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1. SUMMARY

In the past decade information processing in general
and signal processing in particular has undergone a
revolutionary shift from pure Al-oriented methods
towards a wide diversity of nonlinear, soft-computing
methods that often have a paradigm in biological
systems. Among the chief characteristics of these
methods are their ease of application, synergy through
nonlinearity, their robustness, human-friendliness, the
ability to handle ambiguous (even conflicting)
information, the intrinsic ability to handle vague
notions and do human-like inferencing, the possibility
fo take into account multiple goals, their leamning
capability, and the separation of concerns. Although
soft computing has proven to be successful in a growing
mumber of application areas, a general theory
encompassing all soft-computing methodologies
together with standard linear processing methods is
still lacking. In soft-computing literature it is seldom
discussed why a particular method has been selected, or
why a particular approach is advantageous for solving a
problem. In this paper we present a concise discussion
of the characteristics of the key softcomputing
technologies and their possible impact on the design of
mission systems. Because mission systems show a trend
towards higher levels of autonomy, the complexity of
these systems will increase significantly. At the same
time there exists a tendency towards miniaturization,
e.g. to avoid detection (UAVs). These two competing
developments can only be reconciled by the integration
of softcomputing methods into mission systems.

2. INTRODUCTION

2.1 Mission Systems

A mission system consists of an ensemble of
hardware and software that is aimed at the
successful completion of the mission. In this sense
many systems may be considered as a mission
system, depending on their level of complexity and
autonomy. The concept of a mission is well-
established in the aerospace community, although
landbased and maritime operations face similar
problems on a conceptual system level. Missions
are generally initiated by man and still the majority
of missions is manned to ensure that unexpected
and difficult situations can be dealt with adequately.
In addition we observe an increasing interest in
unmanned missions. This is caused by changes in
the world situation that complicate the execution of
full-blown missions, but at the same time require
mission systems to be extremely well-informed. In
this context unmanned, robotic reconnaissance
vehicles such as UAVs are developed.

Recent history shows that the nature of military
operations changes rapidly: Although sensors are
vital to the success of any military mission, it
becomes at the same time much more difficult to
interpret these observations. This can be illustrated
by the introduction of stealth technologies (radar),
by which planes become much more difficult to
detect by radar, the subtletics of ‘peacekeeping’
missions compared to classical, full scale warfare
scenarios, and finally the complexities and greater
vulnerability of navy vessels operating close to
shore (‘littoral warfare’). Finally it should be noted
that there is a genuine need to fuse sensor generated
information, at least at the higher levels of
command and control: the man-machine interface
being the limiting factor. Although new sensors
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Figure 1 Hierarchy of autonomous control processes
in a mission system.

have been developed (e.g. GPS) and accuracy and
resolution in space and time of most existing
sensors have greatly increased in time, the
bandwidth of the man-machine interface has not.
The situation of having to deal with more
information than one can process in a certain time is
not unsimilar to the situation where a lack of
information exists. Both situations mvolve taking
decisions in the presence of uncertainty and would
benefit from intelligent data reduction techniques,
such as softcomputing.

Other reasons for initiating unmanned missions are
the safety of personnel and new tactical doctrines.
Even in unmanned missions there may be on-line
control by man via feleoperation, resulting in
telepresence, but the mission can also be fully
autonomous. Simulation may play an increasingly
important part in the development and testing of a
mission system prior to its deployment. Another
important issue in mission systems (either manned
or unmanned) is the man-machine interface (MMI),
despite of (or sometimes because of) the ever-
increasing speed and complexity of computer
systems. Although it is not easy to give a definition
of a mission system, we will in the present paper
use the following working definition: "A mission
system is a system that supports the goal of a
mission at a certain level of autonomy by
optimizing subtasks”.

In this recursive definition subtasks may equally
well be viewed as mission systems themselves and
thus a hierarchy of different mission tasks is defined
at a number of levels of autonomy (Fig.1). A
specialized control system has a particular task with
only limited autonomy on the mission system level,
whereas a software package for overall mission
management will have more autonomy. Yet both
systems are mission systems. Typically a mission
management system will be responsible for high

level goals such as the allocation of resources, the
scheduling of tasks at certain phases in the mission,
as well as providing adequate information to the
humans responsible for the mission (Fig. 2). In fact
the key issue in mission management is
optimization. An example is the allocation of
resources, e.g. fuel, computing power, the supply of
energy, information, sensors, efc. But also
subsystems such as controllers aim to optimize their
functioning, e.g. by selftuning . and robust
performance. The goals of subsystems will often be
competing with each other. The central problem to
be studied in relation to mission systems therefore is
that of global optimization vs. Jocal optimization.
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Figure 2 The mission "Navigate from A to B" consists of
many (sub)missions. Completing a mission successfully
involves global optimization, which is hard because many
competing processes take part in the process. The dark
and white-colored processes indicate competing agents.

