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Abstract In many fields of study, and certainly in hy-

drogeology, uncertainty propagation is a recurring subject.

Usually, parametrized probability density functions (PDFs)

are used to represent data uncertainty, which limits their

use to particular distributions. Often, this problem is solved

by Monte Carlo simulation, with the disadvantage that one

needs a large number of calculations to achieve reliable

results. In this paper, a method is proposed based on a

piecewise linear approximation of PDFs. The uncertainty

propagation with these discretized PDFs is distribution

independent. The method is applied to the upscaling of

transmissivity data, and carried out in two steps: the ver-

tical upscaling of conductivity values from borehole data to

aquifer scale, and the spatial interpolation of the trans-

missivities. The results of this first step are complete PDFs

of the transmissivities at borehole locations reflecting the

uncertainties of the conductivities and the layer thick-

nesses. The second step results in a spatially distributed

transmissivity field with a complete PDF at every grid cell.

We argue that the proposed method is applicable to a wide

range of uncertainty propagation problems.

Keywords Error propagation � Probability density

function � Piecewise linear � Kriging � Upscaling
transmissivity � Monte Carlo simulation

1 Introduction

Subsoil parameters are essential data for groundwater flow

models. Often, these data originate from borehole de-

scriptions in which thin layers (core scale) are distin-

guished based on lithological and sedimentological

information. The thickness of these layers may vary from

a few centimeters up to several meters, depending on the

subsoil structure and the drilling method. Typically, the

described layers are vertically aggregated to aquifer and

aquitard classes at a scale which fits the groundwater

model requirements. This scale will be referred to as point

scale. The thickness of aquifers typically comes on the

order of a few meters to 100 m or up. The core scale

layers are normally populated with hydraulic conduc-

tivities derived from the literature or estimated in the

laboratories. Next, point values of transmissivities and

resistances are calculated by vertical integration of the

conductivity values. Subsequently, these point values are

interpolated to acquire a spatial distributed parameter at

model scale. This scale has a lateral block size of about

100–1000 m.

An important issue in the upscaling procedures is the

uncertainty of the model parameters. This uncertainty can

be divided into two sources. Firstly, the available obser-

vations, at core scale, are uncertain, introducing uncer-

tainty in the upscaling to point scale values. In this case,

each observation is not treated as one known value but as a

random variable (RV). Secondly, there is uncertainty about

the spatial distribution of the parameter. At observed lo-

cations the point scale parameter values are the upscaled

RVs. At unobserved locations, assumptions have to be

made about the spatial structure. This spatial structure can

be described by regionalized variables (ReV) (Journel and

Huijbregts 1978, p. 26).
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In the Netherlands, a large database (REGIS) exists

(Vernes et al. 2005; Vernes and van Doorn 2006), in which

all distinguished layers from all boreholes are described at

core scale by litho-stratigraphical units. Ranges of possible

parameter values for hydraulic conductivity and porosity

are assigned to these units. For REGIS, these ranges are

obtained from laboratory tests and literature search. When

a sufficient amount of data is available for a litho-strati-

graphical unit, a probability distribution is derived for the

parameter of this unit. In this article, these probability

distributions are used as an uncertain value of the hydraulic

conductivities at core scale.

As described extensively in the literature, the upscaling

of hydraulic parameters is far from trivial and depends

highly on: the support scale of the observations, the re-

quired model scale, the presence of anisotropy in the hy-

draulic conductivity, and boundary conditions of the flow

problem at hand (Dagan 1986; Bierkens and Weerts 1994;

Tran 1996; Fiori et al. 2011). Some clear overviews about

these subjects are given by (Cushman et al. 2002; Nœtinger

et al. 2005; Sanchez-Vila et al. 2006). Upscaling of hy-

draulic conductivities needs different approaches in one,

two and three dimensions. With an increasing number of

dimensions the complexity of the upscaling method in-

creases even more. The upscaled one-dimensional con-

ductivity is calculated by the harmonic mean. In isotropic

media with a two-dimensional schematization, the upscaled

conductivity can be obtained by the geometric mean

(De Wit 1995; Hristopulos 2003). The three-dimensional

upscaling is much more complicated and many upscaling

methods are proposed in the literature (King 1989; De Wit

1995; Hristopulos and Christakos 1999; Hristopulos 2003;

Boschan and Nœtinger 2012). Although in two dimensions

the geometric mean yields a usable effective conductivity

in isotropic media, in strong heterogeneous media the result

may divert too much from realistic values. For the latter

case, different solutions are proposed in the literature for

strong heterogeneous or binary media (King 1989; Pancaldi

et al. 2007; Boschan and Nœtinger 2012). Block kriging on

log-conductivity values is equal to geometric upscaling of

the two-dimensional situation. If the correlation length is

larger then the block size, the within block variability will

be low. In this case, the block kriging will yield accurate

effective conductivity values. Subsequently, these block

average values, the model scale, can be used as a starting

point in the above mentioned upscaling methods. In the

upscaling literature, this scale is often denoted as the fine

scale grid.

In this article, the vertical one-dimensional upscaling is

used at point scale, and the lateral two-dimensional up-

scaling is applied using kriging interpolation. In both cases,

the complete parameter distributions of the observation

data, as stored in the REGIS database, are used. Herewith,

the probability density functions (PDFs) at each grid cell

are calculated. These parameter distributions are assumed

to be representative at the model scale.

This article is not meant as a contribution to the problem

of scale dependent hydraulic conductivities but as a de-

scription of a method to propagate uncertainties. Never-

theless, the proposed method can be used in conjunction

with the above mentioned upscaling methods, thus

propagating the observation uncertainty, but this is left for

future work.

In this article, we will focus on the upscaling of hy-

draulic conductivities to transmissivities. To be useful to

groundwater models, the point scale conductivities, which

in fact are RVs, have to be upscaled to spatial distributed

transmissivities. Commonly, only one value of this RV

(e.g., mean) is used to perform this upscaling. Herewith,

only information about the uncertainty of the interpolated

mean is obtained, disregarding the uncertainty of the ob-

servations. Techniques like Monte Carlo simulation (MC)

are often used to obtain results reflecting the data uncer-

tainty. However, a disadvantage of MC is the dependence

of the number of calculations, the sampling strategies used

(Kyriakidis and Gaganis 2013), and the large number of

calculations needed to obtain reasonable results.

The objective of our study is twofold: the derivation of a

method to perform calculations with complete PDFs, and

the application of this method in the upscaling and spatial

interpolation of subsoil parameters. To take full advantage

of the prior knowledge of the uncertainty of data, we

present a method to propagate this uncertainty throughout

all the calculations. Since the RVs are not described by

their statistical moments but by numerically discretized

PDFs, the proposed method is applicable regardless of the

type of distributions used. Although the described tech-

nique can be used in conjunction with techniques that ac-

count for anisotropy, the proposed methods are applied to

homogeneous examples.

