
55

Braz J Med Biol Res 31(1) 1998

Th1 and Th2 cells in demyelinating diseaseBrazilian Journal of Medical and Biological Research (1998) 31: 55-60
ISSN 0100-879X

Role of Th1 and Th2 cells in
autoimmune demyelinating disease

Division of Immunological and Infectious Diseases,
TNO Prevention and Health, Leiden, The Netherlands

L. Nagelkerken

Abstract

Evidence is accumulating that Th1 cells play an important role in the
development of multiple sclerosis (MS) and experimental allergic
encephalomyelitis (EAE), whereas Th2 cells contribute to recovery
from disease. A major determinant in the development of Th1 and Th2
cells is the type of antigen-presenting cell (APC) involved and its
functional characteristics, e.g., the production of interleukin-12. There-
fore, modulation of APC might interfere with the development of Th1
type responses and as such be beneficial for MS and EAE. The
potential of cytokines, in particular interleukin-10, and glucocorti-
coids to exert a selective effect on APC, and as a consequence to affect
the Th1-Th2 balance in EAE, is discussed.
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Introduction

Multiple sclerosis (MS) is an inflamma-
tory disease of the central nervous system
(CNS), characterized by degradation of the
myelin sheath and loss of oligodendrocytes,
resulting in impaired nerve conduction. Pro-
gression of the disease, which in some of the
patients is characterized by exacerbations
and remissions, results in the development
of disability. Destruction of the myelin sheath
is most likely based on the recognition of
myelin-specific antigens by CD4+ T helper
(Th) lymphocytes and the subsequent activat-
ion of macrophages (1). Myelin damage is
caused by the combined action of various
cytokines, proteases, nitric oxide, and reac-
tive oxygen intermediates secreted by mac-
rophages and T cells that have infiltrated the
CNS. Similar mechanisms play a role in
experimental allergic encephalomyelitis
(EAE), which is widely used as an animal

model for MS. This autoimmune model can
be induced in laboratory animals by immuni-
zation with myelin proteins and transferred
to naive syngeneic recipients by CD4+ T
cells.

Th1 cells in EAE and MS

Since the recognition that mouse CD4+
Th cells can be classified into at least two
subsets, each secreting a unique profile of
regulatory cytokines (2), much attention has
been paid to the role of these subsets in
infectious diseases, allergy and autoimmu-
nity (3). Various cell-mediated autoimmune
diseases appear to be characterized by a bias
towards a Th1 type of response (4). In EAE
much evidence has been obtained in support
of the concept that Th1 cells play a role in the
development of disease and that Th2 cells
are involved in the recovery phase (5,6).
CD4+ T cells producing interferon-γ (IFN-γ)
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(i.e., Th1 cells) are detectable in brain tissue
early in the development of disease (7). The
effector cells that are capable of transferring
disease appear to be IFN-γ- and tumor necro-
sis factor-ß (TNF-ß)-producing Th1 cells with
specificity for myelin basic protein or prote-
olipid protein-related peptides (8-11); Th2
cells are ineffective. Th1 cells are also sup-
posed to play a dominant role in Theiler�s
murine encephalomyelitis virus-induced de-
myelinating disease (12). Th1 cells may con-
tribute in two ways to the development and
progression of disease: 1) as IFN-γ-produc-
ing cells that activate macrophages in the
degradation of the myelin sheath and 2) by
directly damaging the myelin sheath and
oligodendrocytes through the secretion of
TNF-α and TNF-ß (13). An active role for
TNF was substantiated by demonstrating that
the encephalitogenicity of T cell clones in
EAE correlated with their ability to secrete
this cytokine (9) and the observation that
induction of disease could be inhibited by
anti-TNF antibodies (14).

