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A molecular theory is developed Lo describe quantitatively the mechanical behavior of entanglement 
networks of linear, randomly coiling molecules. The theory is based on the model of Rouse for a single 
molecule and is a generalization of the theory of Duiser and Staverman for chemically crosslinked networks. 

A new model for an "entanglement point" is suggested, which accounts for the frictional force due to the 
velocity difference between two entangled molecules at that point. This leads to a modification of the diffusion 
equation in the Rouse theory. 

It turns out that the relaxation spectrum of a network corresponds to that of an assembly of "decoupled" 
equivalent molecules in which the ends of some submolecules have a mobility which is smaller by a slip 
factor o. This parameter may have values from zero (crosslinked molecules) to unity (free molecules in 
dilute solution). 

The relaxation spectra of the decoupled equivalent molecules can lie obtained by applying a property of 
the Sturm sequence in a computer program, without actually solving for the eigenvalues of the modified 
matrix in the Rouse diffusion equation. 

Application of the theory to experimental data yields the number of elastically effective network chains 
of an entanglement network by integration of the area under the curve in the long-time region of the relaxa
tion spectrum. 

INTRODUCTION 

I N the literature dealing with the mechanical behavior 
of polymers and polymer solutions, several theories 

can be found which attempt to describe this behavior 
on a molecular basis.1- 5 In most cases, these theories 
concentrate on a rather narrow field of interest. Many 
molecular theories are still restricted to linear visco
elastic behavior of linear, randomly coiling polymer 
chains. Furthermore they must still be extended in 
order to explain the long-time regions where entangle
ments affect the viscoelastic properties. Entanglements 

1 A. ]. Staverman, in Handbuch der Plzysik, S. Fliigge, Ed. 
(Springer-Verlag, Berlin, 1962), Vol. 13, pp. 432-451. 

2 L. R. G. Treloar, in Die Plzysik der Hoclzpolymeren, H. A. 
Stuart, Ed. (Springer-Verlag, Berlin, 1956), Vol. 4, pp. 295-372. 

3 J . D. Ferry, Viscoelastic Properties of P olymers (John Wiley 
& Sons, Inc., New York, 1961), pp. 15lff. 

4 A. V. Tobolsky, Properties and Structure of P olymers (John 
Wiley & Sons, Inc., New York, 1960), pp. 160ff. 

6 A. V. Tobolsky and J. ]. Aklonis, J . Phys. Chem. 68, 1970 
(1964). 

are present in concentrated polymer solutions as well 
as in bulk polymers, whether chemically crosslinked or 
not. Characterization of such entanglement networks 
as well as chemically crosslinked, permanent networks 
involves the determination of the number of entangle
ments and/ or permanent crosslinks. Permanent cross
links give rise to an equilibrium rubber elastic modulus, 
which can be viewed as resulting from a number of 
molecular relaxation times which have become infinite. 
Entanglements give rise to a series of relaxation times, 
which are not infinite but very long. Entanglement 
networks therefore do not show an equilibrium modulus 
but behave rubber elastically in a certain time scale. 

The dearth of precise knowledge in this field, reflected 
in several controversies in current polymer network 
theories, provides the main impetus for research in this 
area. One of the present authors (J.A.D. ) has recently6 

extended the molecular model of Rouse7 for linear 

e J. A. Duiser, Ph.D. thesis, Leiden, The Netherlands, 1965. 
7 P. E. Rouse, Jr., J . Chem. Phys. 21, 1272 (1953). 
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polymer molecules to permanent networks and has 
also considered special cases of temporarily crosslinked 
networks. The other author (f\.J.C. ) has extended the 
Rouse model to entanglement networks, 8 thereby giving 
a more general derivation of the relaxation spectrum 
for crosslinked and entanglement networks. The present 
cooperation has resulted in a quantitative generalized 
molecular theory for both crosslinked and en tangled 
networks, by means of the introduction of a slippage 
parameter between polymer chains, which becomes zero 
in the case of a permanent network. 

The molecular model on which Rouse's theory is 
based does not always give as close an agreement with 
experiment as models proposed later, 9- 11 but is easier 
to modify for the effect of temporary crosslinks due to 
chain entanglements and for the effect of permanent 
chemical crosslinks. The reason is that a very important 
part of the mechanical behavior in Rouse's theory is 
incorporated in a "mobility-coefficient matrix" which 
accounts for the mobility at several points in the chain. 
It is possible to modify Rouse's theory by suitably 
changing this matrix. 

