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1. SUMMARY
In the past decade information processing in general
and signal processing in particular has undergone a
rwolutionary shift from pure Al-oriented methods
towards a wide diversity of nonlinear, soft-computing
methods that often hare a paradigm in biological
systems. Among the chief characteristics of tlese
methods are their ease of application, synergy through
nonlinearity, their robustness, human-friendliness, the
ability to handle arnbiguous (even conflicting)
informatior¡ the intrinsic ability to handle vague
notions and do human-like inferencing, the possibility
to take into account multiple goals, their learning
capability, and the separation of concerns. Although
soft conrputng has proven to be successful in a growing
number of application areas, a general theory
encompassing all soft-computing methodologies
together with standard linear processing methods is
still lacking. In soft-computing literature it is seldom
discussed why aparlcular method has been selected, or
why apatl:lcu,lar approach is advantageous for sohing a
problem. In this paper we present a concise discussion
of the characteristics of the key softcomputing
technologies end their possible impact on the design of
mission systems. Because mission systems show a trend
towards higher lwels of autonomy, the complexity of
tlrese systems will increase significantly. At the same
time there exists a tendency towards miniaturization,
e.g. to ayoid detection (UAVs). These two competing
developments can only be reconciled by the integration
of softcomputing methods into mission systems.

2. INTRODUCTION

2.1 Mission Systems

A mission system consists of an ensemble of
hardware and software that is aimed at the
successful completion of the mission. In this sense

many svstems nur]' be considered as a mission
sy-stem, dependrng on their level of compleúry* and
autonomy. The concept of a mission is well-
established in the a€rospace community, although
landbased and maritime operations face similar
problems on a conceptual system level. Missions
are generally initiaæd by man and still the majority
of missions is marured to ensure that unexpected
and difficult situations can be dealt with adequateþ.
In addition ç'e observe an increasing interest in
unmanned missions. This is caused by changes in
the world situation that complicate the execution of
full-blown missions, but at the same time require
mission svstems to be extremely well-informed. In
this context unmanned, robotic recormaissance
vehicles such as UAVs are developed.
Recent history shows that the nature of military'
operations changes rapidly: Although sensors are
vital to the success of any military mission, it
becomes at the same time much more difficult to
interpret these observations. This can be illustrated
by the introduction of stealth technologies (radar),
by which planes become much more difficult to
døect b.v" radar, the subtleties of 'peacekeeping'

missions compared to classical, full scale warfare
scenarios, and finally the complexities and greater
vulnerability of naw vessels operating close to
shore ('littoral rvarfare'). Finally it should be noted
that there is a genuine need to fuse sensor generated
information, at least at the higher levels of
command and control: the man-machine interface
being the limitrng factor. Although new sensors
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X'igure I Hierarchy of autonomous control processes

in a mission system.

have been developed (e.g. GPS) and accurac¡- and

resolution in space and time of most eústing
sensors have greatþ increased in time, the

bandwidth of the man-machine interface has not.

The situation of having to deal with more

information than one can process in a certain time is

not unsimilar to the situation where a lack of
information exists. Both situations involve taking

decisions in the presence of uncertainlv and would
benefit from intelligent data reduction techniques,

such as softcomputing.
Othe¡ reasons for initiating unmanned missions are

the safetv of persormel and new tactical doctrines.

Even in unmanned missions there may be online
control by' man via teleoperatiorr, resulting in
telepresence, but the mission can also be fully
autonomous. Simulation may plarv an increasingly
important part in the development and testing of a
mission sy'stem prior to its deplo.r,ment. Another

important issue in mission systems (either ma¡ned

or unmanned) is the man-machine interface (MMI),
despite of (or sometimes because oÐ the ever-

increasing speed and compleúty" of computer
systems. Although it is not easy to give a definition
of a mission system, we will in the present paper

use the following working definition: "A mission

system is a system that supports the goal of a
mission at a certain level of autonomy by

optimizing subtasks".

In this recursive definition subtasks may equally

well be viewed as mission s-vstems themselves and

thus a hierarchy of different mission tasks is defined

at a number of levels of autonoml' Gig.l). A
specialized control system has a particula¡ task rvith
only limited autonomy on the mission system level,

whereas a software package for overall mission

management will have more autonomy. Yet both

s-vstems are mission sy'stems. Typically a mission
management system will be responsible for high
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level goals such as the allocation of resources, the

scheduling of tasks at certain phases in the mission,

as rvell as providing adequate information to the

humans responsible for the mission (Fie. 2) In fact
the ke-t- issue in mission management is

optimizafion. An example is the allocation of
resources, e.g. fuel, computing power, the suppl."" of
energ-y-, information, sensofs, etc. But also

subs.vstems such as controllers aim to optimize their
functioning, e.g. by selftuning and robust
performance. The goals of subsystems will often be

competing with each other. The central problem to
be studied in relation to mission systems therefore is

that of global optimizationvs, local optimization.

X'igure 2 The mission "Navigate from A to B" consists of
many (sub)misslons. Completing a mission successfully

involves global optimization, which is hard because many

competing processes take part in the process. The dark
and white-colored processes indicate competing agents.