2.2 Softcomputing

In the past decade information processing in general
and signal processing in particular has undergone a
revolutionary shift from pure Al-oriented methods
towards a wide diversity of nonlinear, soft-
computing methods that often have a paradigm in
biological systems. Among the chief characteristics
of these methods are their ease of application,
synergy through nonlinearity, their robustness,
human-friendliness, the ability to handle ambiguous
(even conflicting) information, the intrinsic ability
to handle vague notions and do human-like
inferencing, the possibility to take into account
multiple goals, their learning capability, and the
separation of concems. Although soft computing
has proven to be successful in a growing number of
application areas, a general theory encompassing all
sofi-computing methodologies together with
standard linear processing methods is still lacking.
In soft-computing literature it is seldom discussed
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Figure 3 The fundamental processes within a mission.

why a particular method has been selected, or why a
particular structure is advantageous for solving a
problem.

Even more rare is a comparison between various
possible approaches, e.g. selecting between the
various possible neural architectures. Thus a novice
to the field is confronted with the question how to
select a suitable method and how to combine
methods with each other and with more classical
approaches. In this tutorial we will discuss the basic
theory and properties of fuzzy logic systems (FS),
neural networks (NN), genetic algorithms (GA),
and the concepts of ordinal optimization (0Q), and
how these methods may be combined in solving
problems in practical applications. A typical
example of such an application is sensor fusion.
Although in this case the uncertainty modeling is
usually handled by probability theory, soft
computing methods are becoming increasingly more
popular. The advantages of a soft-computing
approach in comparison to standard approaches
have already been recognized in the field of
industrial control. In military missions the modeling
of uncertainty is more relevant than in industrial

applications. For this reason the use of fuzzy
measures in decision theory may be relevant to this
field. This can be illustrated in the example of
sensor fusion. By attributing to each sensor in the
sensor suite a unique weight, a general fuzzy
measure can be defined in a self-consistent way.
With this measure it is possible to take into account
non-cxhaustive and non-overlapping hypotheses,
and also to reduce the cardinality of the space of
alternatives, thereby avoiding the combinatorial
explosion that is characteristic for e.g the
Dempster-Shafer theory of upper and lower
probabilities. All soft-computing methods have in
common that they somchow carry out a nonlinear
optimization. As is well-known from optimization
theory, heuristics plays an important role, since in
practical situations exhaustive optimization is not
feasible because of the NP-completeness of the
problem. In contrast, soft optimization generates a
soft, i.e. approximate, optimal solution to such
problems in only polynomial time. Depending on
the type of problem, this can e.g be done by
ordinal optimization, which is in practice often
sufficient. In the final part of the review we will
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address the issue of merging these soft-computing
methods with each other and in relation to classical,
analytical methods, so as to take the best of both
worlds. Finally it should be noted that although the
implementation of these methods can be donc on
normal digital computers, softcomputing algorithms
are intrinsically parallel and thus may benefit from
massively parallel, and distributed processing
architectures.

2.3 How mission systems can benefit from
softcomputing

Mission systems essentially have the internal
structure of a control process. By breaking down
the overall mission goal one obtains a collection of
interacting subprocesses (c¢f. Figs. 1-2). In Fig. 3
the basic functionality of a mission system is
outlined: 1) observe, 2) infer (process, interpret,
control) and 3) act. Through this cycle the mission
system observes the world and acts on it, which
action in tum gives risc to changed observations.
Two extra functions are added to the scheme of
Fig.3, viz. 1) intcraction with the user and 2)
learning, a process aimed to improve the underlying
control loops. The leaming process may itself be
seen as a mission process at a higher, more abstract
autonomy level. There is no opportunity in this
tutorial to discuss every aspect of how a mission
system may benefit from soficomputing, but as an
example we will concentratc on the observation
process.

In recent years, numerous research papers have
been published dealing with the application of
multisensor data fusion, also referred to as
distributed sensing high-level fusion, especially in
the domain of military observations [1-6].

Historically the idca of sensor fusion is not new: As
carly as the sixties multi-radar trackers have been in
use by the military for air traffic control and air
defense. Multisensor data fusion seeks to combine
information generated by multiple sensors to
achieve goals that would be very hard or impossible
to achieve with single sensors. From the point of
view of efficiency, scheduling, accuracy, and
redundancy it seems intuitively obvious that several
sensors are ‘better’ than a single sensor.

