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Textured transparent conductors are widely used in thin-film silicon solar cells. They
lower the reflectivity at interfaces between different layers in the cell and/or cause
an increase in the path length of photons in the Si absorber layer, which both result
in an increase in the number of absorbed photons and, consequently, an increase in
short-circuit current density (Jy) and cell efficiency. Through optical simulations,
we recently obtained strong indications that texturing of the transparent conductor in
copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous.
Here, we experimentally demonstrate that the J;. and efficiency of CIGS solar cells
with an absorber layer thickness (d¢jgs) of 0.85 pm, 1.00 pm and 2.00 pum increase
through application of a moth-eye textured resist with a refractive index that is
sufficiently similar to AZO (yesisr = 1.792 vs. nazo = 1.913 at 633 nm) to avoid
large optical losses at the resist-AZO interface. On average, J,. increases by 7.2%,
which matches the average reduction in reflection of 7.0%. The average relative
increase in efficiency is slightly lower (6.0%). No trend towards a larger relative
increase in J;. with decreasing d¢;gs was observed. Ergo, the increase in Jy. can be
fully explained by the reduction in reflection, and we did not observe any increase in
Js based on an increased photon path length. © 2014 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4905456]

INTRODUCTION

@ CrossMark
eclinkte

Textured transparent conductors are widely used in thin-film silicon solar cells.' A large
number of studies on this subject matter have been reported, focusing both on randomly and peri-
odically textured surfaces.*> Since thin-film Si cells are manufactured through sequential deposition
of the cell layers on the cover glass plate coated with the transparent conductor, the texture of
the conductor may (partially) replicate in the other cell layers, resulting in roughened interfaces
between the different layers of the solar cell.® It has been reported that this roughness can lower
the reflectivity at interfaces between different layers, resulting in a larger amount of photons that
penetrate into the active layer.” Additionally, the roughness at the interface may lead to an increased
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path length of photons in the Si absorber layer, resulting in an increase of absorption.® Hence,
the efficiency of thin-film Si cells typically increases by about 25% through use of a textured
transparent conductor as compared to a flat conductor.?

Copper indium gallium (di-)selenide (CIGS) solar cells are produced by sequential deposition
of the required layers on the substrate.’ First, the conductive back contact — typically Mo — is
deposited, followed by the CIGS absorber layer, the buffer layer, typically CdS, a layer of intrinsic
zinc oxide and the transparent conductor, mostly aluminum doped zinc oxide (AZO). Hence, a
potential texture on the surface of the transparent conductor would not be replicated at the inter-
faces between other cell layers. Nonetheless, through optical simulations we recently obtained
strong indications that texturing of the surface of the transparent conductor would be optically
advantageous.'’

Instead of direct texturing of the AZO layer, we applied a transparent UV curable resist with a
refractive index sufficiently similar to AZO to avoid large optical losses at the resist-AZO interface
(Myesist = 1.792 vs. nazo = 1.913 at 633 nm), which is suitable for texturing with UV nano-imprint
lithography (NIL). In that way, the two-layered stack AZO-textured resist optically resembles
textured AZO, and we can apply well-defined textures without performing tedious experimental
studies on texturing of AZO, e.g. through chemical etching. Here, we experimentally demonstrate
that the short-circuit current density (Jy.) and efficiency of CIGS solar cells with a CIGS layer
thickness (d¢jgs) of 0.85 um, 1.00 um and 2.00 um increase through application of a moth-eye
textured resist with a refractive index sufficiently similar to AZO to avoid large optical losses at the
resist-AZO interface. Moth eye textured coatings have been extensively reported as antireflective
coatings on glass and polymeric substrates.!!~14

EXPERIMENTAL

(1) NIL

The moth-eye nanostructures were applied through NIL. The process used consisted of two
main steps: preparation of the replica and structuring of the resist.'* To prepare the replica, a first
layer of hard PDMS was applied on top of the mold, followed by a second layer of soft PDMS,
according to the procedure described by Schmid et al.'> The Kriya SPF1439-A3 transparent UV
curable resist was applied with a 30 um Bird applicator and directly imprinted by gently pressing
the replica into the wet coating. Drying of the resist occurred overnight at room temperature. After
UV curing of the resist, the replica was removed from the substrate.