2.2 Softcomputing

In the past decade information processing in general

and sþal processing in particular has undergone a

revolutionary shift from pure Al-oriented msthods

torvards a wide diversity of nonlinear, soft-
computing msthods that often have a paradigm in
biological systems. Among the chief cha¡acteristics
of these methods a¡e their ease of application,
s!'nergv through nonlinearity, their robustness,

human-füendliness, the ability to handle ambiguous
(even conflicting) information, the intrinsic abili¡'
to handle vague notions and do human-like
inferencing, the possibility to take into account
multiple goals, their learning capability', and the

separation of concerns. Although soft computing
has proven to be successful in a grow'ing number of
application are¿ls, a general theory encompassing all
soft -computing methodologies together rvith
standa¡d linear processing methods is still lacking.

In soft-computing literature it is seldom discussed

æchqe ffi guMtæ
b.fr+s powdu¡e æh



7-3

LEARNING
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why apartrcular method has been selected, or why a
particular structure is advantageous for solving a
problem.
Even more rare is a comparison betrveen various
possible approaches, e.g. seleøing between the
various possible neural architectures. Thus a novice
to the field is confronted rvith the question how to
select a suitable method and horv to combine
msthods with each other and with more classical
approaches. In this tutorial rve will discuss the basic
theory and properties of fuzry logic s¡rstems (FS),
neural networks (NN), genetic algorithms (GA),
and the concepts of o¡dinal optimization (OO), and
horv these methods ma-v- be combined in solving
problems in practical applications. A typical
example of such an application is sensor fusion.
Although in this case the unceriainw- modeling is
usually handled b-"" probabilit-l' tr*ry, soft
computing methods are becoming increasingly more
popular. The advantages of a soft-computing
approach in comparison to standard approaches
have alreadt' been recognized in the field of
industrial control. In military missions the modeling
of uncertaintr,' is more relevant than in industrial

applications. For this reason the use of fuzz,,
measures in decision theory may be relevant to this
field. This can be illustrated in the example of
sensor fusion. By attributing to each sensor in the
sensor suite a unique weight, a general fiz4-
measure can be defined in a self-consistent u'a,v.
With this measrue it is possible to take into account
non-exhaustive and non-overlapping hypotheses,
and also to reduce the cardinalrty of the space of
alternatives, thereby avoiding the combinatorial
explosion that is characteristic for e.g. the
Dempster-Shafer theory of upper and lower
probabilities. All soft-computing methods have in
common that they somehow carry out a nonlinear
optimization. As is well-known from optimizatton
theory heuristics plavs an important role, since in
practical situations exhaustive optimization is not
feasible because of the NP-completeness of the
problem. In contrast, soft optimization generates a
soft, i.e. approximate, optimal solution to such
problems in only pollnomial time. Depending on
the type of problem, this can e.g. be done b1-

ordinal optimization, rvhich is in practice often
sufficient. In the final part of the review rve will
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address the issue of merging these soft-computing
methods u.ith each other and in relation to classical,

analltical methods, so as to take the best of both
worlds. Finallf it should be noted that although the

rmplementation of these methods can be done on

normal digital computers, softcomputing algorithms
are intrinsicalll'parallel and thus ma-v- benefit from
massivel-v* parallel, and distributed processing

architectures.

2.3 How mission systems can benefit from
softcomputing

Mission sy'stems essentially' have the internal
structure of a control process. B-v'- breaking dorm
the overall mission goal one obtains a collection of
interacting subprocesses (l Figs. l-2). In Fig. 3

the basic functionali$. of a mission svstem is
outlined: 1) observe, 2) nfer (process, interpret,
control) and 3) act. Through this cycle the mission
s-v*stem observes the rvo¡ld and acts on it, which
action in turn gives rise to changed observations.

Trvo extra functions are added to the scheme of
Fig.3, viz. 1) interaction with the user and 2)

learning, a process aimed to improve the underly'ing

control loops. The learning process may' itself be

seen as a mission process at a higher, more abstract
autonomy level. There is no opportunit)' in this
tutorial to discuss every aspect of how a mission
system may benefit from softcomputing, but as an

example we will concentrate on the observation
pfocess.

In recent ye¿ùrs, numerous research papers have

been published dealing with the application of
multisensor data fusion, also referred to ¿ùs

distributed sensing high-level fusion, especiall.v* in
the domain of militar_v observations [1-6].

Historically the idea of sensor fusion is not nerv: As

earþ as the sixties multi-radar trackers have been in
use by the military for air traffic control and air
defense. Multisensor data fusion seeks to combine

information generated b.v* multþle sensors to
achieve goals that rvould be very hard or impossible
to achieve with single sensors. From the point of
view of efficienc-v, scheduling, accuracy, and

redundancy it seems intuitivel-v- obvious that several

sensors are 'better' than a single sensor.