SINGLE-CHAIN PROBLEM 

A few premises, similar to those of Rouse's theory,7 
are outlined below for an unentangled polymer chain. 

A free-draining molecule of randomly coiling, freely 
jointed segments is considered, as postulated by Debye.12 

The solution containing the molecule is assumed to be 
sheared by harmonic motion in the x direction of a 
z= constant plane. One end of the molecule is chosen 
as the origin of this coordinate system. 

The molecule is thought of as being composed of N 
equal submolecules of a length, which is rather arbi
trary, but which is so chosen that the end-to-end 
distance of a submolecule follows a Gaussian probability 
distribution function. The purely viscous resistance of 
the medium is imagined to be concentrated at the 
junctions between the submolecules, while the sub
molecules themselves are supposed to act like ideal 
elastic entropy springs. 

A submolecule with a length which fulfills the above 
conditions has a rms end-to-end distance given by 
(r,2 )t=a(q)t, where q is the number of monomer units 
in the submolecule and a is an effective monomer 
length. 

Each submolecule has its own Cartesian-coordinate 
system x;, y;, z; parallel to the original system x, y, z. 
The configuration of the entire molecule is then de
scribed by a so-called represen tative point in a 3N
dimensional configuration space. 

The rate of change of this configuration depends both 
on the velocity gradient of the solvent and on the 

s A. J. Chompff, Ph.D. thesis, Delft, The Netherlands, 1965. 
9 B. H. Zimm, J. Chem. Phys. 24, 269 (1956). . 
10 N. W. Tschoegl, J. Chem. Phys. 39, 149 (1963). 
11 N. W. Tschoegl, J. Chem. Phys. 40, 473 (1964). 
12 P. Debye, J. Chem. Phys. 14, 636 (1946). 

tendency of the molecule to diffuse back to its equi
librium position. Only the latter of the two rate
determining components is altered in the present treat
ment. 

According to R ouse the average velocity of back 
diffusion (x;)D of the representative point in this 3N 
space along the x; coordinate towards its equilibrium 
position after deformation is found to be 

(x1)D = -B[-~+2 aµ-~], 
ax;-1 ax; ax;+1 

(1) 

where µ is the chemical potential of the molecule and 
B is the average mobility of the junctions between the 
submolecules. For small displacements from equilibrium 
aµ /ax; is the driving force for the back diffusion in the 
x; direction; the other differentials in Eq. (1) have an 
analogous meaning. 

The set of N equations for all the (:i:; )D can be written 

where 

{
a a a } 

V x= ax1' ax2' • • • axN ' 

(2) 

(3) 

(4) 

and A33 is the square N th-order matrix 

3 - 1 

-1 2 -1 

-1 
' 

2 -1, 
' ' ' ' 

' ' ' ' ' 

0 
' ' ' ' -1 

0 
' ' ' ' ' ' ' 

' 2 '~1 

-1 2 -1 

-1 

(5) 

Following Duiser and Staverman,13 the mobilities 
assigned to the two points determining the ends of the 
free chain are taken as at least twice the average 
mobility of the submolecules in the middle, since these 
points are connected to only one submolecule. This 
accounts for the 3's at the corners of the matrix, rather 
than 2's in the original Rouse treatment. 

Rouse's treatment for one molecule yields a discrete 
relaxation spectrum with N lines of equal height kT, at 
relaxation times r p, given by 

(p=l,2,···,N), (6) 

where A.p are the N eigenvalues of A3a, which are found 
to be 

A. p = 4 sin2 (p7r / 2N ) (P= 1, 2, • • ·, N). (7) 

The friction factor 1/ B is often written in a form which 
is q times smaller, namely the monomeric friction co-

13 J. A. Duiser and A. J. Staverman, in Physics of Non-Crystal
line Solids, J. A. Prins, Ed. (North-Holland Publ. Co., Amsterdam, 
1965)' pp. 376-387. 
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efficient so defined by 

Zso= N / B, 

where Z is the degree of polymerization of the molecule. 
The mobility coefficient matrix A33 thus controls the 

viscoelastic behavior of the molecule, since its eigen
values determine the relative position of the relaxation 
times. 

For a hypothetical molecule with fixed· ends,13 the 
appropria te mobility coefficient matrix would be the 
square matrix 

1 -1 

-1 2 -1 0 -1 2 -1 
' ' ' ' ' ' ' ' ' A= ' ' ' ' (8) ' ' 11 

' ' ' 
' ' ' ' 

':.1 ' 

0 
2 ~1 

-1 2 - 1 

-1 

whose eigenvalues A. p are given by 

A.P = 4 sin2 (p7r / 2N ) (p=0,1,2,···, N -l ). (9) 

Equations (7) and (9) will be derived in a forthcoming 
article. 

