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detection process i" th" iRl;;;;s' The use of ads to substantial imp

performance'
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1. INTRODUCTION

Many platforms within the Dutch armed forces are now, or will be in the near future, equipped with both imaging and

range indicating sensors. The imaging sensors can be IR or visuar cameras. The range indicating sensors are laser range

finders or radar. The spatial and / or temporal ."rotution of the imaging sensors is nigh compared to the range indicating

sensors.

with a laser range finder'

In literature often is reported the use of LADAR (laser radar). Such a LADAR often aser

range finder. To the knàwledge of the author such systems arc n91 currently available and

acquisition of such equipment also is not forer."n. As such, this equipÁent is not this

studY.

Section 2 reports what is published in the current riterature on this topic. In section 3 an example is given for both a land

and sea based scenario showing what can b" g,î.ãü u'ing 
'ung" 

information for automaticìarget recognition' Finally'

conclusions can be found in section 4'

2. LITERATURE
lications ation of imagery and laser

using th e search (on-line search in

not resul subject' Consequently' one

ed.

Nandhakumar and Aggarwal [10] give an overview article on the work done on sensor fusion in the computer vision

field. within this fieìd many differenr types "i 
f";i;r; discussed, uui ."rt types consider fusion of two sensors with

,t 
" 

ru*" dimension (e.g' 2D scalar fields) and similar resolution'
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2.1 Combining FLIR with a laser range finder

Korona and Kokar [9] combine a FLIR and a laser range finder for improved tracking of a landing aircraft. Both sensors

are used as input to a Kalman filter. This filter is further improved by using domain knowledge for correction outliers

and bias in the results. Romine, Kamen and Sastry [15] describe how to handle the problem (for close / extended objects)

that the radar centre of the object might not coincide with the visual centre of the tracked object in a combined Kalman

filtering case.

These two publications cover the sensor combination of interest, but the application they discuss is very limited. Also, no

obvious way exist to use their work in the field of target recognition'

2.2 Combining intensity imagery with dense range data

Many authors described how to fuse intensity imagery (both visual and IR) with dense range data; often this dense range

data is recorded with a laser radar (LADAR.) Chu and Aggarwal [2, 3] present a knowledge based system to interpret

laser radar and IR imagery. Results are shown where IR image interpretation is helped with range data. Umeda and Arai

[19] describe a system which combines range and intensity imagery to facilitate bin-picking. Harvey and Heinemann [8]

ãescribe a system based on the fusion of video and laser radar images or the classihcation of military ground based

targets. The fused results show a drastic increase of performance compared to the single sensor results. Rogers, Tong,

Kairisky and Mills [14] also present a system to segment images using both LADA-R and IR imagery. Targets are

distingu-ished from the bäckground by using the fact that the range gradient in smaller for targets then for clutter- Devy

and Bãumaza [5] propose u 
-ryrt.- 

for model-based recognition of objects using both colour and range imagery. Selzer

and Guthnger [16] piopose a system which first detects objects in FLIR and LADAR imagery based on edge detection

and matching againit wire frame models. Bayes or Dempster-Shafer style reasoning fuses the results of the different

sensors. Improved results are reported when sensor fusion is used.

Robmann and Bunke [13] present a system to classify edges and junctions based on both range and intensity imagery.

Olsson and Gruber [11] dåscribe how to implement an edge closing scheme based on these two sensor modalities'

Wallace, Zhang and Austin [20] describe how to fuse imagery with dense range data. Several levels of fusion are distin-

guished and dãscribed. Simila¡ work is reporred by Deguchi t4l. He reports geometrical equations, based on w'u's

mechanical theorem proving method, which should be fulhlled to reconstruct 3D target shapes. Pien and Gauch [12]

describe to use a variational-approach to fuse intensity and range images on pixel level; for this they utilise a Lambertian

assumption for the intensity image. Results on synthetic imagery only are presented'

Schwickerath and Beveridge [L7] describe a system to determine the registration between LADAR and intensity images'

2.3 Conversion towards dense range data

Tate and Li t18l propose a method to combine high resolution stereo imagery with low resolution range data to produce

high resolution iungê data. The initial range data is combined with a conventional stereo imagery pyramidal scheme,

heìping ambiguities normally present. Such a scheme could be helpful in transforming laser range finder data' combined

with stereo imagery, into dense range data.

2.4 Simuttaneous visualisation of range and intensity data

Goss, Beveridge, Stevens and Fuegi [6] propose a method to display of range and intensity imagery simultaneously' It is

based on 2.5D display of the intensity imagery. Interaction with a fast workstation is needed for full information re-

trieval. In [7] they extend this system to also visualise CAD models of objects found with model-based object recogni-

tron.

