

Model-based Analysis of Human Errors during Aircraft Cockpit System Design



## D4.6 - Detailed experimental design for cycle 2

| Project Number:          | 211988                                                   |  |  |
|--------------------------|----------------------------------------------------------|--|--|
| Nature:                  | Deliverable                                              |  |  |
| Classification:          | Public                                                   |  |  |
| Version:                 | 1.0                                                      |  |  |
| Parts & Classifications: | Main document (Public)                                   |  |  |
| Work Package(s):         | WP4                                                      |  |  |
| Document Timescale:      | Project Start Date: March 1, 2008                        |  |  |
| Start of Document:       | T0+25                                                    |  |  |
| Final version due to:    | T0+30                                                    |  |  |
| Time now:                | T0+31                                                    |  |  |
| Issue Date (dd/mm/yyyy): | 14/09/2010                                               |  |  |
| Compiled:                | Tina Mioch (TNO)                                         |  |  |
|                          | Tina Mioch, Rosemarijn Looije, Eliane Schreuder<br>(TNO) |  |  |
| Authors:                 | Jan-Patrick Osterloh (OFF)                               |  |  |
|                          | Matthias Wies, Helge Lenz (DLR)                          |  |  |
| Technical Approval:      | Andreas Lüdtke (OFF)                                     |  |  |
| Issue Authorisation:     | Andreas Lüdtke (OFF)                                     |  |  |
|                          |                                                          |  |  |

#### © All rights reserved by HUMAN consortium

This document is supplied by the specific HUMAN work package quoted above on the express condition that it is treated as confidential to those specifically mentioned on the distribution list. No use may be made thereof other than expressly authorised by that work package leader.



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| DISTRIBUTION LIST         |                                                                                                                         |                          |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Copy<br>type <sup>1</sup> | Company and Location Recipient                                                                                          |                          |  |
| C, E                      | Stephanie Stoltz-Douchet<br>European Commission<br>DG RTD - Directorate H –<br>Transport<br>CDMA 4/138<br>1049 Brussels | Stephanie Stoltz-Douchet |  |
| Т                         | All HUMAN partners                                                                                                      | All HUMAN partners       |  |
|                           |                                                                                                                         |                          |  |
|                           |                                                                                                                         |                          |  |
|                           |                                                                                                                         |                          |  |
|                           |                                                                                                                         |                          |  |
|                           |                                                                                                                         |                          |  |
|                           |                                                                                                                         |                          |  |
|                           |                                                                                                                         |                          |  |

- <sup>1</sup> Copy types:
- M = Master copy,
- E = Email,
- C = Controlled copy (paper),
- D = Electronic copy on disk,
- T = TeamSite (Sharepoint)



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| RECORD OF REVISION |                      |                           |     |
|--------------------|----------------------|---------------------------|-----|
| Version            | Date<br>(dd/mm/yyyy) | Status Description Au     |     |
| V0.1               | 01/07/2010           | Initial setup of document | TiM |
| V0.2               | 04/09/2010           | Input by TNO              | TiM |
| V0.3               | 13/09/2010           | Input by OFF              | JPO |
| V0.4               | 17/09/2010           | Input by DLR              | MW  |
| V0.5               | 19/09/2010           | Check by TNO              | TiM |
| V1.0               | 20/09/2010           | Check by OFF              | JPO |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |
|                    |                      |                           |     |

| 27/09/2010 | Named Distribution Only | Page 3 of 60 |
|------------|-------------------------|--------------|
|            | Proj. No: 211988        |              |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



## **1** Table of Contents

| 1   |                    | ble of Contents                            |              |
|-----|--------------------|--------------------------------------------|--------------|
| 2   |                    | breviations and Definitions                |              |
| 3   |                    | troduction                                 |              |
| 4   | -                  | perimental Setup Learned Carelessness      |              |
|     | .1<br>.2           | Description                                |              |
| -   | .z<br>.3           | Requirements<br>High Level Test Conditions |              |
| -   | .3<br>.4           | Low Level Test Conditions                  |              |
| -   | .5                 | Elaboration of the Working Hypothesis      |              |
| Ŧ   | .5<br>4.5.         | 5 /1                                       |              |
|     | 4.5.               |                                            |              |
|     | 4.5.               |                                            |              |
|     | 4.5.               |                                            |              |
| 4   | 5.<br>.6           |                                            |              |
| Ŧ   | .0<br>4.6.         |                                            |              |
|     | 4.6.               | -                                          |              |
|     | 4.6.               |                                            |              |
|     | 4.6.               | 5                                          |              |
| 5   | -                  | perimental Setup Cognitive Lockup          |              |
| _   | <b>ьлр</b><br>.1   | Description                                |              |
| 5   | . <u>.</u><br>5.1. |                                            |              |
|     | 5.1.               |                                            |              |
| 5   | .2                 | Requirements                               |              |
| -   | .2                 | High-Level Test Conditions                 |              |
| -   | .4                 | Elaboration of Working Hypotheses          |              |
| -   | 5.4.               |                                            |              |
|     | 5.4.               |                                            |              |
|     | 5.4.               | •                                          |              |
|     | 5.4.               |                                            |              |
| 5   | .5                 | Test conditions                            |              |
| -   | 5.5.               |                                            |              |
|     | 5.5.               |                                            |              |
|     | 5.5.               |                                            |              |
|     | 5.5.               |                                            |              |
| 5   | .6                 | Scenarios                                  |              |
| -   | 5.6.               |                                            |              |
|     | 5.6.               |                                            |              |
|     | 5.6.               |                                            |              |
|     | 5.6.               |                                            |              |
| 5   | .7                 | Experiment Design                          | -            |
| -   | 5.7.               |                                            |              |
|     | 5.7.               | 5                                          |              |
|     | 5.7.               |                                            | • /          |
| 27/ |                    | 2010 Named Distribution Only               | Page 4 of 60 |
|     |                    | Proj. No: 211988                           |              |





Model-based Analysis of Human Errors during Aircraft Cockpit System Design

|     | xperimental Setup Selective Attention             |    |
|-----|---------------------------------------------------|----|
| 6.1 |                                                   |    |
| 6.2 |                                                   |    |
| 6.3 |                                                   |    |
| 6.4 |                                                   |    |
| 6.5 |                                                   |    |
| 6   | .5.1 Independent Variables:                       | 34 |
| 6   | .5.2 Operationalisation of Independent Variables: | 34 |
| 6   | .5.3 Working Hypothesis                           | 35 |
| 6.6 | Simulation Scenario (OFF/TNO)                     | 35 |
| 7 C | overall Experimental Setup                        |    |
| 7.1 | Invitation                                        | 36 |
| 7.2 |                                                   |    |
| 7.3 | -                                                 |    |
| 7.4 | Debriefing                                        |    |
| 8 R | eferences                                         |    |
| 9 A | ppendix                                           | 41 |
| 9.1 | Learned Carelessness Simulation Schedule          | 41 |
| 9.2 |                                                   |    |
| 9.3 |                                                   |    |
| 9.4 | •                                                 |    |

| 27/09/2010 | Named Distribution Only | Page 5 of 60 |
|------------|-------------------------|--------------|
|            | Proj. No: 211988        |              |





## 2 Abbreviations and Definitions

| Abbreviation | Definition                                                    |  |
|--------------|---------------------------------------------------------------|--|
| A/C          | Aircraft                                                      |  |
| AFMS         | Advanced flight management system                             |  |
| AHMI         | Airborne human machine interface                              |  |
| ATC          | Air Traffic Control                                           |  |
| CASCaS       | Cognitive Architecture for Safety Critical Task<br>Simulation |  |
| CDU          | Control Display Unit                                          |  |
| CFL          | Cruise Flight Level                                           |  |
| CL           | Cognitive lockup                                              |  |
| EPM          | Error production mechanism                                    |  |
| FCU          | Flight Command Unit                                           |  |
| FMA          | Flight Mode Annunciation                                      |  |
| FMGC         | Flight Management Guidance Computer                           |  |
| GECO         | Generic Cockpit (Flight Simulator at DLR)                     |  |
| HLTC         | High-level test condition                                     |  |
| INT          | Interception Altitude                                         |  |
| LC           | Learned carelessness                                          |  |
| LLTC         | Low-level test condition                                      |  |
| RoT          | Rigidity of Thought                                           |  |
| RWY          | Runway                                                        |  |
| WYP          | Waypoint                                                      |  |
| TSS          | task set switches                                             |  |
| тос          | Time occupied                                                 |  |
| LIP          | Level of information processing                               |  |

| 27/09/2010 | Named Distribution Only | Page 6 of 60 |
|------------|-------------------------|--------------|
|            | Proj. No: 211988        |              |





## **3** Introduction

This deliverable provides details on the experimental design (including the experimental scenarios and schedule) and the working hypotheses for the second experimental cycle. The deliverable 2.8 described these aspects on a more generic level.

The deliverable is structured as follows: in section 4, the experimental setup for the error production mechanism *learned carelessness* is described. In section 5, this is done for the error production mechanism *cognitive lockup*, followed by *selective attention* in section 6. In section 7, the overall experimental setup is described.

## 4 Experimental Setup Learned Carelessness

## 4.1 Description

The EPM Learned Carelessness belongs to the class of EPMs that in the literature is called "**Rigidity of Thought**". It is characterised by the following statements:

- familiar situations trigger familiar patterns of thought
- the first idea that comes to mind prevents alternatives being considered

We consider two instantiations of the class:

- 1. Learned Carelessness
- 2. Mind Set Effect

#### Learned Carelessness:

Learned Carelessness (LC) is a psychological theory of Frey and Schulz-Hardt (Frey & Schulz-Hardt, 1997) which we use as an explanation of particular pilot errors and as a basis for the implementation of an error producing mechanism in our cognitive architecture CASCaS. We assume that pilots have mental models of how to interact with cockpit systems, like the AHMI/AFMS. The mental model of flight procedures is initially formed based on normative flight procedures acquired through handbooks and in simulator training sessions. Then during repetitive performance the mental model is modified by cognitive learning processes like LC.

The theory states that humans have a tendency to neglect safety precautions if this has immediate advantages, e.g. it saves time because less physical or cognitive resources are necessary. Careless behaviour emerges if safety precautions have been followed several times but would not have been necessary, because no hazards occurred. Then, people tend to omit the safety precautions and the absence of hazardous consequences acts as a negative reinforcer of careless behaviour.

| 27/09/2010 | Named Distribution Only | Page 7 of 60 |
|------------|-------------------------|--------------|
|            | Proj. No: 211988        | _            |







In the context of avionics systems safety precautions may be understood as checking the current state of annunciations (like the vertical view on the AHMI) before performing critical actions (like engaging a modified flight trajectory). LC is characteristic for human nature because we have to implicitly simplify in order to be capable to perform efficiently in a complex environment. Resulting behaviour is highly adapted to routine scenarios but, unfortunately, may lead to errors and hazards in non-routine situations.

#### Mind Set Effect:

The Mind Set Effect, also often referred to as a problem solving set, describes a person's predisposition to solve a given problem in a specific manner even though there are "better" or more appropriate methods of solving the problem. The most famous example for this effect is the water jar experiment (Luchins & Luchins, 1959), in which subjects were asked, to solve a series of water jar problems. After solving many problems using the same solution, subjects applied this solution also to problems where a simpler solution exists.

#### 4.2 Requirements

For the second cycle experiments we differentiate between Learned Carelessness and the Mind Set Effect with regard to the number of task repetitions that are necessary to provoke the EPM. For Learned Carelessness a significant larger number of repetitions is necessary compared to repetitions needed for the Mind Set Effect (Luchins provoked this effect with just five repetitions). This can be explained by the interference with other tasks: while for the Mind Set Effect the task is not interrupted by other tasks, i.e. the task repetition follows immediately, this is not necessary for Learned Carelessness, i.e. the repetition can follow after other tasks have been performed. In the following we use the class **Rigidity of Thought (RoT)** to refer to both, Learned Carelessness and Mind Set Effect.

In our research, we consider three parameters as the main drivers for RoT:

- 1. the frequency with which checks are performed,
- 2. the frequency with which particular values are perceived during these checks
- 3. the cost of percept actions.

RoT is relevant to explain behaviour of proficient users who have gained some level of experience in the operation of a system. Psychology differentiates between inductive and deductive learning. Inductive learning means acquiring new knowledge, e.g. knowledge about how to operate a system. Deductive learning means reorganizing knowledge that has been acquired before. Reorganizing enables a more efficient use of the knowledge in similar situations. RoT can only be observed during deductive learning. Consequently, the inductive learning phase has to be completed before RoT can occur.

| 27/09/2010 | Named Distribution Only | Page 8 of 60 |
|------------|-------------------------|--------------|
|            | Proj. No: 211988        |              |





## 4.3 High Level Test Conditions

The high-level test condition (HLTC) for LC is defined by the following 7 characteristics:

- 1. T is a task which is triggered by an event E.
- 2. T involves performing a check C of flight parameter P which can either be true or false:
  - if *true* subtask *T*<sub>sub1</sub> has to be performed,
  - if *false* subtask  $T_{sub2}$  has to be performed,
- 3. A sequence of scenarios is flown in which *E* occurs *n* times and *T* (including *C*) has to be performed. The result of *C* in all these task repetitions is always the same (either always *true* or always *false*) which means that always the same subtask (either always  $T_{sub1}$  or always  $T_{sub2}$ ) has to be performed.
- 4. During the n+1 repetition of T flight parameter P is manipulated in such a way that C delivers a result which is different from the results during the n preceding repetitions. Consequently, the other subtask has to be performed this time.
- 5. Check C requires a certain cost (e.g. performance time).
- 6. Omitting check C has a certain risk.
- 7. Check C has to be identifiable in the recorded data (e.g. in the gaze data, voice recordings or physical actions) empirical indicator

## 4.4 Low Level Test Conditions

The following table specifies the checks that are possible during an uplink:

| Check<br>No.                                                        | Parameter to be<br>checked                              | Condition to be<br>checked                                                     | T <sub>sub1</sub> if<br>condition<br>is true | T <sub>sub2</sub> if<br>condition<br>is false | Independent<br>Variable               |
|---------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------------|
| 1                                                                   | Check first WYP of<br>flight plan in<br>horizontal view | First WYP is behind the aircraft                                               | LOAD,<br>GENERATE<br>VIA                     | CONTINUE                                      | A/C position at<br>uplink             |
| 2                                                                   | Check flight plan at<br>RWY in horizontal<br>view       | Flight plan does not<br>end at RWY                                             | REJECT                                       | CONTINUE                                      | Position of last<br>WYP of flightplan |
| 3                                                                   | Check trajectory in horizontal view                     | Trajectory contains<br>a circle                                                | GENERATE<br>VIA                              | GENERATE                                      | A/C position at uplink                |
| 4                                                                   | Check CFL in vertical view                              | CFL is below INT<br>altitude                                                   | REJECT                                       | CONTINUE                                      | Altitude of CFL                       |
| 5                                                                   | Check intercept<br>altitude in vertical<br>view         | Intercept altitude<br>differs from<br>published intercept<br>altitude in chart | REJECT                                       | CONTINUE                                      | Intercept<br>altitude                 |
| 6                                                                   | Check descent profile of the final approach             | Vertical profile does<br>not end at RWY                                        | REJECT                                       | CONTINUE                                      | Altitude of last<br>WYP of flightplan |
| 27/09/2010 Named Distribution Only Page 9 of 60<br>Proj. No: 211988 |                                                         |                                                                                |                                              |                                               |                                       |





| in vertical view elevation |  |  |
|----------------------------|--|--|

#### **4.5 Elaboration of the Working Hypothesis**

In the following sections, the working hypothesis is described in more detail, i.e. the independent variables are identified, operationalised and the working hypothesis is instantiated.

## 4.5.1 Independent Variables

In order to provoke RoT, we foresee three independent variables:

- CHECK EFFORT: the 6 checks differ in effort (e.g. time needed)
- CHECK HISTORY: every check is performed n times (n task repetitions), this leads to a sequence of check results. We distinguish two patterns:
  - constant pattern: true, true, true, true, true ....
  - random pattern: true, false, false, true, false, .....
- CHECK RISK: every check is associated with a certain risk consequences for the flight if pilots omit the check (e.g. required extra time for recovery, severity of consequences –minor, major, catastrophic)

#### 4.5.2 Operationalisation of Independent Variables

The following table provides an operationalisation of the independent variables CHECK EFFORT, CHECK HISTORY and CHECK RISK:

| Parameter        | Operationalisation                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHECK<br>EFFORT  | Required time for T in cases where C is performed. This time will always be related to risk. If the risk is low, even the shortest check will be subject to "operationalized omission".                                                                                                                                                                                                                                                                                  |
|                  | Regardless of the time, effort can here mean that the check<br>requires rather non-intuitive steptasks, such as switching to an<br>undesired map-mode, no "point-and-shoot" philosophy - which<br>is e.g. when a pilot can accomplish the motor action at or near<br>the same place as the motor action, e.g. motor action on FCU<br>and/or CDU and checking on the FMA would be the contrary to<br>point-and-shoot and needs considerable, error-prone check<br>effort. |
| CHECK<br>HISTORY | Every check is performed <i>n</i> times, this leads to a sequence of check results. When this sequence has a significant higher amount of "true", i.e. all but 1, or a similar "false-true-                                                                                                                                                                                                                                                                              |
| 27/09/2010       | Named Distribution Only Page 10 of 60<br>Proj. No: 211988                                                                                                                                                                                                                                                                                                                                                                                                                |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



|                      | pattern", experimental learning will contribute to a history that<br>leads to LC.<br>Example: Turkey has a very limiting speed restriction in all<br>terminal control areas (e.g. below FL240 within 60NM around<br>an airport). As this speed restriction is so seldom wanted by<br>ATC, and would lead to a very uneconomic descend, all pilots<br>delete this speed restriction which is set as a default value in<br>the FMGC database. If this speed restriction is needed,<br>however, the effort to decelerate and descend with a top-of-<br>descent calculated for a higher descent-speed is quite high,<br>sometimes delay vectors are needed to lose altitude in such a<br>case. |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHECK<br>CRITICALITY | Consequences for the flight if pilots perform T assuming that C is false while actually C is true (e.g. required extra time for recovery, severity of consequences –minor, major, catastrophic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### 4.5.3 Working Hypothesis

Based on the three independent variables we define the following working hypothesis:

 If CHECK EFFORT for C is "high" and CHECK RISK for C is "low" and CHECK HISTORY for C is constant,
 Then pilots will omit check C because of Rigidity of Thought.