Nowadays data fusion 1s a well-accepted method
for making supcrior inferences in the field of
industrial automation (e.g. for controlling a power

plant, an oil refinery, a cement kiln (for a review on
industrial applications, sce e.g. (7,8]), or even a
nuclear reactor |9,10], and for carrving out real-
time pattern recognition in industry using a variety
of sensors. Especially since the advent of
softcomputing methods, such as fuzzy logic, data
fusion has become a widely accepted successful
fusion technology in industry. We note however that
the success of such methods is primarily due to
their ability to model human behavior or expertise
in supervisory control. Sensor fusion also endeavors
to mimic cognitive processes in humans by
absorbing thc signals of the human observation
system, our five senses, from the real world and
integrate, or ‘fuse’, these signal streams to build a
cohecrent picture of our environment. As such,
sensor fusion is concerned with lower abstraction
levels, much higher information rates, and generally
requires faster response than the data fusion used in
supervisory control systems. This forms also the
key problem in applying soft computing methods to
this field: in controlling complex industrial or
organizational processes at relatively long
timescales, human operators have accumulated over
the years ample experience. In contrast, there is
only limited insight in the way a human being builds
up an environmental picture, his awareness, from
continuous multisensate observations.

Although sensor fusion is important to virtually all
phenomenological ~ sciences and  engineering
disciplines, most work until now has been done in
the field of defense research. This can be
understood as follows. In analyfical approaches,
e.g in a physics experiment, the measured
quantitics or interactions are often so small that the
experimental setup has to be designed in such a way
as to make sure that the desired quantity or effect is
optimally measurable. If the measured quantities
arc small, the experiment is repeated many times
and ergodicity and statistics are used to arrive at
average values with low relative standard deviation.
Especially in case one tries to prove or disprove the
correctness of a theoretical model, this often is a
good approach. A final point to note here is that -
apart from intrinsic physical real-time aspects -
such experiments generally can be repeated many
times and real-time constraints are not a bottleneck.

In engincering approaches the use of sensors is
more synthetic, as illustrated e.g. in the field of
factorv automation. Herc one deals with a well-



defined problem such as the quality control of
products on a manufacturing line, e.g. checking the
soldering joints on a PCB with an automated vision
system. This problem certainly has real-time
aspects, but the optimization can be done off-line
and thc observation circumstances, like in the
physics experiment, can be optimized off-linc, e.g.
by testing the best combination of sensors, the
proper cameras and illumination, and parallel
operation with more than one quality control station
if the speed of production requires so.

In military observations we deal with a situation
that is far less comfortable than the situations
described above: generally speaking it is necessary
to assess in real time an often complex situation,
that almost certainly is outside one’s complete
control. Handling such observations requires the
modeling of uncertainty. Apart from the ordinary
problems such as noise and clutter, radar and
electro-optical sensors operate also under adverse
weather and atmospheric conditions, without any
possibility to improve the circumstances of the
experiment, or to repeat the experiment, under strict
real time constraints, with sometimes enormous
consequences of false classification and even more
serious penalties for non-detection. In addition, by
the naturc of the military métier, most interesting
targets move at high speeds, try to avoid detection
actively or passively, or mislead sensors by
jamming or using decoys, and they are designed in
such a way as to present a minimal scattering cross
section to commonly used sensors and thus to be
virtually invisible (‘stealth’).

Under such circumstances it is clear that doing
military  observations invariably implies the
modeling of uncertainty. Classically this is often
done by applying statistical methods, notably
Bayes’ theorem to formulate a (multi-) hypothesis
testing problem. It is however also clear that
statistical uncertainty can only model part of the
uncertainty. The different measures of uncertainty
are now well established in classical set theory,
fuzzy sct theory, probability theory, possibility
theory and evidence theory [11].

The breakdown distinguishes fuzziness, or
vagueness due to a lack of definite and sharp
conceptual distinctions and ambiguity, the situation
where we are dealing with one-to-many
relationships in the information obtained from
sensors, vielding non-specificity in the case that the
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data leaves two or more alternatives unspecified, or
even discord, j.e. disagreement in choosing from
among scveral alternatives.

Recently methods that explicitly deal with
ambiguity and partially overlapping hypotheses
such as Dempster Shafer theory [12,13] and the
application of belief functions instead of probability
densities have become popular. Of even more recent
date is the application of general fuzzy measures
[14]. The difficulty inherent to making accurate
observations in military applications and the lack of
measurement statistics are the prime motivations to
improve single sensor obscrvations by merging
(partial) inferences/conclusions from one sensor
with inferences from the other one.

3. SOFTCOMPUTING

In this section we will give an overview of the
principles and basic concepts of four basic
softcomputing techniques, viz. fuzzy systems (FS),
neural networks (NN), genetic algorithms (GA),
and ordinal optimization (OO) from the point of
view of their potential use in mission systems.
Emphasis is placed on the similarities of these four
techniques stressing their ability to model complex
nonlinear relationships in a multidimensional world.
All these softcomputing methods can be applied in
universal function approximation schemes (e.g.
pattern recognition) and in nonlinear optimization.

