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I. ABSTRACT
This paper describes a simple algorithm for reconstructing
the complex index of refraction of a bounded object im-
mersed in a known background from a knowledge of how
the object scatters known incident radiation. The method
described here is versatile accommodating both spatially
and frequency varying incident fields and allowing a prr-
ori information about the scatterer to be introduced in a

simple fashion. Numerical results show that this new algo-
rithm outperforms the modified gradient approach which
until now has been one of the most effective reconstruction
algorithms available.

2. INTRODUCTION
The problem of reconstructing the complex index of re-
fraction of a bounded object immersed in a known back-
ground medium, from a knowledge of how the object scat-
ters known incident acoustic or electromagnetic radiation,
has received a tremendous amount of attention in the past
decade. Almost all reconstruction algorithms rely in some
way upon the Lippmann-Schwingerequation or domain in-
tegral equation for the ñeld inside the scattering object as
well as the related integral representation for the field out-
side the object.
The present paper describes a simple algorithm for recon-
structing unknown contrasts which is extremely versatile,
accommodating both spatially and frequency varying inci-
dent fields and allowing for the introduction of a priori in-
formation, such as positivity constraints, in a simple fash-
ion. The algorithm is a variant of the source type integral
equation (STIE) method introduced by Habashy et al. |ll
on one hand and the modified gradient approach used by
the authors in [2], tl3l, tl4l on the other. Numerical
results show that, despite the simplicity of the algorithm,
it outperforms the modified gradient approach which has
been one of the most effective reconstruction algorithms
available until now [25]. ÌWe present here the simplest ver-
sion of the algorithm wherein we treat scalar waves in R2
for bodies immersed in a homogeneous background.

3. NOTATIONANDPROBLEMSTATEMENT
Denote by p and g position vectors in R2 and let B de-
note a bounded, not necessarily connected, scattering ob-

ject (or objects) whose location and index of refraction
or contrast is unknown but which is known to lie within
another, larger, bounded simply connected domain D. If
u'f (ù = u'*(P,Qj,k¡) denotes an incident wave with
wavenumber ,k¡ (assumed to be real) and source point q,
(g¡ is replaced by the unit vector {¡ for plane waves) then
foi a large class of scattering probléms the total field in D
is known to satisfy the integral equation

u¡(p) = u:f (n)

r uzI+ ki 
JoGi@,ùx¡@)u¡(q)dv(q) , (l)

where Gi(p,q) denotes the Green function of the back-
ground medium,

G¡(p,q) : ïr[" (u,lp - ql) , (2)

and

*,=k'(g-.k¡) -t. (3)
tci

We assume that, while the spatial dependence of ¡¡ is un-
known, the frequency dependence is known, so that, for
example, in electromagnetics for a Maxwell medium,

tc¡ : u¡(eoP'o)à @)

x¡@)=Úft *tH, (5)

and

where ee and ps are the permittivity and the permeability
of the (lossless) background, while e(q) and ø(g) are the
permittivity and conductivity of the scatterer which is as-
sumed to be nonmagnetic. Equation (5) may also be writ-
ten as

x¡(q): x,@) +ix,(q)n¡, nj

where ,k6 is the wavenumber for j
simplifies to

x¡(s):: x@): x'(q)+ix'(q) , (i)
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if all the measurements are made at the same frequency,
sa] at È¡ = rk6.

Observe that if p is not in B then X¡ vanishes, but if the lo-
cation of B is unknown then it is not known a priori where
X¡ vanishes. However with the assumption that B C D ir.
is known that X¡ vanishes forp outside D. In fact denoting
by .9 a domain (or curve, or a discrete collection of points)
outside of D where the scattered field is measured to be
Í¡(p), (l) becomes

Í¡(p) =

if there is no noise or error in the measurements. But error
free data are extremely unlikely and we do not assume that
(8) holds exactly. Rewriting (l) and (8) in symbolic form
we have the object or state equations

uj:u'î+Glxiui, peD, (9)

and the data equations

¡, : Gf xiui, p e S , (10)

the superscripts D and S on the operators defined implic-
itly in (l) and (8) are added to accentuare the locatioì of
the point p, since the operators are identical in all other
respects.