Norvada-v-s data fusion is a rvell-accepted method

for making superior inferences in the field of
industrial automation (e.g. for controlling a power

plant, an oil refinen-, a cement kiln (for a revierv on

industrial applications, see e.g. [7,8]), or even a
nuclear reactor [9,10], and for carrying out real-
time pattern recognition in industry using a varietr
of sensors. Especially' since the advent of
softcomputing methods, such as fuzzy logic, data
fusion has become a widely' accepted successful

fusion technolog¡'in industry. We note horvever that
the success of such methods is primaril-v- due to
their abilit-r,'to model human behavior or expertise

in supervisory control. Sensor fusion also endeavors

to mimic cognitive processes in humans b1-

absorbing the sþals of the human observation
s-v-stem, our five senses, from the real world and

integrate, or 'fi-lse', these sþal streams to build a

coherent picture of our environment. As such,

sensor fusion is concerned rvith lower abstraction
levels, much higher information rates, and generall¡'

requires faster response than the data fusion used in
supervisory control systems. This fomrs also the

ke1,'problem in applf ing soft computing methods to
this field: in controlling complex industrial o¡
organizational processes at relativel¡- long

timescales, human operators have accumulated over
the years ample experience. In contrast, there is
onl-v limited insight inthe way a human being builds
up an environmental picture, his awareness, from
continuous multisensate observations.

Although sensor fusion is important to virtually'all
phenomenological sciences and engineering

disciplines, most work until now has been done in
the field of defense research. This can be

understood as follorvs. In analytical approaches,

e.g. in a physics experiment, the measured

quantities or interactions are often so small that the

experimental setup has to be designed in such a wa)*

as to make sure that the desired quanti¡'or effect is
optimally measurable. If the measured quantities

are small, the experiment is repeated manv times
and ergodicrtf' attd statistics are used to arrive at
average values with low relative standard deviation.
Especiall-v in case one tries to prove or disprove the

correcûress of a theoretical model, this often is a

good approach. A final point to note here is that -
apart from intrinsic ph1'sical real-time aspects -
such experiments generall-v- can be repeated manl'
times and real-time constraints are not a bottleneck.

ln engineering approaches the use of sensors is

more synthetic, as illustrated e.g. n the field of
factory automation. Here one deals rvith a rvell-



defined problem such as the quah¡' control of
products on a manufacturing line- e.g. checking the
soldering joints on a PCB rvith an automated vision
s1'stem. This problem certainlv has real-time
aspects, but the optimization can be done offline
and the observation circumstances, like in the
ph-"-sics experiment, can be optimized off-line, e.g.

b-v- testing the best combination of sensors, the
propü cameras and illumrnation, ffid parallel
operation w'ith more than one qualrt¡,- control station
if the speed of production requires so.

In military observations rve deal with a situation
that is fa¡ less comfortable than the situations
described above: generally speaking it is necessary-
to assess in real time an often complex situation,
that almost certainl.v is outside one's complete
control. Handling such observations requires the
modeling of uncertainty. Apart from the ordinary
problems such as noise and clutter, radar and
electro-optical sensors operate also under adverse
rveather and atmospheric conditions, without any
possibilitl' to improve the circumstances of the
experiment, or to repeat the experiment, under strict
real time constraints, with sometimes enorrnous
consequences of false classification and even more
serious penalties for non-detection. In addition, by
the nature of the mrlitary métier, most interesting
targets move at high speeds, try to avoid dstection
activeþ or passivel¡ or mislead sensors b."-

jamming or using deco-v-s, and they are designed in
such a wa!' as to present a minimal scattering cross
section to commonlv used sensors and thus to be
virtualb' invisible ('stealth').

Under such circumstances it is clear that doing
militar)' observations invariably implies the
modeling of uncertain¡'. Classically this is often
done b¡" applying statistical methods, notably
Baves' theorem to formulate a (multi-) hypothesis
testing problem. It is horvever also clear that
statistical uncertain¡' can onl,v- model part of the
uncertainfi'. The different measures of uncertainq'
are no\y rvell established in classical set theory,
fazzy set theory, probabilitl theory, possibili¡'
theory and evidence theory [ 1].
The breakdonn distinguishes ftzziness, or
vagueness due to a lack of definite and sharp
conceptual distinctions alrrd ambigtity, the situation
rvhere lye are dealing with one-to-manv
relationships in the information obt¿ined from
sensors, f ielding non-spectficity inthe case that the
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data leaves trvo or more alternatives unspecified, or
even discord, i.e. disagreement in choosing from
among several alternatives.

Recentll' methods that explicitlv deal with
ambiguitr and partialll' overlapping hypotheses
such as Dempster Shafer theory [I2,I3l and the
application of belief functions instead of probabilitl-
densities have become popular. Of even more recent
date is the application of general fuzzr- measures

[1a]. The difficuþ inherent to making accurate
observations in milit¿rv applications and the lack of
measurement st¿tistics are the prime motivations to
improve single sensor observations b-v merging
(partial) inferences/conclusions from one sensor
lvith inferences from the other one.