#### 4.5.4 Test Condition

For testing the hypothesis, the subjects should implement multiple uplinks in very short scenarios. All uplinks have a similar setup: The subject starts without any trajectory. Then an initial uplink is send by ATC, which the subject has to implement or to reject. If any of the checks fails, the subject must react as specified in section 4.4. As it is currently not possible to instantiate the EFFORT and RISK parameters for the checks, we will have a debriefing at the end of the experiments, where the subjects rate the risk and effort for each check.

For the experiments, we foresee an inter-pilot design, i.e. the subjects are divided in two groups A and B. Group A is the group where we will induce LC, while group B is a control group, i.e. for group A there CHECK HISTORY parameter will be always constant (no fails of the checks), while group A will have a (pseudo) random instantiation of the HISTORY parameter (randomly checks will fail).

The simulation schedule of the scenarios for learned carelessness can be found in the Appendix (section 9.1).

| 27/09/2010 | Named Distribution Only | Page 11 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





### 4.6 Scenarios

Learning from the first cycle of experiments the scenario design for the second cycle was more focused to the EPMs to generate and from the beginning a central part of the preparation phase. During two workshops with pilots and dedicated telephone conferences events have been specified that are likely to trigger a specific EPM. These events were then composed into longer scenarios. According to the hypotheses for each event an experimental scenario and a control scenario have been designed to vary the influence of independent variables like time pressure. As a result of this design process dedicated scenarios for Learned Carelessness (LC) and Cognitive Lockup (CL) have been created and an overall test schedule was designed where the scenarios did not influence each other and that is interesting, not foreseeable and not too exhaustive for the pilot.

#### 4.6.1 Scenarios to generate and test Learned Carelessness (LC)

Following the hypotheses that LC is likely to happen after a number of repetitions it was decided to generate scenarios that only consist of one procedure and are conducted in an artificial environment reducing the complexity of the full featured cockpit to the necessary displays. To generate a constant low level of additional workload a secondary task was added that needs constant attention but is otherwise not related to any other cockpit task. Consequently the experiments to generate LC are not conducted in the GECO but in the Avionic Test bed. For the main task (the ATC uplink procedure) only two screens in front of the pilot (AHMI and PFD) and a mouse pointing input device are used. For the secondary task an additional monitor and mouse are placed slightly to the left.

In all a number of 28 scenarios have been created consisting of 4 different routings into Frankfurt Airport and for each routing one scenario where all 6 test conditions mentioned in chapter 4.4 are false and 6 scenarios with one condition set to "true". For the training one additional scenario was created where all conditions where true in order to show the possible errors once to the pilot.

Each scenario started somewhere on the route around 180nm away from the arrival airport. After 20 seconds that were needed to set up the scenario controller and start all software programs an ATC uplinks pops up on the AHMI and the pilot handles the uplink. A few seconds after the pilot has engaged the generated trajectory or rejected the uplink the scenario is stopped and the next scenario is started automatically. One LC sessions consist of 30 scenarios lasting about 35 minutes.

Following the hypotheses for LC each pilot in the experimental group conducted 5 sessions where all test conditions were set to "false" to build up LC and encountered errors only during the last 6<sup>th</sup> session where LC is tested. In the control group all sessions contained some scenarios with one test condition set to "true". See also the appendix in section 9.1.

#### 4.6.2 Experiment Design

The LC sessions takes place in the Avionic Test bed and start with a training phase where the pilot monitoring instructs the subject pilot how to operate the AHMI and how to implement the ATC uplink. After the training phase when the

| 27/09/2010 | Named Distribution Only | Page 12 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





experiment leader and the pilot monitoring agree about the training status of the subject pilot the experimental phase starts.

During the experimental phase the session is controlled by a script where the scenario sequence runs automatically. Each scenario finishes either by the successful activation of the generated trajectory or by the rejection of the uplink. During the session an observer notes each check during the implementation of the uplink in table.

### 4.6.3 Training

Following buttons, functions and procedures are introduced and trained:

- Introduction to the avionic test bed
  - Displays
  - Mouse
- Introduction to the AHMI
  - Horizontal display
    - Pre-selected and Active Flightplan
    - Horizontal profile
    - Moving of the map
    - Zooming (without mouse wheel)
    - Switching between horizontal and vertical view
    - Switching between ARC and ROSE mode
  - Vertical display
    - Vertical profile
    - Function of the CFL
    - Speed profile
    - Function of the INT altitude
    - Function of altitude constraints
    - Explanation of the ROSE/ARC mode and A/C placement
- Instruction and training of procedure of how to handle uplinks
  - Generation of a trajectory
  - Negotiation of a trajectory with ATC
  - o Activation of a trajectory after a clearance is received
  - Speak aloud procedure (during training only!)
- Instruction of how to check the flight plan and the trajectory for correctness
  - Demonstration of possible mistakes in the flight plan and trajectory
  - Procedure of reject button
- Explanation and introduction to the secondary task

| 27/09/2010 | Named Distribution Only | Page 13 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





### 4.6.4 Instruction for experiment leader

The instructor is required to adhere to the following standards:

- Give an introduction to the AHMI and its functions by demonstrating the uplink procedure. Thereby control the mouse on your own
- Let the subject control the mouse and handle the upcoming uplinks
- Explain along the LC training scenario that contains every mistake in the flight plan and trajectory the required checks
  - Do not establish a certain procedure for the checks
  - Establish speak aloud procedure for the duration of the training
- Make sure that the subject is able to handle an uplink without any help and performs all checks correctly, whereupon the order of how the checks are performed is not important
  - End training session if this condition is given, otherwise give additional instructions and provide further uplinks for training.
- Do not interfere during the simulation runs if possible
- Observe the subject and quote if he has performed each respectively check or not

## **5** Experimental Setup Cognitive Lockup

## 5.1 Description

In this section a short review is conducted on the phenomenon cognitive lockup.

## 5.1.1 Defining cognitive lockup

Moray and Rotenberg (1989) were the first who used the term cognitive lockup for the tendency of system operators to deal with disturbances sequentially. In an experiment where system operators had to detect fires on a ship and deal with a fire accordingly, it appeared that the operators preferred to work on only one fire at a time, which hindered the recognition or management of further fires. They found that any response to fires occurring late in a 'cascade' of fires was greatly delayed, even if the later fires were more serious than earlier fires. Kerstholt, Passenier, Houttuin and Schuffel (1996) conducted research to find further support for the cognitive lockup phenomenon. In their experiment participants had to supervise different independent dynamic subsystems on a ship and deal with disturbances whenever they occurred. The system included an option to stabilize a subsystem in which an additional disturbance occurred. Most participants handled the disturbances sequentially: full attention was given to the first disturbances and subsequent disturbances were ignored. So, Kerstholt et al. (1996) also found in their experiment the tendency of operators to concentrate on one disturbance at a time, ignoring the rest of the system. Therefore, we define cognitive lockup as the tendency to deal with disturbances sequentially.

| 27/09/2010 | Named Distribution Only | Page 14 of 60 |  |
|------------|-------------------------|---------------|--|
|            | Proj. No: 211988        |               |  |





## 5.1.2 High workload as explanation for cognitive lockup

Cognitive workload refers to the information processing demands imposed by the performance of cognitive tasks (Johnson and Proctor, 2004). In order to predict the cognitive load of a specific task, Neerincx (2003) developed the cognitive task load (CTL) theory. This theory proposed three underlying factors of cognitive task load: (1) time occupied (TOC), (2) number of task set switches (TSS), which is the number of active tasks in execution or planned to do, and (3) level of information processing (LIP). Neerincx (2003) suggested that cognitive lockup would occur when time occupied and the number of task set switches are high. Grootjen, Neerincx and Veltman, (2006) conducted experiments in order to validate the CTL theory. In these real-life experiments participants had to deal with emergencies that appeared on a ship. They found that when all three factors were high people experienced cognitive overload; they did not know what to do. Meij (2004) investigated whether a lack of cognitive resources could be an explanation for cognitive lockup. He argued that tasks that require a more complex diagnosis process are expected to demand more cognitive resources and thus cause a higher cognitive workload and might cause cognitive lockup. He found, however, that the level of complexity of information processing did not

affect the degree of cognitive lockup.

We thus hypothesize that cognitive workload is an underlying factor for cognitive lockup, and that the two factors *time occupied* and *task set switches* play a role in producing cognitive lockup.

In the following, we test this hypothesis.

## 5.2 Requirements

As a result of the literature, we consider two parameters as drivers for cognitive lockup:

- Task switch sets (TSS)
- Time occupied (TOC)

We assume that the tasks all have a high level of information processing. Even though the level of information processing does not seem to be relevant for the occurrence of cognitive lockup (see Section 5.1.2), it heightens the workload of the pilot. In addition, as in the cognitive model, cognitive lockup is modeled at the moment on the cognitive layer, the level of information processing should lie on the cognitive layer of Rasmussen's (1986) model.

## 5.3 High-Level Test Conditions

For Cognitive Lockup (formerly referred to as attention capture), we have defined the following high-level test conditions.

- 1.  $T_W$  is a task which is triggered by an event  $E_W$ .
- 2.  $T_w$  is a task which increases the task set switches (TSS) significantly. It also has a high level of information processing and increases the time that

| 27/09/2010 | Named Distribution Only | Page 15 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |
|            |                         |               |





the pilot is occupied (TOC) (it thus should not be a task that is finished fast).

- 3.  $E_W$  occurs as early as possible in the scenario to increase the time that is occupied by  $T_W$  (TOC<sub>TW</sub>) as much as possible.
- 4.  $T_s$  is a task (or a set of tasks) that has a high level of information processing and is triggered by  $E_s$ .
- 5.  $E_s$  occurs and triggers  $T_s$ .
- 6.  $T_{CL}$  is a task which is triggered by an event  $E_{CL}$ .  $T_{CL}$  has a high priority and a high level of information processing.
- 7.  $E_{\text{CL}}$  occurs as late as possible in the scenario to increase the time completion of  $T_{\text{S}}$
- 8. The pilot perceives  $E_{CL}$ .
- 9. The pilot will change after time t to task  $T_{CL}$

Hypotheses:

- 1. If there is  $T_w$ , then execution time of Task  $T_{CL}$  is either beyond operational efficiency or  $T_{CL}$  is not executed at all.
- 2. The reaction time for  $E_{\text{CL}}$  is higher when there is a  $T_{\text{W}}$  than when there is no  $T_{\text{W}}$

## **5.4 Elaboration of Working Hypotheses**

### 5.4.1 General comments

In this experiment, we do not aim at proving the mechanism of cognitive lockup in a psychological valid way. As we choose to experiment in an as realistic situation as possible with subject experts (real pilots), a psychological valid experiment is not feasible.

For that reason, we do not plan to vary all independent variables. As described in Section 5.1, Neerincx (2003) hypothesized that being occupied a high percentage of the time and a high number of task set switches leads to cognitive lockup. What we try to aim at is to validate whether these independent variables, if set to the value where cognitive lockup is expected, actually leads to cognitive lockup in realistic scenarios and real-world tasks. We do not claim that these independent variables, set to these conditions, are a necessary condition for cognitive lockup, but that they are possible conditions for cognitive lockup.

In addition, we would like to get a first idea of the probability of having cognitive lockup in the specified situations (how often does it occur etc.).

## 5.4.2 Independent variables

In order to provoke cognitive lockup, we foresee the following independent variables:

- Task set switches (or the number of tasks that the pilot is executing) (TSS)
- Time the pilot is occupied (TOC).

| 27/09/2010 | Named Distribution Only | Page 16 of 60 |  |
|------------|-------------------------|---------------|--|
|            | Proj. No: 211988        |               |  |



Model-based Analysis of Human

## Errors during Aircraft Cockpit System Design

## 5.4.3 Operationalization

In Table 5.1, the values for the independent variables for the test conditions are given. As can be seen, the values for both TSS and TOC in the test conditions for cognitive lockup are high, whereas the values for the control conditions are medium.

|     | TestCondi | tions1 | TestCondi | tions2 | TestCondi | tions3 | TestCondi | tions4 |
|-----|-----------|--------|-----------|--------|-----------|--------|-----------|--------|
|     | Control   | CL     | Control   | CL     | Control   | CL     | Control   | CL     |
| TSS | Medium    | High   | Medium    | High   | Medium    | High   | Medium    | high   |
| TOC | Medium    | High   | Medium    | High   | Medium    | High   | Medium    | high   |

Table 5.1: The values for the independent variables for the test conditions

### 5.4.4 Dependent variable cognitive lockup

This variable is measured and analyzed in two different ways:

- Cognitive lockup is measured as the percentage of scenarios in which participants switch to  $T_{CL}$  too late. Being too late is measured by not being able to execute  $T_{CL}$  normatively, and thus making an error in the normative behaviour.
- Cognitive lockup is also measured as the relative action time to switch to  $T_{\text{CL}}$

This distinction in the analysis has been made to make the analysis more sensitive to cognitive lockup. In the first definition cognitive lockup is only found when participants do not switch 'on time' to  $T_{CL}$ , which can be seen in the normative behaviour and will lead to safety-critical situations. In the second definition cognitive lockup is found when participants significantly delay their switch to  $T_{CL}$ . The second analysis is therefore more sensitive to finding cognitive lockup than the first analysis.

#### 5.4.4.1 Working hypotheses

According to the two different ways of defining/measuring cognitive lockup, we have the following two working hypotheses:

#### Working hypothesis 1:

If the TSS is `*high'* TOC is `*high'* 

Then

The switch to task  $T_{CL}$  is not done on time.

This hypothesis is qualitatively evaluated by domain experts, who will evaluate per situation of the pilot whether the pilot has reacted correctly or not.

#### Working hypothesis 2

|            | If the |                                 |               |
|------------|--------|---------------------------------|---------------|
| 27/09/2010 |        | Distribution Only<br>No: 211988 | Page 17 of 60 |
|            | 110j.  | NO. 211900                      |               |





TSS is `*high'* TOC is `*high'* 

Then

The reaction time t for  $T_{\text{CL}}$  is higher than in situations where TSS and TOC is lower

This hypothesis is qualitatively evaluated by determining the reaction time of the pilots in the test condition and compared to the same situation without the TSS and TOC having the value '*high'*.

## 5.5 Test conditions

**Parameter** Description InstantiationVariables Values  $E_{W}$ Event that triggers  $T_W$ Task that includes a Tw high TSS, has a high LIP and a high TOC  $E_s$ Event that triggers  $T_S$ тос  $T_{\rm S}$ Task (set) that has a high LIP LIP TSS E<sub>CL</sub> Event that triggers  $T_{CL}$  $T_{CL}$ Task that has a TOC high priority LIP TSS Т Reaction time for  $T_{CL}$ 

The low level test conditions are described using Table 5.2.

 Table 5.2: Parameter definition of the low level test conditions.

#### 5.5.1 Test conditions 1

#### 5.5.1.1 Textual description

The scenario starts before the beginning of the approach phase. The context is an airport with 2 runways (e.g. 14 and 28).

| 27/09/2010 Named Distribution Only |                  | Page 18 of 60 |
|------------------------------------|------------------|---------------|
|                                    | Proj. No: 211988 |               |





An anti-skid failure occurs and the pilot is informed about the constraints on the runway length. The current runway is not too short. Later, an autopilot failure occurs. In addition there is a thunderstorm close to and later in the missed approach sector of runway 14.

During the approach, ATC sends an UPLINK for a RWY change. The new runway does not have the thunderstorm close-by. The pilot needs to do the implementation of the runway change, including the new approach briefing. It is expected that the pilot's reaction time to the runway change is later (than in the control scenario), and that he might forget to check the length of the new runway to keep the constraints because of the anti-skid failure (even though the runway is not too short).

#### 5.5.1.2 Test conditions

In Table 5.3, the first low-level test conditions are specified.

| Parameter       | Description                       | Instantiation                                                           | Variables                | Value                    |
|-----------------|-----------------------------------|-------------------------------------------------------------------------|--------------------------|--------------------------|
| Ew              | Event that triggers $T_{W}$       | Autopilot failure                                                       |                          |                          |
| Tw              | Task                              | To fly in selected                                                      | TSS                      | High                     |
|                 |                                   | mode                                                                    | тос                      | High                     |
|                 |                                   |                                                                         | LIP                      | High                     |
| Es              | Event that triggers $T_S$         | none                                                                    |                          |                          |
| Ts              | Task (set) that has a<br>high LIP | approach<br>monitoring<br>monitor thunder<br>storm<br>anti-skid failure | TSS<br>LIP<br>TOC        | Medium<br>High<br>Medium |
| E <sub>CL</sub> | Event that triggers $T_{CL}$      | ATC uplink                                                              |                          |                          |
| T <sub>CL</sub> | Task                              | Check/implement<br>runway change<br>- Approach<br>briefing              | priority T <sub>CL</sub> | High                     |
| 27/09/2010      |                                   | stribution Only<br>lo: 211988                                           | Page                     | 19 of 60                 |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| T <sub>CL</sub> <sup>+</sup> | CL leads to a `real' error | Priority $T_{CL}^+$ | High |
|------------------------------|----------------------------|---------------------|------|
| Т                            | Reaction time for $T_{CL}$ |                     |      |

#### Table 5.3: Low-level test conditions 1

The difference between the control scenario and the scenario in which we expect cognitive lockup is the occurrence of  $E_w$ , followed by  $T_w$ .