Both pattern recognition and optimization (e.g. of
resources, manpower, timescheduling, priorities)
are vital to the success of a mission. It is thercfore
extremely important to thoroughly understand the
possibilities of softcomputing methods. An added
bonus of the nonlinearly inherent to softcomputing
methods is that these systems in addition exhibit an
increased robustness compared to classical
methods. In studying the various softcomputing
techniques such as FS, NN, GA, and OO, it is
helpful to imagine a multi-dimensional input-output
space, in which we consider a hypersurface with
multiple maxima and minima (Fig. 4). FSs and NNs
can approximate such a nonlinear input-output
relation by combining cither a small number of
single rules and using very simple basisfunctions
(FS), or by just using one tvpe of function (NN).
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Figure 4 A hypersurface in 3D space may represent a
nonlinear input-output relation (x,y) or a complicated
search space with many nearly degenerated optima.

Basically a FS subdivides the (generally real-
valued) variables of the input space in a small set of
(overlapping) patches using so-called membership
functions (MF), thus bringing down the number of
states significantly. Next the nonlinear I/O relation
is approximated by defining a rulebase for each of
these input states. In a process called
‘defuzzification’ the fuzzy-valued output is
converted to a real output value.

NNs approximate the desired relationship by using
sigmoid or radial (Gaussian) basis functions that
arc weighted, shified and otherwise modified by
varying their synaptic weights in order to achieve
the desired approximation. If we imaginc the
multidimensional space as search space, then we
can view the output as a kind of performance or
“fitness” function, measuring the error from some
ideal functional behavior on Jocal optimization.
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Figure 5 The basic operations in an genetic algorithm:
cross-over of two parent chromosomes forming two
children (top) and mutation representing a (rare)
stochastic process that randomly flips a gene on a single
chromosome.

GAs are ideally suited to search for a global
optimum. The key concept is in a genetic
optimization routine is the representation of the
characteristics in a chromosome, a random
reproduction process (cross-over, Fig. 5) and the
selection of the ‘best’ chromosomes from the
offspring to produce the next generation. GA has
some distinct advantages compared to classical
optimization schemes. Its prime advantage is that of
fast convergence to near the global optimum. Near
the global optimum the converge is however
generally very slow. The global searching
capabilities are not limited to smooth or simple
convex structures: GAs do not require gradients to
exist and just rely on a smart representation of the
problem onto the chromosomes and a suitable
fitness function.

A rclatively voung branch of softcomputing

techniques is that of ordinal optimization. Like in

GAs the key issue is herc that one has to find a

global optimum in a generally complex and large

search space. There are two key differences from

GAs, that gives OO0 a place of its own among

softcomputing techniques:

1) OO aims to reduce NP-complete searches to
polynomial heuristic searches; in other words
0O tries to formalize heuristics.

2) OO0 explicitly allows for measurement
uncertainty (stochastic observation errors) in
the evaluation of the performance of a certain
solution.

The basic idea behind various types of heuristic

search is that of the 20/80 rule; of which many

examples exist, e.g.: It takes 20% of time to achicve

80% performance; for the remaining 20%

performance one has to spend 80% of his time.

Another well-known example is the so-called

“birthday paradox”. The probability that 2 persons

in an arbitrary group of 25 people have their

birthday on the same day is > 0.5. Starting from
such empirical observations Ho [15] developed the
concepts of ‘goal sofiening’ and ‘ordinal
optimization'. 00 can be intuitively understood by
obscrving that it is generally much casier to
determine ‘order’ instead of ‘value® (e.g. it is casier
to determine that A > B is true than it is to evaluate

(A - B)). The concept of goal softening can be

visualized by replacing the condition to be satisfied

in the optimum by the much easier to fulfill
condition of finding an optimum close enough to
the true optimum.



In the following subsections we will now introduce
the different softcomputing methods.

3.1 Fuzzy Logic

Fuzzy logic, fuzzy sets, and fuzzy measures are the
basic concepts of FSs. Originally developed as a
mathematical theory to model vague, imprecise
notions, one of the first applications of FSs was in
control (Fig. 6). At a first glance this may appear
strange because there is nothing vague or imprecise
in control engineering. In contrast one must first
fuzzify the measured system inputs to be able to
apply the theory of fuzzy sets. The reason for the
success of FSs in the domain of control engineering
is mainly the capability to absorb human (operator)
experience in the form of “rules of thumb”, and the
capability to encapsulate all the essential knowledge
to operate the fuzzy controller in a small set of
fuzzy rules. An added advantage of these systems
proved to be the robustness of such controllers: the
nonlinear  conmtroller with its  overlapping
membership functions could accurately
approximate the desired control surface (fuzzy
controller = universal optimal approximator). The
basic application of FL is through fuzzy
(approximate) reasoning: fuzzy control may be
viewed as an application of fuzzy approximate
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Figure 6 Fuzzy control can be used in many different
ways: Apart from the proper control process, fuzzy
logic can be used to diagnose the performance of the
controller and fine-tune it, to modify the setpoint and
to merge human observations with sensor data.