For p <ff\! it is easily seen that A.p-;::::;:,p27r2 /1V2 or 

(10 ) 

where T1 is the longest finite relaxation time of the 
molecule. By using Eq. (10) the discrete relaxation 
spectrum of a free molecule may be approximated by a 
continuous spectrum, which is found to be 

H= tk T (T1jT)t 

=0 

{To,2N<T~T1Po-2 ) 

(T>T1Po-2 ). (11 ) 

If the number Po is chosen to be about 0.64 a fair 
agreement is obtained between the dynamic moduli 
calculated from the continuous and the discrete spectra. 
Equation (9) differs from Eq. (7) only by the sum
mation boundaries. Consequently, the relaxation spec
trum of a molecule with fixed ends is equal to that of 
a free molecule except for one line a t infinite relaxation 
time, corresponding to p = 0. 

TWO-CHAIN PROBLEM 

In concentrated solutions, chain entanglement occurs 
provided the molecular weight is high enough. These 
entanglements are of a complicated geometrical nature. 
Molecules of polymers with very different degrees of 
chain stiffness caused by steric hindrance seem to 
become entangled to the same extent,3 indicating that 
an entanglement is not concentrated at one point on a 
chain. When devising a model, however, one has no 
choice but to concentrate the effect of entanglement 
coupling on infinitesimal points along the chain as is 

FIG. 1. A two-chain 
network between four 
fixed points A, B, C, and 
and D, containing an 
entanglement at P . 

c 

A 

B 

Nsubmo 

D 

done in the model described below. The approximation 
does not seem serious, for theoretical and experimental 
results show a good fit. An essential requirement, how
ever, is a large entanglement spacing along the mole
cule, i.e., the entanglement points should be separated 
from each other by several (at least two ) submolecules. 
The model is therefore not applicable lo every un
diluted polymer system, but only to those polymer 
systems, preferably diluted, which yield a maximum 
rubbery shear modulus G(t ) or C'(w) of about 3Xl06 

dyn/ cm2• 

In the present treatment it is assumed that the 
effect of an en tanglement is equivalent to a purely 
viscous coupling at the point of contact between two 
chains. The slipping of this coupling must be much 
slower than the movement of a free submolecule if it 
is to explain the presence of a group of long relaxation 
times beyond the glass transition region . 

A two-chain network is considered, as shown in Fig. 1. 
A, B, C, and Dare fixed points and]-> is an entanglement 
point as described above, located halfway along AC and 
BD. Both chains contain 2'11' submolecules, which are 
numbered as follows: from A to P.; 1 to N, from P to C; 
N +l to 2N, from B to P; 2N+l to 3N and from P 
to D; 3N + 1 to 4N. Following Rouse's method the 
average velocity of back diffusion along the XN and the 
XaN coordinates is now calculated as follows. With all 
the junctions kept fixed except the (N- l )th 

With all the junctions kept fixed except the Nth 

(xN)N=-B{ (aµ./ axN ) -(aµ. / axN+1) 

+J[(xN)N- (i:a.v)aN]l, (13) 

where/[ (i:N )N- (x3N )aN] is the frictional force between 
the chains due to their velocity difference at P. The 
friction factor f can have values from zero (for a free 
chain with fixed ends) to infinity (for a permanent 
crosslink). 

Similarly, with all the junctions kept fixed except the 
(3N-l)th, 

(i:a,v )aN-1 = - B[ (aµ. / axaN )- (aµ./ xaN- 1) J (14) 
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and with all the junctions kept fixed except the 3Nth, 

(xaNh.iv=-BI (aµ/axaN)-(aµ/axaN+1) 
B[ ( aµ aµ ) (xaN)3N=-- (l+o) ----
2 ax3N axaN+l 

+J[(xaN)aN- (xN)N]). (15) 

Combining Eqs. (13) and (15) gives 
+ (1- o )(~-~)J . 

axN axN+l 
(19) 

Bf ( aµ aµ )] 
+ 1 +2Bj axaN - axaN+l 1 (16) 

For crosslinked chains Duiser and Staverman13 have 
obtained equations which are equal to Eqs. (18) and 
(19) with o=O. 