The developed method is described in Sect. 2. In Sect. 3

the method is applied to the upscaling of real world bore-

hole data to transmissivities at model scale, using kriging

interpolation. The performance of the method is compared

with an MC calculation. Section 4 contains the discussion

and conclusions.

2 Methodology

Parameters obtained from observations are always subject

to uncertainty. When this uncertainty contributes sig-

nificantly to the result of calculations, it should be ac-

counted for. A generally applicable method to propagate

the uncertainty of RVs in a wide range of calculations is

very attractive. This method should be independent of the
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shape of PDFs and supports binary operations ðþ;�; �; =Þ
and elementary functions. In this section, we first develop a

method to perform calculations with discretized PDFs.

Thereafter, this method is implemented in the vertical up-

scaling of core scale conductivities. Finally, the method is

integrated in the kriging interpolation to obtain the PDF of

the spatial distributed transmissivity data reflecting all

sources of uncertainty.

2.1 Piecewise linear PDFs

Commonly, parametrized PDFs are used to perform

uncertainty calculations analytically. This means that for

every possible combination of types of PDFs an analytical

solution must be available. When many types of PDFs and

operations need to be supported, numerous derivations

have to be made. For long chains of calculations, this is

highly inefficient. Moreover, the resulting PDFs should be

known in closed analytical form, which can not always be

achieved (Holmes and Buhr 2007; Silverman et al. 2004).

We aim at a method which is universally applicable and

independent of the type of distribution used. To achieve

this, a combination of a numerical and an analytical ap-

proach is used, that is, the PDFs are described numerically

and the arithmetic is performed analytically. A common

way to discretize PDFs is to describe them piecewise linear

(Kaczynski et al. 2012; Vander Wielen and Vander Wielen

in press). Herewith, any probability distribution which can

be approximated by a piecewise linear PDF can be used. A

drawback of this method is the introduction of inaccuracies

by linearization, and the need for truncation of distributions

with a one or two sided infinite domain. However, this

drawback can largely be overcome by the choice of a

sufficient number of discretization points, and discretize

large tails when needed. In Fig. 1 an example of a piece-

wise linear PDF is given. Between two discretization

points, the PDF is described by a linear function. This

interval is referred to as a bin (Izenman 1991). A calcu-

lation method with discretized PDFs is described before in

Jaroszewicz and Korzeń (2012) and Korzeń and Jar-

oszewicz (2014). However, their approach is different from

ours which makes both methods applicable in different

types of problems. A comparison of both methods is de-

scribed in Sect. 3.2.

2.2 Calculations with PDFs

2.2.1 Binary operations

When the PDF of an RV can be described analytically, the

result of a binary operation ðþ;�; �; =Þ can be described

analytically as well. Let Z be the RV formed by the joint

distribution of two independent RVs X and Y. The general

formulation of the cumulative distribution function (CDF)

of Z can be described as (Papoulis 1991, p. 132ff)

FzðzÞ ¼
Z Z

fxðxÞfyðyÞ dx dy; ð1Þ

where fxð�Þ and fyð�Þ are the PDFs of X and Y, respectively.

In this equation, the integration boundaries depend on the

value of z and the binary operation to be calculated. Let Z

be the sum of X and Y, then the probability PrfZ\ zg can

be written as

FzðzÞ ¼
Z 1

y¼�1

Z z�y

x¼�1
fxðxÞfyðyÞ dx dy: ð2Þ

The integration boundaries for subtraction, multiplication

and division are given in Appendix. Unfortunately, for

piecewise linear PDFs such analytical formulation can not

be solved as one integral. However, the PDF of each bin of

the RVs can be described analytically. So for each bin of

the marginal distributions, the linear functions fx;ið�Þ and

fy;jð�Þ can be defined as

fx;iðxÞ ¼ pxi þ rxiðx� xiÞ for x 2 hxi; xiþ1� ð3Þ

fy;jðyÞ ¼ pyj þ ryjðy� yjÞ for y 2 hyj; yjþ1�; ð4Þ

where pxi and pyj are the probability densities at

the values xi and yj, respectively. The slopes of these

functions are defined as rxi ¼ ðpxiþ1
� pxiÞ=ðxiþ1 � xiÞ and
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Fig. 1 Example of a piecewise linear discretization of a PDF. The

discretized PDF (red) is a n bins discretization of the real PDF

(black). At the red points, the cumulative probabilities are equal to

those of the real PDF. In this picture is: xi the value of the PDF, pxi the
probability density at value xi, wi the width of bin i, and lx the

average value of the PDF
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ryj ¼ ðpyjþ1
� pyjÞ=ðyjþ1 � yj). With these functions, we

can define the piecewise analytical solution of the CDF

of Z by integration of the probability density of the area

inside the joint bin below the line z ¼ xþ y. The inte-

gration area is split up into four sub-areas as can be seen

in Fig. 2. Because X and Y are independent, the prob-

ability of the rectangle sub-area a can be easily defined

by the product of its marginal probabilities

Fz;ij;aðzÞ ¼ Prfxi \X� xl;ig Prfyj \ Y � yl;jg: ð5Þ

Equivalently, the probabilities of area b and c are ex-

pressed. The equation of the probability of sub-area d of

joint bin (i, j) can be written as

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

Z z�y

x¼xl;i

fx;iðxÞfy;jðyÞ dx dy: ð6Þ

The integration boundaries yl;j, yu;j, xl;i and z� y are por-

trayed in Fig. 2. When z[ yjþ1 þ xiþ1 or z\ yj þ xi, the

line z ¼ xþ y does not intersects the joint bin ði; jÞ.
Therefore, zij is defined to replace z in the calculations of

joint bin ði; jÞ. The value of zij is calculated using

zij ¼ minðmaxðz; xi þ yjÞ; xiþ1 þ yjþ1Þ. Integration of Eq.

(6) yields (see Appendix for its derivation)

Fz;ij;dðzijÞ ¼
1

2
pxl;i pyu;jðyu;j � yl;jÞ2 �

1

3
pxl;i ryjðyu;j � yl;jÞ3

þ 1

6
rxipyu;jðyu;j � yl;jÞ3 �

1

8
rxi ryjðyu;j � yl;jÞ4:

ð7Þ

To obtain the cumulative probability for a particular

value of Z, a summation of the probabilities of all joint bins

is performed

FzðzÞ ¼
Xny
j¼1

Xnx
i¼1

X
A¼a;b;c;d

Fz;ij;AðzÞ; ð8Þ

where nx and ny are the numbers of bins of X and Y,

respectively.

