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ABSTRACT
In this paper, we discuss the possibility of using artificial neural networks (ANNs) as feature detectors in automatic

target recognition (ATR). The goal is to discern a vehicle in an infrared image. We train ANNs to recognize the most

easily recognizable parts of the vehicles, the wheels. The specific ANNs we use, shared weight ANNs, are especially

adept at such an image recognition task due to their specialized architecture. The feature detection stage results in

an image containing in each pixel the output of the ANN, indicating its confidence in the classification. We can then

use a simple sequence of image processing algorithms on this image to find peaks and, by counting the number of
these peaks, vehicles. This system is tested on sensitivity to scale differences and background clutter and is shown

to perform quite well.
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1. INTRODUCTION
The goal of the work described in this paper is to recognize vehicles in infrared (IR) imagery, i.e. automatic target
recognition (ATR). There is a large body of literature describing attempts to use artificial neural networks (ANNs) to

such a task; see for example the overviews of Rotht and Rogers et. a1.,2 the special issue of Neural Networks including

Koch3 and others, or Ranganath et. al..a However, in most of these approaches non standard learning methods or

image preprocessing techniques have been used, or the ANNs used have been hand tailored to the problem-

We chose to use an off-the-shelf approach called shared weight ANNs. These ANNs are especially suited for image

recognition taskss-8,3'e'10 due to their architecture, which allows the ANN to perform convolution-like operations

(flltering and template matching) on its input. Furthermore these ANNs, although quite large in their number of
connections, have only a limited number of free parameters, which can be an advantage in both training and final
implementation. The ANN architectures are discussed in section 3.

There is a major difference between standard classification problems and this particular problem, in that rejection
of unknown samples is of great importance. Obviously this has some effects on the ANN architecture and data
structures used. This problem is also discussed in section 3.

In Gader,lo a.n approach rather similar to ours is reported, also utilizing a shared weight ANN for the recognition
of vehicles in IR imagery. The difference between their work and ours lies in the fact that we train the ANNs to
recognize only a specific vehicle part, i.e. the wheels, using the ANNs only as feature detectors. In a later stage we

can then easily determine the presence of a vehicle using some simple image processing steps by using the fact that
wheels should occur in a row on the vehicles we are interested in. Assuming that false alarms from the ANNs are

independent, this latter stage can catch a large number of the errors made by the ANNs since they have a very small

chance of laying on a line. The postprocessing stage is presented in section 4.2.

Since the ANN feature detectors are built to receive image patches as inputs, no special preprocessing is necessary.

The only problem is the scale of these patches, since training time and the number of units in the ANN increase

approximately linearly with the number of pixels in the input. We chose to train the ANNs on fixed scale image

patches and handle the scaling problem in the recognition stage. In fact, if we assume that the distance to the

potential object is known (for example, using radar, a laser range finder, passive ranging, digital terrain models,
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Figtrle 1' E'taDrple itttages: (a) A 3 to 5 ynt IR inrage. \\'heel sam¡rle bou¡cling 6o.xes a¡e i'clicatecl. Note: all Iö0itttages c'olltaiD a uulììbel'of "hot' plates", u'lìich ale incluclecl to calibr.ate tìre canreras. These ¡rlates rvere 
'raskecl 

outrvltett testittg tlte s¡'stettt. (b) A cluttel irttage taken rvit.h the TNo-FEL Scor.¡rio ca'ìer.a. (c) A clutt,er.¡urage take'rvith the trA-92 callìerâ.

etcetera)' n'ith a ktlo*'n itrstalltaneous fielcl of vieu' (IFO\'), ,r\¡e carì clelive the ap¡;r.o.xi'rate scale ¡>a.a'ret.er.. T¡isscale lraratrtetet is usecl l'o colìlPute the nragnifir:ation to nratch t.he in¡lrt. of't.he .A,NÑ featu'e ¿etector,. T¡e ¡rr.oceclureto search l'or tlie rory of u'heels is clescribecl in sectiou 1.2.
Restrlts obtailled *'ith the clevelo¡;ecl algolithnrs ale pleserìte(l in sect.ion b. T¡e tec.¡uiclues ¡a.,e beeu testecl o'

tte rvill soure icleas on f'urthel. research.