4. THEORETICALBACKGROUND
In the absence of other a priori information, (9) and (lO)
are the only equations we have relating the unknown con-
tras t x¡ (wh ic h' *""'' 

J"ï ìi,T' J"t-i:ff i J,î: ä \î"äl
ist of the incident fields, urr, the
measured data, f¡, and the test do-
) ¿ind (10) are linear in each of the

are unknown the prob-
course the dependence
highly non-linear. This
nverse of ( I 0) as

u¡ - (I - Glx)-'"i . (l l)

This form has been utilized in a number of inversion meth-
ods. Introducing it into the data equations we obtain

Í¡ : Gf lx¡(I - Glx)-t ui), (t2)

wherein the non-linearity of the inverse problem is clearly
exposed. Approximating the inverse operator by

çr -Glx)-' = I, (13)

leads to the Born approximation, while in iterative meth-
ods,. where a sequence {X¡,"} is constructed, the approxi-
mation

(t - Glxi,")-' = (/ - Glxi,,-r)-' (14)

gives rise to the iterative Born merhod [20], while the lin-
earization of

1t - Gfxi,ò-t N

II - Glxi,"-t - cl(xi,n-x¡,n-))-t (ls)

in terms of Ly¡,n = Xj,n-Xj,n_t, namely,

1r -Glxi,ò-L È

lI + (I - Glxi,^-r)-tcl Ax¡,^)(I - Glx¡,^_ò-L
( l6)

leads to the Newron-Kanrorovich merhod t171, [19] which
has been shown to be equivalent to the Distorted Born

A method which avoids the necessity of solving forward
problems completely was proposed by the authors [12] and
was refined tl3l, t141, [25] and extended [24]. This mod-
ified gradient method involves the simultaneous consrruc-
tion of sequences {u¡,.) and {¡¡,, } to minimize the error
in a cost functional consisting of the normalized errors in
both state equations (9) and data equations (10). It has
proven to be very effective in a large number of numerical
tests using both synthetic and experimental data.
Because the contrast and fields occur as a product, many
workers have introduced the quantity

kí 
J o 

G i@,q) r¡ (q) u'(q) dv(q), (8)

Ptò'

wj = xjuj , (t7)

which is called a contrast source since u¡ satisfies the equa-
tion

(V' + kl)"¡ = -k1.¡ in B ,

Then the data equations become

Í¡:Gft¡,
while the state equations become

or, with (17),

uj : u';" + Glw¡ ,

xu'i:w¡-y¡Glw¡

( l8)

(le)

(20)

(2t)

Equation (19) is called by some a source type integral
equation and it has a long history. It is a classic ill-poied
equation and for a time there was considerable atténtion
paid to the question of uniqueness, e.g., tll, t8l, t}l. lt
was shown that there exist non-trivial solutions of the ho-

versy since it is now well accepted that non-trivial solu-
tions of (19) exist. Moreover it has also been shown that
the minimum norm solution of ( l9), the solution produced,
for example, by the conjugate gradient method, is not the

etheless this source type
I ingredient in many in-
[5], [7], I l]. Habashy

imum norm solution or (le) t, t"ilfÊ.it"iiTr'å"fiT:
sis for the orthogonal complement of this solution is con-
structed in terms of which the physical solution is sought
to satisfy (21). Van den Berg and Haak [22] proposeá a
variant of this technique wherein the full minimum norm
solution is not found but rather it is sought iteratively, us-
ing conjugate gradient steps, with the cont¡ast updaied at



each step to satisfy (21) and a new source defined through
(17). This approach yielded promising numerical results
however the error did not decrease monotonically.
In the present paper we propose a method which combines
spirit of the approach of Van den Berg and Haak [22] using
the source type integral equation with that of the modified
gradient approach by seeking linear updates in the source

in an error reducing method which does not require the

solution of any forward problem.