Also in MS, much evidence has been
obtained for a role of TNF and IFN-γ in the
pathogenesis of the disease. First of all, IFN-
γ- and TNF-producing cells have been dem-
onstrated in brain tissue (15,16). Moreover,
lymphocytes isolated from cerebrospinal
fluid (CSF) or peripheral blood secrete IFN-
γ when stimulated with myelin-derived pep-
tides (17,18). In a prospective study, high
levels of TNF-α were found in the CSF of
the majority of patients with chronic pro-
gressive MS and in none of those with stable
MS (19). The data suggested that the level of
TNF-α in CSF correlates with the severity
and progression of the disease. Using a whole-
blood mitogen stimulation assay, it was found
that an increased production of IFN-γ and
TNF precedes exacerbations in MS (20). In a
longitudinal study of 34 relapsing-remitting
MS patients the capacity to produce TNF-α
was predictive of the occurrence of all new
relapses in all patients (21). Recently, it has
been demonstrated by the polymerase-chain

reaction using peripheral blood mononuclear
cells that TNF-α and IFN-γ are upregulated
prior to exacerbation of disease (22). The
relevance of these observations for MS is
further illustrated by the fact that treatment
of MS patients with IFN-γ resulted in exa-
cerbation of the disease (23).

Evidence for a downregulatory role
of Th2 cells in EAE and MS

The development and function of Th1
cells is under the control of Th2 cells or
related cytokines (2). Likewise, Th2 cells
may control the development and activity of
encephalitogenic Th1 cells in EAE. Indeed,
on the basis of mRNA expression in brain
tissue, it can be concluded that recovery
from disease is accompanied by an upregu-
lation of cytokines which may be derived
from Th2 cells (24,25). Moreover, the inhi-
bition of the development of EAE appeared
to be associated with the induction of Th2
cells (26). Further in vivo support for a role
of Th2 cells in downregulation of the disease
is the observation that inhibition of disease
by tolerance induction is accompanied by an
upregulation of interleukin (IL)-4 (27). This
suggests that antigen presentation in the gut
primes for the induction of a suppressive
Th2 response and/or a transient anergy of
Th1 cells (5). In MS, recovery from disease
was accompanied by an upregulation of IL-
10 and transforming growth factor-ß (TGF-
ß; Ref. 21).

Modulation of the Th1-Th2 balance
in EAE

The development of Th1 cells or Th2
cells from a so-called naive precursor cell is
highly determined by antigen-presenting cells
(APC) and the microenvironment of a devel-
oping immune response. Cytokines play an
important role in this process: IL-4 is a strong
inducer of Th2 responses (28), whereas
IFN-γ and TGF-ß favor Th1 type responses
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(29). However, one of the most important
cytokines in this process is most likely IL-12
which primes for Th1 cells (30,31). By mod-
ulating IL-12 production in APC with IL-10
(32) a change from a Th1 to a Th2 type
response can be achieved (33).

In EAE several attempts have been made
to inhibit disease by interference at the cyto-
kine level, resulting in controversial obser-
vations. In vivo neutralization of IFN-γ em-
ploying specific antibodies caused exacer-
bations in one study (34) and rendered other-
wise resistant mice susceptible to EAE in a
second study (35), suggesting that IFN-γ
might play a beneficial role in a certain
phase of disease activity. Furthermore, the
possibility that IFN-γ does not necessarily
play a pathogenic role in the development of
EAE is supported by the recent finding that
IFN-γ knockout mice backcrossed with an
EAE-sensitive genetic background remained
sensitive to disease induction (36). On the
other hand, it was recently demonstrated that
IL-12 exacerbated disease, whereas anti-IL-
12 prevented disease development (37) which
again supports a pathogenic role of Th1
cells.

A typical Th2 cytokine such as IL-4 was
found to inhibit EAE in an adoptive transfer
model with primed T cells (38) without af-
fecting the extent of the inflammatory re-
sponse within the CNS. IL-4 treatment was
accompanied by an increased Th2 response
without the downregulation of Th1 cells.