2. THE DATA

2.1. Content
otrr clata ¡-et co¡tsistecl of a cla colrtaiuecl tô0 l2-bit 1000 x 2-10 inrages, each of u,hic.¡ cle¡rir.tsone vehicle ulcler. cliffererrt r.ot
trr. E ro t2 p,,,,'o,ì1". u' ,,,i,, li:ilì.ï:ï[ï:: i",:i:;:f-':í:ïî'],i; ji:,:llìî:;;*"''"'

'I'hree e.rtl'a iurages rvere usecl to test, the seusitivit¡,of.t|e s1,s clutter.. ,I.lyo of tlrese (ll2 x J-tl2pi.xels) rvere takeu u.ith the èt to 12 ¡rrrr UA-!)2 carìtela; the otl¡er kell rlit,h the TNO_FEL Scolpiol't to 12 llr calìel.a. E.rarn¡;les of tilere clutt,er irtrages aLe shou, I (c). .{lt.hough t,he nunrl¡er ofclttttet'itnages is r.ather lorv. u,e l¡elieve that the iurages usecl ar.e iclea of.the clut,ter seusit,ivit¡,.
Irl each inrage, satrtples of'u'heels u'el'e irclicatecl bv a bouncling l¡ox. This u,as clo'e b¡, hancl. Note that, si¡lt.etlte irttages contaiDed various vehicles r'itlt sevelal olientations, t,lreì'e rvas cluite sonre variat,iou l¡etrvee' sa'r'les arcla lalge uu¡ul¡er of part.iall-t, obsc.urecl sanr¡rles.

2.2. Preprocessing

'{ll irrtages \\'ere pleÞl'ocessecl b-t'cotrveltirrg to 2D 32 bit float iDrages, subtr.actiDg the iurage ureaD aucl cliYiclirrg tlrerestrlt b¡' 2'0 x tlte it'age stattcla'cl cleviatio'. Be.ause the g'a¡,ialue clistribuùorrs usuall), \r,ere as¡,rrr.ret.r,ic, t¡ecotlt'et's.ion l'esultecl il inrages contaiuitrg values roughl),it¡ the ra¡ge [_I.0,2.0].
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Table l. The data sets used. Note that the train and validation set sizes are given as an average' since these

sets were randomly drawn from the entire data set five times. Furthermore, note that the test set consists of entire

images, containing 290 wheel samples in total'

Set Train (on average) Validation (on average) 'I'est

Sample type Wheels Mirrored Background
wheels

Total Wheels Mirrored tsackground
wheels

Total Wheels

Size 747 747 2L53 3647 t49 r49 437 729 290

2.2.1. Test set extraction

The data was spiit into three parts: a training set, used to train the ANN, a test set used to judge its performance and

a validation set used to stop iraining. This set plays the role of test set in the training phase, to avoid overtraining:

if the error on the validation set starts to rise, the level of maximum generalization has been reached'

First, some 25% of. the images (40) was chosen at random and put aside to serve as a test set- Since it would

have been too problematic to rptit ttt" set on the sample level, because we judge the system's performance on entire

images, the fraction of test samples is not always exactly 25To-

From the remaining 120 images, samples of wheeìs and background were extracted. Each sample consists of an

input vector and an rJ.o*pu.ryi.rg desired output vector or label. Both must to be coded to suit the ANN' These

codings are discussed below.

Of each wheel in the image, two samples were created: the original and a horizontally mirrored version to

incorporate the prior knowtedgì that recognition of wheels should be invariant under this transformation' As a side

effect, this (artificially) enlarges the training set, which is a bonus for training the ANNs.

Furthermore, from each image a number of negative (i.e., non wheel) samples were extracted: background samples,

samples taken between the wheel centers and samples taken above or below the wheel centers. The latter two were

added to force the ANN to give precise localized ,"rpo.rr", on the wheel centers only. The size of background samples

was chosen to fall in the same range as the size of the foreground samples.

