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Synopsis 

While the concept of tl;i e complex modulu~ i~ based on a fo rced vibraLion ex­
periment it is a frequent pract ice to perfo rm instead a much simpler free damped 
o~cillat io n t e~ t from whi ch an approx imate va lue of the modulus is then evalu­
ated . The va lidi ty of t his approach a nd t he ensuing errors a re discussed and illus­
tr ated on a mul t ielement generalized Maxwell body. It is shown that wi th modi­
fi cations t he method is appli cable even for highly damped materials. 

1. Introduction 

The def-i11i t ion of the complex modulus is based on a forced oscilla­
t ion experiment in which the lag angle between the imposed sinusoidal 
strain and the result ing sinusoidal stress as well as the shape of the 
stress- strain diagram are measured.1 Because the measurement of a 
lag angle is rather difficul t it is a frequent practice to perform, in­
stead, a free damped vibration experiment measuring the natural 
frequency and the logari t hmic decrement from which an approximate 
ra]ue of the complex modulus is then computed. 2 

It is to be noted, however, that the decaying oscillations are no 
longer sinusoidal and, consequently, results obtained from them are 
inexact, the approximations being less and less accurate with increas­
ing damping. 3•

4 

The difference between resul ts obta ined in the two types of experi­
ment will be analyzed wi th the assumpt ion that a generalized Maxwell 
body, having a large number of spring and dashpot elements, can 
adequately represent the behavior of a real material. The method has 
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been ut ilized for simple models before ;5•6 a more realistic example will 
be discussed here. 

The complex modulus 

G* = G(l + j tan 5) (1.1) 

is t he constant of proportionality between an imposed sinusoida l stress 

u = uo exp jwl 

a nd the resul ti ng deformat ion 

U Uo . 

'Y = G* = IG*J exp J (wl - 8) 

(1.2) 

In the free vibrat ion case a mass m is attached to the model. For 
very soft materials a n external spring with spring constant S is also 
added to the model a nd one of two second-order different ial equations 

m:Y + [G-(1 + j tan 5- ) + S] 'Y = 0 (1.4) 

or 

1n:Y + [G+(1 + j tan 5+ - (A/2) tan 5+ + Sh = 0 (1.5) 

is solved with sui tab le initial conditions where a-, a+, and tan 5-
or tan 5+ of eqs. (1.4) and (1.5) are not necessarily identical with G* 
a nd tan 8 of eq . (1.1). 

The solution of eqs . (1.4) a nd (1.5) 

'Y = C exp jwl (1 + j A./'2) (1.ti) 

when substituted into eq. (1.4) yields7 

a- = mw2 (1 - A. 2/ 4) - s (1.7) 

a nd 

tan 5- = 
1 - A. 2/ 4 - S / mw2 

(1.8) 

where A. may be obtained from the measured logarithmic decrement, 
Ll as 

(1.9) 

" 
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Several a ut hors3·8 have debated the validi ty of eqs. (l.4), (1.7), a nd 
(l.F;) a nd use, instead, eq. (L''i) " ·hich yields 

(1.10) 

and 

A. 
tano + = --------

1 + t.. 2/ -.1: - S/ inw2 
(1.11) 

when damping is small t he square term in eqs. (1.7), (1.8), (1.10), 
and (1. 11 ) is neglected. D enoti ng t he correspo nd ing mod ulw; and 
damping b,v G' a nd t:m 01

, respect ive ly, the fo llowing eq ll:tl'ions re­
Rlll t 

a nd 

G' = mw2 - S 

tan 01 = 
1 - S/ mw2 7r (l - S/ mw2) 

2. Analysis of Forced and Free Oscillations of a 
Generalized Maxwell Body 

(1.12) 

(1.1~ ) 

A generali zed :'ll axwe ll bod,v consist ing of rn + 1 springs a nd 
dnshpots as sl10\\·n in Figure 1, has the same deformat ion I' in each 

G. 

G. 

G, 
r, 

G, 
r, 

O' = 0'0 SI Nwt 

FORCED VIBRATION 

G, 
T, 

G, 
r, 

G; 
T ; 

FREE VIBRATI ON 

Fig. J . Genernli i ed 1\fax well model. 
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element while t he stress ui in t he ith e lement is related to t he rate of 
deformation t hrough t he relation 

(2 .1 ) 

where G; is t he shear modulus (spring constant) and T ; t he relaxation 
time of t he ith member. The total stress on the model is 

n 

u = l: er ; 
i = 0 

Performing a Laphcc transformat ion on eCJS. (2.1) a nd (2.2) 

1 
P"i - ,,(O) = G; (p + 1/ Ti) iT; 

a nd 

L: o- i 
i = 0 

is obtained. 