For  $T_{CL}$ , working hypothesis 2 is being evaluated, as the reaction time to  $E_{CL}$  can directly be compared to the reaction time to  $E_{CL}$  without a task  $T_W$ . In addition, it is possible to evaluate working hypothesis 1, as it is also possible to recognize in the normative behaviour at what point in time it is too late (and thus an error) to react to  $E_{CL}$ .

For  $T_{CL}^+$ , it is not possible to evaluate working hypothesis 2, as no comparison can be made to a reaction time to handle this task. Only working hypothesis 1 will be evaluated for  $T_{CL}^+$ , as for this task, it can clearly be seen if the task is not executed (the anti-skid failure constraints are not taken into account when accepting the new runway, and the pilot realizes too late that he cannot land on the accepted runway).

When evaluating working hypothesis 1 for  $T_{CL}^+$ , task  $T_{CL}$  can be seen as being part of the task set  $T_S$ . As  $T_{CL}$  is not a task with a very high TSS and TOC, the overall TSS and TOC can still be seen as being medium.

#### 5.5.1.3 Measuring Cognitive Lockup

#### 5.5.1.3.1 T<sub>CL</sub>

For  $T_{CL}$ , the second working hypothesis is applicable. That means that we expect that  $T_{CL}$  will be executed later than without TW. For that reason, the reaction time needs to be measured. For that, we need to measure the following:

- the moment that the pilot sees the uplink. This needs to be measured for two reasons:
  - for cognitive lockup, we need to be sure that the pilot sees the event, and knows that there is a task that he should execute. Cognitive lockup occurs if the pilot does not change to the task, even though he knows that the task could be executed at that moment.
  - this would be the starting point for the reaction time for the event. The reaction time would then be calculated by the moment of the first action of the task minus the moment in time when he saw the uplink
- the first action of the runway change, e.g. checking the profiles, pressing the generate button etc.

| 27/09/2010 | Named Distribution Only | Page 20 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





5.5.1.3.2 T<sub>CL</sub><sup>+</sup>

For  $T_{CL}^+$ , the first working hypothesis is applicable. That means that we expect that the pilot does not execute a task that a domain expert would deem necessary in a particular situation, and deviates from acceptable behaviour. For that, we need to measure the following:

- When the anti-skid failure occurs, it is necessary to know whether the pilot realizes the new constraints on the runway.
- Whether the pilot rejects or accepts the runway change. He should not accept the uplink, as the new runway is too short
- Whether the pilot briefs the PM about the runway

#### 5.5.1.4 Control condition 1

The control condition looks the same as the test condition 1. However, there will be no autopilot failure. The data that needs to be recorded and evaluated is the same as for the test condition, for both  $T_{CL}$  and  $T_{CL+}$ .

## **5.5.2 Test conditions 2**

#### 5.5.2.1 Textual description

The scenario starts before the beginning of the approach phase. The context is an airport with 2 runways (e.g. 14 and 28).

An autopilot failure occurs before the approach phase begins. Approach briefing is completed.

ATC sends an UPLINK for a RWY change. This is done very late in the approach phase, which leads to a high time pressure. The approach briefing needs to be done again. The new approach has an approach altitude that is higher than the old one (e.g. instead of 4000 ft, the new approach starts at 5000 ft). Because we are in selected mode, the autopilot does not automatically change the value. The pilot needs to select the new altitude himself. It is expected that the pilot will do this too late (or after having left the glide slope) as he is busy with the approach briefing.

#### 5.5.2.2 Test conditions

In Table 5.4, the second low-level test conditions are specified. Tasks:

- Fly in selected mode
- Approach
- Runway change

| Par | ameter | Description | Instantiation | Variables | Value |  |
|-----|--------|-------------|---------------|-----------|-------|--|
|-----|--------|-------------|---------------|-----------|-------|--|

| 27/09/2010       | Named Distribution Only | Page 21 of 60 |
|------------------|-------------------------|---------------|
| Proj. No: 211988 |                         |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| Ew                | Event that triggers $T_{W}$                      | ATC uplink late<br>in the approach<br>phase         |                     |                          |
|-------------------|--------------------------------------------------|-----------------------------------------------------|---------------------|--------------------------|
| Tw                | Task                                             | Runway change                                       | TSS                 | High                     |
|                   |                                                  | in the last phase<br>of the approach                | тос                 | High                     |
|                   |                                                  |                                                     | LIP                 | high                     |
| Es                | Event that triggers $T_S$                        | None                                                |                     |                          |
| Ts                | Task (set) that has a<br>high LIP                | approach<br>monitoring<br>selected flying           | TSS<br>LIP<br>TOC   | Medium<br>High<br>Medium |
| E <sub>CL</sub>   | Event that triggers $T_{CL}$                     | ATC uplink                                          |                     |                          |
| T <sub>CL</sub>   | Task                                             | Handle ATC<br>uplink                                | priority $T_{CL}$   | high                     |
| T <sub>CL</sub> + | Task that measures if CL leads to a 'real' error | monitor general<br>constraints of<br>new trajectory | Priority $T_{CL}^+$ | high                     |
| Т                 | Reaction time for $T_{CL}$                       |                                                     |                     |                          |

#### Table 5.4: Low-level test conditions 2

The difference between the control scenario and the scenario in which we expect cognitive lockup is the timing of the occurrence of  $E_w$ , followed by  $T_w$ .

In the control scenario, the uplink with the runway change is triggered earlier in the approach phase, leading to a less high time pressure.

#### 5.5.2.3 Measuring Cognitive Lockup

5.5.2.3.1 T<sub>CL</sub>

For  $T_{CL}$ , we expect that  $T_{CL}$  is executed later in the test scenario than in the control scenario. This means that the following data should be collected:

- The scenario time at which for the first time, the altitude is changed according to the new trajectory.
- The difference between the glide slope value that the lane should follow at that moment and the actual deviance from the glide slope

| 27/09/2010 | Named Distribution Only | Page 22 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





#### 5.5.2.3.2 T<sub>CL+</sub>

For  $T_{CL+}$ , it might be the case that the pilot is too late in monitoring the altitude constraints and manually changing the altitude. This is not really expected, but still it might be possible. In this case, the videos are needed, and a domain expert (or several) could determine whether an actual error has occurred.

#### 5.5.2.4 Control conditions 2

The only difference between the control condition and the test condition is the timing of the runway change. The triggering of a runway change late in the approach adds a lot of workload, compared to the runway change earlier during the approach. This is mostly the case as the time pressure is varied. In the control condition, the runway change is uplinked early in the approach phase, which will also lead to a change in altitude, but it is expected that the pilot will monitor this altitude change correctly and timely.

### **5.5.3 Test conditions 3**

#### 5.5.3.1 Textual description

The scenario starts before the beginning of the approach phase. The pilot receives several ATC uplinks with radar vectors. ATC sends an UPLINK for a RWY change, which leads to an interception of the profile from above. We expect that the pilot is busy with the runway change and does not monitor the speed and height constraints.

#### 5.5.3.2 Test conditions

In Table 5.5, the third low-level test conditions are specified.

| Parameter | Description                 | Instantiation               | Variables | Value |
|-----------|-----------------------------|-----------------------------|-----------|-------|
| Ew        | Event that triggers $T_{W}$ | ATC uplink/runway<br>change |           |       |
| Tw        | Task                        | 5                           | TSS       | High  |
|           | rom                         | тос                         | High      |       |
|           |                             | LIP                         | high      |       |
| Es        | Event that triggers $T_S$   | None                        |           |       |

| 27/09/2010 | Named Distribution Only | Page 23 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| Ts              | Task (set) that has a<br>high LIP | Approach                                                           | TSS<br>LIP | Medium<br>High |
|-----------------|-----------------------------------|--------------------------------------------------------------------|------------|----------------|
|                 |                                   |                                                                    | тос        | Medium         |
| E <sub>CL</sub> | Event that triggers $T_{CL}$      | ATC uplink                                                         |            |                |
| T <sub>CL</sub> | Task                              | approach<br>briefing/monitoring<br>constraints speed<br>and height | , , ,      | high           |
| t               | Reaction time for $T_{CL}$        |                                                                    |            |                |

#### Table 5.5: Low-level test conditions 3

The difference between the control scenario and the scenario in which we expect cognitive lockup is the occurrence of  $E_w$ , followed by  $T_w$ .

It is possible to evaluate working hypothesis 1, as it is also possible to recognize in the normative behaviour at what point in time it is too late (and thus an error) to react to  $E_{CL}$ .

#### 5.5.3.3 Measuring Cognitive Lockup

5.5.3.3.1 T<sub>CL</sub>

For  $T_{CL}$ , we expect that  $T_{CL}$  is executed later in the test scenario than in the control scenario. This means that the following data should be collected:

- The reaction time for the approach briefing

#### 5.5.4 Test conditions 4

#### 5.5.4.1 Textual description

In this scenario, in cruise flight level, the pilot receives an uplink with a trajectory that is not complete. Only the next waypoint is given. A little later, the pilot receives an ATC message that he is cleared for the rest of the flight, but needs to input the waypoints itself into the AHMI. When he is almost finished with this, a fuel pump malfunction occurs. We expect that the pilot reacts too late (or later than usually) to the message.

#### 5.5.4.2 Test conditions

In Table 5.6, the fourth low-level test conditions are specified.

| 27/09/2010 | Named Distribution Only | Page 24 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| Parameter       | Description                       | Instantiation                      | Variables                | Value  |
|-----------------|-----------------------------------|------------------------------------|--------------------------|--------|
| Ew              | Event that triggers $T_{W}$       | ATC message                        |                          |        |
| Tw              | Task                              | Insert waypoints                   | TSS                      | High   |
|                 |                                   | into AHMI                          | тос                      | High   |
|                 |                                   |                                    | LIP                      | high   |
| Es              | Event that triggers $T_S$         | none                               |                          |        |
| T <sub>s</sub>  | Task (set) that has a<br>high LIP |                                    | TSS                      | Low    |
|                 |                                   | Monitor flight                     | LIP                      | Medium |
|                 |                                   |                                    | тос                      | Low    |
| E <sub>CL</sub> | Event that triggers $T_{CL}$      | System message                     |                          |        |
| T <sub>CL</sub> | Task                              | Handle fuel<br>pump<br>malfunction | priority T <sub>CL</sub> | high   |
| Т               | Reaction time for $T_{CL}$        |                                    |                          |        |

#### Table 5.6: Low-level test conditions 4

The difference between the control scenario and the test scenario in which we expect cognitive lockup is the occurrence of  $E_w$ , followed by  $T_w$ . This means that in the control scenario, the pilot does not need to insert the trajectory into the AHMI.

For  $T_{CL}$ , working hypothesis 2 is being evaluated, as the reaction time t to  $E_{CL}$  can directly be compared to the reaction time to  $E_{CL}$  without a task  $T_{W}$ .

#### 5.5.4.3 Measuring Cognitive Lockup

5.5.4.3.1 T<sub>CL</sub>

For  $T_{CL}$ , we expect that  $T_{CL}$  is executed later in the test scenario than in the control scenario. This means that the following data should be collected:

- The reaction time for the fuel pump malfunction

| 27/09/2010 | Named Distribution Only | Page 25 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        | _             |





#### 5.6 Scenarios

During two workshops with pilots from different airlines events were identified that are likely to lead to a cognitive lockup by the pilot. After exhaustive discussions and test sessions in the simulator four experimental and three corresponding control scenarios have been designed. Two of the four experimental scenarios share one control scenario while the other two have dedicated control scenarios. The flight situations were cognitive lockup could occur are combinations of usually system degradation and another difficult flight situation that need a certain action to be resolved. Depending on the current workload it is more or less likely that the pilot will show a behaviour that might indicate a possible cognitive lockup. While scenario 2 and 3 have their own dedicated control scenario, scenario 1 and 4 share one which makes a total of 7 scenarios each lasting about 20 minutes.

In the following each situation that has been identified to be likely to show this behaviour forms one scenario.

#### 5.6.1 Scenario 1

The flight starts in normal conditions with all systems working. The pilot is informed about a failure of the anti skid system and about the new required landing distance. This new required landing distance has to be kept in mind during the following runway change and approach briefing. An additional AP2 failure requires the pilot to fly the aircraft in selected mode and makes it more likely that he forgets to check the runway length either during the runway change or during the approach briefing.

#### 5.6.1.1 Test Scenario 1

| CL         | Simulation | Destination | Initial Position |                   |          |         | Weather |                                     |            |         |
|------------|------------|-------------|------------------|-------------------|----------|---------|---------|-------------------------------------|------------|---------|
| Scenario   | Time       | Airport     | RWY              | Position          | Altitude | Heading | Speed   | Thunder-<br>storm                   | Visibility | Wind    |
| Scenario 1 | UTC        | LSZH        | RWY 28           | N48.150<br>E9.460 | 19000 ft | 180°    | 240 kt  | N47.608<br>E8.108<br>Radius<br>5 nm | 4096 m     | No Wind |

| Route  |                                      | ВІКВІ | RUSOT                                          | LAPAG | VEDOK                                                          | ROMIR | ZUE                   | ZH703 | FAP1 | RW28 |
|--------|--------------------------------------|-------|------------------------------------------------|-------|----------------------------------------------------------------|-------|-----------------------|-------|------|------|
| Timing | 10 sec<br>after<br>scenario<br>start |       | 10 sec before<br>RUSOT                         |       | 8 nm before<br>VEDOK                                           |       | 150 sec<br>before ZUE |       |      |      |
| Action | Initial<br>uplink                    |       | SYS MSG:<br>Anti skid<br>failure,<br>LDR 2100m |       | SYS MSG:<br>autopilot 2<br>failure, revert to<br>selected mode |       | Uplink: RWY<br>change |       |      |      |

| 27/09/2010 | Named Distribution Only | Page 26 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





#### 5.6.1.2 Control Scenario 1 & 4

| CL                         |      |         | Final  |                   | Initial I | Position | Weather |                                     |            |         |
|----------------------------|------|---------|--------|-------------------|-----------|----------|---------|-------------------------------------|------------|---------|
| Scenario                   | Time | Airport | RWY    | Position          | Altitude  | Heading  | Speed   | Thunder-<br>storm                   | Visibility | Wind    |
| Control<br>Scenario<br>1&4 | UTC  | LSZH    | RWY 28 | N48.357<br>E9.365 | 19000 ft  | 164°     | 240 kt  | N47.608<br>E8.108<br>Radius<br>5 nm | 4096 m     | No Wind |

| Route  |                                      | MINGA | ВІКВІ                                                                                       | RUSOT                                                | LAPAG | VEDOK | ROMIR | ZUE                         | ZH701 | TRA | CI14 | FI14 | RW14 |
|--------|--------------------------------------|-------|---------------------------------------------------------------------------------------------|------------------------------------------------------|-------|-------|-------|-----------------------------|-------|-----|------|------|------|
| Timing | 10 sec<br>after<br>scenario<br>start |       | 140 sec<br>before<br>BIKBI                                                                  | 10 sec<br>before<br>RUSOT                            |       |       |       | 150<br>sec<br>before<br>ZUE |       |     |      |      |      |
| Action | Initial<br>uplink                    |       | SYS MSG:<br>Master<br>caution: fuel<br>pump<br>malfunction,<br>descend<br>FL100 or<br>below | SYS<br>MSG:<br>Anti skid<br>failure,<br>LDR<br>2100m |       |       |       | Uplink:<br>RWY<br>change    |       |     |      |      |      |

#### 5.6.2 Scenario 2

The flight starts in normal conditions with all systems working. An AP2 failure after the top of descent leaves the aircraft in hold mode for speed and heading and in altitude acquire mode for the intercept altitude of the current arrival runway. A subsequent runway change requires levelling off at a higher altitude. Depending on the timing of the events it is more or less likely that the pilot follows horizontal route in selected mode but oversees the higher intercept altitude.

#### 5.6.2.1 Test Scenario 2

| CL         |      |         |        |                   | Initial F | Position |        | Weather                             |            |         |  |
|------------|------|---------|--------|-------------------|-----------|----------|--------|-------------------------------------|------------|---------|--|
| Scenario   | Time | Airport | RWY    | Position          | Altitude  | Heading  | Speed  | Thunder-<br>storm                   | Visibility | Wind    |  |
| Scenario 2 | UTC  | LSZH    | RWY 28 | N48.116<br>E9.169 | 18000 ft  | 186°     | 240 kt | N47.600<br>E8.150<br>Radius<br>5 nm | 4096 m     | No Wind |  |

| Route |                                      | HEUSE | TINOX | SONOM                                                     | ZH701                   | ZUE | ZH703 | FAP1 | RW28 |
|-------|--------------------------------------|-------|-------|-----------------------------------------------------------|-------------------------|-----|-------|------|------|
| Timin | 10 sec<br>after<br>scenario<br>start |       |       | 5 nm before SONOM                                         | 100 sec before<br>ZH701 |     |       |      |      |
| 27/0  | 9/2010                               |       |       | Named Distribution Only Page 27 of 60<br>Proj. No: 211988 |                         |     |       |      |      |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| Action | Initial<br>uplink |  |  | SYS MSG: autopilot 2<br>failure, revert to<br>selected mode | Uplink: RWY change |  |  |  |  |
|--------|-------------------|--|--|-------------------------------------------------------------|--------------------|--|--|--|--|
|--------|-------------------|--|--|-------------------------------------------------------------|--------------------|--|--|--|--|

#### 5.6.2.2 Control Scenario 2

| CL                    | Simulation | Destination | Final  |                   | Initial F | Position |        | Weather           |            |         |  |
|-----------------------|------------|-------------|--------|-------------------|-----------|----------|--------|-------------------|------------|---------|--|
| Scenario              | Time       | Airport     | RWY    | Position          | Altitude  | Heading  | Speed  | Thunder-<br>storm | Visibility | Wind    |  |
| Control<br>Scenario 2 | UTC        | LSZH        | RWY 28 | N48.416<br>E9.200 | 23000 ft  | 186°     | 240 kt | -                 | 4096 m     | No Wind |  |

| Route  |                                      | HEUSE | TINOX                                                          | SONOM                 | ZH701 | ZUE | ZH703 | FAP1 | RW28 |
|--------|--------------------------------------|-------|----------------------------------------------------------------|-----------------------|-------|-----|-------|------|------|
| Timing | 10 sec<br>after<br>scenario<br>start |       | 4 nm before<br>TINOX                                           | 8 nm before<br>SONOM  |       |     |       |      |      |
| Action | Initial<br>uplink                    |       | SYS MSG:<br>autopilot 2<br>failure, revert to<br>selected mode | Uplink: RWY<br>change |       |     |       |      |      |

#### 5.6.3 Scenario 3

The flight starts in cruise flight with a wrong weight typed into the FMS resulting in a miscalculation of the descent profile. The flight is radar vectored to an intermediate flight level where the descent to the intercept altitude starts. Depending on the additional workload caused by a runway change the pilot will likely forget to monitor the vertical profile and ends up in a position too high for a normal approach.