(2) Manufacturing of CIGS solar cells

CIGS cells were fabricated on 10 x 10 cm? soda lime glass substrates.!® After glass cleaning
a 350 nm thick Mo was sputtered with a 1 kW DC Argon plasma from a 12 x 42,5 cm? planar
rectangular target. Subsequently, the CIGS absorber was co-evaporated from 4 different elemental
sources following a 3-stage-like process where substrate temperature was kept constant at 550°C.
Absorber thickness was adjusted by changing the deposition time of the first stage. Immediately
after CIGS evaporation a 50 nm CdS buffer layer was deposited with a chemical bath technique.
Finally, a 50 nm intrinsic Zn0O/230 nm AZO window layer was sputtered in the same tool as the Mo
to complete the cell stack. A Cu grid was then applied through thermal evaporation and the 10 x 10
cm? substrate was scribed into 162 individual 5 x 10 mm? cells.

(3) Analyses of CIGS solar cells

(1,V)-curves of the cells were measured under standard AM1,5 conditions with a class AAA
Trisol solar simulator operating under 1 sun. (/, V)-measurements were performed before and after
application of the moth-eye textured resist. Spectral response was measured in the wavelength range
between 300 and 1100 nm with a spectral resolution of 10 nm. A commercial spectral response
set-up by Optosolar (SR300) with a 250 W xenon lamp and a Jobin Yvon iHR320 monochromator
was used. The measurement is performed with a 1 mm beam spot on the active area of the cell. The
system was calibrated with a Thorlabs S120VC crystalline silicon reference solar cell. Calculation
of the external quantum efficiency (EQE) was performed with the measured spectral response data
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and AM1,5G spectrum according to IEC60904-3, using the relation

R h
EoE = 2R e
A e
With SR for spectral response, A for wavelength, # is the Planck constant (6.626- 107347-s), c is the

speed of light in vacuum (3.0-10% m-s~") and e is the elementary charge (1.602-10~'° C).

RESULTS AND DISCUSSION

The refractive index of the sputtered AZO layer, which is applied as transparent conductor
in the CIGS cells used in this study, was determined via ellipsometry (FIG. 1). The refractive
index of this layer at a wavelength of 633 nm is 1.913. As resist for UV NIL, we selected Kriya
SPF1439-A3, a polymeric resist filled with titanium dioxide nanoparticles. Although the refractive
index of this resist — 1.792 at 633 nm wavelength — differs significantly from the refractive index of
sputtered AZO, it is sufficiently similar to avoid large optical losses at the resist-AZO interface. The
expected reflection at that interface is 0.106% at 633 nm.

As suitable texture for the resist layer, we selected a moth-eye type texture to reduce the reflec-
tion at the interface resist-air.'*!7-!° To apply the moth-eye texture, we used the HT-AR-02 mold
from NILT. This mold has following specifications: the grating is a hexagonal array with a pitch of
300 nm and an average height of 350 nm. We replicated this mold in PDMS. The PDMS replica
was used to texture the resist using conventional wafer-by-wafer UV NIL. Using AFM analysis, we
demonstrated that the surface texture of the mold was well replicated in the PDMS replica, and that
the surface texture of the PDMS replica was well replicated in the resist layer (FIG. 2).

As demonstrated in FIG. 2, the pitch of the texture in HT-AR-02, the PDMS replica and the
imprint in Kriya SPF1439-A3 was identical (300 nm). In the replication steps mold to replica and
replica to resist, the texture is well replicated; the average height only slightly decreases from 327
nm (HT-AR-02 mold) to 301 nm (imprint in Kriya SPF1439-A3).

To evaluate the change in surface reflection upon use of the resist layer, we applied a 2.2 um
thick non-textured resist layer on a 0.28 um thick AZO layer on glass, and a moth-eye textured
resist layer with a residual layer thickness of 1.8 um. We performed reflection and absorption
measurements under near normal angle for the wavelength regime 300-1100 nm of following layer
stacks: glass-AZO, glass-AZO-non-textured resist, and glass-AZO-textured resist (FIG. 3).

As demonstrated in FIG. 3(a), the average reflection of a 0.28 um thick AZO on glass in the
wavelength regime from 300 nm to 1100 nm is 14.5%. The strong oscillation is caused by the
coherent light propagation through the thin AZO layer. This means that constructive and destructive
interference occurs with varying wavelength of the incident light. In the wavelength regime between
300 nm and 500 nm, strong absorption is observed (46.7%, FIG. 3(b)).