From Eq. (7) the PDF of Z can be derived by taking the

first derivative with respect to z. The parameters depending

on z have to be rewritten as a function of z as xu;i ¼ z� yl;j,

yu;j ¼ z� xl;i and pyu;j ¼ fy;jðz� xl;iÞ. Herewith the deriva-

tive yields

fz;ij;dðzÞ ¼ pxl;i pyu;jðyu;j � yl;jÞ �
1

2
pxl;i ryjðyu;j � yl;jÞ2

þ 1

2
rxipyu;jðyu;j � yl;jÞ2 �

1

3
rxi ryjðyu;j � yl;jÞ3:

ð9Þ

The PDF of all bins writes

fzðzÞ ¼
Xny
j¼1

Xnx
i¼1

fz;ij;dðzÞ: ð10Þ

Analogous to the summation, the integration can also be

performed for subtraction, multiplication and division. An

illustration of the equi Z-lines of four binary operations is

given in Fig. 3. The derivations of the four binary op-

erations can be found in Appendix.

2.2.2 Discretizing unknown variable Z

Performing a binary operation like Eq. (8), raises the need

for a proper discretization of the unknown RV Z. Due to

linearization, the integral of this PDF will usually not de-

scribe the CDF exactly. This probability error for each bin

xi xi+1
xl,i xu,i

yj

yj+1

yl,j

yu,j

a

c

b

d

z = x + y

Fig. 2 Integration boundaries of the piecewise analytical CDF.

Shown is the dependence of the integration boundaries on the position

of the line z in the box of the joint bin ði; jÞ
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Fig. 3 Example of the graphical representation of CDFs of four

binary operations between two independent RVs. The gray lines are
the upper boundaries of the integration area of the cumulative

probability for a certain value of Z

240 Stoch Environ Res Risk Assess (2016) 30:237–249

123



has to be as small as possible without increasing the

number of bins too much.

An algorithm is proposed which starts with at least three

predefinedZ-values (e.g., zmin, zmax, and zmean). Subsequently,

new Z-values are added during calculation. For every Z-val-

ue, the cumulative probability (Eq. 8) and the probability

density (Eq. 10) are calculated. The probability of each bin

can now be calculated in two ways: the difference of the

cumulative probability at each edge of the bin, and the inte-

gration of the linearizedprobability density of the bin.Herein,

the first probability is the exact solution of the calculations

and the second method yields an approximate value. The

difference between these probabilities is the error caused by

the linearization of the PDF. The bin with the largest absolute

probability error will be split up at its center of mass of the

probability of the linearized function. This algorithm runs

until all probability errors are smaller then a certain threshold,

or a predefinedmaximumnumber of bins is reached. In Fig. 4,

an example of one iteration of the summation of two inde-

pendent RVs [bothNð2; 1Þ] is illustrated.

2.3 Construction of probability fields

of transmissivity

This section describes a two step approach of the con-

struction of probability fields of transmissivity. Firstly, the

borehole data is upscaled to aquifer scale at point locations.

Secondly, these upscaled values are horizontally interpo-

lated using kriging interpolation. Both steps make use of

the calculation methods as described in Sect. 2.2.

2.3.1 Vertical upscaling

The transmissivity of a layer at core scale is calculated

from borehole data by multiplying the layer thickness by

the conductivity

Tl ¼ KlðLl � Llþ1Þ; ð11Þ

where index l denotes the layer number, Tl is the trans-

missivity and Kl the hydraulic conductivity of layer l, and

Ll the height of the top of layer l, measured relative to for

example Amsterdam Ordnance Datum. The layer numbers

increase downwards, so the bottom of layer l coincides

with the top of layer lþ 1 (i.e., Llþ1). Subsequently, the

upscaled aquifer transmissivity at point scale is defined by

T ¼
Xn
l¼1

Tl; ð12Þ

where n is the number of layers, at core scale, which are

combined to one aquifer.

Equation (12) only holds for horizontal flow within an

aquifer. As denoted in Sect. 1, we assume the conductivity

parameter values appropriate for the scale used after up-

scaling. Subjects like anisotropy are beyond the scope of

this article.

Both, the layer thickness and the hydraulic conductivity

are subject to uncertainty. When transmissivities are up-

scaled from consecutive layers, these individual transmis-

sivities are correlated because of the uncertainty of the

boundaries between these layers. In order to perform the

summation of transmissivities correctly, we need to know

the correlation between the layers. The covariance of the

transmissivities of two consecutive layers can be calculated

as

covðTl; Tlþ1Þ ¼ covðKlðLl � Llþ1Þ;Klþ1ðLlþ1 � Llþ2ÞÞ
¼ þ covðKlLl;Klþ1Llþ1Þ

� covðKlLl;Klþ1Llþ2Þ
� covðKlLlþ1;Klþ1Llþ1Þ
þ covðKlLlþ1;Klþ1Llþ2Þ:

ð13Þ

When we assume all variables K and L mutually inde-

pendent, only the third covariance

(�cov KlLlþ1;Klþ1Llþ1ð Þ) is not equal to 0.

According to Bohrnstedt and Goldberger (1969) this

covariance can be written as

covðKlLlþ1;Klþ1Llþ1Þ ¼ E½Kl�E½Klþ1�varðLlþ1Þ: ð14Þ

The correlation coefficient can now be written as

qðTl;Tlþ1Þ ¼ �E½Kl�E½Klþ1�varðLlþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðTlÞvarðTlþ1Þ

p : ð15Þ

If the value of qðTl;Tlþ1Þ can not be neglected, we have to

account for correlations in Eq. (12). When the correlations

differ significantly from 0, also in the calculations of Sect.

2.2 the correlations should be taken into account. The

correlations as calculated from the observation data are

found in Sec. 3.1.
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Fig. 4 Refining the PDF by adding a Z-value. The gray line is the

true solution, the black line shows the 4-point PDF, and the red line
shows the effect of adding the 5th defined Z-value
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2.3.2 Horizontal upscaling: semivariogram

Sample semivariograms are usually derived from obser-

vations which are assumed to be scalar values. Since our

point scale observations are RVs, this will cause a different

sample semivariogram and the way it is obtained. Our aim

is to find a semivariogram based on uncertain observations

and to find the PDF of the interpolation. Although the

observations are of a different nature then usual (RVs in-

stead of scalars), we assume the intrinsic hypothesis

(Journel and Huijbregts 1978, p. 11) still holds.

The definition of the semivariogram is (Goovaerts 1997,

p. 96)

cðhÞ ¼ 1

2
E½ðZðuÞ � Zðuþ hÞÞ2�; ð16Þ

where ZðuÞ is the sample value at location u, and h is the

spacing between two observation locations.