#### 5.6.3.1 Test Scenario 3

| CL         | Simulation | Destination | Final  |                    | Initial F | Position |        |                   | Weather    |         |
|------------|------------|-------------|--------|--------------------|-----------|----------|--------|-------------------|------------|---------|
| Scenario   | Time       | Airport     | RWY    | Position           | Altitude  | Heading  | Speed  | Thunder-<br>storm | Visibility | Wind    |
| Scenario 3 | UTC        | LSZH        | RWY 28 | N47.729<br>E10.000 | 17000 ft  | 270°     | 240 kt | -                 | 4096 m     | No Wind |

| 27/09/2010 | Named Distribution Only | Page 28 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |







| Route  |                                      | RAVED                                                                 | [ETOXU]                                                                     | [NEGRA]                                                                   | [MATIV]                                                         | AMIKI                     | ZH703 | FAP1 | RW28 |
|--------|--------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------|-------|------|------|
| Timing | 10 sec<br>after<br>scenario<br>start | 3 nm before<br>RAVED                                                  | South of N47.6583                                                           | South of N47.6                                                            | West of<br>E9.333333                                            | 6.5 nm<br>before<br>AMIKI |       |      |      |
| Action | Initial<br>uplink                    | ATC MSG: Radar<br>vectors: turn left<br>heading 200,<br>descend FL120 | ATC MSG: Radar<br>vectors: turn right<br>heading 230,<br>reduce speed 220kt | ATC MSG:<br>Radar vectors:<br>turn right<br>heading 270,<br>descend FL100 | ATC MSG:<br>Proceed direct<br>MATIV and<br>continue on<br>route | Uplink:<br>RWY<br>change  |       |      |      |

## 5.6.3.2 Control Scenario 3

| CL                    | Simulation | Destination | Final  |                    | Initial I | Position |        |                   | Weather    |         |
|-----------------------|------------|-------------|--------|--------------------|-----------|----------|--------|-------------------|------------|---------|
| Scenario              | Time       | Airport     | RWY    | Position           | Altitude  | Heading  | Speed  | Thunder-<br>storm | Visibility | Wind    |
| Control<br>Scenario 3 | UTC        | LSZH        | RWY 28 | N47.729<br>E10.000 | 17000 ft  | 270°     | 240 kt | -                 | 4096 m     | No Wind |

| Route  |                                      | RAVED                                                                 | [ETOXU]                                                                     | [NEGRA]                                                                   | [MATIV]                                                         | AMIKI | ZH703 | FAP1 | RW28 |
|--------|--------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|-------|-------|------|------|
| Timing | 10 sec<br>after<br>scenario<br>start | 3 nm before<br>RAVED                                                  | South of N47.6583                                                           | South of N47.6                                                            | West of<br>E9.333333                                            |       |       |      |      |
| Action | Initial<br>uplink                    | ATC MSG: Radar<br>vectors: turn left<br>heading 200,<br>descend FL120 | ATC MSG: Radar<br>vectors: turn right<br>heading 230, reduce<br>speed 220kt | ATC MSG:<br>Radar vectors:<br>turn right<br>heading 270,<br>descend FL100 | ATC MSG:<br>Proceed direct<br>MATIV and<br>continue on<br>route |       |       |      |      |

#### 5.6.4 Scenario 4

The flight starts in normal conditions with all systems working. An uplink instructs the pilot to input his own approach geometry into the FMS. While doing so he is informed about a system degradation requiring to descent to a lower flight level. Depending on the additional workload caused by editing the flight plan the immediate action will be delayed to after finishing the flight plan or will be totally forgotten during a subsequent shortcut uplink that causes the airplane to climb again.

#### 5.6.4.1 Test Scenario 4

| CL                                                                   | CL Simulation Destination Final Initial Position Weather<br>Scenario Time Airport RWY |         |     |                                          |  |  |  |      |            |      |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|-----|------------------------------------------|--|--|--|------|------------|------|
| Scenario                                                             | Time                                                                                  | Airport | RWI | Position Altitude Heading Speed Thunder- |  |  |  |      | Visibility | Wind |
| 27/09/2010 Named Distribution Only Page 29 of 60<br>Proj. No: 211988 |                                                                                       |         |     |                                          |  |  |  | f 60 |            |      |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



|            |     |      |        |                   |          |      |        | storm |       |         |
|------------|-----|------|--------|-------------------|----------|------|--------|-------|-------|---------|
| Scenario 4 | UTC | LSZH | RWY 28 | N51.000<br>E9.666 | 15000 ft | 180° | 240 kt | -     | Clear | No Wind |

| Route  |                                                                    |                                                                                           |                                                                                        | GED | FUL | [MTR]                    | DF021 | REDGO | RW25R |
|--------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|-----|--------------------------|-------|-------|-------|
| Timing | 10 sec after<br>scenario start                                     | 40 sec after scenario<br>start                                                            | While inserting WYP<br>DF016 send<br>SYS MSG manually                                  |     |     | 10 nm<br>before<br>MTR   |       |       |       |
| Action | ATC MSG:<br>Proceed to GED<br>via FUL, expect<br>further clearance | ATC MSG: Cleared for<br>the GED 25 RNAV<br>transition and for the<br>ILS 25R, no ALT CSTR | Manual SYS MSG: Master<br>caution: fuel pump<br>malfunction, descend<br>FL100 or below |     |     | Uplink:<br>RWY<br>change |       |       |       |

## 5.6.4.2 Control Scenario 4

See control scenario 1 & 4.

### 5.7 Experiment Design

The scenarios to generate cognitive lockup are all flown in the Generic Cockpit Simulator GECO. Although they were designed to be as independent as possible it was not possible to order them totally randomly. Thus there were only two different scenario sequences as described in chapter 7.3.

The scenarios are started by the experiment leader from the GECO control station and run automatically driven by the scenario controller except for the AP2 failure, which needed manual input. Observations during the experiment regarding the subject pilot actions are taken by the pilot monitoring and regarding the overall simulation by the experiment leader. After the landing the simulation is totally stopped and the scenario specific questionnaire is handed out to the subject pilot.

#### 5.7.1 Training

The training for the cognitive lockup scenarios takes place in the GECO and is conducted by the pilot monitoring. It starts with a general overview of the GECO's systems and their location and the flight characteristics of the aircraft are demonstrated. The flight control law, the information that can be shown on the displays, the different modes of the autopilot, and the function of the radio management panel will be explained in detail. Following list specifies the respective systems and indications:

- Flight controls
  - Side stick rate control
  - o Flaps
  - Speed brakes, ground spoilers

| Proj. No: 211988 | 27/09/2010 | Named Distribution Only | Page 30 of 60 |
|------------------|------------|-------------------------|---------------|
|                  |            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



- Autobrake
- o **Gear**
- Displays
  - Primary flight display
  - Flight mode annunciator indications
  - Navigation display
  - VOR/NDB/ILS/DME indications
  - Engine display
  - Engine indication
  - Flaps, speed brakes and gear position
  - System display
- Autopilot
  - Functions of autopilot 1 & 2
  - Autoflight system modes
  - Autothrottle
  - o Autoland
  - Autocall system
- Radio management panel
- KCCU AHMI
- GECO's speeds and performance
- Flight path monitoring and adherence
- Messages
  - System messages
    - System malfunctions
    - Procedures for autopilot 2 failure (flying in selected mode)
  - ATC messages
    - Radar vectors
- Weather
  - Procedures for thunderstorms
  - ATIS information

The following completion standard for the training applies:

- The pilot knows how to fly the simulator and knows the different levels of automation
- The pilot understands the different autopilot functions and is able to use the selected mode to follow an FMS trajectory
- The pilot is able to follow radar vectors given by ATC via datalink and switch back FMS mode

| 27/09/2010 | Named Distribution Only | Page 31 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





## 5.7.2 Instructions for experiment leader (pilot monitoring)

The pilot monitoring is required to adhere to the following general rules:

- Do not tell the subject if he has made a mistake
- Do not help the subject to a great extend in handling general cockpit duties
- Do not suggest a solution to a problem unless explicitly asked
- Do not remind the subject of tasks to do or tasks that have been forgotten
- Perform standard call outs
- Support the subjects decision to accept a RWY change
- Support the subject in handling the AHMI if necessary
- Make sure that the subject closes open uplink or message windows after the information of the windows have been processed
- Avoid any Smalltalk as far as possible

## 5.7.3 Debriefing

After each scenario, the pilot is asked to fill in a questionnaire evaluate his task load during the scenario. For an example of the questionnaire, see 9.3 Task load questionnaire in the Appendix.

During the debriefing at the end of the second day general remarks of the subject regarding the simulation and the target system are discussed and quoted and any open questions are answered.

## **6** Experimental Setup Selective Attention

#### 6.1 Description

Humans are constantly faced with a large amount of information, especially in a environment like a cockpit. It is essential that the pilot has certain situation awareness on the current state of the instruments. Display designers try to control the attention of the pilot by using flashing elements that should attract the attention of the pilot to certain changes. The effect that is used here is bottom-up attention. In theory, bottom-up visual attention is defined as automatic shifts of attention due to static or dynamic discontinuities. Static discontinuities are differences in colour, shape or brightness, e.g. a red circle in a set of green circles, or a circle in a set of rectangles. In contrast to this, dynamic discontinuities are changes over time, e.g. a flashing or moving object. In the following, we will refer to the occurrence of a dynamic discontinuity as *event*. If such an event occurs in the visual field, this can result in a shift of visual attention. This effect is e.g. used for the flight mode annunciations of the Primary

| 27/09/2010 | Named Distribution Only | Page 32 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



Flight Display in a modern glass cockpit, where all mode changes are highlighted by flashing FMA (or a flashing box around the FMA) for about 10 seconds. A mode change is an important event that a pilot has to be aware of. Recent studies showed that bottom-up visual attention is not always working. One reason is that top-down visual attention can prevent a shift of attention, e.g. when a pilot is very focused on acquiring certain information on another display. A second reason could be that the event is outside the visual field at all, e.g. because the pilot is looking down for a longer time. The third reason is that the event is missed because of interference with other discontinuities. Nikolic, Orr and Sarter (2004) called this display context: If the event occurs on a display where the neighbourhood is very colourful or dynamic, the probability of recognizing the event is reduced.

#### **6.2 Requirements**

- Mode changes, with different special extend to focus of subject.
- Call out of FMA change required.

### 6.3 High Level Test Conditions

(1) Scenario in which pilots have to perform a task T1.

(2) Visual Event E (e.g. flashing display element) occur which requires performing a second task (T2).

(3) The display context in which E occurs is dynamic.

Hypothesis: Pilots will not notice event E because of the dynamic graphical neighbourhood of E, or because it's outside his visual field.

Dependent Variables:

- Time to detection of event
- Detection rate

Fixed Variables:

- Duration of flashing

Independent Variables:

- Colours of environment
- Dynamicity of elements
- Distance between flashing element and current focus

## 6.4 Low Level Test Conditions

| 1) FMA    |                   |                                                            |
|-----------|-------------------|------------------------------------------------------------|
| Parameter | Description       | Instantiation                                              |
| T1        | Main Task         | Task on display different from PFD                         |
| E         | Event that occurs | Mode Annunciations on the PFD (manual + automatic changes) |

| 27/09/2010 | Named Distribution Only | Page 33 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| T2 | Task to<br>performed if<br>occours | be<br>E | Verbalise actual Mode |
|----|------------------------------------|---------|-----------------------|
|----|------------------------------------|---------|-----------------------|

#### 2) Uplink

| Parameter | Description                         | Instantiation                        |
|-----------|-------------------------------------|--------------------------------------|
| T1        | Main Task                           | Monitoring or other task not on AHMI |
| E         | Event that occurs                   | Uplink pops up                       |
| T2        | Task to be<br>performed if E occurs | Implement uplink                     |

## 6.5 Elaboration of the Working Hypothesis

Not all mode changes will be focused by the pilots within 10s after change, not all mode changes will be focused by the pilots within 20s after change. Not all uplinks will be detected within 10s after pop-up by the pilots.

#### 6.5.1 Independent Variables:

- Distance between Event and current focus
- Colours of environment
- Dynamicity of elements

#### 6.5.2 Operationalisation of Independent Variables:

| Parameter           | Operationalisation                                                                                                                                                                                                                                                                                                                                                                             |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DISTANCE            | This is the distance between the Event E<br>and the current focus of the subject F.<br>Could be influenced by explicitly<br>controlling the current task for the time<br>when E is awaited, e.g. during a decent<br>one could omit an ATC message at the<br>AHMI to influence the attention of the<br>pilot to this (low priority task).<br>Operationalised as NEAR (<=40°) and<br>FAR (> 40°) |  |
| ENVIRONMENT_COLOURS | The colours of the environment can be<br>either monochrome (black or white) or<br>coloured (number of different colours ><br>2)                                                                                                                                                                                                                                                                |  |

| 27/09/2010 | Named Distribution Only | Page 34 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



|   | Model-based Analysis of Human  |   |
|---|--------------------------------|---|
| 1 | Errors during Aircraft Cockpit |   |
|   | System Design                  | 4 |

| DYNAMICITY | An element can be classified if it is<br>continuously changing (position, value),<br>with a frequency >= 1 Hz (i.e. 1 change<br>per second), e.g. the artificial horizon is<br>moving, or the altimeter is continuously<br>updated. There should be at least one<br>dynamic element in a distance of<br>maximum 15° to the event |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### 6.5.3 Working Hypothesis

|            | 5 /1                                     |       |                 |       |
|------------|------------------------------------------|-------|-----------------|-------|
| If         | (ENVIRONMENT_COLOURS=mono<br>TANCE=NEAR) | AND   | DYNAMICITY=NONE | AND   |
| 015        |                                          |       |                 |       |
|            | DETECTION_RATE ~ 95%                     |       |                 |       |
| IF         | (ENVIRONMENT_COLOURS=mono                | AND   | DYNAMICITY=NONE | AND   |
| DIS        | TANCE=FAR)                               |       |                 |       |
|            | DETECTION_RATE ~ 80%                     |       |                 |       |
| If         | (ENVIRONMENT_COLOURS=mono                | AND   | DYNAMICITY=TRUE | AND   |
| DIS        | TANCE=NEAR)                              |       |                 |       |
|            | DETECTION_RATE ~ 90%                     |       |                 |       |
| IF         | (ENVIRONMENT_COLOURS=mono                | AND   | DYNAMICITY=TRUE | AND   |
| DIS        | TANCE=FAR)                               |       |                 |       |
|            | DETECTION_RATE ~ 70%                     |       |                 |       |
| If         | (ENVIRONMENT_COLOURS=colour              | AND   | DYNAMICITY=NONE | AND   |
|            | TANCE=NEAR)                              |       |                 |       |
|            | DETECTION_RATE ~ 95%                     |       |                 |       |
| IF         | · · · · · · · · · · · · · · · · · · ·    | AND   | DYNAMICITY=NONE | AND   |
| DIS        | TANCE=FAR)                               |       |                 |       |
|            | DETECTION_RATE ~ 80%                     |       |                 |       |
| If         |                                          | AND   | DYNAMICITY=TRUE | AND   |
|            | TANCE=NEAR)                              | 7.110 |                 | 7.110 |
| 015        | DETECTION_RATE ~ 80%                     |       |                 |       |
| IF         | (ENVIRONMENT_COLOURS=colour              | AND   | DYNAMICITY=TRUE | AND   |
|            |                                          | AND   | DINAMICITI-TROL | AND   |
| 015        | TANCE=FAR)                               |       |                 |       |
| <b>C</b> . | DETECTION_RATE ~ 60%                     |       |                 |       |
|            |                                          |       |                 |       |

See also Nicolic, Orr and Sarter (2004).

## 6.6 Simulation Scenario (OFF/TNO)

No dedicated scenario for this EPM will be designed in order to test these hypotheses. For all (cognitive lockup) scenarios, the pilot is asked to announce the mode changes. These announcements are used to determine whether selective attention has occurred. The experiments are used to further gain knowledge about the parameters for selective attention and the data is used to determine whether the theory described above can be validated. Needed data is the gaze position and the mode changes. We will measure, if the pilot has called out the mode change, within 10 or 20 seconds after the mode change appeared.

| 27/09/2010 | Named Distribution Only | Page 35 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





# 7 Overall Experimental Setup

All in all at least 16 pilots will take part in the experiments at the DLR. Each pilot will be confronted with the same scenarios in the GECO where only the order will vary. Depending on the group the pilot will conduct different LC sessions. The experimental group will conduct 5 sessions with scenarios where all test conditions set to "false" and only one session with scenarios where one test condition is set to "true" in order to test if LC has been build up. The control group will have scenarios with test conditions set to "true" in all sessions.

## 7.1 Invitation

The subjects are invited via email to participate in the simulation. The invitation can be found in the Appendix.

