.30), and include the motion parameters, assuming that range migration is negligible!

9(t',t) = sinc (ar,(t' — 2r(t)/c)) exp(ip(t)) (C.3)
The distorted phase is

4 z(t)?
o(t) = —— | r(t) + == C4
o) = -5 (vt + 22 ca
Let ¢,(t) and ¢, (t) be the phase terms due to the across-track motion and the along-track
motion, respectively, such that 3(t) = ¢, (t) + @, (t), then

A 4 . 4r z(t)?

t) = ——r(t t) = ———=
b0 = —Fr), 6.0 = -2

Observe that the peak of the sinc-function varies with the distorted trajectory in range r(t),
see figure C.2. Thus we must delay §(¢', t) in t with 2r(¢)/c seconds. In practice, this means that
the discrete signal for each azimuth instant y must be interpolated in range. Follows the phase
correction in range using the across-track phase error ¢, (t). Let §'(?', ¢) be the echo signal after
the across-track motion compensation

g(t',t) = §(t' +2r(t)/c,t)exp(—j-(t)) = sinc(ar,t’)exp(jga(t)) (C3)

1'We have omitted the constant exp(—j4 /c Ro).
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distorted trajectol
23} = i
1 nominal trajectory

azimuth

Figure C.2: The variation of the echo peak with the distorted trajectory in range r(t) after pulse
compression.

Along-track motion compensation

Remains the along-track motion compensation of §'(t',t). Let Az(t) = Z(t) — z(t), then it is
desirable to express the distorted along-track phase
R 4 (t)? 47 (z(1) + Az(t))?
wa(t) - _T (A) - __( ( ) ( )) (C6)
2Ry A 2R,
This term can be obtained by approximation of the term z(¢)?/ Ry, as we will show now. Observe
that

2
= ¥ ARy
o= Ryt (14— :
Ry Ry ( + R ) cn
If |ARo| < Ry then equation (C.7) approximates to
Bl _ p-l ARo\?
' = R (142

We can also assume that the distortion Az(t) = #(t) — z(t) is caused by a distortion in the
nominal speed: 9(¢) — v. Define

3 d a’
Av 2 95(0)—v, o & §i(1)| _, ¥ 2 @v(t)Jt_o

and recall that z(t) = vt, then we can write
E(t) = 0t = (v+Av)t+ 1082 + 158> + -

Av v v
t — 4+ —t+ —t? ) i
z()(1+v+2v + ot (C9)
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Assume that AvA Ry < vRo ARy < vRyand 9A Hy < v Ry, then, from equations (C.8) and
(C.9), we have that #(t)?/ Ry approximates to

:i(ﬁ)):))z B i‘gjz (1 B AR0>2 _ z(t)? ( ARy Av

2
— — — —2 .
o (- g+ +2t+6t+ ) (C.10)

Or,
Az(t) = z(t) (ﬁ—A—R"+it+it2+---) (C.11)

Thus, indeed the distorted along-track phase approximates to

Ar (r(?!)—}-A:c(t))2 . _4_7rv2(i+Aa:(t)/v)2

Po(t) = —— = .

Pa(t) ) 2R, B 2R, (C12)
We know that the ideal phase of the echo signal would be
47r z(t)? :

E = = n ol t D

ealt) = S = pult = da(t)v) (C13)
Thus §'(t',t) can be expressed as

§'(t',t) = sinc(am,t')exp(jpa(t + Az(t)/v)) = g(t',t + Az(t)/v) (C.14)

In practice, this means that the discrete signal must be interpolated in azimuth using the map
tj — tj == Az(tj)/v.

A requirement for motion compensation is that r(¢) and Az(t) are known, either by measure-
ment (using motion and position sensors like INS and GPS) or by estimation. The along-track
position error Az(t) depends on ARo, Av and the first, second, etc., derivates of 9(t). In
general, A R, can be eliminated by the exact measurement of the time of pulse transmission and
start time of the A/D conversion of the received echo. The along-track speed error components
can be obtained by an exact measurement of the z-position locked on a time reference. The
across-track position error can be obtained from the across-track position measurement.