reasoning to control (Fig. 7). The key application
areas of FSs in information science and engineering
arc; expert systems, control, feature cxtraction, and
pattern recognition. Recently FS have also been
developed in quite different disciplines, e.g. medical
diagnosis, psychology, economy, management and
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operations research. In the following we will
discuss the essential features of a FS, as illustrated
in fuzzy control (FC) and see how FSs model the
behavior of a skilled operator instead of modeling
the system to be controlled. FC is more aimed at
taking actions given certain conditions. The basic
idea behind FC is that of partitioning the input
variable space into a finite number of overlapping
partitions and defining for each of these partitions a
typical output state. The formulation of this
definition is in the form of linguistic rules of the
type:

“IF (x; is Large) AND (x; is Small) THEN (y is
Negative Small)”

Here x; and x; represent fuzzy input variables and y
is a fuzzy output variable. Fuzzy variables take
linguistic values such as “Negative Large”,
"Positive Small”,”Zero”, and “‘Positive Medium”.
Each of these linguistic valucs is represented by a
membership function p, j.e. a function that is
almost everywhere = 0 except for a finite interval,
its so-called support, where the function takes
positive values < 1 (see Fig. 7). In order to apply
this fuzzy rule base it is necessary to fuzzify the
cisp  (real-valued) input  varables. The
fuzzification process can be implemented in many
ways, but basically it means that the degrees of
membership (i.e. the values of the MFs p,(x) that
are # 0) are associated with the rules having a
rulepart of the form “IF (x is A)”. In the casc that
more than one input needs to be considered we must
determine the resulting activation of the rule from
these degrees of membership. For this purpose a so-
called t-norm operator must be selected. Examples
of commonly used t-norms are the minimum
operator MIN, used by Mamdani:

Rulestrength wj; = MIN; (p(x;)) withj=1,2.... k,

and the Product-operator []:

Rulestrength wy = [T; (i(x;) withj = 1,2.... k.

Finally after aggregating the inputs with the
knowledge represented by the rules, the outputs can
be determined from the rule strengths and the
output membership functions by defuzzifving the
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Figure 7 Four different ways of fuzzy approximate reasoning can approximate different
controllers z=f{x,y).

outputs according to e.g the center-of-gravity
method as depicted in Fig.7 for the calculation of
the output value z.

3.2 Neural Networks

Artificial neural networks are abstractions of the
biological neural networks that constitute the brain.
A biological neuron consists of dendrites, a cell
body, and an axon (Fig. 8). The connections
between the dendrites ‘and the axons are called

Irom other peurons

Figure 8 A4 biological neuron: inputs from
senses and other neurons end in the synapses.
The cell body processes these signals and
decides to fire, i.e. produce a series of
electrical pulses. These are transferred to
other neurons via the axon.

synapses. Electric pulses arc generated in sensory
cells (biological sensors) or in neighboring neurons
and arrive on the synapses. The cell body operated
on these inputs and fires a pulse, 7.e. outputs an
electrical charge on the axon, if the sum of all
inputs exceeds a certain threshold. This basic
mechanism is copied from the biological system to
build an. artificial neural network (henceforth
abbreviated as NN), though excluding the time
component: instead of a firing (repetitive) pulse, the
output lasts as long as the weighted sum of the
input exceeds the threshold. (Fig. 9).

Over time many NN architectures have been
developed. In general a neural structure consists of
a finite number of inputs connected to the mput-
layer of neurons and a finite number of output
neurons. Between these lie one or more layers of so-
called ‘hidden’ neurons. The idea is that the NN is
trained by adapting the weights of the individual
neurons so as to replicate the (input, output)-pairs
in the training data set. This traming can be
achicved in two different ways by supervised
learning, or altemnatively, by self organization. In
supervised leaming a training sct is available and
the leaming algorithm adjusts the neuron weights so
as to match the desired input-output characteristics.
The most frequently used leaming algorithm in this



category 1s the backpropagation algorithm. In
contrast, unsupervised leaming is characterized by
a mechanism that changes synaptic weights
according to the input values of the network. The
output characteristics arc therefore determined by
the network itself. Examples of self-organization
are 1) Hebbian learning in which a weight w;; of a
neuron 1 and an input x; is increased if the output y;
fires, by an amount Aw; = ay; x; , where a
represents the learning rate and 2) competitive
learning, where all weights are modified of the unit
that generates the largest output (‘the winner takes
all’). An example of such a self organizing
competitive NN is Kohonen’s self organizing
feature map.

