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Abstract

An important research topic in image processing is stereo vision. The
objective is to compute a 3-dimensional representation of some scenery
from two 2-dimensional digital images. Constructing a 3-dimensional
representation involves finding pairs of pixels from the two images
which correspond to the same point in space. Several stereo matching
algorithms are developed to find matching pairs. Hierarchical match-
ing can be applied to improve the effectiveness and reliability of the
matching algorithms. Hierarchy is established by multi-resolution im-
ages, also known as pyramids.
Pixel based matching algorithms require lots of processing power and
memory space. However, stereo vision applications are often subject to
strict real-time requirements. In order to meet timing constraints, a mul-
tiprocessor implementation of the hierarchical matching algorithm is re-
alized. The parallel algorithm is implemented on a distributed memory
system on top of a communication library. The resulting system is in-
tegrated in a prototype apparatus for surface measurements during the
construction of tunnels.
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1 Introduction

Stereo vision is an important research topic in the image processing field. A 3-dimensional
model is created by processing two 2-dimensional images. Usually these images are gener-
ated by CCD cameras. Applications are found both in industry and space research. A robust
stereo vision algorithm which can be used for all kinds of applications has been developed at
Joanneum Research in Graz, Austria.

In this paper it is described how a parallel implementation of stereo matching is realized
on a processor network using a communication library. It is assumed that the processor net-
work is a distributed memory system and that exchange of information between nodes can
only be established by passing messages along communication links. Several processes can
be executed by one node. The communication library abstracts from the low-level physical
detail of the processor network. Information between processes is passed through channels
or, in case they are executed by the same node, through shared memory. In the latter case,
synchronization is realized by means of semaphores.

A system is introduced which uses stereo vision for 3-dimensional (3D) surface recon-
struction of tunnel walls [1]. We focus on the hardware and software issues which are crucial
in terms of the real-time requirements imposed by the tunnel construction process. To meet
all requirements in terms of price, performance and accuracy as well as physical robustness,
a parallel implementation of the stereo matching algorithm had to be developed.

The paper is organized as follows. In Section 2 the concept of communication libraries
is introduced and a few examples are mentioned. In Section 3 methods for stereo matching
are introduced and in Section 4 it is explained how a parallel algorithm for stereo matching is
implemented on top of a communication library. Applications for parallel stereo matching are
named in Section 5 and the prototype system in which the algorithm is embedded is described
in more detail. Finally, conclusions are drawn in Section 6.

2 Communication Libraries

A parallel program can be regarded as a collection of communicating sequential processes [2].
Communication between the processes in the program is performed through channels or, if ef-
ficiency requires, through shared memory. The processes and channels are mapped onto the
processors and the physical communication links, respectively. In general this implies multi-
plexing of both the processors and the links: a processor may have to execute several processes
and more than one channel may be mapped onto a link. In addition, the mapping should be
such that processes sharing their memory are mapped onto the same processor.

A communication library hides these mapping details from the programmer. A coherent
programming model is provided: the processor network is a collection of machines each capa-
ble of executing a number of processes. Processes executed by the same machine share their
memory and may synchronize through this memory, e.g. through the use of semaphores. An
arbitrary pair of processes can communicate by using channels. Communication along these
channels may be synchronous (not-buffered, blocking the sender) or asynchronous (buffered,
not blocking the sender).

An important aspect of the use of a communication library is the potential for increased
portability. In order to port a parallel program from one architecture to another, only the source



code of the communication library has to be adapted. A requirement is that the implementa-
tion of the library is efficient. The extra overhead for one communication should be small; in
particular, the latency of communications should be low.

The collection of processes is not static: processes are stopped and new processes are cre-
ated. When the creation of a new process is initiated by a process executed by another node,
we speak of a Remote Process Call. In case of a remote function invocation, we speak of a
Remote Procedure Call. In this paper, we will show that we can implement stereo matching
on a processor network if communication is possible between any pair of processes, and that
the availability of a Remote Process Call or a Remote Procedure Call mechanism simplifies
the design significantly.

The use of Remote Procedure Calls results in an abstraction of communications. If RPC’s
are used frequently, as a regular communication primitive, the mechanism must again be im-
plemented efficiently with only a small overhead. RPC’s capable of using the global memory
on each processor are not common for distributed memory systems. They can be implemented
easily if the following conditions are satisfied:

1. The system is a Single Program Multiple Data (SPMD) system, which means that on
each node the same program runs with different data.