2.2.2. Coding
The input vectors ofthe samples were created by extracting regions indicated by the bounding boxes' Square regions

were taken to preserve the aspect ratio of the samples. These regions were resized to 16 x 16 pixels using linear

interpolation.

Since we scale all samples to the same size here, there will be no inherent scale invariance in the ANN' In our

opinion it is extremely difficult, if not impossible, to train an ANN to recognize an entire scale range of samples'

Flrthermore, for large sample vector sizes (e.g., a bounding box of 50 x 50 pixels) training becomes int¡actable since

the input layer becomes toã large. We believã scaling should instead play a role in deciding at what resolution test

images should be presented to the ANN'

The desired output pattern, or target, differed for the various ANNs we used (see section 3-2.2)' For ANNs with

one output, the target was 0.25 for background samples and 0.75 for wheel samples- For ANNs with two output

units, the target was a vector of length 2 with values 0.75, 0.25 and 0.25, 0.75 for background and wheel samples'

respectively.

2.2.3. Validation set extraction

Finally, each of these four sets was randomly split five times into a training set (62-5% of the original number of

,r*plä., of which 25To was already set aside to serve as test set) and a validation set (12.5%). Table 1 gives an

overview of the data sets used.

3. THE NET\MORI{S

In this section, we will give a short overview of shared weight ANNs and the modifications made to the standard

architecture in these experiments. We assume a basic knowledge of neural networks; see for example Hertz et a1"11
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Figure 2. (a) An example shared q,eight ANN. This figure shows the basic architecture with an added layer of
radial basis function units. (b) A feature map and sub sampling map.

3.1. Sha¡ed weight ANNs
Shared weight ANNs6-8 were proposed in the late 1980s by Le Cun et al. for the problem of handwritten digit
recognition. A number of variations on the basic architecture have been proposed. Here we discuss the ANN used
in our experiments, which was originatly proposed by Viennet.s

3.1.1. fntroduction
A shared weight ANN is basically a back propagation neural network. It uses the concept of shared weight, that is,
a set of units in one layer using the same incoming weight. Furthermore, it uses these shared weights to implement
receptive fields - groups of units detecting features locally. The use of shared weight ensures that all these units
detect the same feature, though at different positions in the input image. The detected features are - at a higher
level - combined to ensure shift-invariant featu¡e detection. Although the architecture wa.s designed specifically for
one goal, i.e., recognition of handwritten digits, some of the underlying principles are more widely applicable.

3.1.2. Architecture
The basic ANN (based on a proposal by Viennets) comprises four layers, including input and output layers. Fig-
ure 2 (a) shows an extension of this basic architecture (with an added radial basis functions (RBF) layer (4), see
section 3.2). Each of the layers is discussed in detail below.

Input layer (L1)

The input layer consists of a squa.re region of units. Sample images are presented to the ANN here.

Feature maps (L2)

The second layer contains the so-called feature maps (see figure 2 (b)). Each unit in such a feature map has the
same set of incoming weights, but is connected to a square at a unique position in the input image. This set of
weights can be looked on as a convolution filter, or template; that is, if a unit in a feature map fires, this corresponds
to a match with the template. The location of the match in the input image corresponds to the location of the unit
in the feature map. This is what is meant by receptiue.¡1elds: units react to the same feature at different positions
in the input image. The receptive field for two neighboring units is shifted a number of pixels in the input image.
Thus the image is under sompled. The idea behind this is that, while high resolution is important for detecting a
feature, it is not necessary to know its position in the image with the same precision.
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In the ANN used lLere, there are two feature maps of different sizes. One contains 7 x 7 units, the other 5 x 5

units. Both are connected to the input layer through 4 x 4 sets of incoming weights, albeit with different pixel shifts
(two and three, respectively). Therefore, the smaller map detects features at a coarser level than the larger map.