—— y=H (E";Wij 8)

Hoo

Figure 9 An artificial neuron forms a linear
combination of the inputs x and uses a nonlinear
Junction if the input exceeds the threshold 6.

One of the most popular leaming algorithms is the
backpropagation algorithm (BP). In the BP
algorithm the difference between the desired and
actual output of the neural network is
backpropagated to modify the weights of all nodes
mvolved in generating the difference. In this sense
NN leaming is equivalent with finding the global
minimum (smallest error) of the error hyperplane in
the space spanned by all the weights of the NN.

3.3 Genetic Algorithms

Genetic algorithms are searching for optimization

procedures inspired by models of biological

cvolution. Key features of these so-called

evolutionary computation are

1) representation: the coding of the problem under
consideration onto chromosomes, i.e. strings of
numbers (often bits) that code the properties;
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2) the definition of an initial population of those
chromosomes;

3) the application of biological-inspired random
operations such as cross-over (Fig. 5) and, to
an extent mutation to generate a new population
from the original one;

4) the ecxistence of a “fitness’-function that
attributes to each chromosome a fitness value
on the basis of which a selection is made of the
‘best” chromosomes of the new generation. The
‘not so fit’ chromosomes are discarded from the
population. This is a example of the principle
of ordinal optimization to be discussed in the
next section. In Fig. 10 a typical computation
cycle is shown.

Genetic algorithms are relatively easy to code and
converge, dependent on the ‘goodness’ of the
chromosomes representation fairly quick in a
number of cases to near the global optimum. The
introduction of the mutation operator offers a way
to escape out of local traps by the random creation
of new chromosomes. The implementation of GA’s
can be very efficient due to the parallel nature of the
algonithm: there is no preferential order in which
chromosomes should be selected so cross-over can
be applied on many chromosomes in parallel.

Initialtsation

Children

Repraduction

Figure 10 4 generation cycle in a GA: After
evaluation the best chromosomes are added to the
population and the rest discarded.

A definite drawback of a GA is the statistical nature
of the search with its inherently slow convergence
O(1/vn), compared to deterministic methods.
Therefore it is of great importance to include as
much as possible a priori information in the
representation of the chromosomes and into the
fitness function. Several other implementations of
GAs exist, such as evolutionary programs (EP).
EPs are similar to GAs except that mutation is the
only operator in EP to provide a new generation of
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chromosomes, thus reflecting the influence of
environment (boundary conditions, limitations)
rather than that of the parents. In biology this
difference is called phenotype vs. genotype.

3.4 Ordinal Optimization

Ordinal optimization plays a special role in
softcomputing, because the method is not so much
an alternative to other softcomputing methods but
instead provides insight in the foundations of
heuristics that is often used in taking decisions. At
various stages of a mission decisions have to be
taken in such a way as to optimize the overall goal
of the mission. Without exaggeration it can be
stated that it is extremely difficult for a human (and
even more so for a machine) to really verify that
such a decision is in fact optimal. Although the
literature of optimization is huge, much of the
mathematical analysis is concerned with
continuous-differentiable  functions, so  that
calculus-based methods can be used to find an
optimum. In most of these methods it is necessary
to be able to calculate a gradient or a derivative of a
functional in order to find the optimum through a
“steepest descent” method, often carried out in a
successive approximation approach. This is in fact
also true in the case of supervised leaming in a NN.
Although basically decisions in a neuron can be
represented by a step- or Heaviside function of the
form: if ¥ w; x;>6, output = +1 else 0 (see Fig.
9), where x;= jth input synapse of neuron i and w;; =
weight associated with the i-th synapse, and 6 ; =
the threshold, in practice backpropagation requires
a one-to-one correspondence between input and
output and therefore no discontinuities. It is because
of our limited mathematical toolbox (especially in
the realm of discontinuous functions, difference
equations and discrete optimization) that these
calculus-based methods are desired and in act even
required to find an optimum solution with analytical
means. In order to force solvability, discrete
problems are often ‘smoothed’ and it is hoped that
the solution constructed in this way is a good-
enough approximate solution of the real problem.