2. The processes on one node have shared memory access.

Three examples of communication libraries that support Remote Procedure Calls are NX,
CMMD and ECL. The NX message passing interface [3] is built on a kernel of four basic
message passing functions. Among these are synchronous, typed send and receive actions. On
top of this kernel, asynchronous message passing is implemented to perform communication
and computation in parallel. Asynchronous message passing is also used to implement RPC’s
by so-called Handler Calls.

The CMMD message passing library [4] implements Remote Procedure Calls for the CM-
5. This system supports active messages. An active message consists of a pointer to a function
followed by its arguments. The receiving process invokes this function with the communicated
arguments. An advantage of using active messages instead of the common send/receive pair
is the reduced software overhead necessary for synchronization and avoidance of deadlock.
This software overhead increases the latency, which is especially bad in case of small-sized
messages.

A third communication library which supports Remote Procedure Calls is the Eindhoven
Communication Library (ECL) [5]. ECL was developed at Eindhoven University of Technol-
ogy in the Netherlands. Originally, it was implemented as a small communication library for
a transputer network. ECL supports Remote Process Calls (similar to active messages) and a
simple form of Remote Procedure Calls. A useful application of Remote Procedure Calls is,
for instance, the storing of a value in the local memory of another node (“remote write”) or
the reading of a value from the memory of another node (“remote read”).

We have chosen for the Eindhoven Communication Library to implement stereo matching
on a distributed memory system for several reasons. Firstly, the library is small and causes
little overhead during communication. Secondly, the ECL interface is quite portable; imple-
mentation for other parallel machines such as the Silicon Graphics Power Challange and the
Parsytec Power Xplorer have already been developed. Thirdly, the transputer source code was
available which made porting to our hardware straightforward.



3 Stereo Matching

Reconstructing the 3D scene from a set of stereo images involves finding pixels from both im-
ages which correspond to the same point in the underlying scene. Two equally sized images of
the scenery are generated and stored in a computer memory as two grids of pixels. The value
of a pixel is a grey-level. To distinguish between the two images, one is called the reference
image and the other the search image. Matching is performed to compute for each reference
pixel the search pixel that corresponds best. From the result, the disparity map is constructed.
It maps each reference pixel onto the difference in coordinates with its corresponding search
pixel. Most matching algorithms are based on the fact that two corresponding pixels have cor-
responding neighborhoods. Several methods are developed to use correspondence of neigh-
borhoods for matching. We name three that can be applied if the smoothness constraint is
satisfied, i.e., the respective terrain heights at neighboring pixels do not differ too much from
each other.

A first method for matching is to replace all pixel-values by a value that characterizes their
neighborhood, a so-called feature-value. The search pixel whose feature-value is closest to the
feature-value of the reference pixel is chosen as a candidate. An example of a feature-value of
a pixel is the local variance. Generalizing this method to multiple features leads to the method
of Feature Vector Matching.

A second method is the following: enumerate the neighborhood around each pixel as a
sequence of pixel-values; this is done in the same way for all pixels. Now, choose that search
pixel whose sequence resembles the sequence of the reference pixel best. In order to compare
two sequences, a rate of similarity between them is defined by means of cross correlation. A
comparison between Feature Vector Matching and the more traditional correlation method is
presented in [6]. It is concluded that FVM results in a better disparity map than correlation
matching.

A third method matches a row of pixels at the same time. This is performed by the so-
called Optimal Correspondent Subsequence Algorithm [7]. However, this method can only be
applied in case of epipolar geometry. Good results have been achieved using this algorithm
for the matching of SPOT satellite images.

Since Feature Vector Matching results in very accurate disparity maps, this method is cho-
sen as basis for parallel stereo matching.