Autofocusing

Estimation of the motion parameters is commonly referred to as autofocusing. Above we have
determined the across-track motion error r(¢) and the along-track motion error Az(t). If these
errors are not known, then still the motion compensation can be performed. In that case we
approximate the distorted phase () by a series in ¢. Its coefficients can then be estimated from
the echo data.
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The first step is to derive expressions for these coefficients. Observe that we can write
r(t) = v,(t)t, where v,(t) is referred to as the across-track speed distortion. Expand v (t)
around ¢t = 0, as we did before with (t), then we find

r(t) = vt+ o 02+ (C.15)

Then, substitution of equations (C.15) and (C.10) in the distorted phase, see equation (C.4), and
collecting the third-order and higher-order components in the series ((t), gives

ar v? ARy 2Av 0 Ro\ ,
, = —— —_— |l —-— F— 4+ — ] ¢ t .1
o(t) i (vrt+ <1 7 T T ) +{(t) (C.16)
Two remarks are in order here:

e The across-track speed distortion introduces a Doppler centroid

1 dAtJ =_2v,
t=0

Jie = ﬂaﬂo() X

(C.17)

In fact, this Doppler centroid may also contain a component as a result of an unknown
squint angle.

e The quadratic term in ¢(t) approximates to

v? ARy 2Av  v.Rp (v + Av')?
2F, (I_WJ’ v T ) T 2R (18]
if the following condition holds
ARy  2Av  o.Ro| _ |ARs|  2|Av| | |i|Re
i < ]
‘a,*v S Rt T < (C.19)
In that case we have
; ARy 28v  v.Ry vARy 0. Ry
v v o + . + > v Av 2R + 20 (C.20)
With equations (C.17) and (C.20), we can write equation (C.16) as
. 4 (v + Av')*?
= —— | =1 AR S
() ;) ( I fact + 2Fe +¢(1) (C21)

The unknown parameters in the zeroth and the first order coefficients are thus f,;. and Av’, and
are also called the autofocus parameters. It is not necessary to obtain more autofocus parameters
for the estimation the higher order coefficients, as we show by the mapdrift autofocus method
that we discuss hereafter.
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Mapdrift autofocus

Most autofocusing techniques are based on mapdrift, which we now describe briefly. Mapdrift
autofocusing is sufficient for slow varying motion errors. Other autofocusing approaches,
such as contrast optimization, speckle processing, Wigner-Ville distribution method, binary
multiplexing and reflectivity displacement method are proposed in [FW85, BG88, EGCJ89,
Mor90]. Since it goes beyond the scope of this thesis to describe them we refer to these
references for details and evaluations. An evaluation and comparison of some methods are
given in e.g. [GB88, BBOWY2, Ott91].
Let the distorted azimuth echo signal be given as

T v v 242
3(t) = exp(i(t) = exp ("'47 (—%Amu%mt))) (C22)

where we have omitted ¢ and R, for convenience. Then the uncompensated azimuth compressed

signal 7(¢) obeys

F(t) = /ETQ §(m)a(t — r)dr

1
_ET"

/0|T g(r)a(t — r)dr + /:Ta 9(r)a(t — 7)dr

= AW +A) (€23)

The mapdrift approach is based on the fact that the peaks of 7(t) and 7,(t) are mutually
displaced, say with a factor AT, which is proportional to Av’' [BG88, Ott89]. This can be
shown by expanding #,(t) as follows

A = [ e (_]-47” (—%)‘fdcf-l- (vt Ayirt +<(r)>) exp (147”2“‘ T)2> dr

) 2Ry 2Ry
iTa Ar (20Av' + Av? .
~ /—'zT., exp <— 5y (—2}?0 T4 ((m— z’.ﬂ)))
e { 2 —
X exp (_]_47#2&: 1200 :Riv s Af'fcRaT) dr (C29

The integral in equation (C.24) cannot be computed analytically, but it is clear that |7, (t)] is
maximum if

2t0? — 1(20A0' + Av?)T, — AfuRo = 0 (C.25)

which occurs at

= 1 =

20AY + Av’lea n AfacFo

7o L 20 (C.26)
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Doing the same analysis on 7, (t), we find that |#,(t)| is maximum at

20AY + Av”? MacRo
t=t = ———o T+ 25 (€27)
It thus follows that
20Av + Av”?
AT = ty—1, = 289 F2% (C28)
v
Once AT is obtained from evaluating #;(t) and 7 (t), Av' is readily obtained as
AT
Av' = —v (1 1+ ) (C29)
17T,
If AT < LT, then Av’ approximates to*
AT
AV x v (C.30)