The feature maps form one of the most interesting concepts of the Le Cun architecture. The technique of template
matching and filtering is well known from classical image processing, but here the ANN trains the filters itself; no
prior knowledge of the actual data (here, wheel and vehicle images) is involved.

Sub sampling layer (L3)

The third layer is a sub sampling layer (figure 2 (b)).

The principle is the same as for the feature maps: each unit in a sub sampling map is connected to a 3 x 3 square

and all units in one sub sampling map share the same set of 9 weights. Here, too, the feature map is under sampled,

again losing some of the information about the location of detected features.

In this ANN, two groups of three maps are connected to a single feature map each.

Other layers (L4)
Usually, a possible hidden Iayer and output layer are normal ANN layers, fully connected to the previous layer.

In the basic architecture, there is no hidden layer; figure 2 (a) shows a variation with an RBF layer ( ). The output
layer consists of 2 units. The variations on this a¡chitecture constructed are discussed in the next section.

Parameters
The total number of units in the basic architecture thus is 386; the total number of parameters is 3556 and the

total number of unique parameters is only 194, due to weight sharing. It should be evident that this reduction in the
number of weights is of great use in reducing training time and stabilizing the learning process.

3.2. Radial basis function ANNs
3.2.1. Rejection

In standard pattern recognition problems, one is usually given a number of training examples x¿ with a corresponding
label y¿ (the "ground truth") and one is interested in finding or learning a function F(x') :9r, which returns the
right class label g, for an unknown object x, as well as possible. Usually, a between-class rejection criterion is added,

which enables the classifier F to return a "don't know" for samples for which it is too difficult to tell to which class

they belong.

In the case of recognizing (small) objects in images however, it is of equal importance to be able to use rejection
of a second kínd: outlier detection. This rejection is necessary when we need to classify a sample as either belonging
to a certain class or belonging to no class at all. Clearl¡ when a classifier must discern vehicles or vehicle parts

against a noisy background, this kind of rejection becomes important.

ANNs (and other pattern recognition techniques) by default do not support rejection ofthe second kind. Instead,
usually some kind of distance measure has to be used to reject samples. For example, rejection of the first kind can

be implemented by looking at the outputs of an ANN. If the difference between the highest output and the second

highest output is small, this indicates that the ANN is "not sure" about the classification. Indeed, since ANN outputs
can be regarded as a posteriori probabilities (under certain prerequisites), this indicates that the ANN is uncertain.

Rejection of the second kind is much harder to implement, since the output of an ANN unit is usually transformed
by some sigmoid function (which makes the ANN a nonlinear classifier).

Many advanced approaches to incorporating rejection of the second kind have been proposed, among which the
use of special learning rules (see e.g. Moya and Hushl2) which forces ANNs to learn closed decision bounda¡ies
and advanced forms of vector quantization such ãs adaptive resonance theory (ART, see e.g. Moya et alr3 and

Carpenter et al.la).

In this paper, we test two rather simple solutions. The first is to add an output unit to the network which

should represent all non wheel (background) samples. The second, more sensible approach is to use a form of
vector quantization. We expect the latter method to perform better. The standard method of incorporating vector
quantization is to use a radial basis function (RBF) layer, containing units with a Gaussian transfer function,
localizing the ANN's response, of which width and position are learned.ll Its advantage is that each representative
vector has its own neighborhood size, which is learned. The main disadvantage is that the number of representative
vectors must be chosen in advance.
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Table 2. ANN architectures used in the experiments.

ANN RBF
layer

Hidden
laver

Number of
outputs

Number of
units

Number of
links

Numbe¡ of
weights

NET-,A1 No r\o , 386 3556 t94
NET-A2 No Yes 2 406 5580 1206
NET-B1 Yes No 1 395 4440 636
NET-82 Yes Yes 1 415 5920 1376

3.2.2. Networks used in the experiments
To see if the use of an RBF layer would lead to better results, and to get an indication of the ANN complexity needed.for this task, we tested four variations of the architecture described in section 3.1. These variations, also listed intable 2, are:

o NET-,4,1: the normal network

o NET-42: a network with a 20 unit normal hidden layer before the output layer

¡ NET-81: a network with a 10 unit RBF rayer before the output rayer

o NET-82: a network with both a 20 unit hidden layer and a 10 unit RBF layer before the output layer (in that
order).