After a subject receives a confirmation of participation, he is provided with information regarding the schedule of the two days and information about accommodation and remuneration. He receives as well a description of the AHMI for an autonomous initial study of the system.

## 7.2 Briefing

The briefing forms the beginning of the simulation cycle for each subject. It starts with an introduction to the project and the simulator. Afterwards the AHMI as the target system is described again in detail. It is assured that the subject has understood the basic principle of the system, in particular the data link only communication function and the necessary steps to generate, negotiate and activate a trajectory out of a flight plan.

The briefing continues with a description of the taken measurements. Here the focus is on why and what kind of performance data are measured in the avionic test bed and the GECO. The presentation ends with an overview of the schedule for the two days.

## 7.3 Schedule

All sessions of LC scenarios and the CL scenarios together with the required briefing and training sessions and the necessary breaks take place in the simulation facilities of the DLR in Braunschweig during two successive days. During these two days the experimental design follows certain requirements:

- A briefing and a debriefing at the beginning and the end
- A training of all needed systems and procedures prior to the experimental session or scenario
- Enough breaks and time to relax the eyes in order not to measure effects like fatigue and to get high quality gaze measurement data
- A diverse schedule of LC sessions and CL scenarios to keep the pilot interested and busy

| 27/09/2010 | Named Distribution Only | Page 36 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |
|            | 110]: 110. 211900       |               |





- A varying order of the CL scenarios to avoid sequencing effects being undiscovered
- An order of the CL scenarios that don't affect the performance of the pilot in a certain situation. (Experimental and control scenario should not follow each other)
- Incorporation of control groups of different size for each EPM.
  - LC (experimental/control group): 12 experimental, 4 control.
  - CL (scenario sequencing): 8 experimental, 8 control

Below is the resulting schedule that incorporates all these requirements:

|       | Day 1                     |                        |          |  |  |  |  |  |  |  |  |  |
|-------|---------------------------|------------------------|----------|--|--|--|--|--|--|--|--|--|
| Time  | w                         |                        |          |  |  |  |  |  |  |  |  |  |
| Time  | Group A                   | Control Group B        | Where    |  |  |  |  |  |  |  |  |  |
| 09:00 | Briefing                  |                        |          |  |  |  |  |  |  |  |  |  |
| 09:30 | LC Training A             | LC Training B          | Test bed |  |  |  |  |  |  |  |  |  |
| 10:15 | - Cc                      | offee -                |          |  |  |  |  |  |  |  |  |  |
| 10:30 | LC Build up Session 1A    | LC Build up Session 1B | Test bed |  |  |  |  |  |  |  |  |  |
| 11:15 | LC Build up Session 2A    | LC Build up Session 2B | Test bed |  |  |  |  |  |  |  |  |  |
| 12:00 | - Lu                      | inch -                 |          |  |  |  |  |  |  |  |  |  |
| 13:00 | CL Training (GECO Trainin | g)                     | GECO     |  |  |  |  |  |  |  |  |  |
| 14:30 | CL Scenario 1             | CL Scenario 1          | GECO     |  |  |  |  |  |  |  |  |  |
| 15:15 | CL Scenario 2             | CL Control Scenario 2  | GECO     |  |  |  |  |  |  |  |  |  |
| 16:00 | - Cc                      | offee -                |          |  |  |  |  |  |  |  |  |  |
| 16:15 | LC Build up Session 3A    | LC Build up Session 3B | Test bed |  |  |  |  |  |  |  |  |  |
| 17:00 | End                       |                        |          |  |  |  |  |  |  |  |  |  |

|    | Day 2    |                      |                       |       |  |  |  |  |  |  |  |
|----|----------|----------------------|-----------------------|-------|--|--|--|--|--|--|--|
|    | Time     | W                    | Where                 |       |  |  |  |  |  |  |  |
|    | Time     | Group A              | Control Group B       | where |  |  |  |  |  |  |  |
|    | 09:00    | CL Scenario 3        | CL Control Scenario 3 | GECO  |  |  |  |  |  |  |  |
| 27 | /09/2010 | Named Dis<br>Proj. N | Page 37 of 6          | 50    |  |  |  |  |  |  |  |





| 09:45 | CL Control Scenario 2      | CL Scenario 2           | GECO     |  |  |  |  |  |  |
|-------|----------------------------|-------------------------|----------|--|--|--|--|--|--|
| 10:30 | - Co                       | - Coffee -              |          |  |  |  |  |  |  |
| 10:45 | LC Build up Session 4A     | LC Build up Session 4B  | Test bed |  |  |  |  |  |  |
| 11:30 | LC Build up Session 5A     | LC Build up Session 5B  | Test bed |  |  |  |  |  |  |
| 12:15 | - Lu                       | - Lunch -               |          |  |  |  |  |  |  |
| 13:15 | LC Test Session A          | LC Test Session B       | Test bed |  |  |  |  |  |  |
| 13:45 | CL Training (Editing of Ro | ute)                    | Test bed |  |  |  |  |  |  |
| 14:30 | CL Control Scenario 3      | CL Scenario 3           | GECO     |  |  |  |  |  |  |
| 15:15 | - Co                       | ffee -                  |          |  |  |  |  |  |  |
| 15:30 | CL Scenario 4              | CL Scenario 4           | GECO     |  |  |  |  |  |  |
| 16:15 | CL Control Scenario 1&4    | CL Control Scenario 1&4 | GECO     |  |  |  |  |  |  |
| 17:00 | End                        |                         |          |  |  |  |  |  |  |

| 27/09/2010 | Named Distribution Only | Page 38 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





### 7.4 Debriefing

At the end of both experiment days, the pilots are asked to fill in a questionnaire that asks the pilots to evaluate the importance of checks in general and the task load of tasks in general.

For the questionnaire, please see the Appendix (9.4).

### 8 References

Endsley, M. R., 1988, Design and evaluation for situation awareness enhancement, In *Proceedings of the Human Factors Society 32nd Annual Meeting* (*p. 97-101*). *Santa Monic*a, CA: Human Factors and Ergonomics Society.

Frey, D., Schulz-Hardt, S. (1997). Eine Theorie der Gelernten Sorglosigkeit. In H. Mandl (Hrsg.), 40. Kongress der Deutschen Gesellschaft für Psychologie. Göttingen, Seattle: Hogrefe Verlag für Psychologie, pp. 604-611 (1997)

Grootjen, M., Neerincx, M.A., Veltman J.A., 2006, Cognitive task load in a naval ship control centre: from identification to prediction, Ergonomics, Vol. 49, Nos. 12-13, 10-22 October 2006, 1238-1264.

Johnson A., Proctor R.W., 2004, Attention: *Theory and Practice*, Sage Publication, Thousand Oaks.

Jones, D.G., and Endsley, M.R., 1996, Sources of situational awareness errors in aviation, *Aviation, Space, and Environmental Medicine, 67, 507-512.* 

Kerstholt, J., Passenier, P., Houttuin, K., & Schuffel, H., 1996, The effect of a priori probability and complexity on decision making in a supervisory control task, *Human Factors*, 38(1), 65–78.

Luchins, A. S. & Luchins, E. H. (1959). *Rigidity of behavior: A variational approach to the effect of einstellung. Oregon: University of Oregon books.* 

Meij, G., 2004, Sticking to plans: capacity limitation or decision-making bias?, Doctoral dissertation, Department of Psychology, University of Amsterdam, Amsterdam.

Meyer, D.E. & Kieras, D.E., 1997a, A computational theory of executive cognitive processes and multiple-task performance: part 1. Basic mechanisms. *Psychological Review*, 104, 3-65.

| 27/09/2010 | Named Distribution Only | Page 39 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





Meyer, D.E. & Kieras, D.E., 1997b, A computational theory of executive cognitive processes and multiple-task performance: part 2. Accounts of psychological refractory-period phenomena. *Psychological Review*, 104, 749-791.

Moray, N., & Rotenberg, I., 1989, Fault management in process control: eye movements and action, *Ergonomics 32 (11), 1319-1342.* 

Neerincx, M., 2003, Cognitive modeling of pilot errors and error recovery in flight management tasks, *In E. Hollnagel (Ed.), Handbook of cognitive task design (pp. 283–306). CRC.* 

Nikolic, M. I., Orr, J. M., & Sarter, N. B., 2004. Why pilots miss the green box: how display context undermines attention capture. *The International Journal Of Aviation Psychology, Lawrence Erlbaum Associates, Inc., 14*(1), 39–52.

Rasmussen, J., 1986, Information processing and human machine interaction: An approach to cognitive engineering, Elsevier Science Inc. New York, NY, USA.

Rassin, E., Muris P., Booster, E., Kolsloot, I., 2008, Indecisiveness and tunnel vision, *Personality and Individual differences*, 45 (2008), 96-112

Schumacher, E., Lauber, E., Glas, J., Zurbriggen, E., Gmeindl, L., Kieras, D., et al., 1999, Concurrent response-selection processes in dual-task performance: Evidence for adaptive executive control of task scheduling, *Journal of Experimental Psychology: Human Perception and Performance, 25, 791–814* 

| 27/09/2010 | Named Distribution Only | Page 40 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





# 9 Appendix

### 9.1 Learned Carelessness Simulation Schedule

|                                                                          | Total                                                                                                                      |                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                          | Gro                                                                                                               | up A                                                                                                              |                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                       | Control Group B                                                                                 |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                                                                                                               |                                                                                                          |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Run                                                                      | Time                                                                                                                       | Scenario                                                                                                                                                                                                                                                                                              |                                                                                                          |                                                                                                          | Che                                                                                                               | cks                                                                                                               |                                                                                                                            |                                                                                                                   | Scenario                                                                                                                                                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                             | Che                                                                                                                                                                                                                                                                                           | ecks                                                                                                              |                                                                                                                               |                                                                                                          |  |
|                                                                          | [min:sec]                                                                                                                  |                                                                                                                                                                                                                                                                                                       | 1                                                                                                        | 2                                                                                                        | 3                                                                                                                 | 4                                                                                                                 | 5                                                                                                                          | 6                                                                                                                 |                                                                                                                                                                                                                                                                       | 1                                                                                               | 2                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                             | 4                                                                                                                 | 5                                                                                                                             | 6                                                                                                        |  |
|                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                          |                                                                                                                   |                                                                                                                   |                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                                                                                                               |                                                                                                          |  |
|                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                          |                                                                                                                   |                                                                                                                   | Traini                                                                                                                     | ng                                                                                                                |                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               | T                                                                                                                 |                                                                                                                               |                                                                                                          |  |
| 1                                                                        | 05:00                                                                                                                      | NW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | NW C0                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 2                                                                        | 10:00                                                                                                                      | NE C0                                                                                                                                                                                                                                                                                                 | True                                                                                                     | True                                                                                                     | True                                                                                                              | True                                                                                                              | True                                                                                                                       | True                                                                                                              | NE C0                                                                                                                                                                                                                                                                 | True                                                                                            | True                                                                                                                                                                                                                                                                                                        | True                                                                                                                                                                                                                                                                                          | True                                                                                                              | True                                                                                                                          | True                                                                                                     |  |
| 3                                                                        | 14:00                                                                                                                      | SE C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | SE C0                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 4                                                                        | 16:00                                                                                                                      | SW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | SW C0                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 5                                                                        | 18:00                                                                                                                      | NE CO                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | NE C2                                                                                                                                                                                                                                                                 | False                                                                                           | True                                                                                                                                                                                                                                                                                                        | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 6                                                                        | 20:00                                                                                                                      | SE C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | SE C3                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 7                                                                        | 22:00                                                                                                                      | SW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | SW C0                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | True                                                                                                                                                                                                                                                                                          | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 8                                                                        | 24:00                                                                                                                      | NW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | NW C0                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 9                                                                        | 26:00                                                                                                                      | SE C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | SE C1                                                                                                                                                                                                                                                                 | True                                                                                            | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 10                                                                       | 28:00                                                                                                                      | SW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | SW C6                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | True                                                                                                     |  |
| 11                                                                       | 30:00                                                                                                                      | NW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | NW C0                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 12                                                                       | 32:00                                                                                                                      | NE CO                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | NE C5                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | True                                                                                                                          | False                                                                                                    |  |
| 13                                                                       | 34:00                                                                                                                      | SW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | SW C0                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 14                                                                       | 36:00                                                                                                                      | NW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | NW C4                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | True                                                                                                              | False                                                                                                                         | False                                                                                                    |  |
| 15                                                                       | 38:00                                                                                                                      | NE CO                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | NE CO                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 16                                                                       | 40:00                                                                                                                      | SE C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | SE C0                                                                                                                                                                                                                                                                 | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| Build up Session 1                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                          |                                                                                                                   |                                                                                                                   |                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                                                                                                               | •                                                                                                        |  |
|                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                          |                                                                                                                   | Build                                                                                                             | up Se                                                                                                                      | ession                                                                                                            | 1                                                                                                                                                                                                                                                                     |                                                                                                 |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                                                                                                               |                                                                                                          |  |
| 1                                                                        | 01:10                                                                                                                      | NW C0                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False                                                                                                             | <b>Build</b><br>False                                                                                             | up Se                                                                                                                      | ession<br>False                                                                                                   | <b>1</b><br>NW C0                                                                                                                                                                                                                                                     | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 1                                                                        | 01:10                                                                                                                      | NW C0<br>NE C0                                                                                                                                                                                                                                                                                        | False<br>False                                                                                           | False                                                                                                    | 1                                                                                                                 | 1                                                                                                                 | -                                                                                                                          |                                                                                                                   |                                                                                                                                                                                                                                                                       | False<br>False                                                                                  | False<br>False                                                                                                                                                                                                                                                                                              | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False<br>False                                                                                                                | False<br>False                                                                                           |  |
|                                                                          |                                                                                                                            | -                                                                                                                                                                                                                                                                                                     |                                                                                                          |                                                                                                          | False                                                                                                             | False                                                                                                             | False                                                                                                                      | False                                                                                                             | NW C0                                                                                                                                                                                                                                                                 |                                                                                                 |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                                                                                                               |                                                                                                          |  |
| 2                                                                        | 02:20                                                                                                                      | NE CO                                                                                                                                                                                                                                                                                                 | False                                                                                                    | False                                                                                                    | False<br>False                                                                                                    | False<br>False                                                                                                    | False<br>False                                                                                                             | False<br>False                                                                                                    | NW CO<br>NE CO                                                                                                                                                                                                                                                        | False                                                                                           | False                                                                                                                                                                                                                                                                                                       | False                                                                                                                                                                                                                                                                                         | False                                                                                                             | False                                                                                                                         | False                                                                                                    |  |
| 2<br>3                                                                   | 02:20<br>03:30                                                                                                             | NE CO<br>SE CO                                                                                                                                                                                                                                                                                        | False<br>False                                                                                           | False<br>False                                                                                           | False<br>False<br>False                                                                                           | False<br>False<br>False                                                                                           | False<br>False<br>False                                                                                                    | False<br>False<br>False                                                                                           | NW C0<br>NE C0<br>SE C6                                                                                                                                                                                                                                               | False<br>False                                                                                  | False<br>False                                                                                                                                                                                                                                                                                              | False<br>False                                                                                                                                                                                                                                                                                | False<br>False                                                                                                    | False<br>False                                                                                                                | False<br>True                                                                                            |  |
| 2<br>3<br>4                                                              | 02:20<br>03:30<br>04:40                                                                                                    | NE C0<br>SE C0<br>SW C0                                                                                                                                                                                                                                                                               | False<br>False<br>False                                                                                  | False<br>False<br>False                                                                                  | False<br>False<br>False<br>False                                                                                  | False<br>False<br>False<br>False                                                                                  | False<br>False<br>False<br>False                                                                                           | False<br>False<br>False<br>False                                                                                  | NW C0<br>NE C0<br>SE C6<br>SW C2                                                                                                                                                                                                                                      | False<br>False<br>False                                                                         | False<br>False<br>True                                                                                                                                                                                                                                                                                      | False<br>False<br>False                                                                                                                                                                                                                                                                       | False<br>False<br>False                                                                                           | False<br>False<br>False                                                                                                       | False<br>True<br>False                                                                                   |  |
| 2<br>3<br>4<br>5                                                         | 02:20<br>03:30<br>04:40<br>05:50                                                                                           | NE CO<br>SE CO<br>SW CO<br>NE CO                                                                                                                                                                                                                                                                      | False<br>False<br>False<br>False                                                                         | False<br>False<br>False<br>False                                                                         | False<br>False<br>False<br>False<br>False                                                                         | False<br>False<br>False<br>False<br>False                                                                         | False<br>False<br>False<br>False<br>False                                                                                  | False<br>False<br>False<br>False<br>False                                                                         | NW CO<br>NE CO<br>SE C6<br>SW C2<br>NE CO                                                                                                                                                                                                                             | False<br>False<br>False<br>False                                                                | False<br>False<br>True<br>False                                                                                                                                                                                                                                                                             | False<br>False<br>False<br>False                                                                                                                                                                                                                                                              | False<br>False<br>False<br>False                                                                                  | False<br>False<br>False<br>False                                                                                              | False<br>True<br>False<br>False                                                                          |  |
| 2<br>3<br>4<br>5<br>6                                                    | 02:20<br>03:30<br>04:40<br>05:50<br>07:00                                                                                  | NE CO<br>SE CO<br>SW CO<br>NE CO<br>SE CO                                                                                                                                                                                                                                                             | False<br>False<br>False<br>False<br>False                                                                | False<br>False<br>False<br>False<br>False                                                                | False<br>False<br>False<br>False<br>False<br>False                                                                | False<br>False<br>False<br>False<br>False<br>False                                                                | False<br>False<br>False<br>False<br>False<br>False                                                                         | False<br>False<br>False<br>False<br>False<br>False                                                                | NW CO<br>NE CO<br>SE C6<br>SW C2<br>NE CO<br>SE C1                                                                                                                                                                                                                    | False<br>False<br>False<br>False<br>True                                                        | False<br>False<br>True<br>False<br>False                                                                                                                                                                                                                                                                    | False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                     | False<br>False<br>False<br>False<br>False                                                                         | False<br>False<br>False<br>False<br>False                                                                                     | False<br>True<br>False<br>False<br>False                                                                 |  |
| 2<br>3<br>4<br>5<br>6<br>7                                               | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10                                                                         | NE CO<br>SE CO<br>SW CO<br>NE CO<br>SE CO<br>SW CO                                                                                                                                                                                                                                                    | False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>False                                                                | False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | NW CO<br>NE CO<br>SE C6<br>SW C2<br>NE CO<br>SE C1<br>SW CO                                                                                                                                                                                                           | False<br>False<br>False<br>False<br>True<br>False                                               | False<br>False<br>True<br>False<br>False<br>False                                                                                                                                                                                                                                                           | False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                            | False<br>False<br>False<br>False<br>False<br>False                                                                | False<br>False<br>False<br>False<br>False<br>False                                                                            | False<br>True<br>False<br>False<br>False<br>False                                                        |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                          | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10<br>09:20                                                                | NE CO<br>SE CO<br>SW CO<br>NE CO<br>SE CO<br>SW CO<br>NW CO                                                                                                                                                                                                                                           | False<br>False<br>False<br>False<br>False<br>False<br>False                                              | False<br>False<br>False<br>False<br>False<br>False<br>False                                              | False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | NW C0           NE C0           SE C6           SW C2           NE C0           SE C1           SW C0           NW C5                                                                                                                                                 | False<br>False<br>False<br>False<br>True<br>False<br>False                                      | False<br>False<br>True<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                  | False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                   | False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>True                                                                    | False<br>True<br>False<br>False<br>False<br>False<br>False                                               |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                     | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10<br>09:20<br>10:30                                                       | NE CO<br>SE CO<br>SW CO<br>NE CO<br>SE CO<br>SW CO<br>NW CO<br>SE CO                                                                                                                                                                                                                                  | False<br>False<br>False<br>False<br>False<br>False<br>False                                              | False<br>False<br>False<br>False<br>False<br>False<br>False                                              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                              | NW C0           NE C0           SE C6           SW C2           NE C0           SE C1           SW C0           NW C5           SE C0                                                                                                                                 | False<br>False<br>False<br>False<br>False<br>False<br>False                                     | False<br>False<br>True<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                         | False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                   | False<br>False<br>False<br>False<br>False<br>False<br>False                                                       | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                          | False<br>True<br>False<br>False<br>False<br>False<br>False                                               |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                               | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10<br>09:20<br>10:30<br>11:40                                              | NE CO<br>SE CO<br>SW CO<br>NE CO<br>SE CO<br>SW CO<br>NW CO<br>SE CO<br>SW CO                                                                                                                                                                                                                         | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                     | NW C0           NE C0           SE C6           SW C2           NE C0           SE C1           SW C0           NW C5           SE C0           SW C0                                                                                                                 | False<br>False<br>False<br>False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                        | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                              | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                          | False<br>True<br>False<br>False<br>False<br>False<br>False<br>False                                      |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                         | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10<br>09:20<br>10:30<br>11:40<br>12:50                                     | NE CO<br>SE CO<br>SW CO<br>NE CO<br>SE CO<br>SW CO<br>SE CO<br>SW CO<br>SW CO<br>NW CO                                                                                                                                                                                                                | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            | NW C0           NE C0           SE C6           SW C2           NE C0           SE C1           SW C0           NW C5           SE C0           SW C0           NW C4                                                                                                 | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                               | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                 | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>True                             | False       False | False<br>True<br>False<br>False<br>False<br>False<br>False<br>False<br>False                             |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12             | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10<br>09:20<br>10:30<br>11:40<br>12:50<br>14:00                            | NE C0           SE C0           SW C0           NE C0           SE C0           SW C0           NW C0           SW C0           NW C0           NW C0           NE C0                                                                                                                                 | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | NW C0           NE C0           SE C6           SW C2           NE C0           SE C1           SW C0           NW C5           SE C0           SW C0           NW C4           NE C0                                                                                 | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                      | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                        | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                        | False<br>True<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                    |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13       | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10<br>09:20<br>10:30<br>11:40<br>12:50<br>14:00<br>15:10                   | NE CO           SE CO           SW CO           NE CO           SE CO           SW CO           SW CO           SW CO           NW CO           SW CO           NW CO           SW CO | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | NW C0           NE C0           SE C6           SW C2           NE C0           SE C1           SW C0           NW C5           SE C0           SW C0           NW C4           NE C0           SW C0                                                                 | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False                             | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                        | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   | FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse                                                        | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                   |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14       | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10<br>09:20<br>10:30<br>11:40<br>12:50<br>14:00<br>15:10<br>16:20          | NE CO           SE CO           SW CO           NE CO           SE CO           SW CO           NW CO           SE CO           SW CO           NW CO           SW CO           NW CO           NE CO           SW CO           NW CO           NE CO           SW CO           NW CO                 | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | NW C0           NE C0           SE C6           SW C2           NE C0           SE C1           SW C0           NW C5           SE C0           SW C0           NW C4           NE C0           SW C0           NW C4           NE C0           SW C0           NW C3 | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False         False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                      | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          | FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse                                         | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False          |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 02:20<br>03:30<br>04:40<br>05:50<br>07:00<br>08:10<br>09:20<br>10:30<br>11:40<br>12:50<br>14:00<br>15:10<br>16:20<br>17:30 | NE CO<br>SE CO<br>SW CO<br>NE CO<br>SE CO<br>SW CO<br>NW CO<br>SE CO<br>SW CO<br>NW CO<br>NE CO<br>SW CO<br>NW CO<br>NW CO                                                                                                                                                                            | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | NW C0           NE C0           SE C6           SW C2           NE C0           SE C1           SW C0           NW C5           SE C0           SW C0           NW C4           NE C0           SW C0           NW C3           NE C1                                 | FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse           | FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse                                                                                                                                                                                                             | False         False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse                               | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False |  |