22
21
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e
e
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17
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FIG. 1. Refractive index of AZO (blue) and Kriya SPF1439-A3 (red) in the wavelength regime 400 — 1000 nm determined
via ellipsometry.
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FIG. 2. AFM images of a) HT-AR-02 mold, b) h-PDMS replica, c¢) imprint in Kriya SPF1439-A3 on top of AZO.

Upon application of a 2.2 um thick non-textured layer of Kriya SPF1439-A3, the average
reflection in the wavelength regime from 300 nm to 1100 nm decreased to 13.3% (FIG. 3(a)). The
absorption in the wavelength regime between 300 nm and 500 nm increased to 49.1% (FIG. 3(b)).
The oscillation observed for the AZO layer is largely reduced by the thick resist layer, since light
propagation becomes (partially) incoherent.

Upon application of a moth-eye textured layer of Kriya SPF1439-A3, the average reflection
decreases to 5.7% in the wavelength regime from 300 nm to 1100 nm (FIG. 3(a)). The average
absorption in the regime between 300 nm and 500 nm is 58.1%. Ergo, the moth-eye textured resist
on AZO reduces the overall reflection in the range between 300 nm and 1100 nm by 8.8%. In the
regime between 500 and 1000 nm, the reflection is reduced by 7.0%.

reflection (%)
abs orption [%)

0 T T T T T T T 0 T T T T ¥ T T

300 400 S00 60 700 3800 900 1000 1100 300 400 SO0 600 700 800 900 1000 1100
a) wavelength [nm)] b) wavelength [nm]

FIG. 3. (a) Reflection and (b) absorption of AZO on glass (blue), AZO on glass, coated with non-textured resist (green),

and AZO on glass, coated with textured resist (red) in the wavelength regime 300 — 1100 nm. A schematic representation is
included.
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FIG. 4. Schematic representation of a CIGS solar cell (a) without and (b) with textured resist.

To validate the effect of this reduction in reflection, we manufactured CIGS solar cells as
follows: first, a 0.35 um thick Mo layer was applied to the glass substrate through sputtering,
followed by the deposition of the CIGS absorber layer in a co-evaporation process. Subsequently, a
50 nm CdS buffer layer was applied in a wet-chemical deposition process, followed by deposition
of a 50 nm thick intrinsic ZnO and 230 nm thick AZO layer through sputtering. Then, the Kriya
SPF1439-A3 resist was applied and textured using UV NIL (vide supra). Schematic representations
of a CIGS cell without and with textured resist are presented in FIG. 4.

As initial system, we studied a CIGS solar cell as described above with d¢jgs = 1.00 pm. The
layer stack was deposited on a 10 x 10 cm? glass substrate. Subsequently, the substrate was divided
into 162 cells of 0.5 cm?, on which copper electrodes were deposited. Sixteen cells were coated with
Kriya SPF1439-A3 and textured using NIL.

(I,V)-curves for a cell with 1.00 um thick absorber layer without and with textured resist
confirm that both cells are of high quality. Sixteen cells were analyzed before and after application
of moth-eye textured Kriya SPF1439-A3. The cells without resist show an open-circuit voltage
(V) of 0.61 + 0.01 V, an J,. of 25.38 + 0.30 mA-cm™2, a fill factor (FF) of 71.5 + 1.8% and an
efficiency of 11.03 + 0.42%. After coating with Kriya SPF1439-A3 and subsequent texturing via
NIL, we obtained cells with a V,,. of 0.60 = 0.01, an J,. of 28.07 + 0.44, a FF of 70.3 + 1.5% and an
efficiency of 11.93 + 0.51%. Hence, the textured resist causes a relative increase in Jy. of 10.6% and
in efficiency of 8.2%.

To validate that the origin of this increase in Jy. and cell efficiency is related to the reduction
in reflection (R) caused by the nano-textured resist, we measured the reflection and determined the
external quantum efficiency (EQE) of the cells before and after application of the moth-eye textured
Kriya SPF1439-A3 (FIG. 5).