4. EXPERIMENTS
4.1. ANN feature detection
We trained five instances of each of the ANNs listen in table 2 on difierently randomized and split data sets. In allexperiments, the algorithm used was the conjugate gradient descent method.í5,16 This algorithm has no parameters.A validation set was used to prevent overtraining.

The ANNs were trained on isolated samples
of certain classes. Hence it would be appropria
the ANN feature detector wil be the content of
be an image. In this image, each pixel contains the proba
at that location for one ANN evaluation. Figures a (b) ar

Testing the ANNs proved to be highly time-consuming, due to the fact that we tested each ANN on 40 test
i-3s": at a large range of scales. To restrict the number ofiesting runs, we only used ANNs whose performance wasj:-{g:d viable by eye for further processing. These ANNs are indicated by a ,,o,, in table 5.1. Note that none of theANNs NET-41 were tested; these were aI ãeemed to perform too poorly to be of any further interest.

4.2. Wheel row detection
The output of the ANN feature detector is, for each pixel, a number representing the probability ofthe presence of awheel at that location. Within a 5 x 5 environment we search for a local maximum. All local maxima are thresholdedusing acertain threshold ú¿-. This threshold can be found accordingto some criterion; for example, we can set thethreshold in such a way that no false alarms are generated.

For wheel row detection, the typical pattern of wheel detections must be found, i.e. the normal configurationof wheels on the vehicle. For the vehicles considered. in this research, the typical pattern is a set of wheels locatedon a line' This leads to a search space in the shape of an elongated rectangie. Fár the
considered, the observer was at the same height asìhe object itsäU. rnis means that the
horizontally, independent of the orientation àf the vehicle. The search is executed as a s
detected wheel leads to a score within its rectangular 81 x 9 area. A wheel row is detected if for a certain pixel ascore greater than or equal to 4 is obtained.
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Table 3. Training results in % error. ANNs marked with ,,o,, were used in the testing phase; the othe¡ ANNs werejudged to perform too poorly to warrant further processing. Note that the 0.0% urro. loi the first two NETJ2,s doesnot indicate that these networks performed well; instead, ihu." networks converged to local minima.

ANN Error
on

Tlial Min Imum
on validation

Average Standard
deviation2 t 4 5

NET-A1 Train
Validation

19.0

20.0
77.5
18.5

qD I
26.3

22.2
22.6

18.1

19.9
t7.5
18.5

20.7

27.5
2.8
3.1

NET-A2 Train
Validation

a 16 .6

27.3

o 20.6
20.4

a 15 8
16.3

20.3
22.8

c 24.5
26.r

15.8
16.3

19.6
17.2

3.5
8.7NETJl lïain

Validation
c 6.7

8.0
72.8
13.6

o 72.5

72.6
18.3

78.2

¡ 8.3
7.4

6.7

8.0
11.7

12.0
4.5
4.4

NET-82 T¡ain
Validation

0.0

0.0
0.0
0.0

o 15.8
14.0

o 16.3
r6.9

o 13.1

t4.9
0 0

0.0
9.0
9.2

8.3
8.4

- A different approach should be taken if the observer is not located in the plane orthogonal to the rotation axisof the vehicle' In that case, the row of wheels has a diffe¡ent orientation in the image, dependent on its rotationangle. ----*Þ-' 
J_---: ì:"1 :" 'i '":':.

angles be aPPlied for all rotation

false a ill do. As a side effect, the

about ijïl; Tilå 
anY knowredge

For many ground to ground scenarios it can be argued that the current solution, assuming that the wheel line is(nearly) horizontal, is adequate. As such we feel that this choice does not limit the usability of the system.
Figure 3 shows a schematic presentation of the recognition algorithm. Figure 4 shows some examples of processedimages.