| 27/09/2010 | Named Distribution Only | Page 41 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





### Model-based Analysis of Human Errors during Aircraft Cockpit System Design

| 19 | 22:10 | SE C0 | False | False | False | False | False | False  | SE C4 | False | False | False | True  | False | False |
|----|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| 20 | 23:20 | SW C0 | False | False | False | False | False | False  | SW C0 | False | False | False | False | False | False |
| 21 | 24:30 | NE CO | False | False | False | False | False | False  | NE CO | False | False | False | False | False | False |
| 22 | 25:40 | SE C0 | False | False | False | False | False | False  | SE C5 | False | False | False | False | True  | False |
| 23 | 26:50 | SW C0 | False | False | False | False | False | False  | SW C0 | False | False | False | False | False | False |
| 24 | 28:00 | NW C0 | False | False | False | False | False | False  | NW C2 | False | True  | False | False | False | False |
| 25 | 29:10 | SE C0 | False | False | False | False | False | False  | SE C0 | False | False | False | False | False | False |
| 26 | 30:20 | SW C0 | False | False | False | False | False | False  | SW C0 | False | False | False | False | False | False |
| 27 | 31:30 | NW C0 | False | False | False | False | False | False  | NW C6 | False | False | False | False | False | True  |
| 28 | 32:40 | NE CO | False | False | False | False | False | False  | NE C3 | False | False | True  | False | False | False |
| 29 | 33:50 | SW C0 | False | False | False | False | False | False  | SW C0 | False | False | False | False | False | False |
| 30 | 35:00 | NW C0 | False | False | False | False | False | False  | NW C0 | False | False | False | False | False | False |
|    |       |       |       |       |       |       |       |        |       |       |       |       |       |       | 1     |
|    |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |
|    |       |       |       |       |       | Build | un Sa | ession | 2     |       |       |       |       |       |       |
|    |       |       | 1     | I     | I     | Bunu  | up St |        | £     | I     |       | I     | 1     | I     |       |
| 31 | 01:10 | SE C0 | False | False | False | False | False | False  | SE C0 | False | False | False | False | False | False |
| 32 | 02:20 | NW C0 | False | False | False | False | False | False  | NW C5 | False | False | False | False | True  | False |
| 33 | 03:30 | NE CO | False | False | False | False | False | False  | NE C1 | True  | False | False | False | False | False |
| 34 | 04:40 | SE C0 | False | False | False | False | False | False  | SE C0 | False | False | False | False | False | False |
| 35 | 05:50 | SW C0 | False | False | False | False | False | False  | SW C2 | False | True  | False | False | False | False |
| 36 | 07:00 | NE CO | False | False | False | False | False | False  | NE CO | False | False | False | False | False | False |
| 37 | 08:10 | SE C0 | False | False | False | False | False | False  | SE C4 | False | False | False | True  | False | False |
| 38 | 09:20 | SW C0 | False | False | False | False | False | False  | SW C0 | False | False | False | False | False | False |
| 39 | 10:30 | NW C0 | False | False | False | False | False | False  | NW C0 | False | False | False | False | False | False |
| 40 | 11:40 | SE C0 | False | False | False | False | False | False  | SE C6 | False | False | False | False | False | True  |
| 41 | 12:50 | SW C0 | False | False | False | False | False | False  | SW C0 | False | False | False | False | False | False |
| 42 | 14:00 | NW C0 | False | False | False | False | False | False  | NW C3 | False | False | True  | False | False | False |
| 43 | 15:10 | NE CO | False | False | False | False | False | False  | NE CO | False | False | False | False | False | False |
| 44 | 16:20 | SW C0 | False | False | False | False | False | False  | SW C0 | False | False | False | False | False | False |
| 45 | 17:30 | NW C0 | False | False | False | False | False | False  | NW C1 | True  | False | False | False | False | False |
| 46 | 18:40 | NE CO | False | False | False | False | False | False  | NE CO | False | False | False | False | False | False |
| 47 | 19:50 | SE C0 | False | False | False | False | False | False  | SE C0 | False | False | False | False | False | False |
| 48 | 21:00 | NW C0 | False | False | False | False | False | False  | NW C0 | False | False | False | False | False | False |
| 49 | 22:10 | NE CO | False | False | False | False | False | False  | NE C5 | False | False | False | False | True  | False |
| 50 | 23:20 | SE C0 | False | False | False | False | False | False  | SE C0 | False | False | False | False | False | False |
| 51 | 24:30 | SW C0 | False | False | False | False | False | False  | SW C2 | False | True  | False | False | False | False |
| 52 | 25:40 | NE CO | False | False | False | False | False | False  | NE CO | False | False | False | False | False | False |
| 53 | 26:50 | SE C0 | False | False | False | False | False | False  | SE C0 | False | False | False | False | False | False |
| 54 | 28:00 | SW C0 | False | False | False | False | False | False  | SW C4 | False | False | False | True  | False | False |
| 55 | 29:10 | NW C0 | False | False | False | False | False | False  | NW C0 | False | False | False | False | False | False |
| 56 | 30:20 | SE C0 | False | False | False | False | False | False  | SE C0 | False | False | False | False | False | False |
| 57 | 31:30 | SW C0 | False | False | False | False | False | False  | SW C6 | False | False | False | False | False | True  |
| 58 | 32:40 | NW C0 | False | False | False | False | False | False  | NW C3 | False | False | True  | False | False | False |
| 59 | 33:50 | NE CO | False | False | False | False | False | False  | NE CO | False | False | False | False | False | False |
| 60 | 35:00 | SW C0 | False | False | False | False | False | False  | SW C0 | False | False | False | False | False | False |
|    |       |       |       | •     | •     | •     |       |        |       | •     | -     | •     |       | •     | •     |

61 01:10 NE CO False False False False False False NE CO False False False False False False False 62 02:20 SE C0 SE C0 False 63 03:30 NW C0 False False NW C6 False False False False False True 27/09/2010 Named Distribution Only Page 42 of 60 Proj. No: 211988

#### **Build up Session 3**





### Model-based Analysis of Human Errors during Aircraft Cockpit System Design

| 64 | 04:40 | NE CO | False | False | False | False | False | False | NE CO | False | False | False | False | False | False |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 65 | 05:50 | SE C0 | False | False | False | False | False | False | SE C2 | False | True  | False | False | False | False |
| 66 | 07:00 | SW C0 | False | False | False | False | False | False | SW C1 | True  | False | False | False | False | False |
| 67 | 08:10 | NE CO | False | False | False | False | False | False | NE CO | False | False | False | False | False | False |
| 68 | 09:20 | SE C0 | False | False | False | False | False | False | SE C0 | False | False | False | False | False | False |
| 69 | 10:30 | SW C0 | False | False | False | False | False | False | SW C5 | False | False | False | False | True  | False |
| 70 | 11:40 | NW C0 | False | False | False | False | False | False | NW C0 | False | False | False | False | False | False |
| 71 | 12:50 | SE C0 | False | False | False | False | False | False | SE C4 | False | False | False | True  | False | False |
| 72 | 14:00 | SW C0 | False | False | False | False | False | False | SW C0 | False | False | False | False | False | False |
| 73 | 15:10 | NW C0 | False | False | False | False | False | False | NW C0 | False | False | False | False | False | False |
| 74 | 16:20 | NE CO | False | False | False | False | False | False | NE C1 | True  | False | False | False | False | False |
| 75 | 17:30 | SW C0 | False | False | False | False | False | False | SW C0 | False | False | False | False | False | False |
| 76 | 18:40 | NW C0 | False | False | False | False | False | False | NW C0 | False | False | False | False | False | False |
| 77 | 19:50 | NE CO | False | False | False | False | False | False | NE CO | False | False | False | False | False | False |
| 78 | 21:00 | SE C0 | False | False | False | False | False | False | SE C3 | False | False | True  | False | False | False |
| 79 | 22:10 | NW C0 | False | False | False | False | False | False | NW C6 | False | False | False | False | False | True  |
| 80 | 23:20 | NE CO | False | False | False | False | False | False | NE CO | False | False | False | False | False | False |
| 81 | 24:30 | SE C0 | False | False | False | False | False | False | SE C4 | False | False | False | True  | False | False |
| 82 | 25:40 | SW C0 | False | False | False | False | False | False | SW C0 | False | False | False | False | False | False |
| 83 | 26:50 | NE CO | False | False | False | False | False | False | NE CO | False | False | False | False | False | False |
| 84 | 28:00 | SE C0 | False | False | False | False | False | False | SE C5 | False | False | False | False | True  | False |
| 85 | 29:10 | SW C0 | False | False | False | False | False | False | SW C2 | False | True  | False | False | False | False |
| 86 | 30:20 | NW C0 | False | False | False | False | False | False | NW C0 | False | False | False | False | False | False |
| 87 | 31:30 | SE C0 | False | False | False | False | False | False | SE C0 | False | False | False | False | False | False |
| 88 | 32:40 | SW C0 | False | False | False | False | False | False | SW C3 | False | False | True  | False | False | False |
| 89 | 33:50 | NW C0 | False | False | False | False | False | False | NW C0 | False | False | False | False | False | False |
| 90 | 35:00 | NE CO | False | False | False | False | False | False | NE CO | False | False | False | False | False | False |
|    |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

#### **Build up Session 4**

| 105       106       107       108       109       110       111       112       113       114 | 18:40         19:50         21:00         22:10         23:20         24:30         25:40         26:50         28:00 | SW CO<br>NW CO<br>NE CO<br>SE CO<br>NW CO<br>NE CO<br>SE CO<br>SW CO<br>NE CO | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | SW C0<br>NW C0<br>NE C0<br>SE C5<br>NW C2<br>NE C0<br>SE C0<br>SW C4<br>NE C0 | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>True<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | False<br>False<br>False<br>False<br>False<br>False<br>False<br>False |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 106           107           108           109           110           111           112       | 19:50         21:00         22:10         23:20         24:30         25:40                                           | NW CO<br>NE CO<br>SE CO<br>NW CO<br>NE CO<br>SE CO                            | False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False                   | NW C0<br>NE C0<br>SE C5<br>NW C2<br>NE C0<br>SE C0                            | False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>True<br>False<br>False                    | False<br>False<br>False<br>False<br>False<br>False                   | False<br>False<br>False<br>False<br>False<br>False                           | False<br>False<br>True<br>False<br>False<br>False                    | False<br>False<br>False<br>False<br>False<br>False                   |
| 106           107           108           109           110           111                     | 19:50         21:00         22:10         23:20         24:30                                                         | NW C0<br>NE C0<br>SE C0<br>NW C0<br>NE C0                                     | False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False                            | NW C0<br>NE C0<br>SE C5<br>NW C2<br>NE C0                                     | False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>True<br>False                             | False<br>False<br>False<br>False<br>False                            | False<br>False<br>False<br>False<br>False                                    | False<br>False<br>True<br>False<br>False                             | False<br>False<br>False<br>False<br>False                            |
| 106       107       108       109       110                                                   | 19:50<br>21:00<br>22:10<br>23:20                                                                                      | NW CO<br>NE CO<br>SE CO<br>NW CO                                              | False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False                                     | NW C0<br>NE C0<br>SE C5<br>NW C2                                              | False<br>False<br>False<br>False                                     | False<br>False<br>False<br>True                                      | False<br>False<br>False<br>False                                     | False<br>False<br>False<br>False                                             | False<br>False<br>True<br>False                                      | False<br>False<br>False<br>False                                     |
| 106<br>107<br>108<br>109                                                                      | 19:50<br>21:00<br>22:10                                                                                               | NW C0<br>NE C0<br>SE C0                                                       | False<br>False<br>False                                              | False<br>False<br>False                                              | False<br>False<br>False                                              | False<br>False<br>False                                              | False<br>False<br>False                                              | False<br>False<br>False                                              | NW C0<br>NE C0<br>SE C5                                                       | False<br>False<br>False                                              | False<br>False<br>False                                              | False<br>False<br>False                                              | False<br>False<br>False                                                      | False<br>False<br><mark>True</mark>                                  | False<br>False<br>False                                              |
| 106<br>107<br>108                                                                             | 19:50<br>21:00                                                                                                        | NW CO<br>NE CO                                                                | False<br>False                                                       | False<br>False                                                       | False<br>False                                                       | False<br>False                                                       | False<br>False                                                       | False<br>False                                                       | NW CO<br>NE CO                                                                | False<br>False                                                       | False<br>False                                                       | False<br>False                                                       | False<br>False                                                               | False<br>False                                                       | False<br>False                                                       |
| 106<br>107                                                                                    | 19:50                                                                                                                 | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 106                                                                                           |                                                                                                                       |                                                                               |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                               |                                                                      |                                                                      |                                                                      |                                                                              |                                                                      |                                                                      |
|                                                                                               | 18:40                                                                                                                 | SW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | SW C0                                                                         | Faise                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | 1 disc                                                               |
| 105                                                                                           |                                                                                                                       |                                                                               |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                               | <b>5</b> 1                                                           |                                                                      |                                                                      |                                                                              | 1                                                                    | False                                                                |
|                                                                                               | 17:30                                                                                                                 | NE C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NE CO                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 104                                                                                           | 16:20                                                                                                                 | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 103                                                                                           | 15:10                                                                                                                 | SW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | SW C1                                                                         | True                                                                 | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 102                                                                                           | 14:00                                                                                                                 | SE C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | SE C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 101                                                                                           | 12:50                                                                                                                 | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NW C5                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | True                                                                 | False                                                                |
| 100                                                                                           | 11:40                                                                                                                 | SW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | SW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 99                                                                                            | 10:30                                                                                                                 | SE C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | SE C2                                                                         | False                                                                | True                                                                 | False                                                                | False                                                                        | False                                                                | False                                                                |
| 98                                                                                            | 09:20                                                                                                                 | NE CO                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NE CO                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 97                                                                                            | 08:10                                                                                                                 | SW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | SW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 96                                                                                            | 07:00                                                                                                                 | SE C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | SE C6                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | True                                                                 |
| 95                                                                                            | 05:50                                                                                                                 | NE CO                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NE C3                                                                         | False                                                                | False                                                                | True                                                                 | False                                                                        | False                                                                | False                                                                |
| 94                                                                                            | 04:40                                                                                                                 | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 93                                                                                            | 03:30                                                                                                                 | SE C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | SE C4                                                                         | False                                                                | False                                                                | False                                                                | True                                                                         | False                                                                | False                                                                |
| 92                                                                                            | 02:20                                                                                                                 | NE CO                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NE CO                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |
| 91                                                                                            | 01:10                                                                                                                 | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | False                                                                | NW C0                                                                         | False                                                                | False                                                                | False                                                                | False                                                                        | False                                                                | False                                                                |

| 27/09/2010 | Named Distribution Only | Page 43 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