3.1 Feature Vector Matching

A feature of a pixel is a value which depends on the grey-levels of the pixels within the neigh-
borhood of the pixel. If we calculate the feature for all pixels of an image, we get a so-called
feature image. We present a method to match pixels by comparing a number of features. Se-
lected features are the local average, a number of horizontal and vertical edge operators and
the local variance. See [8] for a list of commonly used features. Most of them are described
as convolutions or can be approximated by means of convolutions. Applying a convolution on
an image means that for each pixel a value is computed which depends on the grey-levels of
the surrounding pixels and the convolution kernel. The result of computing a convolution is
another image containing for each pixel its convoluted value. An example of a feature is the
local 13 � 1 highpass horizontal edge operator. The kernel of this feature is described as

�
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Suppose there are � features. If we put all features of one pixel together in a vector, we
get the feature vector �� for this pixel. From the contents of the feature images we can derive
this vector for each pixel of the stereo image pair. Finding a match is performed by comparing
each feature vector of the reference image, the reference vectors, to all feature vectors of the
search area which is a part of the search image. We name the reference image and the search
image � and 	 , respectively, and the ‘images’ consisting of the corresponding feature vectors

�� and �	 , respectively. Then, for a point 
 , �� � 
�� is the feature vector of 
 in the reference image
and �	 � 
�� the feature vector of 
 in the search image. The � th component of a vector �� is denoted
by ��� .

In order to compare a reference vector to a search vector, the feature distance between
the two vectors is computed. The feature distance is defined such that each component of
the vectors is weighted. If we denote the weight of feature � as �  , then the feature distance
between the vectors �� and �� is defined as

� ���� �� ��� ���� ������� ��� ����� ��  �! "�  �$#
�%�&��� �  # �

Computing, for a point 
 , the distance between �� � 
'� and each vector in the search image
is in general too expensive. We assume that we can restrict ourselves to a certain search space(*) . This search space is defined by the search area, i.e., the center

�,+�-/. � ) (which is assumed
to be given) and the extensions 021 and 043 (which are the same for all points):
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For a point 
 , best correspondence is found at position

8
in the search space, where the

distance between the reference vector and the search vector is minimal, i.e.,

� �� � 
�� � �	 �/8 � ���ED�FHGIJ2K2L�M � �� � 
�� � �� � �

Feature Vector Matching is depicted in Figure 1. The algorithm is split into three parts:

1. Create feature images for both the reference and the search image.

2. Compare each reference vector to all search vectors of the search space. Best corre-
spondence is found where the feature distance is minimal. The difference in N and O -
coordinate is stored as disparity vector. If the minimum feature distance exceeds a given
threshold, the correspondence is invalid and the reference pixel is not matchable. As a
result, the disparity for the reference pixel remains undefined.

3. Remove errors and interpolate undefined disparities.

3.2 Hierarchical Matching

In order to evaluate the center of the search area for each point and to improve robustness and
efficiency of the matching algorithm, pyramids of the input images are generated [9]. Level 0
of the pyramid is the original image. To create the next level, the average grey-level of four
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Figure 1: Feature Vector Matching.

pixels in a square is computed and stored as one pixel in a new image. Matching starts at the
top level of the pyramid with large search areas for each pixel. The resulting disparity map
is filtered and undefined disparities are interpolated, before it is used as input initial dispar-
ity map (defining the centers of the search areas) for matching the next, lower, level of the
pyramid.

To assure that the disparities from the left to the right image are of good quality, matching
from right to left is performed as well. This is called backmatching. On each point � of the
left image, the left disparity map is applied. The result is � . Next, the right disparity map is
applied on � resulting in �H� . The match is defined invalid when the distance between � and �k�
exceeds one pixel.

Incorporating pyramids, backmatching and filter algorithms leads to Hierarchical Feature
Vector Matching or HFVM [8]. HFVM is developed at Joanneum Research in Graz, Austria.
The algorithm can be described as follows: for both images of the stereo image pair perform
the following steps:

1. Build the pyramid.

2. Compute the feature images for each pyramid level.

3. Match the top level of the pyramid.

4. Filter the resulting disparity map.

5. Check matching consistency by backmatching.

6. Interpolate the undefined disparities.

7. Use the resulting disparity map as initial disparity map to match the next, lower, pyramid
level.

Steps 4 through 7 are repeated till a disparity map of level 0 is computed.
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4 Distributed Memory Implementation

A distributed memory implementation of HFVM is realized on a network of TMS320C40 dig-
ital signal processors. As a first step, the Eindhoven Communication Library was ported to the
chosen processor network. Next, a parallel implementation of HFVM was realized on top of
this communication layer.

Storage of the feature vectors for each pixel of both input images requires lots of memory
space. Therefore, data parallelism is applied: both images are split up in horizontal slices and
spread out over the nodes of the processor network.