3. SOFTCOMPUTING

In this section we will give an overvierv of the
principles and basic concepts of four basic
softcomputing techniques, viz. fizzv systems (FS),
neural netrvorks (NN), genetic algorithms (GA),
and ordinal optimization (OO) from the point of
view of their potential use in mission svstems.
Emphasis is placed on the similarities of these four
techniques stressing their abili[. to model complex
nonlinear relationships in a multidimensional world.
All these softcomputing methods can be applied in
universal function approximation schemes (e.g.
pattern recognition) and in nonlinear optimization.

Both pattem recognition and optimization (e.g. of
resources, manpower, timescheduling, priorities)
are vital to the success of a mission. It is therefore
extremely,' important to thoroughlv understand the
possibilities of softcomputing methods. An added
bonus of the nonlinearlf inherent to softcomputing
methods is that these svstems in addition exhibit an
increased robustness compared to classical
methods. In study-ing the various softcomputing
techniques such as FS, NN, GA, and OO, it is
heþfuI to imagine a multi-dimensional input-ouþut
space, in n'hich rve consider a hlpersurface with
muþle maxima and minima (Fig a) FSs and NNs
can approximate such a nonlinear input-output
relation by combining either a small number of
single rules and using very simple basisfunctions
(FS), or b1' just using one tlpe of function (NN).
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Figure 4 A hypersurface in 3D space may represent a

nonlinear input-ouþut relation (x,y) or a complicated
search space with many nearly degenerated optima.

Basically a FS subdivides the (generall¡' real-

valued) variables ofthe input space in a small set of
(overlapprng) patches using so-called membership

functions (MF), thus bnnging down the number of
states significantly. Next the nonlinear I/O relation

is approximated by defining a rulebase for each of
these input states. h a process called

'defazzifrcation' the fuzzy-vafued ouþut is

converted to a real output value.

NNs approximate the desi¡ed relationship by using

sigmoid or radial (Gaussian) basis functions that

are weighted, shifted and otherwise modified by
varling their syraptic weights in orde¡ to achieve

the desired approximation. If we imagine the

multidimensional space as search space, then we

can view the output as a kind of performance or
"ftness" function, measuring the error from some

ideal ñrnctional behavior on local optìmization.

rÌ

GAs are idealll- suited to search for a global
optimum. The kel' concept is in a genetic

optimization routine is the representation of the

characteristics in a chromosome, a random

reproduction process (cross-over. Fig. 5) and the

selecfion of the 'best' chromosomes from the

offspring to produce the next generation. GA has

some distinct advantages compared to classical

optimization schemes. Its prime advantage is that of
fast convergence to near the global optimum. Near

the global optimum the converge is however

generallv very slorv. The global searching

capabilities are not limited to smooth or simple

convex structures: GAs do not require gradients to
exist and just rel-v- on a smart representation of the

problem onto the ch¡omosomes and a suitable

fitness function.
A relatively' !-oung branch of softcomputing

techniques is that of ordinal optimization. Like in
GAs the key issue is here that one has to find a
global optimum in a generally complex and large

search space. There are two ke¡" differences from

GAs, that gives OO a place of its own among

soft computing techniques :

1) OO aims to reduce NP-complete searches to
poþomial heuristic searches; in other rvords

OO tries toþrmalize heuristics.

2) OO explicitly' allorvs for measurement

uncertain¡' (stochastic observation errors) in
the evaluation of the performance of a certain

solution.
The basic idea behind various lpes of heuristic

search is that of the 20180 rule: of s'hich many

examples exist, e.g,: It takes 20%oof time to achieve

80% performance; for the remaining 20%

performance one has to spend 80% of his time.

Another rvell-knos'n example is the so-called
"binhda1,' paradox". The probabiliq'that 2 persons

in an arbitrary goup of 25 people have their
birthda-v- on the same daJ' is > 0.5. Starting from

such empirical observations Ho [5] developed the

concepts of 'goal softening' and 'ordinal
optimization '. OO can be intuitivelv understood by
observing that it is generalll- much easier to

dstermine 'order' instead of 'value' (e.g. it is easier

to determine that A > B is true than it is to evaluate

(A - B)). The concept of goal softening can be

visualized b1'replacing the condition to be satisfied

in the optimum b1' the much easier to fulfill
condition of finding an optimum close enotrgh to
the true optimum.

ôlr¿ t

dÍliJ I

X'igure 5 The basic operations in an genetic algorithm:

cross-over of two parent chromosomes forming tv'o

children (top) and mutation representing a (rare)

stochastic process that randomly flips a gene on a single

chromosome.



In the following subsections we rvill now introduce
the different soft computing methods.