Beveridge, Hanson and panda Il] describe a complete environment for fusion, ATR and visualisation of the combination

of FLIR, colour and LADAR imagery. Basically, this is the combinarion of the work co-authored by Beveridge [6]' [7]'

tt7l.
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3.IMPROVINGRECOGNITIONUSINGRANGEINFORMATION
In this ch cenario and an airborne (over sea) scenario is shown that using range information

during in ults in ¡etier performance. This can be expected as range indicates the scale of

interest¿sonlythat"åltho'tobestudied'Thisshouldresultinalowerfalsealarmrate
without degradation of recognition rate'

3.1 Land based scenario

Resea¡ch has been performed on a set of images from tape 7A of the GHAR3 trial held at white Sands (usA') This trial

was organised by the ñîio group AcZa¡rccp¡wco in July lgg6. It consists a set of IR images recorded from a

helicopter depicting " 
;k. i";;,Àå. *ittl the IR imagery, spoken range information was given on the audio t¡ack of the

video tapes used'
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variation in the image, and thus to a too small sNR. Concluding, this means that proper scale selection will be essential
for good performance.

Figure 3'2: Image 100 of the White Sands sequence. The arrow points to the tank to be recognised. Left under the tank
a bigger bright spot can be seen corresponding to some buildings in scene. Forlhe experiments described
in this report only the imaged area in the centre is used, which has been processed to compensate ¡or dif-
ferent gain ofindividual detector cells.
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Figure 3.3: Scale dependency ofoutput ofdetectorfor imageframes 75,85, 100, 125 and 140. The small blob is the

object of interest. The big blob relates to buildings in the scene. Background is the output of the rest of the

image. Horizontally is the scale parameter, and vertically the maximal detector output lor the different im-
age parts.

Figure 3.3 gives the output of the detection process for some selected frames. The results are not given for all frames,
due to problems of getting the processing robust enough to work on a large range of scales. For the small object it can be

seen that the optimal scale increases as the distance (as shown in Figure 3.1) decreases. The algorithm used is not sensi-
ble for scales smaller then 2, which explains why for larger distances (earlier frames) the signal for the small object is not
higher then the background. For smaller distances (later frames), the big object becomes extremely big (it is even closer
then the small object to which Figure 3.1 refers). As such, even setting the scale parameter to l0 is not enough to get a

Image 140
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Ïi::Ïî:T,îiÏ:ìffi: settinss or rhe scale paramerer will allow derecrion.or such tarse
response of 2.5 for small detector response for the background is similar, *ittl a maximìi
uoth Rying ¡"igtrt anä-"ievation angle are changing. 

for larger scales' This is rather surprising as during tn" ..qu"n..

3.1.1 Conclusions

From the results it can be deducecl that the optimal scale parameter for object detection is related to the distance to theobject' As such' using range information within the object ä"t".tion prá"ess will improve the derection rare.

3.2 Airborne scenario

n this section is performed within th ,,Intellig
rtium..As such, it is published in d betweento fusion data deriving from non_in
knowledged. o ---^-- r¡urr-rrr ur collab

The problem at hand is the detection of a propell?r nra.n." which is flying away from the observer. This plane is observedin a sequence of 100 frames, example frames a¡e foun¿ in Figure 3J.-""
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Airplane

Ship

Figure 3.5: frame ) I (top) and frame 99 (bottom) of the sequence. In the bottom image the riSht obiect is a ship which

is not an object class of interest.

The range information used is synthetic. The information is calculated using a known speed v of the plane (90 knots =
45m/s), the known frame rate r (25113 Hz), the known IFOV t of the camera used (0.12 mrad), the measured size of the

plane'p in frame I I (43 pixels from wingtip to wingtip) and its estimated size w (7 metet)' The associated formula for the

range r is for frame n:

W N_II
! 

- 

rt,- i.p f
which equates to L0 km for frame 0, 1.3 km for frame I I and 3.4 km for frame 99.
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Figure 3.6: Schematic overview of the object detection used. First, artefacts (striping) due to d.ffirent gain of dffirent
sensor elements are reduced by subtracting the per-line a,verage. After that, using morphological operø-
tions three dffirent classes of objects are detected: wings, aeroplane bodies and waves. Thi size of the
structuring element is linked to the scaling parameter s. The body detector is also sensitive to waves at sea;
in the combine of the wave and body detector the detected waves are cancelled out. The combine step of
that and the wing detector seeks in the neighbourhood of the body for a wing; if that is not found that body
is cancelled.

Figure 3.7: Model of the plane used: a circular body, hot compared to its surroundings, is in the vicinity of two rela-
tively cold, elongated wings.