5. CONTRAST SOURCE INVERSION METHOD
As in the modified gradient as well as the Van den Berg-
Haak approach we simultaneously construct sequences of
sources ur¡,r, fields u¡,n ard contrasts Xj,n to minimize
a cost functional. Rather than choosing a cost functional
consisting only of errors in the data equation, as Van den

Berg and Haak did, we define the cost functional
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where Gr{' and Gl' are the adjoints of Grs and Gl map-

ping L2(S) into L2(D) and L2(D) inro L2(D), respec-
tively. Further the overbardenotes complex conjugate.
With the update directions completely specified the con-
stant oj,n is determined to minimize the cost functional

D D¡lll¡ - Gf w¡,"ll2s
^ t¡lllill's

, D¡llx¡,^-tui,n - w¡,nllzn-g
-Ð¡llP¡,^-t 

- q¡,.Gf 
'¡,^llzs

D¡ ll/ill's

* D, llr ¡,, - t - :¡,^(u ¡,, - x ¡,:- ß ? u ¡,àll2o 
rrn,' t ¡llxi'"-turi"ll2o

and is found explicitly to be

a+b
aj,n = Ãã,

(30)

F

+

Gl'P¡'^-t
er'n - Do ll/*ll?'

(22)

(23)

(24)

(2s)

r j,n-r - Gf' (X¡,^-{ i,.-r)
Dt,llxx,"-tu'ill2o '

(28)

D¡,ll/tll3 '

(r¡,n-t,uj,n - Y¡,^-tGlu¡,^) o

D* llx¡,"-t"i-ll'p '

where ll .ll" and ll .ll2p denote the norms on.L2(S) and
Lz(D), respectively. The normalization is chosen so that
both terms are equal to one if u¡ = 0. The first term mea-
sures the error in the data equations and the second term
measures the error in the form of the state equations given
in (21). This is a quadratic functional in tu¡, but highly
nonlinear in ¡¡. lrVe propose an iterative minimization of
this cost functional using an alternating method which first
updates ur¡ and then updates ¡r'. Thus we construct se-

quences {w¡,.} and {X¡',r}, for n : 0, I, 2, ' ' ', in the
following manner.
De6ne the data error to be

pj,n: l¡,n - Gf w¡,n ,

and the state error to be

T j,n : X¡,nui,n - U j,n t

where
ui,n = u:f + Gfw¡," '

Now suppose 1UÙj,n-L and y¡,n-t are known. We update
w¡ bY

ui,n=uj,n-r*a¡,nu¡,n, (26)

where a¡,n is constant and the update directions ui,n are
functions of position.
The update directions are chosen to be the Polak-Ribière
conj ugate gradient directions

ui,o = 0,

. (gj,n,9j,n-9j,n-ù n -.ui,n = S¡," * =ffr u¡,n-t , (27)

n)7,
where g¡,n is the gradient (Frechet derivative) of the cost
functional with respect to ru¡ evaluated aI w¡,n-r, Xj,n-r,
while (., .)o denotes the inner product on L2(D). Explic-
itly this found to be

, ll'¡,n - Y¡',-tGfui,^llzo
Dr llxt'"-t"f ll2o '

where (., .)s denotes the inner product on ,L2(.9).
Once w¡,n is determined,u¡,n is obtained via (25) and (26)
AS

a=

b-

L_

uj,n = u¡,n-r * a¡,nGf u¡,n,

and we then seek ¡¡ to minimize the cost functional

(3 1)

(32)

Since this minimization is not so easy especially in the case

of a priori information, we use a minimization in two steps.
First we minimize the much simpler cost functional

Fb : D ¡llxjuj,n - w j,nll2n, (33)

and then we use the found contrast as an optimization di-
rection in a line minimization to minimize (32). This two-
step minimization technique guarantees that the process is
always error reducing and allows for easy implementation
of a priori information or constraints on Xi. Since we fi-
nally need to minimize the cost functional of (32), we de-
fine the contrast function that minimizes (33), !¡, through

FbQ) = min(Få) (34)

Restricting attention to inhomogeneities complying with
the Maxwell model, (6), and in the absence of any a pri-
ori information on X, we find that, [23], fþ is minimized
by choosing