156

157

158

159

160

161

162

07:00

08:10

09:20

10:30

11:40

12:50

14:00

27/09/2010

SE C0

SW C6

NW C0

SE C0

SW C5

NW C0

NE C2

False

True

False

True

False

False

Named Distribution Only Proj. No: 211988

False

True

False

False

False

False

False

## HUMAN





| 115 | 29:10 | SE C0 | False | False      | False    | False      | False    | False    | SE C1 | True  | False      | False      | False    | False    | False |
|-----|-------|-------|-------|------------|----------|------------|----------|----------|-------|-------|------------|------------|----------|----------|-------|
| 116 | 30:20 | SW C0 | False | False      | False    | False      | False    | False    | SW C3 | False | False      | True       | False    | False    | False |
| 117 | 31:30 | NW C0 | False | False      | False    | False      | False    | False    | NW C0 | False | False      | False      | False    | False    | False |
| 118 | 32:40 | SE C0 | False | False      | False    | False      | False    | False    | SE C6 | False | False      | False      | False    | False    | True  |
| 119 | 33:50 | SW C0 | False | False      | False    | False      | False    | False    | SW C0 | False | False      | False      | False    | False    | False |
| 120 | 35:00 | NW C0 | False | False      | False    | False      | False    | False    | NW C0 | False | False      | False      | False    | False    | False |
|     |       |       | 1     |            |          | 1          |          |          |       |       | 1          |            |          |          |       |
|     |       |       |       |            |          |            |          |          |       |       |            |            |          |          |       |
|     |       |       |       |            |          | Build      | up Se    | ession   | 5     |       |            |            |          |          |       |
| 121 | 01:10 | SW C0 | False | False      | False    | False      | False    | False    | SW C0 | False | False      | False      | False    | False    | False |
| 122 | 02:20 | NW C0 | False | False      | False    | False      | False    | False    | NW C6 | False | False      | False      | False    | False    | True  |
| 123 | 03:30 | NE CO | False | False      | False    | False      | False    | False    | NE C4 | False | False      | False      | True     | False    | False |
| 124 | 04:40 | SE C0 | False | False      | False    | False      | False    | False    | SE C0 | False | False      | False      | False    | False    | False |
| 125 | 05:50 | NW C0 | False | False      | False    | False      | False    | False    | NW C1 | True  | False      | False      | False    | False    | False |
| 126 | 07:00 | NE CO | False | False      | False    | False      | False    | False    | NE CO | False | False      | False      | False    | False    | False |
| 127 | 08:10 | SE C0 | False | False      | False    | False      | False    | False    | SE C0 | False | False      | False      | False    | False    | False |
| 128 | 09:20 | SW C0 | False | False      | False    | False      | False    | False    | SW C5 | False | False      | False      | False    | True     | False |
| 129 | 10:30 | NE CO | False | False      | False    | False      | False    | False    | NE CO | False | False      | False      | False    | False    | False |
| 130 | 11:40 | SE C0 | False | False      | False    | False      | False    | False    | SE C0 | False | False      | False      | False    | False    | False |
| 131 | 12:50 | SW C0 | False | False      | False    | False      | False    | False    | SW C3 | False | False      | True       | False    | False    | False |
| 132 | 14:00 | NW C0 | False | False      | False    | False      | False    | False    | NW C0 | False | False      | False      | False    | False    | False |
| 133 | 15:10 | SE C0 | False | False      | False    | False      | False    | False    | SE C0 | False | False      | False      | False    | False    | False |
| 134 | 16:20 | SW C0 | False | False      | False    | False      | False    | False    | SW C2 | False | True       | False      | False    | False    | False |
| 135 | 17:30 | NW C0 | False | False      | False    | False      | False    | False    | NW C0 | False | False      | False      | False    | False    | False |
| 136 | 18:40 | NE CO | False | False      | False    | False      | False    | False    | NE CO | False | False      | False      | False    | False    | False |
| 137 | 19:50 | SW C0 | False | False      | False    | False      | False    | False    | SW C1 | True  | False      | False      | False    | False    | False |
| 138 | 21:00 | NW C0 | False | False      | False    | False      | False    | False    | NW C0 | False | False      | False      | False    | False    | False |
| 139 | 22:10 | NE CO | False | False      | False    | False      | False    | False    | NE C6 | False | False      | False      | False    | False    | True  |
| 140 | 23:20 | SE C0 | False | False      | False    | False      | False    | False    | SE C4 | False | False      | False      | True     | False    | False |
| 141 | 24:30 | NW C0 | False | False      | False    | False      | False    | False    | NW C0 | False | False      | False      | False    | False    | False |
| 142 | 25:40 | NE CO | False | False      | False    | False      | False    | False    | NE CO | False | False      | False      | False    | False    | False |
| 143 | 26:50 | SE C0 | False | False      | False    | False      | False    | False    | SE C0 | False | False      | False      | False    | False    | False |
| 144 | 28:00 | SW C0 | False | False      | False    | False      | False    | False    | SW C2 | False | True       | False      | False    | False    | False |
| 145 | 29:10 | NE CO | False | False      | False    | False      | False    | False    | NE CO | False | False      | False      | False    | False    | False |
| 146 | 30:20 | SE C0 | False | False      | False    | False      | False    | False    | SE C0 | False | False      | False      | False    | False    | False |
| 147 | 31:30 | SW C0 | False | False      | False    | False      | False    | False    | SW C3 | False | False      | True       | False    | False    | False |
| 148 | 32:40 | NW C0 | False | False      | False    | False      | False    | False    | NW C0 | False | False      | False      | False    | False    | False |
| 149 | 33:50 | SE C0 | False | False      | False    | False      | False    | False    | SE C5 | False | False      | False      | False    | True     | False |
| 150 | 35:00 | SW C0 | False | False      | False    | False      | False    | False    | SW C0 | False | False      | False      | False    | False    | False |
|     |       |       | 1     |            |          | 1          |          |          |       |       | 1          |            |          |          |       |
|     |       |       |       |            |          |            |          |          |       |       |            |            |          |          |       |
|     |       |       |       |            |          | Те         | st Se    | ssion    |       |       |            |            |          |          |       |
| 151 | 01:10 | NW C0 | False | False      | False    | False      | False    | False    | NW C0 | False | False      | False      | False    | False    | False |
| 152 | 02:20 | NE CO | False | False      | False    | False      | False    | False    | NE CO | False | False      | False      | False    | False    | False |
| 153 | 03:30 | SE C1 | True  | False      | False    | False      | False    | False    | SE C1 | True  | False      | False      | False    | False    | False |
| 154 | 04:40 | SW C0 | False | False      | False    | False      | False    | False    | SW C0 | False | False      | False      | False    | False    | False |
| 155 | 05:50 | NE CO | False | False      | False    | False      | False    | False    | NE CO | False | False      | False      | False    | False    | False |
| 156 | 07.00 | CE CO |       | <b>F</b> 1 | <b>_</b> | <b>F</b> 1 | <b>_</b> | <b>_</b> | SE CO |       | <b>F</b> 1 | <b>F</b> 1 | <b>_</b> | <b>_</b> |       |

SE C0

SW C6

NW CO

SE C0

SW C5

NW C0

NE C2

False

True

False

Page 44 of 60

False

False

False

False

True

False

False

False

rue

False False

False

False

False







| 163 | 15:10 | SW C0 | False | False | False | False | False | False | SW C0 | False | False | False | False | False | False |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 164 | 16:20 | NW C0 | False | False | False | False | False | False | NW C0 | False | False | False | False | False | False |
| 165 | 17:30 | NE C4 | False | False | False | True  | False | False | NE C4 | False | False | False | True  | False | False |
| 166 | 18:40 | SE C0 | False | False | False | False | False | False | SE C0 | False | False | False | False | False | False |
| 167 | 19:50 | NW C0 | False | False | False | False | False | False | NW C0 | False | False | False | False | False | False |
| 168 | 21:00 | NE CO | False | False | False | False | False | False | NE CO | False | False | False | False | False | False |
| 169 | 22:10 | SE C3 | False | False | True  | False | False | False | SE C3 | False | False | True  | False | False | False |
| 170 | 23:20 | SW C0 | False | False | False | False | False | False | SW C0 | False | False | False | False | False | False |

| 27/09/2010 | Named Distribution Only | Page 45 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





### 9.2 Invitation (in German)

### Mail #1 vom 09.07.2010

Liebe Piloten,

ich freue mich Ihnen heute mitteilen zu können, dass die abschließende, zweite Runde der Versuche für das EU-Projekt HUMAN im August startet!

Hierzu möchte ich Sie herzlich einladen, bei uns in Braunschweig im Simulator an Experimenten teilzunehmen.

#### Worum geht es bei HUMAN?

Das EU-Projekt HUMAN verfolgt als Hauptziel die Entwicklung eines kognitiven Models, das in der Lage ist, die Interaktion des Piloten mit Systemen vorherzusagen. Hierzu gehören auch und gerade neue Systeme, die sich noch in frühen Reifestadien befinden und mitunter noch fehleranfällig sind.

### Wer macht bei HUMAN mit?

Federführend wirkt das Oldenburger Informatik Institut <u>OFFIS</u> als Koordinator mit. Weiterhin sind das niederländische Forschungsunternehmen <u>TNO</u>, die Université catholique de Louvain-La-Neuve, Airbus Frankreich und Alenia Aeronautics am Projekt beteiligt – und das DLR Institut für Flugführung.

#### Was ist Aufgabe des DLR hierbei?

Wir liefern den Partnern im Konsortium empirische Flugsimulationsdaten.

#### Welche Eigenschaften müssen Sie mitbringen?

Da während der Versuchsszenarien die Blickbewegung des Piloten gemessen wird, sind wir leider dazu angehalten, ausschließlich Piloten einzuladen, die NICHT Brillen- oder Kontaktlinsenträger sind.

#### Welche Vor-Kenntnisse sind gefordert?

Eigentlich gar keine...

Dennoch erhalten Sie von uns per Mail (rechtzeitig...) ein Handbuch, in dem Sie grundlegende Bedienschritte mit dem sog. A-HMI (Airborne Human Machine Interface) schon vorab kennenlernen. Das A-HMI ist die Schnittstelle zum Advanced Flight Management System (AFMS), einem interaktiven Navigationsdisplay – beides sind Prototypen des DLR-Instituts für Flugführung.

#### Welche Aufgabe haben Sie, als Versuchsperson beim DLR?

Sie lernen in einem gründlichen Briefing das A-HMI kennen, welches Sie in Simulator-Szenarien erproben werden:

Sie fliegen dann sowohl part task Simulationen im Avionik Test Bed als auch Szenarien im fixed base Flugsimulator GECO. Diese werden dann nach Abschluss aller Versuche im Herbst zur Überprüfung des kognitiven Models genutzt.

Die Szenarien sind vom DLR gemeinsam mit den HUMAN Partnern generiert worden.

Die Crew wird im GECO durch einen weiteren Piloten komplementiert, den wir stellen.

### Wann finden die Versuche statt?

| 27/09/2010 | Named Distribution Only | Page 46 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



Wir bieten Ihnen EINEN zweitägigen Termin an. Insgesamt brauchen wir 16 Piloten – first come, first serve  $\Box\Box$ 

Sie haben – Ihr Interesse vorausgesetzt – die Möglichkeit, sich in untenstehende Tabelle einzutragen.

Auch gern mit Kommentaren, bzw. unter Vorbehalt.

Wer mag, kann die Mail auch gern weiterleiten. Merci.

#### Was gibt es dafür?

Sie bekommen **800 Euro** für die Teilnahme an den Versuchen. Das schließt die gewissenhafte Lektüre des o.g. A-HMI Handbuchs natürlich mit ein!

Zusätzlich werden Reise- und Übernachtungskosten bis zu 500 Euro maximal erstattet.

Wie schon in unseren vorigen Kampagnen mit Messung der Blickbewegung bieten wir Ihnen gerne an, eine DVD mit kompletten Blickbewegungsfilmen ausgewählter Szenarien zu erhalten.

| Monat     | Woche | Tag      | Datum      | Versuchsperson |
|-----------|-------|----------|------------|----------------|
|           |       | MO       | 09./10.08. |                |
|           | 32    | DI       | 09./10.08. |                |
|           | 52    | MI       | 11./12.08  |                |
|           |       | DO       | 111,12100  |                |
|           |       | MO       | 16./17.08. |                |
|           | 33    | DI       |            |                |
| August    |       | MI       | 18./19.08. |                |
|           |       | DO<br>MO |            |                |
|           |       | DI       | 23./24.08. |                |
|           | 34    | MI       |            |                |
|           |       | DO       | 25./26.08. |                |
|           |       | MO       | 20 /21 00  |                |
|           | 35    | DI       | 30./31.08. |                |
|           | 22    | MI       | 01./02.09. |                |
|           |       | DO       | 01./02.09. |                |
|           |       | MO       | 06./07.09. |                |
|           | 36    | DI       |            |                |
|           |       | MI       | 08./09.09. |                |
|           |       | DO       |            |                |
|           |       | MO<br>DI | 13./14.09. |                |
| September | 37    | MI       |            |                |
|           |       | DO       | 15./16.09. |                |
|           |       | MO       | 20 /21 00  |                |
|           | 20    | DI       | 20./21.09. |                |
|           | 38    | MI       | 22./23.09. |                |
|           |       | DO       | 22./23.09. |                |
|           | 39    | MO<br>DI | 27./28.09. |                |

| 27/09/2010 | Named Distribution Only |
|------------|-------------------------|
|            | Proj. No: 211988        |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| MI | 20 /20 00  |  |
|----|------------|--|
| DO | 29./30.09. |  |

Gern steh ich auch zur Verfügung, wenn es um mögliche Rückfragen Ihrerseits geht.

In jedem Fall freu ich mich auf Ihre Rückmeldung noch mehr natürlich auf ein Wiedersehen in Braunschweig!

Mit besten Grüßen Marcus Biella

#### PS:

Allen, die Interesse an den Versuchen haben, kann ich an dieser Stelle bereits die nächsten Schritte ankündigen:

- Sie bekommen ein template, in welchem Sie Ihre Kontaktdaten eintragen. Diese ausgefüllte template wird dann unserer Verwaltung gesendet und Sie bekommen exklusiv für die Arbeit im Rahmen von HUMAN einen Vertrag mit dem DLR.
- Nach erfolgter Feinabstimmung bzgl. des Termins buchen wir für Sie ein Hotelzimmer.
- Nach den Versuchen reichen Sie beim DLR Hotel-, Reisekosten und Ihre Honorarforderung als Rechnung ein.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in the Helmholtz-Association German Aerospace Center Institute of Flight Guidance Human Factors Department

Dipl.-Psych. Marcus Biella

Lilienthalplatz 7 38108 Braunschweig Germany Telephone: +49 531 295 2001 Telefax: +49 531 295 2550 E-Mail: <u>mailto:Marcus.Biella@dlr.de</u> Internet: <u>http://www.dlr.de/fl/en/desktopdefault.aspx/tabid-1149/1737\_read-3121/</u>

Disclaimer: This message expresses my own view and does not oblige DLR. This communication does not constitute any formal commitment on behalf of the DLR.

#### Mail #2 vom 13.07.2010

Liebe Versuchspersonen,

danke nochmals für die Bereitschaft, an unseren Versuchen teilzunehmen!