On top of ECL we developed a parallel program that exchanges image lines between nodes.
Using this program, a border image, i.e., an extension of the local part of the image with data
from neighboring nodes, is created. In this way, all data required for filtering is available in
the local memory of the nodes and filter algorithms become sequential programs. Border im-
ages are used to perform the following filter operations: convolution, local variance, median
filtering and interpolation. Formal methods were used to derive algorithms for all filter oper-
ations. These derivations resulted in efficient programs while serving as correctness proofs at
the same time [10, 11].

Parallel Feature Vector Matching was implemented directly on top of ECL. Asynchronous
and synchronous channels as well as Remote Procedure Calls were used for data transport
between nodes. In Figure 2 it is depicted how a layered software architecture is designed to
implement HFVM on a distributed memory system [12].

4.1 Parallel Feature Vector Matching

Feature Vector Matching requires access to data from both the reference and the search image.
Cooperation between the node that tries to find a match for a certain pixel and the nodes that
have access to the corresponding search space has to be established. The implementation is
far from trivial since it is not known in advance which nodes have to cooperate. Feature Vector
Matching is performed by four different processes running on each node. The main process
tries to find a match for each pixel of the local part of the reference image. It sends the feature
vector corresponding to the reference pixel to the process match running on the node which has
access to the center of the search area. Since the search area may not be entirely accessible by
that node, help could be required from neighboring nodes. Help is provided by the processes
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Figure 3: Processes for Feature Vector Matching.

match next on the previous node or match prev on the next node. In Figure 3 the four processes
and the (a)synchronous communication channels between them are depicted.

Communication channels are realized in ECL by connecting two channel ports. A fixed
number of channel ports is available on each node. It is possible to make a many-to-one con-
nection by connecting many source ports to one destination port. In order to transport refer-
ence point 
 and reference vector �� � 
'� to one of the match processes, we use these many-to-
one connections as asynchronous communication channels. In a similar way, asynchronous
message passing is applied to send requests for help to one of the processes match next or
match prev. As shown in Figure 3, both processes match and match prev running on node �
can send messages to match prev running on node � >��

. Analogously, match next running
on node � � �

may receive messages from the processes match and match next running on
node � .

Because of the asynchronous communication, we needed to add buffer processes at the
receiving side of the channels. Buffer processes are created for each match, match next and
match prev process.

Storing the results of matching is established by means of Remote Procedure Calls. The
matching processes determine for point 
 and reference vector �� � 
'� which search vector �	 �/8 �
in search space (*) corresponds best to the reference vector. The disparity vector contains the
differences in N and O -coordinates of points 
 and
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, and has to be stored in the disparity map

on location 
 which could be in the local memory of another processor. To avoid software
overhead and to obtain better readable programming code, Remote Procedure Calls are used
to do the job.

5 Applications and Results

Hierarchical Feature Vector Matching is a robust algorithm which is being used for all sorts
of applications such as the modelling of terrain [6, 8], navigation of spacecraft or autonomous
robots [13], the visualization of weather satellite images [14] and as input for image warping.
A first application for the parallel implementation of HFVM is surface measurement during the



construction of tunnels. The processing chain for a practical stereo vision system for outdoor
surface reconstruction can be split into three separate tasks:

1. Image acquisition. Digital images from the surface are generated using CCD cameras.

2. Batch processing. A 3D surface description is generated for the area which is covered
by the acquired stereo images. Results are merged automatically.

3. Interactive evaluation. Parts of the 3D reconstructions are displayed and printed upon
request of the operator.

5.1 System Overview

The image acquisition unit consists of two cameras tightly attached to each other. One acquires
the so called ‘scene images’, which is the surface to be measured, the other camera is used for
orientation of the system with respect to a given world coordinate system. It acquires images
from a region where a set of accurately known reference points can be found and recognized
automatically. Both cameras acquire their data at the same time. An automatic calibration
process shortly after image acquisition is performed to verify the success of the orientation-
finding procedure [15]. Already during image acquisition the hardware configuration used for
batch processing is involved, interfaced by a digital frame grabber with two inputs.

Parallel matching of each stereo image pair is immediately followed by a 3D reconstruc-
tion process. Using the Locus Method the resulting digital elevation map (DEM) is projected
on a cylinder [16]. Each stage of the tunnel construction process is described: rough surface,
rough concrete and final concrete. Interactive monitoring of the construction can be performed
separately from the construction site. 3D views, volume measurements and various statistical
methods for quality control and inspection can be applied by an operator. Since the images
can be overlaid to the DEMs, a thematical analysis may also be performed.