3.1ßuzry Logic

Fuzzy logic, fttzry sets, and fuzz,v- measures are the
basic concepts of FSs. Originall.v- developed as a
mathematical theory to model vague> imprecise
notions, one of the first applications of FSs was in
control (Fig. 6) At a first glance this ma,v appear
strange because there is nothing vague or imprecise
in control engineering. In contrast one must first
fizzify the measured system inputs to be able to
apply the theory of fuzry sets. The reason for the
success of FSs in the domain of control engrneering
is mainly the capabilit_v to absorb human (operator)
ex¡lerience in the form of "rules of thumb", and the
capabili¡'to encapsulate all the essential knou4edge
to operate the fazzy controller in a small set of
fuz4v rules. An added advantage of these systems
proved to be the robustness of such controllers: the
nonlinear controller with its overlapping
membership functions could accurately
approximate the desired control surface (fazry
controller : universal optimal approximator). The
basic application of FL is through futy-
(approximate) reasoning: fuzzy control may be
viewed as an applicationof fazzy approximate

Figure 6 Fuzzy control can be used in many difþrent
ways: Apart from the proper control process, fuzzy
logic can be used to diagnose the performance of the
controller and fine-tune it, to modify the setpoint and
to merge human observations with sensor data.

reasoning to control (Fig. 7). The key application
areas of FSs in information science and engineering
are: expert systems, control, featu¡e extraction, and
pattern recognition. Recently FS have also been
developed in quite different disciplines, e.g. medical
diagnosis, psychologl', econom!-, management and

operations research. In the follorving we will
discuss the essential features of a FS, as illustrated
n fuzzy- control (FC) and see how FSs model the
behavior of a skilled operator instead of modeling
the s¡*stem to be controlled. FC is more aimed at
taking actions given certain conditions. The basic
idea behind FC is that of partifioning the input
variable space into a finite number of overlapping
partitions and defining for each of these partitions a
typical output state. The formulation of tlus
definition is in the form of linguistic rules of the

Ðpe:

"IF (x1 is Large) AND (x2 is Small) THEN (y is
Negative_Small) "

Here x7 andx2 represent fuzzf input variables and y
is a fazq' ouþut variable. Ftzzy- variables take
linguistic values such as "Negative Large";
"Positive Small","Zefo", and "Positive Medium".
Each of these linguistic values is represented b-,- a
membership function þ, i.e. a function that is
almost everyrvhere = 0 except for a finite interval.
its so<alled support, where the function takes
positive values < I (see Fig. 7). In order to appll'
this fuzz,l' rule base it is necessary to fuzzifr the
crisp (real-valued) input variables. The
fuzzifrcaion process can be implemented in manv-
ways, but basically it means that the degrees of
membership (i.e. the values of the MFs p¿(x) that
are I 0) are associated with the rules having a
rulepart of the form "IF (x is A)". In the case that
more than one input needs to be considered we must
determine the resulting activation of the rule from
these degrees of membership. For this purpose a so-
called t-norm operator must be selected. Examples
of commonly used t-norms are the minimum
operator MIN, used b.v- Mamdani:

Rulestrength rv¡ = M\ (p,(",)) u'ith¡ = 1,2.....k,

and the Product-operator fI:

Rulestrength wu : Ilj (g(x,) rdth.¡ = 1,2.....k.

Finall-v- after aggregating the inputs with the
knorvledge represented by'the rules, the ouþuts can
be determined from the rule strengths and the
output membership functions by defuzzifl-ing the
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ouþuts according to e.g. the center-of-gravity
method as depicted in Fig.7 for the calculation of
the ouþut valae z.

3.2 Neural Networks

A¡tificial neural networks are abstractions of the

biological neural nstworks that constitute the brain.
A biological neuron consists of dendrites, a cell

body, and an axon (Fig. 8). The connections

between the dendrites'and the axons are called

X'igure 7 Four dffirent ways oÍ"fuzzy approximare reasoning can approximate different
controllers z:16,9.

[o other neurons

X'igure 8 A biological neuron: inputs from
senses and other neurons end in the synapses.

The cell body processes these signals and
decides to fire, i.e. produce a series of
electrical pulses. These are transfeted to

other neuronsvia the axon.

s''napses. Electric pulses are generated in se,nsory

cells (biological sensors) or in neighboring nerrons

and arrive on the sy'napses. The cell body operated

on these inputs and fires a pulse, l.e. ouþuts an

electrical charge on tlrc axon, if the sum of all
inputs exceeds a c,ertatn threshold. This basic
mechanism is copied from the biological system to
build an, artifcial neural network (henceforth

abbreviated as NN), though excluding the time
component: instead of a firing (repetitive) pulse, the

ouþut lasts as long as the weighted sum of the
input exceeds the threshold. (Fig. 9).

Over time man¡" NN architectures have been

developed. In general a neural structure consists of
a finite number of inputs connected to the input-
layer of neurons and a finite number of ouþut
neurons. Between these lie one or more la¡,ers of so-

called 'hidden' neurons. The idea is that the NN is
trained by adapting the weights of the individual
neurons so as to replicate the (input, ouþut)-pairs
in the training data set. This training can be

achieved in two different ways by supervised
Iearning, or alternativeþ, b.v self organizafion. ln
supervised learning a training set is available and

the leaming algorithm adjusts the neuron weights so

as to match the desired input-ouþut characteristics.
The most frequentl-v- used learning algorithm in this

c
Ð

!
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category is the backpropagation algorithm. In
cont¡ast. unsupervised leaming is characterized by
a mechanism that changes synaptic weights
according to the input values of the network. The
output characteristics are therefore determined by
the nehvork itself. Examples of self-organization
are 1) Hebbian learning in which a weight w¡ of a
nouron i and an rnput x¡ is increased ifthe output y
fires, bv an amount Âwo = ct!'i x.¡ , where c
represents the learning rote and, 2) competitive
learning, where all weights are modified of the unit
that generates the largest output ('the winner takes
all'). An example of such a self organtzing
competitive NN is Kohonen's self organizing
feature map.