In practice a number of additional real-world
difficultics are introduced by boundary conditions,
complex geometries and other constraints. These
can often be expressed as (in)equalities. Finally we
are often confronted with insufficient data, so that
some kind of uncertainty modeling has to be done.
The introduction of uncertainty into the modeling

presents a huge problem in practice, especially if
the uncertainty is of a statistical nature (e.g.
observation accuracy, or sensor noise) and one does
not have the possibility (or time) to average over a
sufficient number of observations, by which the
observation errors can be reduced to an acceptable
level. This is often the case in military observation
systems. The key issue here is minimizing the
estimation error, thus tightening the confidence level
of the estimates and convergence to the ‘true’
optimum. There are a number of problems
associated with the calculus-based optimization: 1)
discrete-event dynamic systems cannot be treated
this way. 2) in real systems it is often very difficult,
if not impossible, to prove that the calculated (local)
optimum is the desired global optimum.

Global minima are therefore only found by running
an optimization procedurc for multiple starting
points (and proving that there are not too many
relative optima), or by being able to show that the
response surface is convex. In systems of practical
interest, e.g. in NN this is more the exception than
the rule: there we are confronted with an extremely
high number of nearly degenerate minima in the
energy surface, so that finding the global optimum
is virtually impossible. Other examples are the
identification of two adjacent frequencies in spectral
analysis, combinatorial problems such as finding
the shortest way connecting N sites (Traveling
Salesman Problem) or scheduling problems such as
minimizing production delays, or discrete parameter
design. All these problems are difficult because of
their enormous search space and the only way to
find approximations of the optimum is by running
many simulations. In addition they are NP-
complete, i.e. the time needed to find a solution
increases exponentially with the size of the problem.
In order to find approximate solutions to such
programs one is forced to use heuristics, rules of
thumb, and ad hoc methods to achieve some kind of
global optimization. Both the difficulty to take into
account all local detail and the necessity to arrive at
a solution in rcal time have induced a novel
soficomputing approach. The justification of the
ideas presented by Ho [15,16] is that humans
manage reasonably well in making real-world
decisions despite the NP-completeness of these
problems and the insufficient knowledge.The
following example is taken from Ref. [16] and
illustrates the basic steps:

Consider, for example, that we have 200 ordered
altenatives to evaluate. We blindly pick 12



alternatives out of these 200 and ask "what is the
probability that among the 12 picked alternatives
there is actually at least one altemative that is in the
top-12?7" The surprising answer is 0.5 ! If the
number 12 is changed to 35, then the probability of
finding a "good" altemative is close to onc in the
above statement. The implication of this is that even
in the absence of any knowledge, one can
dramatically reduce the number of altematives one
has to evaluate to narrow the search for "good"
choices.

The central idea behind the previous statement is
that of ordinal optimization: the idea that the
relative order (instead of the cardinal value) of the
performance of various alternatives in a general
decision problem is quite robust with respect to
estimation noise. The number of true top-r
alternatives in the set of estimated top-r alternatives
can be quite substantial even in the face of very
large estimation errors in the performance value of
the alternatives. In the above example or randomly
picking alternatives, the equivalent estimation noise
has infinite variance. If, on the other hand, the
variance is not infinite, i.e., there is some bias in
favor of the actual good alternatives (however
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slight), then we can only improve the odds and help
to narrow down the search. This is the core of the
probabilistic justification of using heuristics in
complex decision problems.

3.5 How to combine softcomputing with
classical methods

All softcomputing methods have their proper
application areas and it is impossible to even
approximately describe how theyv can generally be
combined. It is also clear that in contrast to the
original introduction of these systems as competing
and independent developments, one observes
nowadays a convergence towards intelligent, hvbrid
systeras [17], where NNs are combined with FS to
achieve a certain level of adaptability. Also in more
complex systems it is customary to distinguish a
hierarchy of levels of autonomy and depending on
the fuzziness of the goals and the uncertainty and
ambiguity present in the observations, the resulting
system is implemented as a mixture of classical and
softcomputing approaches. It is therefore important
to have a general idea of how methods could be
combined in a meaningful way.

TABLE 1: A hierarchy of modeling techniques. It should be noted that all these methods can in principle be combined
with each other, but that a higher one in the hierarchy (i.e. more analytical) is preferred over a lower one.

Model Theory Properties Uncertainty Speed

Analytical Calculus high precision no off-line,
continuous,global, numeric fast

Rule-based Fuzzy Logic discrete, finite precision, yes, incomplete | on-line fast
local, structural, symbolic and ambiguous

Lookup table Neural Network | learning, numeric, local, yes, noise can learning:
black box, improve training | off-line
unstructured slow

Global Genetic numeric, global, simulated slow

optimization algorithms evaluation function annealing

Ordinal Ordinal probabilistic, global and goal softening fast

Optimization Optimization local
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For the novice in this field it can be very
bewildering to see how different authors solve the
same type of problem with very different methods,
each with its own merits, but it is almost impossible
to comparc the performance of these methods
without a deep understanding of the underlying
processes and actually re-doing the experiment.
Although still many publications are devoted to one
of the softcomputing techniques discussed here,
without even giving a rationale why the selected
method is preferred in this case, it should be pointed
out that the so-called ‘intclligent hybrid systems’
gain rapidly in importance and aim at an integral
approach of all techniques available. This is the line
of thought that we also adhere. Without trying to
review all combinations of NN, FS, GA, and OO
that have been published we will try to give a
guideline according to which the various
softcomputing techniques might be applied: (see
Table I).