(x3N)aN=-B -- ----. [ 1+Bf( aµ aµ ) 
1+2Bj axaN axaN+l 

The factors (1 +o) and (1- o) can be interpreted 
physically by noting that the mobility of each junction 
at P increases with a factor (1 +o) as the coupling 
becomes looser, while the force on it due to the junction 
belonging to the other chain decreases with a factor 
(1-o)/(1+o)~(1-2o) at the same time. 

+ 1 :{Bia~~ - a:;+) J (l 7) 

The quantity o is thus a slip parameter which can 
have values from zero (permanent coupling) to unity 
(mutually free chains). 

Putting [1/ (1+2Bj)]=o, Eqs. (16) and (17) become 
The equation for (xN )D can now be written by adding 

Eqs. (12) and (18). Similarly, the equation for (xaN )D 
is obtained by adding Eqs. (14) and (19) . The set of 
equations for all (x; )D can then be written 

Ae= 

XD= -BA.'Vxµ, (20) 

+(1-0) ----( 
aµ aµ )] 

axaN ax3N+l 
1 (18) where the new mobility coefficient matrix A. is the 

square 4Nth-order matrix 

1 - 1 

-1 2 -1 

'',,, ',, ' ' , , , 

' ' ' ' ', ', ' 
' _1 '3 ;6 ~~ ... ............... .. .. Y-126 

- 1+6 l.!..§ - 1· ... .. .. ... . . . .... . _J..::! 1-0 

2 ""2 ",, ',,, 2 --y-

' ' . ' ' 
' ' 

~1 2 :.1 

-1 0 

0 1 -1 

- 1 2 -1 

' 
' ' ', 
' ' ' 8 8 ' ' ,. 2 - 2 . ..... . ...... . .... ·-1 ¥-1;6 

_126 ¥ . ... .. ....... .. .. .. . ·-~, ~ -1 

', ', 
' ' 

' ' 
'~1 ' ,2 '~ 1 

-1 

(21) 
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To find the eigenvalues of this matrix the character
istic equation I A.- Al I = 0 can be simplified as follows: 
The (2N)th row is added to the (2N+1)th, the 
(2N -1) th row is added to the (2N + 2) th, etc. Then 
the (2N+1 )th column is subtracted from the 2Nth, 
the (2N+2 )th column is subtracted from the 
(2N-1 )th, etc. The resulting determinant can then 
be split into a product of two determinants, of which 
the first corresponds to a free chain of 2N submolecules 
with fixed ends and the other corresponds to a chain 
with fixed ends and a point of increased friction (a 
"slow point") in the middle: 

1-)., -1 

0 - I 2-)., - I 

' '',, ',,' 

=O 
- 1 ~.o -x' -6 • (22) -1 2-X -1 

0 
-1 1-;\ 

In accordance with the previous remarks, when li 
goes to zero, the determinants of Eq. (22) reduce to the 
result of Duiser and Staverman13 and become equivalent 
to one free chain with fixed ends, 2N submolecules in 
length, and two free chains with fixed ends, each N 
submolecules in length . 

Thus the mathematical equivalence of the system of 
two chains between four fixed points, with one mobile 
entanglement, is as shown in Fig. 2. On the right-hand 
side one of the resulting chains (AC) is undisturbed, 
while the second (BD ) of equal length possesses a 
lower mobility at the former point of contact P'. The 
mobility at such a "slow point" P' is equal to oB. 
Physically oB represents the ease of slipping of the 
entanglement point along one of the two chains. 

NETWORK PROBLEM 

The principle of the above mathematical equivalence 
can be applied to a whole network. To simplify the 
treatment it is assumed that the network may be 
represented as partly shown in Fig. 3 (a). Initially, all 
the crosslinks are fixed points and the chains between 
them are all N submolecules in length. For simplicity 
it is assumed that the mean-square end-to-end distance 

A D 

FIG. 2. The two-chain network and its mathematical equivalent 
consisting of two "decoupled" molecules, one of which carries a 
slow point P'. 

between neigh boring crosslinks is equal to that between 
two points on a free molecule separated by N sub
molecules. In this case the front factor concerning the 
ratio of these distances may be omitted. The network is 
thought to be composed of n primary molecules which 
are all mN submolecules long; this indicates the presence 
of (m-1) fixed crosslinks per primary molecule in this 
initial network. If half the crosslinks, indicated by a 
circle, are now transformed into entanglement points 
with a slip parameter li, then application of the above 
principle results in Stage b. Again half of the remaining 
fixed crosslinks are successively transformed into en
tanglements giving Stage c, etc. Finally, only a few 
untransformed fixed points remain which lie on the 
outside boundaries of the network. 