D¡llfi-Gf,¡ll"
D¡llÍll's

- wj t x¡G?.¡ll',
(P¡,n-r , Gl u ¡,n) s

Dn ll/nll3

(3s)



c : Ðll*.-t"r,n-wj,nll2n,

A : Dll(1"-X^-ùuîll2o,
I

B = Re!(x,-, u'f ,(Ín-X,-)ui')o,
I

C = lllx^-ruill'o, (41)

x

This is the quotient of two quadratics which, using elemen-
tary analysis, may be shown to attain its minimum when

A _ -@C-Ac)v - ñE-Ab)

This completes the description of the algorithm except for
designating the starting values u¡,0. Observe that we can-
not start with tu¡,0 : 0 since then X[ : Xô = 0 and the
cost functional (29) is undefined for n : 1. Therefore
we choose as starting values either the constant values that
minimize the data error,

wl,o: (43)

(36) or the values obtained by backpropagarion,
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However if a priori information is available then it is rel-
atively simple to incorporate it in choosin9 *.n. If either
X' or X" is known, then we merely use this known value in
place of either the first equality or second equality of (35).
Thus, for example, if X' - 0, we limit our reconstruction
procedure to il from the outset. If we have a priori infor-
mation that 1r and ¡' are positive, we use, [23]

s'
¿-¿ J

x;
D¡lui,^l'

These choices of ¡i and yi coincide with those obtained
by Kohn and McKenney [5] for an optimization problem
with a positivity constraint and employed in the modified
gradient algorithm [4] with good results.
Next a line minimization is used to make the cost func-
tional ofequation (32) errorreducing. Vy'e introduce a con-
trast update direction as

(44)

This completes the description of the algorithm.

6. COMPUTATIONAL TESTS
A number of tests have been done with the algorithm in-
cluding stability tests, resolution tests and test for various
kinds of contrast profiles [23]. Here some tests are pre-
sented for using the method for reconstructing AP-mines.
We used one frequency of 500 MHz, a relative background
permittivity of e" - 5 and a background conductivity of
o = 0 S/m. Further we used a computational domain of
29 x 29 cm. The AP-mines were given a relative permit-
tivity of e, = 7 and a conductivit! of o = 0 S/m. Their di-
ameter varied between 5 cm and l0 cm. The measurement
curve, ^9, is a circle of radius I m and center at the center
of D. The discrete form of the algorithm is obtained by
dividing D into 29 x29 subsquares, assuming the contrast,
sources and fields are piecewise constant and the integrals
over subsquares were approximated by integrals over cir-
cles of equal area which were calculated analytically fl61.
The discrete spatial convolution of the operators GD and
GD' were computed using FFT routines [21]. The incident
fields were chosen to be excited by line sources parallel to
the axis of the scatterer. These sources were taken to be
equally spaced on the measurement circle, and the source
locations were also chosen as discretization points on the
circle. All integrals on .9 were approximated by point col-
location at the discretization points, that is, the rectangular
rule with the integrand evaluated at the mid-points. The
measured data were simulated by solving the direct scat-
tering problem with a conjugate gradient method [21]. The
circle .5 was subdivided into 30 equally spaced arcs. Each
mid-point served as the location of a line source and all the
mid-points served as receiver. In all test backpropagation
has been used for the initial guess.
In figure I, we show the original contrast pro-
file of a circular mine with a 7 cm diameter.

original

^..bp _ llcf- Íill'zo ns. ¡w¡,a= 
llclcTÍ,1ßrl I¡

and we write X^ as

Then á is chosen to minimize the cost functional of equa-
tion (32)

D¡llx"ri," -.¡,nll"o
D¡llx"ui"ll'p

_ D¡ llx"-tu j,n - w¡,n * 0(Í" - Xn-t)u¡,nllzo

D¡llx"-ru;" 1- o(i, - v^-l)u'l'll2o
a02+2b0+c

dn: *-n - Xn-r

Xr=Xn-tl?dn

(38)

(3e)

where

a:

= Re !(X,-r u¡,n-lr¡,nt (tn- \1n-L)uj,n) D,
J

(40)