As we have shown, the mapdrift based approach is based on the fact that motion parameters
are determined by an error Av’ in the nominal speed. By subdividing the aperture (—1T;, 1T,)
into two so-called subapertures (—1T,, 0) and (0, 1 T, ), we can obtain two SAR images (so-called
looks), which have a mutual displacement AT, which can be measured. Via some algebraic
manipulations it was shown that AT is proportional to the error Av’. In fact, if we divide the
aperture into more subapertures, higher order errors in the nominal speed can be determined.
Generally, the order of the estimated error is one less than the number of subapertures used. An
extensive discussion of a mapdrift based method with arbitrary number of subapertures is given
in [BG88]. However, increasing the number of subapertures implies a decrement of bandwidth
(and thus resolution) per look, leading to a more and more inaccurate estimate of AT

It remains to estimate the Doppler centroid offset f;.. Observing that

A e
bty = ;R‘J (C31)
the Doppler centroid obeys
v? 2
c — t t - .
fu (t1 +t2) 3o (C.32)

More details about specific Doppler centroid estimation methods and their evaluations are given
in [LHCW85, Jin86, Mad89]. It should be stated that Doppler centroid estimation as an isolated
problem only occurs in satellite SAR processing, since the satellite orbit is relatively stable in

2We assume that the solution Av = —2v — vAT/T, makes no sense.



131

wicompera sk snd compontated signd =al andestimated phase esrr

') 2 4 & t I3 () 2 4 ) £ 10
o, of jertion a0, of iEntaong

(©) (@)

Figure C.3: Simulated compensated (straight line) and uncompensated (dotted line) impulse
responses (a), the real phase error (straight line) and the phase error (dotted line) estimated using
mapdrift autofocusing with 5 looks (b), the estimated speed errors between successive looks (¢)
and the estimated Doppler centroid (d).
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terms of across-track and along-track motions. In airborne SAR the main problem will almost
always be the actual motion compensation as we have discussed in this section.

A simulated autofocus example is shown in figure C.3. It should be noticed that, in
general, autofocus algorithms require a number of iterations. This means that autofocus can
be computationally very intensive. In [Bie94b] an autofocus algorithm is presented that can
be implemented efficiently in hardware architecture. The algorithm search low resolution
SAR images for high contrast areas. The computationally intensive mapdrift autofocusing is
only performed on these small areas. The autofocusing parameters are then fed into the high
resolution SAR imaging algorithm.



APPENDIX D

OVERLAP-ADD/DISCARD
CONVOLUTION NETWORKS

In this appendix we show that the linear and circular convolution networks have two well-known
equivalents in classical digital signal processing. Let us first analyze the linear convolution
network. Recall equation (4.11) with w « 2N

2N-2N-1

=) Zan Yom_n(zV)zT™ =Y (2) (D.1)

m=0 n=0

Y (z; w) J

w~—z~

The coefficients a,(z") and ,,_.(z"V) are the polyphase components of A(z) and X(z), i.e

they are order N — 1 polynomials in 2",

E an+sz_kNa mm—n(zN) = E 1m—n+sz_kN

k=—o00 k=-—o00

Substitution these expressions into equation (D.1) gives

N 2N-2N-1 oo 0
Y(z) Z Z ( Z an+szkN) ( Z Im-n+sz—kN) Z) =

m=0 n=0 \k=-c0 k=—0c0

00 oo 2N-2N-1

PRI Ean+lN-Tm-n+(k—l)NZ_mz_kN D.2)

k=—o0 [=—00 m=0 n=0

The last step includes a rearrangement of the summations. We will now analyze equation (D.2)
from the inner summation to the outer summation.

Obviously, the inner double summation is recognized as an order 2N — 2 polynomial in z.
The 2V — 1 coefficients of this polynomial are recognized as the linear convolution result of
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Figure D.1: The overlap-add method for construction the long linear convolution result y using
short length 2N — 1 linear convolutions. In this example N = 4.

two length N sequences with scalar elements @,y and Toy_nt(k-nN, B = 0,---,N—1. Let
these length IV sequences be defined as a; and X,_, then the inner double summation is the
z-domain representation of the linear convolution result a; * Xg_.