¡=H1Xx,w' 0/

X'igure 9 An artificial neuron þrms
combination of the inputs x and uses a
function if the input exceeds the threshold 0.

One of the most popular leaming algorithms is the
bacþropagation algorithm (BP). In the BP
algorithm the difference betrveen the desired and
actual output of the neural nefia'ork is
bacþropagated to modify the weights of all nodes
involved in generating the difference. In this sense
NN learning is equivalent with finding the global
minimum (smallest error) of the error hJperplane in
the space spanned by all the weights of the NN.

3.3 Genetic Algorithms

Genstic algorithms are searching for optimization
procedures inspired by models of biological
evoluûon. Ke."- features of these so-called
evolutionarv computation are
1) representation: the coding ofthe problem under

consideration onto ch¡omosomes, i.e. strings of
numbers (often bits) that code the properties;

a linear
nonlinear

2)

3)
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the definition of an iniûal population of those
ch¡omosomes:
the application of biological-inspired random
operations such as cross-ovor (Fig. 5) and, to
an efent mutation to generate a new population
from the original one;
the existsnce of a "fitress"-function that
attributes to each chromosome a fitness value
on the basis of wfüch a selection is made of the
'best' chromosomes of tlre new generation. The
'not so fit' chromosomes are discarded from the
population. This is a example of the principle
of ordinal optimization to be discussed in the
next section. kr Fig. l0 a t-lpical computation
cycle is shown.

Genetic algorithms are relatively easy to code and
converge, dependent on the 'goodness' of the
chromosomes representation fairly quick in a
number of cases to near the global optimum. The
introduøion of the mut¿tion operator offers a way
to escape out oflocal traps by the random creation
of new chromosomes. The implementation of GA's
can be very efficient due to the parallel nature of the
algorithm: there is no preferential order in which
ch¡omosomes should be selectgd so ctoss-over can
be applied on many chromosomes in paratlel.

Figure 10 A generation cycle in a GA: After
evaluation the best chromosomes are added to the
population and the rest discarded.

A definite drawback of a GA is the statistical nature
of the search with its inherentl¡r slow convergence
O(l/{n), compared to deterministic methods.
Therefore it is of great importance to include as
much as possible a priori information in the
representation of the chromosomes and into the
fitness function. Several other implementaúons of
GAs exist, such as evolutionary programs (EP).
EPs are similar to GAs except that mutation is the
only opentor in EP to provide a new generation of

4)
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chromosomes, thus reflecting the influence of
environment (boundary conditions, limitations)
rather than that of the parents. In biologv this
difference is called phenotype vs. genotype.

3.4 Ordinal Optimization

Ordinal optimization plays a special role in
softcomputing, because the method is not so much

an alternativo to other softcomputing methods but
instead provides insight in the foundations of
heuristics that is often used in taking decisions. At
various stages of a mission decisions have to be

taksn in such a way as to optimize the overall goal

of the mission. Without exaggeration it can be

st¿ted that it is extremell'' difficult for a human (and

even more so for a machine) to really veri$ that
such a decision is in fact optrmal. Although the

literature of optimization is huge, much of the

mathematical analysis is concerned wittt
continuous-differentiable functions, so that
calculus-based msthods can be used to find an

optrmum In most of these methods it is necessary

to be able to calculate a gradient or a derivative ofa
functional in order to find the optimum through a

"steepest descent" method, often carried out in a
successive approximation approach. This is in fact
also true in the case of supervised learning in a NN.
Although basically decisions in a neuron can be

represented b-v- a step- or Heaviside function of the

form: if X w¡ x¡ > 0 1 ouþut = +1 else 0 (see Fig.

9), where x¡: jth input synapse of neuron i and w¡ :
weight associated with the i-th synapse, arld 0 r =
the threshold, in practice bacþropagation requires

a one-to-one correspondence between input and

output and therefore no discontinuities. It is because

of our limited mathematical toolbox (especially in
the realm of discontinuous functions, difference

equations and discrete optimization) that these

calculus-based methods are desired and in act even

required to find an optimum solution with anal¡ical
means. In order to force solvability, discrete

problems are often 'smootlted' and it is hoped that
the solution constructed in this rvay is a good-

enough approximate solution of the real problem.

In practice a number of additional real-rvorld

difficulties are introduced by boundary conditions,

complex geometries and other constraints. These

can often be expressed as (in)equalities. Finally we

are often confronted q'ith insufficient data, so that
some kind of uncertain¡' modehng has to be done.