Heute sende ich einen vorläufigen (!) Plan für die beiden Versuchstage: daraus geht unmittelbar hervor, dass wir zwei nicht so ganz kurze Tage vor uns haben.

| 27/09/2010 | Named Distribution Only | Page 48 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





Ich biete Ihnen an, im <u>http://www.hotel-landhaus-seela.de/</u> für Sie Einzelzimmer einschl. Frühstück zu buchen.

Sie müssen vor Ort die Rechnung bezahlen, bekommen es aber in Ihrer Reisekostenabrechnung mit dem DLR natürlich dann erstattet.

Bitte teilen Sie mir daher mit, ob Sie von diesem Angebot Gebrauch machen möchten, und – ganz wichtig - **wann Sie an- bzw. abreisen wollen**.

Die Versuche finden im DLR-Institut für Flugführung, Braunschweig, Gebäude 117 statt.

Ihr Name wird vor Beginn der Versuche bei der Pförtnerei hinterlegt sein.

Dort wird man Ihnen – falls nötig – auch die grobe Himmelsrichtung zeigen, wo es langgeht.

Ebenfalls hinterlegt sind dort die Koordinaten Ihrer Ansprechpartner. Das wird in der Regel <u>Helge.Lenz@dlr.de</u> sein.

Im Laufe der Versuche bekommen Sie von uns im generischen Experimental Cockpit (GECO) einen Co-Piloten gestellt.

Ich möchte noch einmal ausdrücklich darauf hinzuweisen,

dass wegen der Erfassung der Blickbewegung **KEINE Brillen- und Kontaktlinsenträger** zugelassen sind.

Sie bekommen als nächstes in einer gesonderten Mail:

- ein Template, aus dem Sie ein Angebot für uns basteln
- eine Erklärung zum Abschluss eines Beratervertrags mit dem DLR e.V.

Sobald wie möglich erhalten Sie dann auch die angedrohten Unterlagen, um sich mit dem A-HMI vertraut zu machen.

### **Simulation Schedule**

#### Day 1

| Time  | What                 | Where            |
|-------|----------------------|------------------|
| 09:00 | Briefing             |                  |
| 09:30 | A-HMI Training Pt. 1 | Avionic Test bed |

| 27/09/2010 | Named Distribution Only | Page 49 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| 10:30 | - Coffee -            |                                     |
|-------|-----------------------|-------------------------------------|
| 10:45 | Scenario              | Avionic Test bed                    |
| 11:30 | Scenario              | Avionic Test bed                    |
| 12:15 | A-HMI Training Pt. 2  | Avionic Test bed                    |
| 12:30 | - Lunch -             | DLR Kantine, Sie sind<br>eingeladen |
| 13:30 | GECO / A-HMI-Training | GECO                                |
| 14:30 | Scenario              | GECO                                |
| 15:15 | Scenario              | GECO                                |
| 16:00 | - Coffee -            |                                     |
| 16:15 |                       | Avionic Test bed                    |
| 17:00 | End                   |                                     |

### Day 2

| Time  | What                 | Where                               |
|-------|----------------------|-------------------------------------|
| 09:00 | Scenario             | GECO                                |
| 09:45 | Scenario             | GECO                                |
| 10:30 | - Coffee -           |                                     |
| 10:45 | Scenario             | Avionic Test bed                    |
| 11:30 | Scenario             | Avionic Test bed                    |
| 12:15 | Scenario             | Avionic Test bed                    |
| 12:30 | - Lunch -            | DLR Kantine, Sie sind<br>eingeladen |
| 13:30 | A-HMI Training Pt. 3 | Avionic Test bed                    |
| 14:15 | Scenario             | GECO                                |
| 15:00 | Scenario             | GECO                                |

| 27/09/2010 | Named Distribution Only | Page 50 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



| 15:45 | - Coffee - |      |
|-------|------------|------|
| 16:00 | Scenario   | GECO |
| 16:45 | Debriefing |      |
| 17:00 | End        |      |

Mit besten Grüßen aus Braunschweig-Waggum Marcus Biella

### Mail #3 vom 13.07.2010

Liebe Versuchspersonen,

Sie erhalten nun – wie angekündigt - :

- ein Template, aus dem Sie ein Angebot für uns basteln:
  - Bitte die gelb schraffierten Passagen um Ihre persönlichen Daten ergänzen
- eine Erklärung zum Abschluss eines Beratervertrags mit dem DLR e.V.
   Bitte ausfüllen und unterschreiben

Durch diese Unterlagen wird sichergestellt, dass Sie Ihre Rechung a.s.a.p. beglichen bekommen.

Wir freuen uns, wenn Sie diese beiden Unterlagen dann an uns zurücksenden, am Besten so schnell wie möglich:

Unsere Administration wäre dann begeistert  $\Box$ 

Sicherlich am einfachsten per Einscannen und als Attachment versenden. Wer mag, darf aber auch faxen oder per snail mail senden.

Danke!

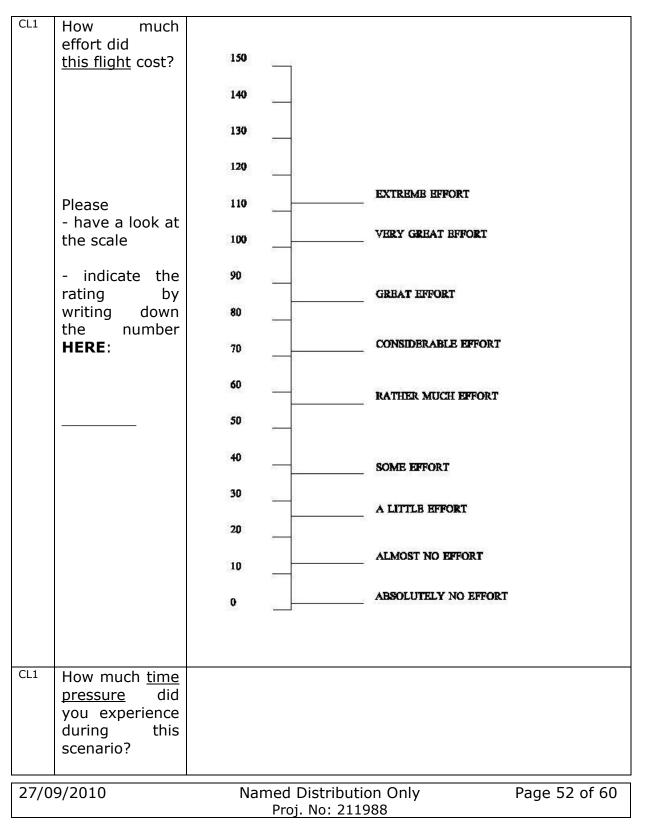
Zu Ihrer Information: aus diesen beiden Unterlagen generieren wir eine sog. Bedarfsmeldung bei unserem Einkauf.

Dann wird genehmigt, dass Sie kommen dürfen (reine Formsache ...).

Sie bekommen dann auch Post von unserer Verwaltung aus Köln. Da ist dann auch schon die Adresse angegeben, wohin Sie Ihre Rechnung nach den abgeleisteten Versuchen schicken dürfen.

Sollte es diesbezüglich noch Fragen Ihrerseits geben: dann unbedingt bei mir melden oder einen der Kollegen während der laufenden Versuche fragen.

Mit besten Grüßen Marcus Biella


| 27/09/2010 | Named Distribution Only | Page 51 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



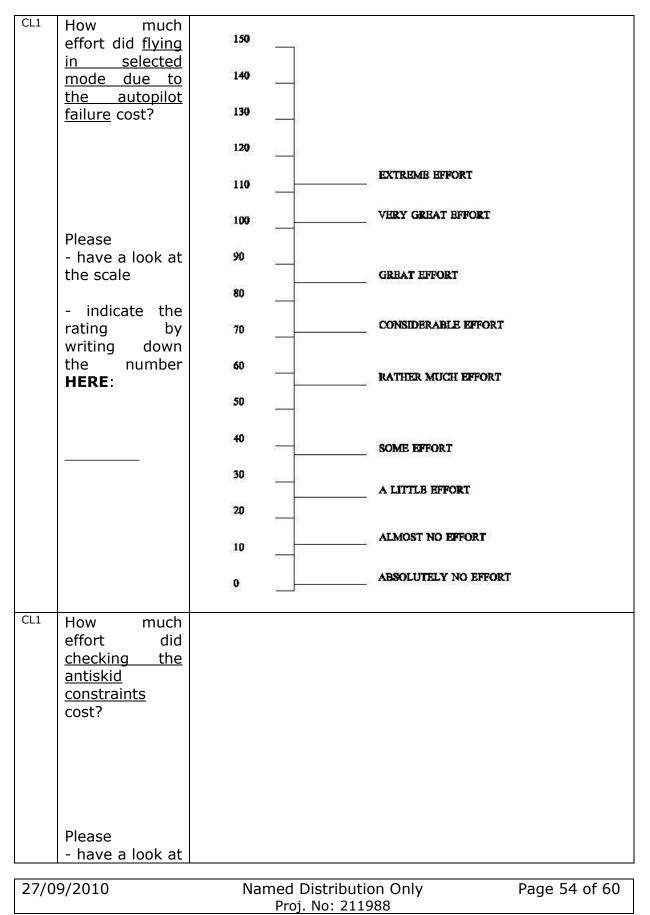


### 9.3 Task load questionnaire

The questionnaire below is filled in by the pilots after each cognitive lockup scenario.

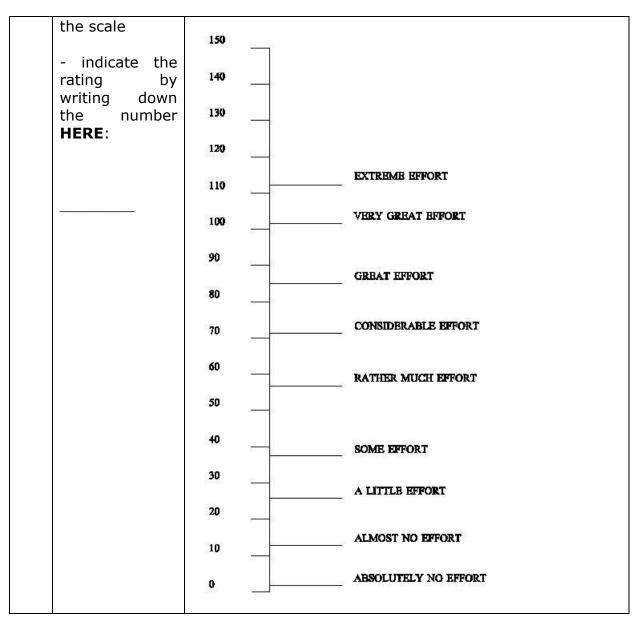







|     | Please<br>- have a look at<br>the scale<br>- indicate the<br>rating by<br>writing down<br>the number<br><b>HERE</b> :            | 1 2 3 4 5 6 7<br>low high                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| CL1 | Did it feel as if<br>there were<br><u>many tasks</u><br>that had <u>to be</u><br><u>attended to at</u><br><u>the same time</u> ? | Image: 1     Image: 2     Image: 3     Image: 4     Image: 5     Image: 6     Image: 7       Inot really     very much |
|     | Please<br>- have a look at<br>the scale<br>- indicate the<br>rating by<br>writing down<br>the number<br><b>HERE</b> :            |                                                                                                                        |

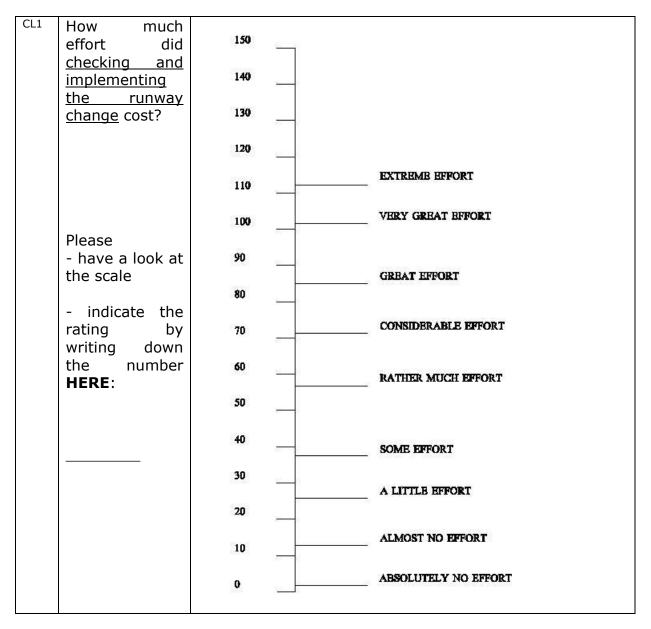
| 27/09/2010 | Named Distribution Only | Page 53 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |









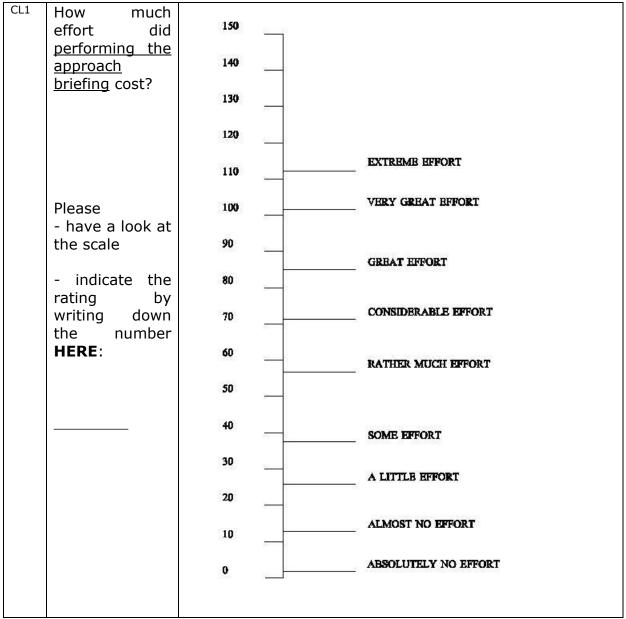






| 27/09/2010 | 27/09/2010 Named Distribution Only |   |
|------------|------------------------------------|---|
|            | Proj. No: 211988                   | _ |








| 27/09/2010 | Named Distribution Only | Page 56 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design





End of Questioning for this scenario - THANK YOU!

### 9.4 End questionnaire

The questionnaire below is filled in by the pilots at the end of all experiments.

In your judgement, how great is the risk for the safe operation of the aircraft,

if the following checks are not performed on the AHMI (considering all additional information available in the GECO and based on your routine procedures and checks).

| 27/09/2010 | Named Distribution Only | Page 57 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |





| Checks in Horizontal View:       |                                        |
|----------------------------------|----------------------------------------|
| Routing and waypoints in general | ++++++++++++++++++++++++++++++++++++++ |
| Comments/Explanation:            |                                        |
|                                  |                                        |
| Routing ends at the runway       | 1 2 3 4 5 6<br>low<br>high             |
| Comments/Explanation:            | ngn                                    |
|                                  |                                        |
| Checks in Vertical View:         |                                        |
| Cruise Flight Level              |                                        |
|                                  | 1 2 3 4 5 6<br>low<br>high             |
| Comments/Explanation:            | 1.1.9.1                                |
|                                  |                                        |
| Intercept altitude               | 1 2 3 4 5 6<br>low                     |
| Comments/Explanation:            | high                                   |
|                                  |                                        |
| Vertical profile ends at runway  |                                        |
|                                  | 1 2 3 4 5 6<br>low                     |
| Comments/Explanation:            | high                                   |
|                                  |                                        |
| Airport elevation                |                                        |
|                                  | 1 2 3 4 5 6<br>low                     |
| 27/09/2010 Na                    | amed Distribution Only Page 58 of 60   |
|                                  | Proj. No: 211988                       |



Model-based Analysis of Human Errors during Aircraft Cockpit System Design



|                       | high |
|-----------------------|------|
|                       |      |
| Comments/Explanation: |      |
|                       |      |
|                       |      |

### How much effort was necessary to perform these checks?

| Horizontal view:           |       |               |    |   |   |          |   |
|----------------------------|-------|---------------|----|---|---|----------|---|
| Routing and waypoints      | high  | 1<br>low      | 2  | 3 | 4 | 5        | 6 |
| Comments/Explanation:      |       |               |    |   |   |          |   |
| Routing ends at the runway |       | -1            | -1 |   |   |          |   |
|                            | high  | i<br>Iow      | 2  | 3 | 4 | 5        | 6 |
| Comments/Explanation:      | Ingri |               |    |   |   |          |   |
|                            |       |               |    |   |   |          |   |
| Vertical view:             |       |               |    |   |   |          |   |
| Cruise Flight Level        |       | l<br>1<br>low | 2  | 3 | 4 | -  <br>5 | 6 |
| Comments/Explanation:      | high  |               |    |   |   |          |   |
|                            |       |               |    |   |   |          |   |
| Intercept altitude         | -     | l<br>1<br>low | 2  | 3 | 4 | 5        | 6 |
|                            | high  | low           |    |   |   |          |   |

| 27/09/2010 | 7/09/2010 Named Distribution Only |  |  |  |
|------------|-----------------------------------|--|--|--|
|            | Proj. No: 211988                  |  |  |  |





| Comments/Explanation:                  |      |               |   |   |   |   |   |  |
|----------------------------------------|------|---------------|---|---|---|---|---|--|
| Vertical flight-path ends at<br>runway | high | l<br>1<br>Iow | 2 | 3 | 4 | 5 | 6 |  |
| Comments/Explanation:                  |      |               |   |   |   |   |   |  |
| Airport elevation                      | high | l<br>1<br>Iow | 2 | 3 | 4 | 5 | 6 |  |
| Comments/Explanation:                  |      |               |   |   |   |   |   |  |

| 27/09/2010 | Named Distribution Only | Page 60 of 60 |
|------------|-------------------------|---------------|
|            | Proj. No: 211988        |               |