The next observation is that the sequences a; and xx_; are in fact non-overlapping subse-
quences of the sequences a2 = {a;|j = ---,—1,0,1,---} and x = {z;][j = ---,-1,0,1,---}.
But then the inner triple summation is in fact the z-domain representation of the addition of the
linear convolution results a; * x,_; over . Hence, the inner triple summation is still an order
2N —2 polynomial in z, and thus the z-domain representation of a length 2V — 1 sequence with
scalar elements. The latter statement implies that all convolution results a; * x,—; with index k&
has a mutual zero delay factor.

Now let y} 2 ¥ _ . a; * X, and let Y//(z) be the z-domain representation of y;. Then
equation (D.2) can be simplified as

Pe) = Y ViR (D.3)

k=—o00

Hence, in time domain equation (D.3) is nothing more adding the length 2N — 1 sequences Yy,
with mutual factor /V delay, as is shown in figure D.1 for the case that NV = 4. This mutual
factor N delay causes an overlap of N — 1 samples between subsequent sequences yj and y, ..
The linear convolution network can be described algorithmically, by introducing recursions
in two dimensions. This description is shown in algorithm 3 in which we can recognize the
overlap-add convolution method for solving a long linear convolution using multiple short linear
convolutions [OS8§9].
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Algorithm 3 : Overlap-Add

a—»{ak}, X—>{Xk}

for all k
for alll
v = v farexy
end
y(") — y(k_l) + y;‘ * 6kN
end

The same analysis can be made for the circular convolution network, and this will lead to the
overlap-discard convolution method [OS89]. We will briefly give a description of the analysis
similar to the linear convolution network, without going in too much details. Given the 2N — 1
polynomial coefficients Z.,(z"V) and the N — 1 polynomial coefficients a,(z"). Let 3,, (") be
their circular convolution results, given by equation (4.15)

N-1
= Z an(zN)i(m_n)mod(zN—l)(ZN)

n=0

I (V)

Remind that for the circular convolution network we were only interested in _Z?m(zN ) form =
N —1,---,2N — 2. Observe that

for m=N-1,---,2N -1,

(m—n)mod2N —1) = m—n (D.4)

n=0---,N-1
The z-domain representation is then
~ IN-2 N-1
Y(z) = Y Y au(zM)zna(zV)z (D.5)
m=N-1 n=0
From equation (4.17) follows that
En(z") = Y Tmpreennz N (D.6)
k=—o0

Hence, equation (D.5) can be expressed
o 2N-2 N-1

}:/(Z) = Y 3 Y Y awiNTmontrir-gnz "N (D.7)

k=—o00 [=—00 m=N-1 n=0
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Figure D.2: The overlap-discard method for construction the long linear convolution result y
using short length 2N — 1 circular convolutions. In this example N = 4.

Let X;_; be the length 2V — 1 sequence with scalar elements Z,, _n414(k—1-1)nv form —n =
0,---,2N — 2. Introduce the combined circular convolution and discard operation o. Then we
can define the length N sequence y}, as the summation over ! of the last NV element of the results
of circularly convolving of a; and X_,, given as ¥y}, 2 a, 0X,_;. The triple inner summation is
then the z-transform of the subsequence of y/. In fact, we have discarded the first NV — 1 samples.
Thus in time domain equation (D.7) is nothing more than adding the length NV sequences y}
with mutual factor V delay, as is shown in figure D.2 for the case that N = 4. This description
is shown in algorithm 4 in which we can recognize the overlap-discard convolution method for
solving a long linear convolution using multiple short circular convolutions [OS89].

Algorithm 4 : Overlap-Discard

a—»{ak}, X—b{ik}

for all k
for alll
yiO = g/ f a0
end

y® = y* D Lyl x ben
end
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SAMENVATTING

In dit proefschrift hebben we een schematische ontwerpmethodiek geintroduceerd waarmee
efficiénte hardware architecturen kunnen worden ontworpen ten behoeve van multirate con-
volutiesystemen. Deze methodiek is ook toepasbaar op andere multirate signaalbewerkings-
systemen. De ontwerpmethodiek gaat uit van een grafische beschrijving van een algoritme in
plaats van een algebraische beschrijving. Het voordeel hiervan is dat een grafische beschrijving
zich veel makkelijker laat manipuleren dan een algebraische beschrijving, vooral wanneer de
laatste volledig in detail worden uitgeschreven. Het is bekend dat multirate filterbanken en con-
volutiesystemen veel overeenkomsten vertonen. Door middel van de grafische manipulatie die
we hebben ontwikkeld zijn deze overeenkomsten op een eenvoudige en illustratieve wijze expli-
ciet gemaakt. Bovendien kan een multirate convolutie-algoritme met behulp van deze grafische
ontwerpmethodiek direct in een prototype architectuur of in dedicated VLSI processors worden
geimplementeerd.