In the wavelength regime below 500 nm, most of the light entering the solar cell is absorbed
by the AZO and CdS layers. Hence, the nanotextured resist does not have any significant influence

IR
EOE %)

a)

FIG. 5. (a) (1-R) and (b) EQE curves of CIGS solar cell with absorber layer thickness of 1 um without (blue) and with (red)
textured resist.

b)
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FIG. 6. (a) (1-R) and (b) EQE curve of CIGS solar cell (d¢cigs = 0.85um (red), 1.00 pm (blue) and 2.00 pm (green)) with
moth-eye textured resist.

on the EQE in this wavelength regime. In the regime between 500 nm and 1000 nm, the increase
of 7.5% in (1-R) through use of the moth-eye textured resist causes an increase in EQE of 4.4%.
At higher wavelengths, (1-R) is not increased through use of the moth-eye textured resist, and
consequently the EQE is not increased.

When comparing (1-R) and EQE of CIGS cells with an absorber layer thickness of 0.85 pm,
1.00 um and 2.00 um and moth-eye textured resist, the expected optical losses for cells with an
absorber layer thickness less than 2.00 um are observed (FIG. 6).!° For the CIGS cells with 1.00 um
and 0.85 um absorber layer thickness, similar optical losses occur in the wavelength regime above
950 nm caused by incomplete absorption of the light in the thinner absorber layer. These optical
losses are reflected in the EQE.

As demonstrated in Table I, the Jy. increases upon integration of the moth-eye textured Kriya
SPF1439-A3 for all three absorber layer thicknesses: by 1.56 mA-cm (6.8%) for dcigs = 0.85 um,
2.69 mA-cm™ (10.6%) for deigs = 1.00 um and 1.36 mA-cm? (4.3%) for dcigs = 2.00 wm. The
fill factor slightly decreases upon integration of the moth-eye textured resist (max. 1.7% decrease).
The cell efficiency increases for all three absorber layer thicknesses: by 4.2% for d¢jgs = 0.85 um,
8.2% for d¢jgs = 1.00 um and 5.5% for d¢jgs = 2.00 pm. On average, J,. increases by 7.2%, which
matches the average reduction in reflection of 7.0% between 500 and 1000 nm. The average relative
increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jy. with
decreasing d¢jgs was observed; we did not observe any increase in J;. based on an increased photon
path length. The diffraction effect caused by the moth-eye structure in the resist layer does not affect
the absorption in the CIGS layer. To make the diffraction of the sub-wavelength patterning effective,
the pattern has to be either in direct contact with or at maximum at 100 nm distance of the active
layer. Given the i-ZnO/AZO layer thickness of 280 nm, this cannot be achieved in a CIGS cell
stack. Latter is in agreement with the results from optical simulation studies reported by Campa
etal®

TABLE I. Efficiency of CIGS solar cell with absorber layer thickness of 0.85 um, 1.00 um and 2.00 pum with and without
textured resist.

Ve Jse FF Efficiency

[V] [mA-cm™?] [%] [%]
dcigs Number
[um]  of cells Before After Before After Before After Before After
0.85 10 0.64 £0.01 0.64 £0.01 2298 +0.94 2454 +1.13 71.6 £ 1.9 69.9 +2.2 10.49 +0.54 10.93 + 0.66
1.00 16 0.61 £0.01 0.60 £0.01 25.38 £0.30 28.07 +0.44 71.5+1.8 703 +1.5 11.03+0.42 11.93 £0.51

2.00 13 0.65+0.02 0.66 £0.02 31.92 +0.58 3328 +1.11 70.9+1.9 70.8 £1.9 14.66 +0.53 15.47 +0.49
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CONCLUSIONS

In conclusion, we have demonstrated that the integration of a moth-eye textured resist layer
with a refractive index sufficiently close to AZO to avoid large optical losses at the interface
resist-AZO (Nyesiss = 1.792 vs. nazo = 1.913 at 633 nm), results in an increase in Jy. and cell
efficiency for CIGS cells with absorber layer thicknesses of 0.85 um, 1.00 pm and 2.00 um. On
average, J,. increases by 7.2%, which matches the average reduction in reflection of 7.0%. The
average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative
increase in Jy. with decreasing d¢jgs was observed. The observed increase in J. and cell efficiency
upon integration of the moth-eye textured resist can be fully explained by the reduction in reflection
caused by the moth-eye texture, which is in line with the results from optical simulation studies

reported by Campa er al.?°
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