Equation (16) can be rewritten as

cðhÞ ¼ E
1ffiffiffi
2

p ðZðuÞ � Zðuþ hÞÞ
� �2
" #

¼ E DZðhÞ2
h i

:

ð17Þ

From the intrinsic hypothesis it follows that DZðhÞ has a

symmetrical distribution function with zero mean. So

DZðhÞ is the RV with a probability distribution describing

the difference between two observations at lag h, scaled

with factor 1=
ffiffiffi
2

p
. Equation (17) can now be written as

cðhÞ ¼ varðDZðhÞÞ. The PDF of DZðhÞ is derived from the

observations ZðuÞ, which can be either scalar values or

RVs. The effect of the observations being RVs, instead of a

scalars, is shown in Fig. 5. As expected, a nugget effect

arises from the use of RVs as observations.

In general, DZðhÞ is assumed to be normal distributed,

which is not always the case (Journel and Huijbregts 1978,

p. 50). In the procedure described here, the shape of the

distribution is derived from the observations. The as-

sumption we make is that the shape of DZðhÞ is indepen-

dent of h, only the variances differ.

Since we want to use the distribution of DZðhÞ in the

kriging interpolation, we have to relate it to the covariance

function. For a stationary random function, the covariance

function and the correlogram are directly related to the

semivariogram (Journel and Huijbregts 1978, p. 32). The

covariance function can be written as

CðhÞ ¼ Cð0Þ � cðhÞ; ð18Þ

where CðhÞ is the covariance at lag h, with

Cð0Þ ¼ cðh ! 1Þ ¼ varðDZðh ! 1Þ. For convenience

we define DZ ¼ DZðh ! 1Þ. The correlogram is defined as

qðhÞ ¼ CðhÞ
Cð0Þ ; ð19Þ

where qðhÞ is the correlation coefficient at lag h. From Eq.

(19) we can write

CðhÞ ¼ qðhÞCð0Þ ¼ qðhÞvarðDZÞ: ð20Þ

From this relation we derive that the covariance CðhÞ can
be calculated as

CðhÞ ¼ var
ffiffiffiffiffiffiffiffiffi
qðhÞ

p
DZ

� �
: ð21Þ

The covariance functions must be positive definite (Journel

and Huijbregts 1978, p. 34), so qðhÞ� 0.

2.3.3 Horizontal upscaling: interpolation

The vertical upscaled borehole data, as described in Sect.

2.3.1, are used in spatial interpolation. Since these data are

subject to uncertainty, an interpolation technique which

can handle this kind of data must be chosen. We applied

ordinary kriging to perform this interpolation. In this sec-

tion we describe the way we incorporate the uncertainty of

the observations, including the shape of the distributions, in

the kriging variance.

Ordinary kriging is based on two equations (Isaaks and

Srivastava 1989, p. 280 ff). The interpolation of the ob-

servation values is described by
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Fig. 5 Example of a sample semivariogram. The black lines show the

result when the observations are treated as scalar values. The red line
is the result of observations treated as RVs. The dashed line shows the
difference between the red and the black line, which is the expected

nugget effect. The smooth black lines are the fitted variogram models.

At four points the PDF of DZðhÞ is drawn from which the variance is

derived. The semivariogram is derived from the log-values of the

observations

242 Stoch Environ Res Risk Assess (2016) 30:237–249

123



Ẑðu0Þ ¼
Xn
a¼1

kaZðuaÞ; ð22Þ

where Ẑðu0Þ is the kriging estimate at the unsampled lo-

cation u0, ka the weight factor of ZðuaÞ, and n the number

of sample locations used in the estimate. The variance of

Ẑðu0Þ is described by

varðẐðu0ÞÞ ¼
Xn
a¼1

Xn
b¼1

kakbCðhabÞ; ð23Þ

where Cð�Þ is the covariance function as discussed in Sect.

2.3.2, and hab is the distance between location ua and ub.

In general, ZðuaÞ represents a scalar value at each lo-

cation, which yields a scalar value Ẑðu0Þ as well. The

variance of Ẑðu0Þ is calculated by Eq. (23), and if prob-

abilities are calculated Ẑðu0Þ is assumed to have a normal

distribution. Together, these two results describe the PDF

of the interpolation.

Since we have PDFs available at all sample locations we

use these PDFs in Eq. (22). This yields an RV for Ẑðu0Þ
which honors the uncertainty, including the distribution, of

the sample data. Additionally, we want to use the distri-

bution of DZ in the uncertainty of the interpolation. In Sect.

2.3.2 we presented a method to obtain the PDF of Cð�Þ,
described in Eq. (21). Inserting Eq. (21) in Eq. (23) yields

varðẐðu0ÞÞ ¼
Xn
a¼1

Xn
b¼1

kakbvar
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qðhabÞ

q
DZ

� �

¼ var
Xn
a¼1

Xn
b¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kakbqðhabÞ

q
DZ

 !
: ð24Þ

Herein,
Pn

a¼1

Pn
b¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kakbqðhabÞ

p
DZ is the RV describing

the uncertainty of the interpolation with a distribution

based on DZ . When added to Ẑðu0Þ, the resulting RV de-

scribes the probability distribution of the interpolation.

3 Results

3.1 Application to real world data

This section shows an example of upscaling and interpo-

lation of borehole data, using the proposed methods. From

the REGIS database of the Geological Survey of the

Netherlands, we used data from the Kiezeloöliet Formation

from an area in the south of the Netherlands. The dataset

contains about 200 boreholes with data from the second

aquifer (Vernes et al. 2005). This aquifer consists mainly

of sandy deposits which are divided into three classes with

significant different conductivity distributions. Figure 6

shows the PDFs of these distributions.

The vertical upscaling of the borehole data is performed

as described in Sect. 2.3.1. The number of core scale layers

at one borehole varied between 1 and 40 layers with an

average of about nine layers. During upscaling, we calcu-

lated 1645 correlations between consecutive layers using

Eq. (15). It appears that almost all (1638) correlations be-

tween the transmissivities of consecutive layers have a

value between �0.05 and 0, the rest has values between

�0.085 and �0.05. Because of these low correlations, we

performed the upscaling without taking the correlations

into account.

The variogram model, as shown in Fig. 5, is derived

from the upscaled borehole data. The PDFs of the con-

ductivities are log-transformed before kriging (Journel and

Huijbregts 1978, p. 570) and the interpolated PDFs are

back transformed afterwards. In this example we used an

exponential variogram with range 300 m, sill 0.6 ln(m/d)2,

and nugget 0.27 ln(m/d)2.