The processing hardware consists of a standard Pentium PC, standard hard disk and a pro-
cessor board containing three Texas Instruments TMS320C40 with 17MB memory each. The
2 channel frame grabber which is connected to one of the C40’s with a 20MB/sec link is
mounted on the same board. The C40’s are extensively used for stereo matching. A touch
screen completes the list of hardware components to ensure easy remote action under wet,
muddy and dark conditions.

Table 1 lists the main parameters and requirements involved during the system design.

5.2 Performance, Scalability and Reliability

The parallel implementation of HFVM is extensively tested. An acceptance test plan was de-
fined and carried out. In order to measure performance, time measurements were carried out
on processor networks of 1, 2 and 3 C40’s, respectively. Both images were equally divided
over the nodes. Two images of size 512 � 512 were used as input. The measured speed-up
for two and three nodes was 1.88 and 2.54, respectively, which results in an efficiency of 0.94
and 0.85. The part of the computation time which is spent on matching is about 80% and in-
creases slightly when more processors are added.

Parallel HFVM is developed such that the number of nodes in the processor network can
be increased, as long as the number of image lines of the top level of the pyramid is larger than



Table 1: Parameters and requirements for surface reconstruction.
Camera Resolution 1000 � 1000 pixels
Delay of autocalibration 5 seconds
Matching of one stereo pair 20 minutes (every single pixel)
3D Reconstruction from disparities 20 seconds
Memory on C40’s 50 MB
Weight of entire system Less than 20 kg
Hardware costs Less than 50 000 $
Number of Reference points for Autocalibration Between 8 and 20
Autocalibration Accuracy Better than 5 mm
Surface Reconstruction Accuracy in 10 m distance Better than 20 mm

or equal to the number of nodes. In case of 1024 � 1024 input images and 5 pyramid levels, up
to 32 processors can be incorporated. However, the efficiency reduces substantially because
of the increasing number of interprocess communications. In case of three processors, the
second node communicates with both the first and the third node. The number of interprocess
communications per node does not increase if a fourth or even fifth processor is added, as long
as the size of the input images is large enough. In general it can be said that a larger processor
network is only efficient in case of large, say 1024 � 1024, input images.

Besides performance, also robustness and reliability were tested. Images of unusual size
were used as input; many combinations of input paramaters, such as the size of search areas,
the number of pyramid levels and the number of features were tried; and several types of in-
put images (synthetically generated, satellite images, tunnel surface images, etc.) were used.
Reliability was measured using synthetically generated images as input. For these images, the
disparity maps are known in advance and can be compared to the results of the parallel HFVM
program. It is concluded that the program is robust and reliable, and satisfies all predefined
requirements.

6 Conclusions

An implementation of Hierarchical Feature Vector Matching was realized on a network of
TMS320C40 digital signal processors. As a communication layer, the Eindhoven Commu-
nication Library was used to obtain a virtually fully connected processor network and to per-
form function invocations on an arbitrary node. On top of ECL a parallel program to exchange
image lines between nodes was implemented. Using this program, filter operations such as
convolution, local variance, median filtering and interpolation reduced to sequential program-
ming problems. Distributed matching was realized using asynchronous communications and
Remote Procedure Calls. The entire parallel HFVM program was tested thoroughly to check
the requirements in terms of performance, robustness and reliability.

The parallel implementation of HFVM has been embedded in a stereo vision system for
tunnel surface reconstruction. The basic features, functions and components of this system
were described. It has been demonstrated that the use of a digital signal processor network
satisfies the strong industrial requirements in terms of performance, robustness and price. The
entire system is currently in prototype stage and will be ready for production in the summer
of 1996.



We conclude that parallel programming techniques are becoming more and more impor-
tant for the development of embedded systems. We would like to stress the importance of a
communication library to create a virtually fully connected processor network and to perform
function invocations on any node. Using the Eindhoven Communication Library we were able
to implement Hierarchical Feature Vector Matching on a processor network, without having
to bother about software overhead for synchronous communications or deadlock prevention.
Parallel HFVM can easily be maintained and ported to other hardware configurations. The
program has been written such that the processor network can be extended to achieve a further
decrease of the computation time, without having to adapt the programming code. Accurate
real-time stereo vision will be feasible using the techniques described in this paper provided
the appropriate hardware is available.
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