The algorithm used is described in Figure 3.6. It consists ofthree logical parts: wing detection, body detection and clutter
rejection. The wing and the body detector are sensitive to scale: it is veryhard to ,rrike a detector which (with an equally
low false rate) is sensitive over large variations in scale. The wing detàctor is based upon a grey level dilation ritt *
structuring element the shape of a wing, which is scaled to local image mean and varianõe. rne uooy detector is based on
the difference between the mean of a small area with is local -"un. Thir should exceed a threshold value, and also this
value scaled to local va¡iance should exceed a threshold value. However, the body detector still is sensitive to large
bright objects such as the waves in the sea. For that reason a clutter rejection filter ls âd¿e¿, which detects waves as large
bright blobs using the grey level erosion with a fairly large structuring element (i.e. the mode
local mean and variance. At regions where near a body a wing is found we conclude that an
together we have several places where notions like small, largeand near ¿¡re usèd -- which a¡e
size of the object. As the range of the object is different through the scene this apparent size, called scale in the rest of
this document, is changing due to the perspective projection inherent to an IR irnager. Using known range informadon,
we can predict for each frame the optimal scale for the algorithm.
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Figure 3.8: The detection performance of the algorithm for the scale parameter = I, 2 and 4. The solid line represents

the number ol correct detections per frame, the dotted line the number of false alarms per frame.

In Figure 3.8 can be seen that at scale = I we have reasonable detection performance between frame 30 and frame 99. At
scale = 2 we have good detection performance up to frame ó0. At scale = 4 we have excellent detection performance up

to frame 38. A standard multi-scale approach will add the detection results from the different scales' This results, as

shown in Figure 3.9 in a good detection performance over the whole range. However, this also means that we have the

false ala¡ms generated at each scale parameter, witnessed by the rather high false alarm rate of this combination. More

advantageous is to select the correct scale based on the range information. Here we use scale = 4 for distances up to 1 100

meter, scale =2 for distances between ll00 and 2200 meter, and scale = I for distances over 2200 meter (this corre-

sponds to frame O-2for scale = 4, frame 3-50 for scale = 2, and frame 5l-99 for scale = l.)

\-
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Figure 3.9: left: The performance for the combination (adding) of scales l, 2 and 4. right: The performance for rhe
range selection berween scale I, 2 and 4. For the combination of scales that false alarm rate is used which
is the maxi¡num found in one of the scales, as it can be expected that all scales denote the same false
alarms (and thus addition of false alarms will count the same object multiple times.)

Table 3.1 gives the numeric results which are depicted in Figure 3.8 and Figure 3.9. Also it shows the results if these
detection results are used as input to a tracker. The tracker used is a simple nearest neighbour tracker with a rectangular
gate.Atrackisconfirmedusingthenoutof5rule,withresultsforn=2andn=3shown.Atn=3noneofthetraciking
schemes gave raise to a false alarm. It can be seen that the range selected tracker is superior to the other four trackers; ai
n = 2 a detection performance of 95Vo is reached without any false alarms. The lower correct detection percentage of the
combined scale tracker at n = 2 probably is due to the fact that the plots of the three scales a¡e updated as a cãmbined
plot in the tracker, which can lead to a lot of track breaks and crossovers. It can be expected that with the proper logic
this detection percentage can be at least as high as that with the selected range tracker.

Table 3.1: Detection performance for different scales and combinations of scales. Combined means that the detec-
tions of scale l, 2 and 4 are added. Selected means that for frame 0 to 2 scale 4 is used, for frame 3 to 50
scale 2 is used and for frame 5 I to 99 scale I is used. Correct detections is the sum of the number of de-
tections per frame nea,r the coruect location. False detections is the sum of number of false alarms per
frame. False tracks is the number of erroneous tracks at track threshold = 2 in the whole sequence; False
track fr. is the sum over all frames of the number of false tracks at track threshold = 2 per Írame. Correct
track n=2 and Correct track n=3 is the number of frames with tracks near the correct location at track
threshold 2 respectively 3.

Scale = I
Scale = 2
Scale = 4
Combined
Selected

Correct
detections

65

69
36
84
81

False
detections

187

r41
10

241
15l

False False
tracks track fr

24
35
t2
716
00

Correct
track n=2

Correct
track n=3

48
62
JJ

.70
64

84
79
38

92
95

3.2.1 Conclusions

This example shows how range information can
solutions it can boost detection rate from 69Vo to
tracker the results are even more spectacular: the

be incorporated in a processing algorithm. Compared to single scale
\l%o, wi¡h a minimal increase in false alarms. When combined with a

detection rate is increased from 84Vo to 95Vo, whlle the two erroneous

326



tracks previously has disappeared. Note however that these results are obtained by processing a single sequence, with an
algorithm and parameters tuned specially for that sequence.

4. DISCUSSION
A very remarkable result of this study that very little work is published in the held of fusion between sparse range data
and imagery. This could be expected when little advantage is gained by this combination, but the results in chapter 3
indicate the contrary. An explanation for this could be that many researchers in the past in the field of image automatic
image interpretation aimed at the most general object detection algorithm possible, which includes scale invariance.
Within the approach proposed in this report the exact opposite direction is taken: int¡oduce scale dependence, know the
correct scale and use that to your advantage.

The results given in chapter 3 show that the fusion of range information with imagery, especially in combination with
tracking, gives a significant increase in the performance of the system in terms of detected object / false alarm ratio.

Although the use of LADAR was not the topic of this study, the literature search revealed that such equipment certainly
is interesting. As such, a study towards this kind of sensors (including the fusion with the intensity channel) seems
worthwhile.
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