The performance of the PDF calculation used at inter-

polation of uncertain data, by using Eq. (22), is compared

to a Monte Carlo simulation (MC). For this purpose, we

draw a large number of random realizations (nMC) of the

PDFs of the observations. These random realizations are

treated as observations in kriging. Since we assume that the

semivariogram does not alter for each realization, the same

sets of weight factors, ka, are used for both, the PDF and

the MC calculations. Subsequently, the results of MC are

transformed to a CDF and PDF, as displayed in Fig. 7. It

can be seen that the CDFs of both MC runs (nMC ¼ 1;000
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Fig. 6 PDFs of three classes of sand as used with the upscaling of the

borehole data. From left to right: fine sand, medium fine sand, and

coarse sand. The horizontal axis is logarithmic which explains the

apparent difference in integrated area
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and nMC ¼ 20;000) fit quite well with the CDF of the PDF

calculations. However, the PDFs of the MC are less smooth

than the the PDF of the PDF calculations. The interpolated

location in this example is the same location as in Fig. 8

denoted with a red circle.

Some results of the kriging interpolation are shown in

Fig. 8. The results in this example are obtained by point

kriging. At every kriging location, two PDFs are drawn.

The dashed line PDFs are the results of kriging applied on

scalar observations, and the solid lines are the kriging re-

sults with observations as RVs as described before.

3.2 Comparison of calculation methods

In this section, the main differences between the calculation

method of Jaroszewicz and Korzeń (2012) and the piecewise

linear method as described in this article are discussed.

Both methods divide the PDFs in intervals where the

probability densities are approximated by one or more

polynomial functions. The piecewise linear method uses

only one linear function, where the method of Jaroszewicz

and Korzeń uses also higher order polynomials, imple-

mented as Chebyshev polynomials. The latter method has

the ability to describe the curve of the PDF much more

accurate than the linear functions. Another difference be-

tween the two methods is the possibility to describe func-

tions with an infinite domain. The piecewise linear method

has to truncate the infinite tails at some finite value, the

method of Jaroszewicz and Korzeń is able to support in-

finite domains by use of exponential tails.

As an example, the summation of ten standard normal

distributed RVs is performed. The analytical mean and

variance are 0 and 10, respectively. The result of the

method of Jaroszewicz and Korzeń is about 1.2178e�15

and 10 (with 14 trailing zeros), and the result of the

piecewise linear method is 5.879e�5 and 10.1049. The

piecewise linear PDFs are discretized with 50 bins and

truncated at five times the standard deviation.

The higher accuracy is acquired at the cost of calcula-

tion time. The calculation of the transmissivity, as de-

scribed by Eqs. (11) and (12), is used to compare the

performance of both methods. In Table 1 the computation

time is shown for the addition of one, two and three layers

The calculation time of the method of Jaroszewicz and

Korzeń is much higher than the calculation time of the

piecewise linear method. Furthermore, the calculation time

of the method of Jaroszewicz and Korzeń is not propor-

tional to the number of operations but increases much

more. Compared to the vertical upscaling at point scale and
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subsequently the horizontal interpolation in the real world

example in this article, this is a very small example.

4 Discussion and conclusions

We developed a generic method to propagate the uncer-

tainty of data through calculations and applied it to the

upscaling of hydraulic conductivity data. The uncertain

data used are represented by piecewise linear PDFs, which

can be of any form. A similar calculation method, with a

different implementation, has been described before by

Jaroszewicz and Korzeń (2012). However, the computation

time of their method is so high that it is not easily appli-

cable to the calculations described in this article.

Figure 8 shows that the magnitude of the effect of the

proposed method differs between kriging locations. As

may be expected, kriging locations close to observations

show the largest effects on the interpolated PDFs. The re-

sults presented show a good performance of the developed

PDF calculations. The implementation in upscaling of

borehole data, using kriging interpolation, yields interpo-

lated subsoil parameter data with complete PDFs instead of

only the uncertainty of the mean values. Although these

PDFs are a common feature of kriging, the propagation of

the uncertainty of the basic data in this way throughout the

calculations is new. Herewith, any distribution which can

be approximated by a piecewise linear PDF can be dealt

with. Compared to Monte Carlo simulation (MC), the PDF

calculations yield a smoother PDF of the result. The

smoothness of the result does not rely on a random number

generator or the number of simulations performed.

We performed kriging on the log-values of the PDFs of

the observations. This transformation relies on true log-

normal distributed values when the RVs are parametrized.

When the data is not exactly log-normal distributed, the

back transformation may cause a bias in the mean values.

Back transformation of the PDFs does not yield a bias in

mean value or variance.

Compared to calculations using parametrized PDFs or

other analytical solutions, our method takes more computa-

tion time. However, we did not perform a benchmark be-

cause of the research state of the software.Nevertheless, PDF

calculations can be of great value in uncertainty propagation

problems where no analytical solutions are applicable.

Availability of this method reduces the need for MC.

Compared to the analytical PDFs, the usage of piece-

wise linear PDFs implies loss of accuracy in the calculated

results. So care must be taken when choosing the dis-

cretization of a PDF.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creative-

commons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were made.

Appendix: PDF arithmetic

Probability distributions of binary operations

This appendix describes the derivation of four binary op-

erations ðþ;�; �; =Þ performed on piecewise linear PDFs.

Let X and Y be independent RVs and Z be the result of a

binary operation on X and Y. The general formulation of

the cumulative distribution function (CDF) of Z can be

written as (Papoulis 1991, p. 132 ff)

FzðzÞ ¼
Z Z

fxðxÞfyðyÞ dx dy; ð25Þ

where fxð�Þ and fyð�Þ are the PDFs of X and Y, respectively.

These PDFs are linear functions at each bin of the piece-

wise linear PDFs and are, for bin i and bin j, defined as

fx;iðxÞ ¼ pxi þ rxiðx� xiÞ ð26Þ

fy;jðyÞ ¼ pyj þ ryjðy� yjÞ; ð27Þ

where pxi and pyj are the probability densities at the values

xi and yj, respectively. The slopes of these functions are

defined as rxi ¼ ðpxiþ1
� pxiÞ=ðxiþ1 � xiÞ and

ryj ¼ ðpyjþ1
� pyjÞ=ðyjþ1 � yjÞ. For convenience, the next

variables are defined

p0;xi ¼ fx;ið0Þ ¼ pxi � rxi xi

p0;yj ¼ fy;jð0Þ ¼ pyj � ryj yj:
ð28Þ

Since the functions fx;ið�Þ and fy;jð�Þ are only continuously

within a bin, Eq. (25) has to be defined for each joint bin as

Fz;ijðzÞ ¼
Z Z

fx;iðxÞfy;jðyÞ dx dy; ð29Þ

Furthermore, the integration area of a joint bin is split up

into four sub-areas, shown in Fig. 9.