Thus an entanglement network consisting of n mole
cules, each containing (m-1) entanglements, may be 
transformed to its mathematical equivalent, which is a 
system of: tn molecules with (m-1) slow points, 
+3n/ 8 molecules with t(m-1) slow points, +3n/ 16 
molecules with Hm-1) slow points, +3n/ 32 molecules 
with t(m-1) slow points, etc. The relaxation spectrum 
per molecule of this entanglement network may now 
be written 

Hent= tH[ m- l]+t L (1/2k)H[ (m-1) / 2k], (23) 
k=L .2·· • 

where H[x] is the relaxation spectrum of a molecule 
(mN submolecules long) with x slow points. The spec
trum of each H[x] can be obtained after solving the 
eigenvalues of the matrix A, which contains x slow 
points as shown in Eq. (24): 

3 -1 

-1 2 -1 

0 
A. (24) 

0 
The square matrix A is always of the mNth order. 

The form of Eq. (21) indicates that the procedure 
for transformation of an entanglement network to the 
mathematically equivalent network, as in Fig. 2 or 
Eq. (22), is valid whenever the matrix (21) is sym
metric about both its principal diagonal (i.e., each 
element a;;= a;;) and its other diagonal, i.e., each ele-
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J 

) 

p ) 

(C) 

ment a ;i=acN- f+1HN- i+ 1i- This means that if two chains 
are entangled as shown in Fig. 4(a), where the chains 
are divided into two pairs of equal chain segments, 
they can be represented by their mathematical equiva
lence as in Fig. 4(a) . 

This also means that a mathematical equivalence 
may be found for two entangling chains containing 
only two fixed points and two free ends as shown in 
Fig. 4(b ), provided the entanglement divides the chains 
into two pairs of equal chain segments. 

It has not yet been found possible to apply the above 
treatment to the general case where all four segments 
AP, BI', CP, and DP are different. 

The physical meaning of these transformations can 
be illustrated as follows: 

The chain AC can move with almost complete free
dom. Once it has chosen a configuration, however, the 
point P appears to the chain BD as if it were fixed in 

(0 ) 

Ak~c A\ ~c 

.;·~ u-
B. D-~D 

. ,~-~ 
~P~C B ~-

C 

FIG. 4. The "decoupling" of somewhat irregularly entangled 
molecules. 

(b) 

(d ) 

LI 

= 

FIG. 3. The stepwise "decoupling" of chains 
in a regular network. 

the case of a permanent crosslink, or as if it were a 
slow point in the case of an entanglement. The sections 
BP and PD then choose their own configuration inde
pendently. The system of four chain sections, therefore 
-instead of the commonly accepted four degrees of 
freedom in which elastic energy can be stored-has 
only three degrees of freedom in the case of a permanent 
crosslink and a variable number between 2 and 3 in 
the case of an entanglement depending on the time 
scale of the experiment. 

There seems to be no obvious reason why this physical 
interpretation should not also apply to a case where P 
is not at the center of the chains AC and BD, although 
it is not easy to prove this mathematically. 

It is therefore assumed that the relaxation spectrum 
Hent of an entanglement network with random distri
bution of chain lengths between entanglements, is also 
represented by Eq. (23 ) . Each term H[(m-1)/2k] 
in this equation then represents an average of all 
possible entanglement distributions for a molecule 
with (m- 1 )/ 2k slow points. In actual calculations, 
however, for each term H[ (m- 1 )/ 2k], one of the 
many possible distributions must be chosen and an 
average spectrum calculated from five to 10 such 
choices, depending on the accuracy which is desired . 

PERMANENTLY CROSSLINKED NETWORKS 

For the limiting case of a chemically crosslinked 
network where o=O, Eq. (23) may be simplified by 
writing the determinant of the characteristic equation 
of Eq. (24) as a product of smaller determinants. Then 
the relaxation spectrum Hf>"rm per P.la.c;tirnlly effective 
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FIG. 5. The relaxation spectrum per net

work chain in a permanently crosslinked net
work. 

log(1/2kTP
0
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1
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' : 

network chain is found to be 

Hperm= t.H(N) + i t (4k)-1H(2kN) , (25) 
k~l ,2 · ·· 

in which H (y ) is the relaxation spectrum of a chain 
with fixed ends and with a length of y submolecules. 
It should be noted tha t the spectra represented by 
Eqs. (23) and (25 ) are no longer seri es of lines of equ al 
heigh t . 