In veel complexe real-time signaalbewerkings-toepassingen als radar, sonar en medical
imaging, is behoefte aan een schematische ontwerpmethodiek die rekening houdt met typische
toepassings-specifieke beperkingen als verwerkingssnelheid, processoromvang en geheugen-
beheer. Het uitgangspunt van onze ontwerpmethodiek is dat complexe signaalbewerkings-
algoritmes opgedeeld worden in kleinere, minder complexe sub-algoritmes. Uiteindelijk leidt
deze aanpak tot winst in ontwerptijd en reduceert het de ontwerprisico’s en complexiteit.

We hebben de bruikbaarheid van onze ontwerpmethodiek aangetoond in het ontwerp van
een multirate convolutiesysteem, toegepast in de range-compressie en azimutcompressie ten
behoeve van real-time SAR processing. Range-compressie en azimutcompressie zijn de kri-
tische onderdelen van een real-time SAR processor, met name als beperkte omvang, laag
vermogensverbruik en hoge verwerkingssnelheid de ontwerpeisen zijn. Het toepassen van
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onze ontwerpmethodiek heeft geresulteerd in een efficiénte VLSI convolutie-processor. Naar
verwachting zal een real-time on-board SAR processor gebaseerd op deze convolutie-processor
tot een factor 10 kleiner zijn (zowel qua omvang als vermogensverbruik) dan een SAR processor
gebaseerd op commercieel verkrijgbare DSP-kaarten, zie onder meer [Cat92, Mer95].

Onze VLSI convolutie-processor is veel krachtiger dan een DSP-kaart implementatie, als we
de performance van een convolutie-processor uitdrukken in termen van verwerkingssnelheid per
eenheid van processoromvangen per eenheid van vermogensverbruik. Een grove schatting is dat
de verwerkingssnelheid van onze convolutie-chip vergelijkbaar is met de verwerkingssnelheid
van é¢n state-of-the-art DSP-kaart. De omvang en het vermogensverbruik zijn echter veel
Kleiner, en dat ondanks het feit dat onze VLSI convolutie-processor ca. twee keer zo veel
bewerkingen uitvoert. Bovendien hebben we laten zien dat onze VLSI architectuur voldoet
aan de stringente radar signaalverwerkings-specificaties ten aanzien van nauwkeurigheid en
dynamisch bereik door middel van het gebruik van een hybride floating point formaat. Met
een DSP-kaart oplossing is het in het algemeen moeilijk om aan deze specificaties te voldoen
doordat deze vaak het block-floating point formaat gebruiken.

Dit geeft ons de motivatie om te stellen dat ontwerpers van hardware-architecturen de kosten
van een DSP architectuur niet horen uit te drukken in termen van complexiteit, maar in termen
van overall performance. Hieronder vallen bijvoorbeeld verwerkingssnelheid, processorom-
vang, vermogensverbruik, nauwkeurigheid en dynamisch bereik. De exacte definitie van overall
performance wordt natuurlijk bepaald door de toepassing; het is niet zinvol om bijvoorbeeld een
SAR processor te implementeren in dedicated VLSI hardware als slechts off-line verwerking
vereist is. In de inleiding hebben we een aantal real-time SAR toepassingen genoemd (verken-
ning, SAR data transmissie, fixed/moving target indication en on-board systeem monitoring) die
wenselijk zouden zijn aan boord van kleine platformen zoals straaljagers en unmanned airborne
vehicles. Deze zullen in de nabije toekomst mogelijk zijn als dedicated VLSI architecturen
(en vooral de convolutie-architectuur) worden gebruikt. Deze lijst kan worden aangevuld met
bijvoorbeeld toepassingen voor SAR processing aan boord van een satelliet.
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