(42) 
Fig l: The originat profile

A02+280+C'

f I (r" -Xn-t)ut,n 2n,

j

+
2(aB - Ab)



(b)

Fig 2: The reconstructions after 4 iterations (a), and after
64 iterations (b), using CSI without a priori information.
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In figure 2, we show the reconstruction ofthe contrast pro-
file of the mine after 4 and after 64 iterations. Continued
iteration provided no noticeable improvement.
The conductivity of the mines is zero. We can therefore
set the imaginary part of the contrast equal to zero. Since
tests indicated that this restriction does not improve the al-
gorithm, this restriction has been left out. Furthermore,
since we used a permittivity of the mines which is higher
than that of the background, we could use positivity for the
mine permittivity. In figure 3, we show the reconstructed
contrast profile after 4 iterations using CSI with a priori
information, (a), and after 64 iterations with a priori infor-
mation, (b). Each iteration took approximately 5 seconds
on a Pentium PC computer.
Next we have put two mines in the configuration, one cir-
cular mine having a diameter of 5 cm and one having a

original

-' 0

Fig 4: The original profile with two mines

(b)

Fig 3: The reconstructions after 4 iterations (a), and after
64 iterations (b), using CSI with a priori information.

(b)

Fig 5: The reconstructions after 4 iterations (a), and after
64 iterations (b), using CSI without a priorí information.
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Fig 6: The reconstructions after 4 iterations (a), and after
64 iterations (b), using CSI with a priori information.

diameter of l0 cm. We have done the same tests. The re-
sults are in figures 4,5 and 6. It is observed that the resolu-
tion in these figures is not as good as the resolution in the
figures of the original paper. This is due to the size of the
domain which is about |À x |,1. Higtrer frequencies, rhus
shorter wavelengths, will lead to an improved resolution
but these waves have a lower penetration depth.

7. CONCLUSION
In this paper we have presented a new inversion algorithm
(CSI) for profile reconstruction in acoustics and electro-
magnetics. The algorithm is based on the source type inte-
gral equation which relates measured data to a source dis-
tribution in the scattering object. The algorithm is akin to
what Kohn and McKenney [5] call an alternating direc-
tion implicit (ADI) method wherein two sequences, one
of sources and one of contrasts, are reconstructed itera-
tively by alternately updating the sources and the contrasts.
Unlike the Kohn-McKenney method and other approaches
based on the source type integral equation, e.g., Habashy
et al. [ll), es not involve completely
solving the for each updated contrast.
Similar to t method, in each iteration
there is no full inversion of the state equations involved.
A cost functional is defined consisting of errors in the
source type equations and the state equations and the up-
dates in the sources are found as a conjugate gradient step
after which the contrast is updated by minimizing the er-
ror in the state equations which can be done very simply.
The source updates are similar in spirit to those used in the
modified gradient method while the contrast updates are
found in a simple fashion in which a priori information is
easily included. A number of numerical tests indicate that

this new algorithm exhibits the best features of the mod-
ified gradient algorithm, successfully reconstructing a va-
riety of contrasts and fairly insensitive to noise. However,
the new algorithm exhibits additional properties which sur-
pass the modified gradient approach. It is faster, requires
less memory as well as less data and more easily accom-
modates a priori information.
To give some idea of the computational complexity, if ,I
denotes the number of excitations and .ly' denotes the num-
ber of subdomains in the test domain, then the time re-
quired for each iteration is roughly 2-I times the time for
one step in the conjugate gradient solution of the forward
problem for one excitatio requirement
of approximately 5-I.A/ x double pre-
cision). The time required roughly one
third that needed in the m orithm with
no a priori information on the contrast and is an order of
magnitude faster if positivity is included for both real and
imaginary parts.
No tests have yet been carried out on the effect of ad-
ditional regularizers such as total variation which proved
effective for rhe modified gradient algorithm [24]. This
is one of the subjects for future work. The simplicity,
speed and reduced memory requirements offer hope that
this technique will provide a feasible approach to three-
dimensional inversion problems.
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