At infinite relaxation time, the summation of Eq. 
(25 ) can easily be carried out, because each H (y) is 
associated with one mechani sm with an infinite relax
a tion time. It is found that the total number of these 
mechanisms is half th e number of elastically effective 
chains because 

k~1. 2 ... 

As follows from Eqs. ( 6 ) and (7 ) , the longest finite 
relaxation time of a ch ain is proportional to the square 
of the number of submolecules. So, if the longest finite 
relaxation time for a chain with y submolecules is 
represented by r1 (y ), then 

r1 (2kJV) =22kr1 (N). (26) 

From E q. (25 ) the following spectrum is obtained: 

(a) At short times, where ro,2N(N ) <r~r1(N)p0-2 ,' 
substitution of Eqs. (11 ) and (26 ) in Eq. (25) and 
summation gives 

H perm = !kT[r1 (N) / r ] t, (27) 

which is equal to H of a free molecule, represented by 
Eq. (11) . 

(b ) At longer tim es, where r > r1 (N) p0-
2

, some terms 
of Eq. (25 ) become zero, as is shown by Eq. (11). A 
value k0 may be defined in such a way, tha t only chains 
of 2kN submolecules in length for which k?:_ li0 will 
contribute to the spectrum. Then in ·the region of the 
relaxation spectrum where 

(28) 

log 1 log 10 

the summation of Eq. (25 ) must be carried out starting 
from k0• With the use of Eq. (26 ) , Eq. (28) can be 
written 

t_22kor1 (!l')po-2 < r~ 22kor1 (N )po- 2. (29) 

So, the value of k0 is related to r in such a way tha t 

4pa2r / r1 (N ) > 22k0 ?:_ Po2r / r1 (N ) . (30) 

D efinin g a nu mber q0
2 lying between t_ and 1, one may 

write 
2Zko = Po2r / qb1 (i\7 ) · ( 31) 

Substitution of Eqs. (11 ) and (26 ) in Eq. (25) as 
before, but new carrying out the summ ation from a 
value ko determined by Eq . (31), yield s 

Hperm=!kT[ri(N) ] ti t 2- k 
T ko ,ko+i,. .. 

= ! kT[r1 (N) J l (t) 2-ko t 2-k 
T 0 ,1,200

• 

= ! kT[r1 (N) / r J (i ) [qo2r1 (N )/ Po2r ]! 

=!kT[r1 (N) / r](3qo/ 2Po ) . (32) 

The value of qo is somewhat arbitrary ; if it is taken to 
be ~ the two parts of the spectrum derived in (a) and 
(b) will fit at r=r1 (N )p0- 2• 

The physical meaning of Eqs. (27 ) and (32) lies in 
the representation of two kinds of movements per
form ed by the network. Th a t part of the spectrum 
which is proportional to r - t [ given by Eq. (27)] refers 
to movements of chains between neigh boring crosslinks. 
At longer times it is followed by a part where the 
spectrum is proportional to r - 1 [ given by Eq. (32)] 
corresponding to movements in which crosslinks par
ticipa te. These movements may be ex tended over chain 
lengths larger than that of a primary molecule before 
crosslinking. Indeed extremely long relaxation times 
have been found experimentally.14 It should be empha-

14 Reference 3, pp. 189 and 198. 
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sized, however, that in a crosslinked polymer network 
additional entanglements also cause very long relaxation 
times. The theoretical relaxation spectrum per elastic
ally effective network chain thus obtained, is illustrated 
in Fig. 5. The form of the peak at infinite time may be 
chosen arbitrarily provided the condition 

f Hd lnr=G. = !kT 
peak 

is fulfilled. The theoretical relaxation spectrum per 
network chain thus obtained, is illustrated in Fig. 5. 

ENTANGLEMENT NETWORKS 

For the case of an entanglement network where o is 
not equal to zero, Eq. (23) cannot be simplified further. 
To calculate the relaxation spectra of all the terms 
H[x], a method has to be found to obtain the eigen
values of a matrix like the one given in Eq. (24). 
Since the relaxation spectra obtainable from experiment 
are always continuous, the eigenvalues or consequently 
the relaxation times themselves do not have to be 
calculated, but only the density of relaxation times 
along the r axis. This affords a short cut to the calcu
lat ion of a continuous relaxation spectrum of each 
H[x] by applying a property of the Sturm sequence.15 

Moreover, random distribution of entanglement 
poin ts over the entire molecule can now also be easily 
introduced. 