5. RESULTS
5.1. ANN training

In this section the results gathered during the training phase are given. The error percentages $¡ere calculated asfollows:

o For non-RBF ANNs qraving background as ¿n extra class), the index of the unit with the maximum outputshould be the index of the output unit associated u¡ith the true class. For exampie, when testing NET-A2 witha background sample, the second output should be the largest.

o For RBF-ANNs, there is a need to distinguish between two cases:

- The satnple is a trae sample- In this case the d.emand is the same as before, with the addition that themaximum output should be larger than 0.b.

- The sample i,s ø bacleground sample. In this case, all outputs should be smaller than 0.5.

cho i,#i1iåffi}:ååliiîJtî'""*,i,i;Jilï:"î11.::i;li"ïffi:."#..iî"ff;:îî"i
for
in t 

training sessions, ANN architectures and data sets. Testing on a test set will be discussed

The results are given in table 5.1. Note that the errors given in this table are nottesterrors and that anomaliesmay occur due to the rement. For example, the 0.0 error of NETJ2 does not indicatethat the ANN will per ad' these ANNs converged to some local minima. Furthermore,it is evident that resul two possible reasons:
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Table 4. The maximum threshold for each network for which no false aÌarm was found in the clutter images and

the corresponding percentage of detected vehicles.

ANN Threshold Vehicles detected
(percentage of total)

ANN Threshold Vehicìes detected
(percentage of total)

NET-42-1 0.86 oo NET-B1-3 0.75 35

NET-42-2 0.67 83 NET-Bl-5 0.71 59

NET_,42_3 0.72 60 NET-82-3 0.76 9

NET-42-5 0.76 74 NET-82-4 0.74 40

NET-B1-1 0.79 35 NET-B2-5 0.71 49

o the different splitting of the data into training and validation sets for the five instances, which would indicate

that there is not enough training data for the ANN to generalize on;

¡ the difficulty of the problem easily leads the ANNs into local minima, depending on the weight initialization'

5.2. Detection performance and scale sensitivity

Figure b shows the detection performance, using the wheel row detection algorithm, of NET-42-2' This was the best

peiforming ANN, but other ANNs give similar .-esnltr. Figure 5 (a) indicates for threshold tt^: 0'67, for a number

of scales, the average number of detected patterns in the 81 x 9-pixel search areal figure 5 (b) shows the performance

around the optimai scale, that is the scale for which the wheels in the image have on average the same size as was

used to train NET-A2:, 1ó x 16 pixels. It clearly shows a peak around the optimal scale. However, taking into account

the imprecision in the range finding p.oc"drrà and the ãrrors made when the bounding boxes were indicated in the

data sét, it is unlikely thai we will be able to calculate this optimal scale with enough precision'

The 0.67 threshold was found to be the optimal threshold for NET-^[2: it was the highest threshold that gave no

false alarms on the three clutter images. Notà that this threshold need not be optimal for all ANNs (see table 4 for

an overview).

If four or more patterns are detected (the dotted line in figures 5 (a) and 5 (b)), the conclusion is that a vehicle

is present in the images. The graphs have been somewhat smoothed (using bins of 0.025) to present the results

clearly. The figures show that, to a certain extent, the number of detected patterns per unit area is constant and

independent ofthe scale. Only for very small scales this does not hold: the number of detected patterns drops below

4 and consequently no vehiclã is detected. From this we can deduce that tests on clutter images will not have to be

performed on an entire range of scales, since a single scale gives a good indication of the rest of the range' Another

conclusion is that the ANN feature detector doeJnot only detect wheels; otherwise, we would expect at most 19

(and probably less) detected patterns, since that is the maximum number of wheels present in a test image'

5.3. Sensitivity to background clutter
Figures b.B (a)-(c) give receiver-operator curves for each ANN. Note that, since there were only three clutter images,

oJy th."" levãt of zuse alarm are possible. We believe however that the trend is clear.