Following the ordering of Table I, we start with
conventional, often linearized modcling of the
problem at hand. The advantage of such methods is
that there is a well-developed body of mathematical
methods available for this type of problems and
even in the nonlincar case analytical expressions,
conservation laws, and other relations can readily
be derived. These methods have the great advantage
that they are fast to evaluate (because analysis is
essentially off-line), provide very accurate data and
also provide insight in the underlying mechanisms:
They allow us to parametrize environmental
variables and allow us to explore their cffect on the
solution. In the absence of continuity and high
precision data, or if the underlying problems are too
complicated to model, solve analytically, or
calculate numerically, it pays to approximate the
‘exact’ truth by trading in precision for speed of
calculation. It has become only recently clear that
precision can be very costly and that it may be
much more efficient to use underlying structural
knowledge of the type “IF X increases a bit THEN
Y decreases strongly”. It is in this context that
fuzzy rule bases become important. At one hand
they allow us to deal with ‘difficult’ details of
classical analytical systems, at the other they
provide us with a means to “fuse’ human operator
observations  and

experience with  physical
mathematical models based on  differential
equations. The accuracy (i.e. input-resolution)

diminishes in such systems, but the overall

approximation of the observed system behavior
increases. If structurc is completely absent (at
least the underlying structure cannot be recognized),
but a sufficiently large ’training data set’ j.e. (input,
output) pairs is available, it is worthwhile to model
the system at hand as a black box. This method has
some drawbacks: the concept of a blackbox is not
appealing to the scientist because one is never surc
that a training sct is of the correct size.
Nevertheless NNs can provide a powerful method
in extracting patterns in e.g image recognition.
Once the NNs are trained sufficiently (which is a
slow process duc to the statistical O(1/vn)
performance), a NN provides a fast on-line lookup-
table for connecting inputs and outputs. In addition
it is theoretically possible to approximate any
mapping R® — R™ with arbitrary precision,
provided enough training data are available. In the
absence of numeric training data, it may be
possible to find an optimal approximation of a good
representation and a suitable evaluation function. It
should be noted that good representation is always
an essential step in finding a solution to a problem.
The advantage of a GA approach is that discrete
optimization is possible. Unlike in the case of e.g.
NNs there is no need for gradients to exist and
optimization is only on the basis of a suitable
cvaluation function. Complex boundary conditions
may be taken into account and convergence to near
the global optimum is generally fast. Finally if the
search space for the optimal solution becomes
prohibitively large (as is case of large NP complex
problems), ordinal optimization (OO) may provide
a solution path. Ordinal optimization tries to
formalize common heuristics by softening the goal
and finding the optimum within acceptable
accuracy and probability limits through the use of
even the slightest global information on the
topology and structure of the search space, without
suffering from the slow performance imposed by
the O(1/Y n) limit.

Each method has its particular strengths and
weaknesses. Depending on the availability of
training data and a prioni structured knowledge a
model may be developed that approximates the
observed behavior sufficiently accurate. The
penalty for not using the available a pron
information is that the system has to discover these
structures itsclf at the price of slow convergence
(law of large numbers). It is well-worth considering
to decrease the required accuracy because this



generally results in a substantial reduction of
computation time. Finally it should be noted that,
like in all modeling problems, representation often
is the key to solving a problem: without the proper
algcbra it is often virtually impossible to find a
solution, whereas with a suitable representation the
solution may even look trivial.

4. CONCLUSION

In this review we have discussed a number of basic
softcomputing techniques and have indicated how
they may be combined to form intelligent hybrid
systems suitable for optimizing missions. Key
aspects of these systems such as their capability to
handle uncertainty, their adaptability, and their
robustness make such systems of great interest for
future mission systems. The latter arc expected to
evolve from human decision support systems
towards unmanned, highly autonomous robotics
systems that should be capable of reaching their
goal, even in adverse circumstances and with scarce
resources. The increasing complexity of these tasks
and the limited capacity to include more computing
power into the mission platform (ignoring the
relevance of including more computing power
because of the NP-completeness), it is of great
importance that mission systems benefit from
modem developments in soficomputing, thereby
increasing their robustness to cope with new and
unexpected situations. Although progress in many
other technologies will certainly be needed to
achicve the ambitious goals set for future
(un)manned missions, we are convinced that
soficomputing technology is one of the key
technologices to achieve this aim.
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