The method is based on the fact that, given a tri
diagonal determinant in the characteristic equation 
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the subdeterminants (Hu, H22· • ·) indicated by dotted 
lines form the following seqw".nce: 

Hoo=+l, 

Hu= (c1-A.)Hoo, 

H22 = (c2-A.)Hu-b1'b1Hoo, 

H33= (c3-A.)H22 -b/b2Hu, 

H;;= (c,-A.)H;__1,;-1-b;_1'b;_1H;_2,;- 2. (34) 

A th eorem exists which proves that if a certain value 
of A. is substituted into this "Sturm sequence," the 
number of agreements (az) in sign between consecutive 
members of the sequence is equal to the number of 

16 J. H. Wilkinson, Numerische Mathematik 4, 362 (1962). 

eigenvalues greater than that A.. If a H;;=O occurs, its 
sign is defined to be opposite to that of H i-l,i-l· 

For instance, for A.= 4 in the matrix A of Eq. (24) 
all the H;; will alternate in sign, giving no eigenvalues 
larger than +4. This maximum value for A. of +4 
follows obviously from Eq. (7) for p=N. For A.=0 all 
the H ;; will be positive and thus all the eigenvalues will 
be larger than zero, as they should be. 

At this point the lengthy calculations must be taken 
over by a computer, which is given the following in
structions: 

(1) Determine the number of agreements a1 for a 
certain A.1. 

(2) Determine the number of agreements a2 for 
A.1-D.A.1=A.2 (where D. is a multiplying factor, rather 
than an arithmetic increment, so as to give equal 
increments on a logarithmic scale). 

(3) Find a2-a1 and repeat the process until a1=mN, 
the order of the matrix. 

(4) Give the results converted into logrn values, 
where rn = 1/ A.z. 

As a result of such a calculation it was found that o 
must be very small (lQ-3 to 10-5 ) in order to affect 
significan tly the spectrum obtained with the unmodified 
Rouse matrix. For instance if o=O.l the change is so 
slight as to be undetectable by experiment. 

Clearly this result does not only apply to a chain 
with free ends, i.e. , a matrix with 3's in the corners, 
but also to a chain with fixed ends, i.e., a matrix with 
1 's in the corners containing such perturbations as 
appear in Eq. (24). The results of these calculations 
will be given in a forthcoming article. 

An approximate solution can be given for each term 
H[x] of Eq. (23), provided o is very small, by applying 
a method used by Kronig and Penney16 for the calcu
lation of energy levels in a metal. A qualitative expla
nation for this approximation can be given as follows: 
At short times, where movements of chain segments 
occur which are much shorter than the average number 
of submolecules between entanglements, there is hardly 
any slip. The entanglements may then be considered 
as permanent crosslinks, or conversely the slow points 
may be considered as fixed points. This results in the 
type of relaxation spectrum discussed in the previous 
section. In the viscoelastic behavior at long times, 
however, the viscous properties of the molecule are 
mainly determined by the x slow points, while the 
(x+ 1) almost rubbery behaving chain segments be
tween the slow points take care of the elastic properties 
of the molecule. In this long-time region the molecule 
may be considered as a series of slow points coupled 
by rubbery chain portions, which behave like giant 
"submolecules." The mobilities at the slow points are 
then taken as o times the mobility of a normal sub
molecule. 

16 R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. (London) 
Al30, 499 (1931). 
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According to Eqs. ( 6) and (7) the relaxation times 
are inversily proportional to the mobilities at the junc
tions and are proportional to the square of the number 
of "submolecules" and to their average square end-to
end distance. Thus, in the long-time region of H[x] 
the approximation predicts a longest finite relaxation 
time ri' of a molecule with x slow points of 

r 1'= (r.2 )(x+1)2/(67r2kTOB), (35) 

where (r.2 ) is the average square end-to-end distance 
of the giant "submolecule" between slow points. The 
longest finite relaxation time of a molecule with the 
same length but without slow points is, according to 
Rouse, 

Since 
r1 = (r.2) (mN) 2/ (67r2kTB). 

(r.2)= (r,2 )mN/(x+1), 

Eqs. (35) and (36) yield 

(36) 

(37) 

This result indicates that the very long-time region of 

c ., 
:r: 
en 
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log(0.1kTmN) 

the spectrum H[x] should approximately correspond 
to a shift of part of the Rouse spectrum to higher 
values of r by a factor of (x+1) / (mN o). This is 
illustrated for the spectrum H[m-1] in Fig. 6. 