The introduction of uncertainrr- into the modeling

presents a huge problem in practice, especiallf if
the uncertain!' is of a statistical naÎ;ttre (e.g.

observation accuracy, of sensor noise) and one does

not have the possibilit-l- (or time) to average over a
sufficient number of observations, b-v* which the

observation errors can be reduced to an acceptable

level. This is often the case in milit¿rl' observation

systems. The key issue here is minimizing the

estimation error, thus tightening the confidence level

of the estimates and convergsnce to the 'true'
optrmum. There alre a number of problems

associated with the calculus-based optimization: l)
discrste+v€,lÍ dynamrc systems cannot be treated

this way. 2) in real systems it is often very difficult,
if not impossible, to prove that the calculated (local)

optimum is the desired global optrmum.
Global minima a¡e therefore onl.v found by runntng

an optimization procedure for multþle starting
points (and proving that there are not too many

relative optima), or by being able to show that the

response surface is convex. In systems ofpractical
interest, e.g. n NN this is more the exception than

the rule: there we are confronted with an extremel,"-

high number of nearly degenerate minima in the

eriergy surface, so that frndittg the global optimum

is virtually impossible. Other examples are the

identification oftrvo adjacent frequencies in spectral

analysis, combinatorial problems such as finding
the shortest way cornecting N sites (Traveling

Salesman Problem) or scheduling problems such as

minimizing production delays, or discrete par¿ìmeter

desrgn. All these problems are difficult because of
their snormous search space and the only rva-v- to
find approximations of the optimum is b-v running

many simulations. In addition they are NP-
complete, i.e. the time needed to find a solution

increases exponentially with the size of the problem.

In order to find approximate solutions to such

progrÍrms one is forced to use heuristics, rules of
thumb, and ad hoc methods to achieve some kind of
globat optimization. Both the difficult-v to take into
account alllocaldetail andthe necessity to arrive at

a solution in real time have induced a novel

softcomputing approach. The justification of the

ideas pressnted by Ho [15,16] is that humans

manage reasonabl-v- rvell in making real-rvorld

decisions despite the NP-completeness of these

problems and the insufficient knorvledge.The

following example is taken from Ref. [16] and

illustrates the basic steps:

Consider, for example, that rve have 200 ordered

altematives to evaluate. We blindly pick 12



altematives out of these 200 and ask "s'hat is the
probabilitl' that among the 12 picked alternatives
there is actually'at least one alternative that is in the
top-12?" The surprising ansrver is 0.5 ! If the
number 12 is changed to 35, then the probabili¡'of
findt"g a "good" alternative is close to one in the
above statement. The implication ofthis is that even

in the absence of an)- knowledge, one can
dramaticalll' reduce the number of alternatives one
has to evaluate to narrorv the search for "good"
choices.
The central idea behind the previous statement is
that of ordinal optimization: the idea that the
relative order (instead ofthe cardinal value) ofthe
performance of various alternatives in a general
decision problem is qurte robust with respect to
estimation noise. The number of true top-r
alternatives in the set of estimated top-r alternatives
can be quite substantial even in the face of very
large estimation errors in the performance value of
the alternatives. In the above example or randoml5'
picking alternatives, the equivalent estimation noise
has inñnite variance. If, on the other hand, the
variance is not infinite, i.e., there is some bias in
favor of the actual good alternatives (hovvever
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slight), then rve can onlf improve the odds and help
to narrow down the search. This is the core of the
probabilistic justification of using heuristics xl
complex decision problems.

3.5 IIow to combine softcomputing with
classical methods

All softcomputing methods have their proper
application areas and it is impossible to even

approximateþ describe horv they' can generally'be
combined. It is also clear that in contrast to the
origtnal introduction of these s1.'stems as competing
and independent developments, one observes
norvadays a convergence towards intelligent, h1'bnd
svstems [17], where NNs are combined rvith FS to
achieve a certain level of adaptabiliq'. Also in more
complex svstems it is customary to distinguish a
hierarchy of levels of autonomy and depending on
the fuzziness of the goals and the uncertainty and
ambiguitv present in the observations, the resulting
system is implemented as a mixture of classical and
softcomputing approaches. It is therefore important
to have a genen) idea of how methods could be
combined in a meaningfirl n'ay.

TABLE 1: A hierarchy of modeling techniques. It should be noted that all these methods can in princþle be combined
rvith each other, but that a higher one in the hierarchy (i.e. more ana\tical) is preferred or,er a lower one.

Model Theory Properties Uncertainty Speed

Analytical Calculus high precision
continuous, global, numeric

no off-line,
fast

Rule-based Fuzzy Logic discrete, finite precision,
local, structural, symbolic

yes, incomplete
and ambiguous

on-line fast

Lookup table Neural Network learning, numeric, local,
black box,
unstructured

yes, notse can
improve training

learning:
off-line
slow

Global
optim¡zation

Genetic
algorithms

numeric, global,
evaluation function

simulated
annealing

slow

Ordinal
Optimization

Ordinal
Optimization

probabilistic, global and
local

goal softening fast
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For the novice in this field it can be very
bervildering to see horv different authors solve the

same tlpe of problem with very different msthods,

each with its or.w merits, but it is almost impossible
to compare the performance of these msthods

without a deep understanding of the underlfing
processes and actually re-doing the experiment.