Table 1 Comparison of the

performance of the method of

Jaroszewicz and Korzeń to the

piecewise linear method

Problem Jaroszewicz and Korzeń Piecewise linear

[s] [s]

D1 � K1 1.35 0.00077

D1 � K1 þ D2 � K2 24.1 0.0021

D1 � K1 þ D2 � K2 þ D3 � K3 834 0.0033
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As can be seen, the integration boundaries xl;i, xu;i, yl;j
and yu;j depend on the intersection of the line z ¼ gðx; yÞ
with the lines x ¼ xi, x ¼ xiþ1, y ¼ yj and y ¼ yjþ1. The

function gðx; yÞ represents a binary operation.

The line z ¼ gðx; yÞ for a particular value of z will not

intersect all joint bins. Therefore zij is defined as z but

limited to the minimum and maximum value of z for which

gðx; yÞ intersects joint bin ði; jÞ.
The probabilities of the rectangle sub-areas a, b and c

can be easily defined by the product of their marginal

probabilities

Fz;ij;aðzÞ ¼ Prfxi \X� xl;ig Prfyj \ Y � yl;jg
Fz;ij;bðzÞ ¼ Prfxl;i \X� xu;ig Prfyj \ Y � yl;jg
Fz;ij;cðzÞ ¼ Prfxi \X� xl;ig Prfyl;j \ Y � yu;jg:

ð30Þ

These three functions hold for the example in Fig. 9, the

boundaries may be different for other operations. The

function for sub-area d (Fz;ij;dðzÞ) is described by Eq. (29)

and is derived for each binary operation separately in the

next sections.

The probability of Z\ z for bin ði; jÞ for a given value

of z is defined as

Fz;ijðzÞ ¼ Fz;ij;aðzÞ þ Fz;ij;bðzÞ þ Fz;ij;cðzÞ þ Fz;ij;dðzÞ: ð31Þ

To obtain the cumulative probability for a particular value

of Z, a summation of the probabilities of all joint bins has

to be performed

FzðzÞ ¼
Xny
j¼1

Xnx
i¼1

Fz;ijðzÞ; ð32Þ

where nx and ny are the numbers of bins of X and Y,

respectively.

Subsequently, the first derivative of FzðzÞ with respect to
z is the corresponding PDF. The PDF is calculated as the

derivative of Fz;ij;dðzÞ only, the probabilities of the areas a,
b and c are constant values in this context.

Summation

Let Z ¼ X þ Y . The integration boundaries for joint bin

ði; jÞ are defined as

yu;j ¼ maxðyj;minðyjþ1; z� xiÞÞ
yl;j ¼ maxðyj;minðyjþ1; z� xiþ1ÞÞ
xu;i ¼ maxðxi;minðxiþ1; z� yl;jÞÞ
xl;i ¼ maxðxi;minðxiþ1; z� yu;jÞÞ
zij ¼ xu;i þ yl;j ¼ xl;i þ yu;j:

ð33Þ

Equation (29) for sub-area d can be written as

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

Z zij�y

x¼xl;i

fx;iðxÞfy;jðyÞ dx dy

¼
Z yu;j

y¼yl;j

Z zij�y

x¼xl;i

�
p0;xi þ rxix

�
fy;jðyÞ dx dy: ð34Þ

Integration with respect to x yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

p0;xi xþ
1

2
rxix

2

� �	 
zij�y

x¼xl;i

fy;jðyÞ dy: ð35Þ

Inserting integration boundaries yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

�
p0;xiðzij � y� xl;iÞ

þ 1

2
rxi ðzij � yÞ2 � x2l;i

� ��
fy;jðyÞ dy: ð36Þ

Substituting ððzij � yÞ2 � x2l;iÞ by

ððzij � y� xl;iÞ2 þ 2xl;iðzij � y� xl;iÞÞ, pxl;i ¼ fx;iðxl;iÞ and

zij � xl;i ¼ yu;j yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

�
pxl;iðyu;j � yÞ þ 1

2
rxiðyu;j � yÞ2

�

�
�
p0;yj þ ryj y

�
dy:

ð37Þ

Substituting ryj y ¼ �ryjðyu;j � yÞ þ ryjyu;j, and pyu;j ¼
fy;jðyu;jÞ yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

�
pxl;iðyu;j � yÞ þ 1

2
rxiðyu;j � yÞ2

�

�
�
pyu;j � ryjðyu;j � yÞ

�
dy:

ð38Þ

Integration with respect to y yields

Fz;ij;dðzÞ¼
�
pxl;i pyu;j �1

2

� �
yu;j�y
� �2�pxl;i ryj �1

3

� �
ðyu;j�yÞ3

þ 1

2
rxipyu;j �1

3

� �
ðyu;j�yÞ3

� 1

2
rxi ryj �1

4

� �
ðyu;j�yÞ4

�yu;j
y¼yl;j

: ð39Þ

xi xi+1
xl,i xu,i

yj

yj+1

yl,j

yu,j

a

c

b

d

z = g(x, y)

Fig. 9 Integration boundaries of the piecewise analytical CDF.

Shown is the dependence of the integration boundaries on the position

of the line z in the box of the joint bin ði; jÞ. The function gð�Þ denotes
any binary operation
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Inserting integration boundaries yields

Fz;ij;dðzÞ ¼
1

2
pxl;i pyu;jðyu;j � yl;jÞ2 �

1

3
pxl;i ryjðyu;j � yl;jÞ3

þ 1

6
rxipyu;jðyu;j � yl;jÞ3 �

1

8
rxi ryjðyu;j � yl;jÞ4:

ð40Þ

The first derivative of Eq. (40) with respect to zij is its

corresponding PDF. The variables dependent on zij
are yu;j ¼ zij � xl;i, xu;i ¼ zij � yl;j, and pyu;j ¼ fy;jðyu;jÞ ¼
p0;yj þ ryjðzij � xl;iÞ. So the derivative writes

fz;ij;dðzÞ ¼
1

2
pxl;i ryjðzij � xl;i � yl;jÞ2 þ

1

2
pxl;i pyu;j2ðzij � xl;i � yl;jÞ

� 1

3
pxl;i ryj3ðzij � xl;i � yl;jÞ2 þ

1

6
rxi ryjðzij � xl;i � yl;jÞ3

þ 1

6
rxipyu;j3ðzij � xl;i � yl;jÞ2 �

1

8
rxi ryj4ðzij � xl;i � yl;jÞ3;

ð41Þ

and can be rewritten as

fz;ij;dðzÞ ¼ pxl;i pyu;jðyu;j � yl;jÞ �
1

2
pxl;i ryjðyu;j � yl;jÞ2

þ 1

2
rxipyu;jðyu;j � yl;jÞ2 �

1

3
rxi ryjðyu;j � yl;jÞ3:

ð42Þ
Subtraction

Let Z ¼ X � Y . The integration boundaries for joint bin

ði; jÞ are defined as

yu;j ¼ maxðyj;minðyjþ1; xiþ1 � zÞÞ
yl;j ¼ maxðyj;minðyjþ1; xi � zÞÞ
xu;i ¼ maxðxi;minðxiþ1; zþ yu;jÞÞ
xl;i ¼ maxðxi;minðxiþ1; zþ yl;jÞÞ
zij ¼ xu;i � yu;j ¼ xl;i � yl;j:

ð43Þ

Equation (29) for sub-area d can be written as

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

Z zijþy

x¼xl;i

fx;iðxÞfy;jðyÞ dx dy: ð44Þ

Integration with respect to x yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

	
p0;xiðzij þ y� xl;iÞ

þ 1

2
rxi ðzij þ yÞ2 � x2l;i

� �

fy;jðyÞ dy:

ð45Þ

Substituting ððzij þ yÞ2 � x2l;iÞ by ððzij þ y� xl;iÞ2 þ 2xl;i

ðzij þ y� xl;iÞÞ, pxl;i ¼ fx;iðxl;iÞ and zij � xl;i ¼ �yl;j yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

�
pxl;iðy� yl;jÞ þ

1

2
rxiðy� yl;jÞ2

�

�
�
ðpyj � ryjyjÞ þ ryjy

�
dy:

ð46Þ

Substituting ryj y ¼ ryjðy� yl;jÞ þ ryjyl;j, and pyl;j ¼ fy;jðyl;jÞ
yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

�
pxl;iðy� yl;jÞ þ

1

2
rxiðy� yl;jÞ2

�

�
�
pyl;j þ ryjðy� yl;jÞ

�
dy:

ð47Þ

Integration with respect to y yields

Fz;ij;dðzÞ ¼
�
pxl;i pyl;j

1

2

� �
ðy� yl;jÞ2 þ pxl;i ryj

1

3

� �
ðy� yl;jÞ3

þ 1

2
rxipyl;j

1

3

� �
ðy� yl;jÞ3

þ 1

2
rxi ryj

1

4

� �
ðy� yl;jÞ4

�yu;j
y¼yl;j

: ð48Þ

Inserting integration boundaries yields

Fz;ij;dðzÞ ¼
1

2
pxl;i pyl;jðyu;j � yl;jÞ2 þ

1

3
pxl;i ryjðyu;j � yl;jÞ3

þ 1

6
rxipyl;jðyu;j � yl;jÞ3 þ

1

8
rxi ryjðyu;j � yl;jÞ4:

ð49Þ

The first derivative of Eq. (49) with respect to z is its

corresponding PDF. The variables dependent on zij are

xu;i ¼ zij þ yu;j, yl;j ¼ xl;i � zij and pyl;j ¼ fy;jðyl;jÞ ¼
p0;yj þ ryjðxl;i � zijÞ. So the derivative writes

fz;ij;dðzÞ ¼ � 1

2
pxl;i ryjðyu;j � yl;jÞ2 þ

2

2
pxl;i pyl;jðyu;j � yl;jÞ

þ 3

3
pxl;i ryjðyu;j � yl;jÞ2 �

1

6
rxi ryjðyu;j � yl;jÞ3

þ 3

6
rxipyl;jðyu;j � yl;jÞ2 þ

4

8
rxi ryjðyu;j � yl;jÞ3;

ð50Þ

and can be rewritten as

fz;ij;dðzÞ ¼ pxl;i pyl;jðyu;j � yl;jÞ þ
1

2
pxl;i ryjðyu;j � yl;jÞ2

þ 1

2
rxipyl;jðyu;j � yl;jÞ2 þ

1

3
rxi ryjðyu;j � yl;jÞ3: ð51Þ

Multiplication

Let Z ¼ XY . For multiplication integration of probability

for joint bins has to be performed separately for each

quadrant, as can be seen in Fig. 3. In this section, inte-

gration for quadrant 1 ðz 2 h0;1iÞ is derived. The inte-

gration boundaries for joint bin ði; jÞ are defined as

xl;i ¼ maxðxi;minðxiþ1; z=yjþ1ÞÞ
yl;j ¼ maxðyj;minðyjþ1; z=xiþ1ÞÞ
xu;i ¼ maxðxi;minðxiþ1; z=yl;jÞÞ
yu;j ¼ maxðyj;minðyjþ1; z=xl;iÞÞ
zij ¼ xu;iyl;j ¼ xl;iyu;j:

ð52Þ
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Equation (29) for sub-area d can be written as

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

Z zij=y

x¼xl;i

fx;iðxÞfy;jðyÞ dx dy: ð53Þ

Integration with respect to x yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

�
p0;xiðzij=y� xl;iÞ

þ 1

2
rxi ðzij=yÞ2 � x2l;i

� ��
fy;jðyÞ dy: ð54Þ

Integration with respect to y yields

Fz;ij;dðzÞ ¼
�
p0;xip0;yjðzij ln jyj � xl;iyÞ þ p0;xi ryjðzijy�

1

2
xl;iy

2Þ

þ 1

2
rxip0;yjð�z2ij=y� x2l;iyÞ

þ 1

2
rxi ryjðz2ij ln jyj �

1

2
x2l;iy

2Þ
�yu;j
y¼yl;j

: ð55Þ

Inserting integration boundaries yields

Fz;ij;dðzÞ ¼ p0;xip0;yjðzij ln jyu;j=yl;jj � xl;iðyu;j � yl;jÞÞ

þ p0;xi ryjðzijðyu;j � yl;jÞ �
1

2
xl;iðy2u;j � y2l;jÞÞ

þ 1

2
rxip0;yjð�z2ijðy�1

u;j � y�1
l;j Þ � x2l;iðyu;j � yl;jÞÞ

þ 1

2
rxi ryjðz2ij ln jyu;j=yl;jj �

1

2
x2l;iðy2u;j � y2l;jÞÞ:

ð56Þ

The first derivative of Eq. (56) with respect to zij is its

corresponding PDF. The variables dependent on zij are

xu;i ¼ zij=yl;j, yu;j ¼ zij=xl;i and ln jyu;j=yl;jj ¼ ln jzij=
ðxl;iyl;jÞj. So the derivative writes

fz;ij;dðzÞ ¼p0;xip0;yjðln jyu;j=yl;jj þ zijz
�1
ij � xl;ix

�1
l;i Þ

þ p0;xi ryjððyu;j � yl;jÞþ zijx
�1
l;i � 1

2
xl;i2yu;jx

�1
l;i Þ

þ 1

2
rxip0;yjð�2zijðy�1

u;j � y�1
l;j Þþ z2ijxl;iz

�2
ij � x2l;ix

�1
l;i Þ

þ 1

2
rxi ryjð2zij ln jyu;j=yl;jj þ z2ijz

�1
ij � 1

2
x2l;i2yu;jx

�1
l;i Þ:

ð57Þ

and can be rewritten as

fz;ij;dðzÞ ¼ p0;xip0;yj ln jyu;j=yl;jj þ p0;xi ryjðyu;j � yl;jÞ
� rxip0;yj zijðy�1

u;j � y�1
l;j Þ þ rxi ryj zij ln jyu;j=yl;jj;

ð58Þ

where zijðy�1
u;j � y�1

l;j Þ can be replaced by �ðxu;i � xl;iÞ.