A problem with the evaluation of clutter images was the normalization step. Reca"ll that each image was normal-

ized by subtracting its mean and dividing by 2.0 x its standard deviation. Since images containing vehicles have a

small number of pixels with relatively high values, this results in a very nonsymmetric gray value distribution' In

clutter images however, the result is quite symmetric and the resulting normalized image has a lower maximum gray

value than an image cántaining u',r"hi.I". To investigate in how far the ANNs simply respond to image intensity

variation, we tested one ANN lnEr-lz:¡ on the clutier images for various levels of intensity multiplication' Fig-

ure 5.3 (á) ,no*s that for small multiplications, performance remains well. For large multiplications however (larger

than 2), performance drops to a point where the system begins to produce a large number of false alarms' Although

this is undesirable, this may not be a problem as long as the condition is met that the vehicle to be recognized has

a relatively high variance with respect to its surroundings.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

We created a system for the detection of vehicles in IR images, using a more or less standard ANN technique and

some dedicated yet simple algorithms for processing the ANN output. We believe that the use of an ANN as a

feature detector, followed by some traditional system can deal with more a priori knowledge, e'g., the simple rule

that there must be four or more wheels present on a single line to detect a vehicle, than would be possible using an

all-neural system. The system performs reasonably well.

Our hypothesis that some form of rejection would be necessary was disproved by the experiments, since the

networks with an RBF layer did not perform significantly better than the other systems. Only in the case without

an added hidden layer did the addition of an RBF Iayer contribute something. Also, the addition of an RBF layer to

an ANN having an extra hidden layer does not seem to contribute anything. This can be the result of these ANNs

being complex ãnough to solve the problem as well as possible, or of the data set size being insufficient to train these

*o."- 
"o*pl"x 

ANNs. The latter is more likely, since the more parameters a pattern recognition system has, the

more training samples a,re necessary to estimate the right set of parameters.

A general conclusion about the ANN feature detection part is that various trained instances of the ANNs show

great variation in performance. This may be due to an extreme sensitivity to the exact initialization of the ANN,

*ni"h i.tdi.utes that a larger architecture or a more conservative learning rule should be used, or a sensitivity to the

division of the data set, which indicates that more training data should be used. At any rate, this makes it difficult

to judge the ANNs performance well; any result may be an artifact.
'We also tested the ANNs toward sensitivity to scale and background clutter. The ANNs seem to be sensitive to

scaling differences in very small areas around the right scale, yet they give responses over a very large range of scales'

Altho;gh the ANNs are trained to respond only to wheels, this indicates that they also react on other parts of the

vehicle. While a more selective detector could be useful as performance will increase in even lower signal-to-clutte¡

ratios, we currently use the response of the ANNs to parts of vehicles other than wheels to recognize the vehicles

with orientations such that wheels are not visible, or are severely distorted.

Finally, the clutter sensitivity seems to be reasonable on the three images we used. With the best network,

NET-A22, it is possible to reach a 0.0% false alarm rate and still recognize 83% of the vehicles present in our test set'

6.2. Recornmendations
The following topics are worth investigating in future research:

o A larger training set could be used to characterize the influence of the training set size.

o The number of RBF kernels in RBF ANNs could be varied to get a better idea of their performance, compared

to non-RBF ANNs.

o More complex methods of outlier detection, i.e., rejection of the second kind, could be implemented.

o The influence of ANN complexity (such as the number and size of the feature maps and sub sampling maps)

in general can be investigated in more depth.

o Within the current set of experiments we used the fact that the observer and plane of rotations of the vehicle

coincide. Under general conditions, including air to ground scenarios, this is not true, and the experiments

should be expanded to cover all possible vehicle orientations.

o Currently we consider only a single ANN, which is trained to recognize wheels of a broad range of vehicles.

Using in parallel a bank of ANNs to recognize more specific wheel types could improve performance.

o Within this research the only features used are wheels. Adding (ANN) detectors for other features, such as,

for example, tank barrels or wind shields of trucks, in parallel with the wheel feature detectors could help to

reduce the false alarm rate.
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