Although still many publications are devoted to one

of the softcomputing techniques discussed here,

rvithout even giving a rationale why the selected

method is preferred in this case, it should be pointed

out that the so-called 'intelligent hybrid s."-stems'

gain rapidly in importance and aim at an integral

approach of all techniques available . This is the line
of thought that we also adhere. Without rr-v*ing to
review all combinations of NN, FS, GA, and OO
that have been published we will trv to give a

guideline according to which the various
softcomputing techniques might be applied: (see

Table I).
Following the ordering of Table I, we start with
conventional, often linearized modeling of the
problem at hand. The advantage of such methods is

that there is a well-developed body of mathematical
methods available for this type of problems and

even in the nonlinear case analytical expressions,

conservation laws, and other relations can readily
be derived. These msthods have the great advantage

that they are fast to evaluate (because analysis is
essentially off-line), provide very accurate data and

also provide insight in the underl,ling mechanisms:

They allorv us to paramøtize environmental
variables and allorv us to explore their effect on the

solution. In the absence of continuity and high
precision data, or if the underþing problems are too
complicated to model, solve analy'ticall¡ or
calculate numerically, it pays to approximate the
'sxast' truth by trading in precision for speed of
calculation. It has become only recently clear that
precision can be very costly and that it may be

much more efficient to use underlying structural
know'ledge of the tlpe "IF X increases a bit THEN
Y decreases strongl-v". It is in this context that
fuzry rale bases become important. At one hand

thel' allow us to deal with 'difficult' details of
classical anal-ltical systems, at the other they'

provide us with a means to 'fuse' human oporator
experience with ph.v-sical observations and

mathematical models based on differential
equations. The accuraqr (i.e. input-resolution)

diminishes ln such s]'stems, but the overall

approximation of the observed sy'stem behavior
inc¡eases. If structure is completely' absent (at

least the underlJ'ing structure cannot be recognized),

but a sufficientl-v large 'training data set' i.e. (input,

ouþut) pairs is available, it is worthvr,'hile to model

the s1'stem at hand as a black box. This method has

some drarvbacks: the concept of a blackbox is not

appealing to the scientist because one is never sure

that a training set is of the correct size.

Nevertheless NNs can provide a powerful method

in extracting patterns n n.g. image recognition.
Once the NNs are trained sufficiørtly (rvhich is a
slorv process due to the statistical O(l/{n)
performance), a NN provides a fast online lookup-
table for cormecting inputs and outputs. In addition
it is theoreticalll' possible to approximate any

mapping no -) fr* q¡ith arbitrary precision,
provided enough training data are available. In the

absence of numeric training data, it ma1' be

possible to find an optimal approximation of a good

representation and a suitable evaluation function. It
should be noted that good representation is alwals
an essential step in finding a solution to a problem.

The advantage of a GA approach is that discrete

optimization is possible. Unlike in the case of e.g.

NNs there is no need for gradients to exist and

optimization is onll' on the basis of a suitable
evaluation function. Complex boundary conditions
may be taken into account and convergence to near

the global optimum is generally'fast. Finall-v* if the
search space for the optimal solution becomes

prohibitivel-v large (as is case of large NP complex
problems), ordinal optimization (OO) maf' provide

a solution path. Ordinal optimization tries to
formalize coÍrmon heuristics b.v* softening the goal

and furding the optimum rvithin acceptable

accuracv and probabilþ limits through the use of
even the slþhtest global information on the

topolop" and structure of the search space, rvithout
suffering from the slorv performance imposed b-v

the O(1/{ n) ümit
Each method has its particular strengths and

weaknesses. Depending on the availabili¡' of
training data and a priori structured knorvledge a

model mav be developed that approximates the

observed behavior sufficientlv accurate. The
penaþ for not using the available a priori
information is that the sy'stem has to discover these

structures itself at the price of slorv convergence
(larv of large numbers). It is rvell-rvorth considering
to decrease the required accurac]' because this



generall!' results in a substantial reduction of
computation time. Finally it should be noted that,
like in all modeling problems, representation often
is the key to solving a problem: rvithout the proper
algebra it is often virtuall¡' impossible to find a
solution, whereas with a suitable representation the
solution may even look trivial.

4. CONCLUSION

In this review we have discussed a number of basic
softcomputing techniques and have indicated horv
they may be combined to form intelligent hytrid
systems suitable for optimizing missions. Ke
aspects of these systems such as their capability' to
handle uncertainty, their adaptability, and their
robustness make such sy-stems of great interest for
future mission systems. The latter are expected to
evolve from human decision support systems

towards unmamed, highly autonomous robotics
systems that should be capable of reaching their
goal, even in adverse circumstances and with scarce

resources. The increasing complexiry- of these tasks
and the limited capacrty to include more computing
power into the mission platform (ignoring the
relevance of including more computing power
because of the NP-completeness), it is of great
importance that mission systems benefit from
modern developments in softcomputing, therebv
increasing their robustness to cope with new and
unexpected situations. Although progress in manv
other technologies will certainl."" be needed to
achieve the ambitious goals set for future
(un)manned missions, we are convinced that
softcomputing technology is one of the key
technologies to achieve this aim.
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