A similar type of relaxation spectrum has already 
been suggested intuitively by Ferry and co-workers17 

for a real entangled molecule. In the present article, 
however, the spectrum of Fig. 6 is only valid for a 
molecule in the transformed equivalent system of mole
cules. The real spectrum Hent has to be assembled from 
a large number of such spectra according to Eq. (23 ). 

Combining the results from the previous section for 
the short-time region with the above, yields a relaxation 
spectrum Hent of a shape as shown in Fig. 7. 

The hump in the long-time region of the spectrum 
has a shape which is difficult to predict exactly, but the 
area under it is more important. Interpretation of the 
relaxation spectrum of Fig. 6 in terms of discrete line 
spectra, yields for H[m-1] in the long-time region 
(m- 2) lines of equal height. Similarly, H[i(m-1 )] 
has in the long-time region ! (m-1 )-1 lines of equal 
height, and H[t(m-1)] has in the same region 

FIG. 7. Expected relaxation spectrum 
per molecule in an entanglement network. 
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t (m-1 )-1 lines of equal height, etc. It is then obvious 
that the summation of all these lines in the long-time 
region, using Eq. (23 ), yields in Fig. 7 an area under 
the hump equal to half the number of elastically effec
tive network chains (11.) multiplied by kT because 

t(m-2 )+:i L (1 / 2k)! [ (m-1 )/ 2k]-1j 
k~1.2 ,. .. 

=![(m-1)-2], (38) 

which is exactly equal to half the number of elastically 
effective network chains per molecule. 

Thus the long-time region of the relaxation spectrum 
of an entanglement network replaces the infinite-time 
region of a chemically crosslinked network (the "block" 
at infinite time in Fig. 5). 

CONCLUSIONS 

The theory of Rouse thus permits an extension which 
describes the viscoelastic relaxation spectrum of net
works consisting of crosslinked or entangled macro
molecules. The extension is performed by modification 
of the mobility-coefficient matrix in the configuration
diffusion equation, to give account of the frictional 
phenomena at an entanglement point between two 
entangled molecules. 

It turns out that such a friction may be expressed 
mathematically by introducing a slip parameter li. 
Application of a. decoupling process yields a system of 
two chains, where the mobility at the former point of 
contact on one of the two chains must be multiplied 
with this factor li, whereas the mobility at the same 
point on the other chain is kept unchanged. 

Extension of this principle to a whole network yields 
also a mathematical equivalence, which is an assembly 
of decoupled molecules containing various amounts of 
"slow points.'' Since the relaxation spectra are assumed 
to be additive, the spectrum of the whole network can 
be obtained by appropriate summation of the different 
spectra of the decoupled molecules times their respective 
mole fractions. 

A simplification can be achieved in the case where 
the molecules are permanently crosslinked ( li = 0). Then 
the spectrum can be split into two regions: (1) At 
short times the slope of the logarithmic relaxation 
spectrum is -t, changing to -1 at a time corresponding 
to the longest relaxation time of a chain between two 
neighboring crosslinks; (2) at infinite time a peak in H 
appears, corresponding to a number of mechanisms 

equal to half the number of elastically effective network 
chains. Both regions are illustrated in Fig. 5. 

If 0<li<1 the entanglements can be considered more 
or less similar to crosslinks. The long-time region of the 
relaxation spectrum no longer lies at infinite time. 
Instead, a hump in H appears at fairly long relaxation 
times. The position of this hump depends on the value 
of li. Only for very low values of li an approximate 
solution is applicable. Quite generally, however, the 
relaxation spectrum can be obtained by means of a 
computer using a property of the Sturm sequence. 
The relaxation spectrum thus obtained is schematically 
shown in Fig. 7. It has the following characteristic 
properties: 

(a) In the short-time region the spectrum is identical 
with the spectrum for a crosslinked network, i.e., the 
slope of -t is followed by a slope of -1. 

(b) A rather low minimum in the curve is followed 
by a hump, representing a group of long relaxation 
times. The integral of H as a function of lnr, corre
sponding to the hump, yields 

J~ Hd lnr=t11.kT. 
mm 

(39) 

Therefore, the number of elastically effective chains 11., 
can be calculated directly from the spectrum derived 
from experiments. Examples of these calculations will 
be given in a forthcoming article. 

(c) Beyond the maximum in the hump the slope is 
practically constant and equal to - t up to the highest 
relaxation time. Relative to the short-time region where 
the slope is also equal to - t, this part of the spectrum 
may be considered as if the relaxation times of part of 
the Rouse spectrum have been shifted to higher values 
of r over a distance proportional to - log ( liN) along 
the time axis. 
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