Division

Let Z ¼ X=Y . For division integration of probability for

joint bins has to be performed separately for each quadrant,

as can be seen in Fig. 3. In this section, integration for

quadrant 1 ðz 2 h0;1iÞ is derived. The integration

boundaries for joint bin ði; jÞ are defined as

yu;j ¼ maxðyj;minðyjþ1; xiþ1=zÞÞ
xu;i ¼ maxðxi;minðxiþ1; zyu;jÞÞ
yl;j ¼ maxðyj;minðyjþ1; xl;i=zÞÞ
xl;i ¼ maxðxi;minðxiþ1; zyjÞÞ
zij ¼ xu;i=yu;j ¼ xl;i=yl;j:

ð59Þ

Equation (29) for sub-area d can be written as

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

Z zijy

x¼xl;i

fx;iðxÞfy;jðyÞ dx dy: ð60Þ

Integration with respect to x yields

Fz;ij;dðzÞ ¼
Z yu;j

y¼yl;j

�
p0;xiðzijy� xl;iÞ

þ 1

2
rxi ðzijyÞ2 � x2l;i

� ��
fy;jðyÞ dy: ð61Þ

Integration with respect to y yields

Fz;ij;dðzÞ ¼
�
p0;xip0;yj

1

2
zijy

2 � xl;iy

� �

þ p0;xi ryj
1

3
zijy

3 � 1

2
xl;iy

2

� �

þ 1

2
rxip0;yj

1

3
z2ijy

3 � x2l;iy

� �

þ 1

2
rxi ryj

1

4
z2ijy

4 � 1

2
x2l;iy

2

� ��yu;j
y¼yl;j

: ð62Þ

Inserting integration boundaries yields

Fz;ij;dðzÞ ¼ p0;xip0;yj
1

2
zijðy2u;j � y2l;jÞ � xl;iðyu;j � yl;jÞ

� �

þ p0;xi ryj
1

3
zijðy3u;j � y3l;jÞ �

1

2
xl;iðy2u;j � y2l;jÞ

� �

þ 1

2
rxip0;yj

1

3
z2ijðy3u;j � y3l;jÞ � x2l;iðyu;j � yl;jÞ

� �

þ 1

2
rxi ryj

1

4
z2ijðy4u;j � y4l;jÞ �

1

2
x2l;iðy2u;j � y2l;jÞ

� �
:

ð63Þ

The first derivative of Eq. (63) with respect to zij is its

corresponding PDF. The variables dependent on zij are

xu;i ¼ zijyu;j and yl;j ¼ xl;i=zij. So the derivative writes

fz;ij;dðzÞ ¼ p0;xip0;yj
1

2
y2u;j þ

1

2
x2l;iz

�2
ij � x2l;iz

�2
ij

� �

þ p0;xi ryj
1

3
y3u;j þ

1

3
2x3l;iz

�3
ij � 1

2
2x3l;iz

�3
ij

� �

þ 1

2
rxip0;yj

1

3
2zijy

3
u;j þ

1

3
x3l;iz

�2
ij � x3l;iz

�2
ij

� �

þ 1

2
rxi ryj

1

4
2zijy

4
u;j þ

1

4
2x4l;iz

�3
ij � 1

2
2x4l;iz

�3
ij

� �
:

ð64Þ
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and can be rewritten as

fz;ij;dðzÞ ¼
1

2
p0;xip0;yjðy2u;j � y2l;jÞ þ

1

3
p0;xi ryjðy3u;j � y3l;jÞ

þ 1

3
rxip0;yj zijðy3u;j � y3l;jÞ þ

1

4
rxi ryj zijðy4u;j � y4l;jÞ:

ð65Þ

References

Bierkens MFP, Weerts HJT (1994) Block hydraulic conductivity of

cross-bedded fluvial sediments. Water Resour Res

30(10):2665–2678. doi:10.1029/94WR01049

Bohrnstedt GW, Goldberger AS (1969) On the exact covariance of

products of random variables. J Am Stat Assoc

64(328):1439–1442. doi:10.2307/2286081

Boschan A, Nœtinger B (2012) Scale dependence of effective

hydraulic conductivity distributions in 3d heterogeneous media:

a numerical study. Transp Porous Media 94(1):101–121. doi:10.

1007/s11242-012-9991-2

Cushman JH, Bennethum LS, Hu BX (2002) A primer on upscaling

tools for porous media. Adv Water Resour 25(8–12):1043–1067.

doi:10.1016/S0309-1708(02)00047-7

Dagan G (1986) Statistical theory of groundwater flow and transport:

pore to laboratory, laboratory to formation, and formation to

regional scale. Water Resour Res 22(9 Suppl):120–134. doi:10.

1029/WR022i09Sp0120S

De Wit A (1995) Correlation structure dependence of the effective

permeability of heterogeneous porous media. Phys Fluids

7(11):2553. doi:10.1063/1.868705

Fiori A, Dagan G, Jankovic I (2011) Upscaling of steady flow in

three-dimensional highly heterogeneous formations. Multiscale

Model Simul 9(3):1162–1180. doi:10.1137/110820294

Goovaerts P (1997) Geostatistics for natural resources evaluation.

Oxford University Press, Oxford

Holmes DT, Buhr KA (2007) Error propagation in calculated ratios.

Clin Biochem 40(9–10):728–734. doi:10.1016/j.clinbiochem.

2006.12.014

Hristopulos D, Christakos G (1999) Renormalization group analysis

of permeability upscaling. Stoch Env Res Risk Assess

13(1–2):131–160. doi:10.1007/s004770050036

Hristopulos DT (2003) Renormalization group methods in subsurface

hydrology: overview and applications in hydraulic conductivity

upscaling. Adv Water Resour 26(12):1279–1308. doi:10.1016/

S0309-1708(03)00103-9

Isaaks EH, Srivastava RM (1989) An introduction to applied

geostatistics. Oxford University Press, Oxford

Izenman AJ (1991) Recent developments in nonparametric density

estimation. J Am Stat Assoc 86(413):205–224. doi:10.2307/

2289732
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