Our own studies showed that IL-4 had no
effect on EAE, actively induced by immuni-
zation with the synthetic peptide PLP139-151

of proteolipid protein (39). In contrast, IL-10
inhibited the development of disease. In an
attempt to establish synergy between IL-4
and IL-10, we observed that IL-4 even abol-
ished the inhibitory effect of IL-10. It was
observed that IL-10 treatment shifted the
primary antibody response to the encephali-
togenic peptide from IgG2a to IgG1, which
was suggestive of a shift from a Th1 re-
sponse to a Th2 response. However, we

obtained no evidence for such a Th1 → Th2
shift on the basis of in vitro assessment of
cytokine profiles. IL-10 inhibited EAE with-
out showing much effect on IFN-γ produc-
tion; by contrast, IL-4 significantly inhibited
IFN-γ production without having an effect
on EAE. Since IL-10 was recently found to
inhibit TNF-α-induced relapses of EAE, a
possible mechanism of action of IL-10 in
EAE might have been the downregulation of
TNF receptors (40).

Although little is known about its precise
mechanism of action, IFN-ß has been re-
cently approved in several countries for the
treatment of relapsing-remitting MS, since it
causes a 30% decrease in disease progres-
sion in these patients (41). IFN-ß is also
effective in EAE (42). Suggested mecha-
nisms of action of this cytokine are the inhibi-
tion of IFN-γ (43) and downregulation of
MHC class II antigens on APC (44). Alterna-
tively, the fact that IFN-ß inhibits the pro-
duction of TNF in vitro and stimulates the
production of IL-10 suggests that the latter
might be an intermediate (45).

Possible role of HPA-axis

The development of autoimmunity may
be related to the functioning of the hypo-
thalamus-pituitary-adrenal (HPA) axis. In
vivo evidence has been obtained by showing
that streptococcal cell wall-induced arthritis
develops in Lewis rats due to a defective
production of corticotropin releasing hor-
mone and - as a consequence - an impaired
corticosterone response (46,47). Otherwise
resistant F344 rats become sensitive to ar-
thritis induction after treatment with the glu-
cocorticoid (GC) receptor antagonist RU486.
Independently and in a similar fashion, it
was demonstrated that the development and
activity of EAE in rats is under the control of
the HPA axis (48,49). Possibly, the HPA
axis might play a role as a natural regulator
of Th1 activity and autoimmunity. Accord-
ingly, corticosterone was found to be selec-
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tive in suppressing murine Th1 cells but not
Th2 cells both in vitro and in vivo (50,51).
Using rat CD4+ T cells it was demonstrated
that the synthetic GC dexamethasone (DEX)
favors the development of Th2 cells (52).
Such a selective effect might be due to the
fact that Th2 cells are resistant to GC in view
of their capacity to secrete IL-4 (53). Alter-
natively, the activation stage of the cells
might play a major role since we demon-
strated that human CD4+ T cells can be
rendered resistant to the suppressive effect
of DEX by using anti-CD28 as a co-stimulus
(54). We further substantiated this possibil-
ity by demonstrating that human naive CD4+
T cells are more sensitive to DEX than
memory CD4+ T cells (55). Likewise, it has
been shown recently that the effects of GC
on IL-4 and IFN-γ production by human
CD4+ T cells are dependent on the activa-
tion stage of these cells (56).

In a recent study employing whole blood
cultures we demonstrated that IL-12 (p40)

and TNF-α production is 10 to 100 times
more sensitive to the suppressive effect of
DEX than the production of IL-10 (Visser J,
Methorst D, de Kloet ER and Nagelkerken
L, unpublished data). Moreover, these ef-
fects are likely to be mediated by different
intracellular receptors. This supports the pos-
sibility that GC can modulate the Th1-Th2
balance by modulating the characteristics of
antigen-presenting cells, including IL-12. Ac-
cordingly, the microenvironment may deter-
mine the development of Th1 versus Th2
cells. In MS and EAE, local processes occur-
ring within the central nervous system may
exert a selective effect on Th1 or Th2 cells.
Therefore, it will be of importance to in-
crease the depth of our insight into the func-
tional characteristics of antigen-presenting
cells within the CNS, i.e., microglia, astro-
cytes and endothelial cells. Such cells might
well be the prime target of therapy with
cytokines in demyelinating disease.
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