(2.2) 

(2 .:1) 

(2.4) 

In eq . (2.:3) ,, (O) is the ini t ia l strain a nd u;(O) t he ini t ial stress in 
th e ith element. 

Subst itut.ing eCJ. (2.:1) into ef). (2.4) a nd solving for iT 

iT = 
_ .;.., pG; .;.., u;(O) - G;'Y(O) 

'Y w + w ·-
1=0 P+ l / T; 1 = 0 p+l/ T; 

(2Ji) 

is obtained. 
The complex shear modulus, whi ch is t he coeffi cie nt of -y, may he 

obtained in it s real a nd imagi nary form by replac ing p with jw 

n pGi 
G(p) = L 

i = 0 p + l / T; 
(2. fi ) 

G*(.jw) f_ . jwO; 
·i = o}W + l / T; 

(2.7) 

a nd 

.; (W T;)2(/; ~ 
(i* ,, = w 

; = 0 J + (w T ;) · 
(2.8) 
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G*1,,, = 
" G L WT ; • 

i = 0 1 + (wT;) 2 (2 .9) 

from which 

IG* / = (G*,,2 + G*;,,,2 )Y:i (2. 10) 

and 
tan o = G*;,,,/ G*,e ('.2 .11 ) 

Attaching a mass m a nd an elast ic spring S to the model a ppl ying a 
forcing fun ction f(I) a 11d assuming no11zero ini t ia l conditio11s 'Y (O) 
= 'Yo :ind -Y(O) -Yo t he motion will be described by the differentia.l 
~riuation 

m :Y + er + 'YS = f(I) 

or after Laplace trn11 sformation 

mp2-y - mp')'o - m-Yo + a- + -yS = F(p) 

Ruhsti1uti11g a- from eq. (2 .!"i) a nd solving for -y 

" 0.(Yo - er ;(0) 
F (p) + 11ip'Yo + m-Yo + L / 

i = 0 p + 1 T ; 

pG 
s + mp2 + .L: '1 

i = 0 p + } T ; 

'Y 

rCSlllts . 

(2. 12) 

(2. 1 :)) 

For free vihratio11s F(p) = 0. .\fultipl~ · ing both the nl!merator 
" and denominator of eri. ('.2. 1.+) by fT (]J + l / T;) , -y may be ex press0d as 

i = () 

t he r:ttio of t \rn pol y nomi als 

(J(p) 
-y = 

h(p) 

where h(p) is a poly nomial of order n + 2. 
The inverse transform of eri. (2 .15) y ields t he deformation of t he 

model. Considering a system with less tha n criti cal cla mping, t he 
motion will consist of a clamped sinusoid:tl vib r:ition superimposed 
on severa l creep terms. 9 

Because only one mass is attached to the model the system has a 
single cl0g;ree of fr0cdom and will vibrate at a single freril!ency w. 
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Consequently, eq. (2.15) when expanded into n + 2 partial fractwns 
will produce two terms with complex conjugate a nd n terms with real 
de no mi o.ators 

'Y _ g(p) = aow + ai(p + k) + _ a_2 _ 
- h(p) (p + k) 2 + w2 p + 82 

(2.16) 
aa 

+ P + 8a + 
and ::tfter inversion. 

where k and w are the real and imaginary parts of the single pair of 
complex roots and 82 .. . 8n+2 then real roots of the polynomial h(p) . 

The values of k and w are independent of the ini t ial conditions and, 
therefore, the complex modulus can be determined directly . 

Varying the appl ied mass, m , a nd spring constant, S, the logarith­
mic decrement ~ = 27rk/ w can be computed as a function of the 
frequency w for any given set of Gi and r t. Th ese values may then 
be substituted into eq. (1.9) to obtain A. which in tum may be used to 
compute three different values of G from eqs. (1.7) , (1.10) , and (1.12) 
and three values of the damping, tan l'i, from eqs. (1.8), (1.11), and 
(1.1:3). These may then be compared with G*,. and tan l'i of eqs. 
(2.8) and (2 .11) which are based on a forced vibration experiment. 

3. Numerical Comparison 

The method is illustrated for a standard solid consisting of a 
spring (Go = 200 psi) and a Maxwell element ( r1 = 1 sec, G1 = 800 psi) 
in parallel. Results are plotted as functions of the angular frequency 
w in Figure 2. 

It is to be noted that for small damping the free and forced moduli 
and tan /j coincide. Appreciable differences occur for increasing 
damping and especially for values greater than 0.6. 

The inclusion of th e A. 2/ 4 terms, with a minus sign in eqs. (1.7) and 
(1.8) creates large errors in both modulus and damping. 8 When it is 
used with a plus sign in eqs. (1.10) and (1.11) the damping, tan l'i , 
obtained from forced vibration computations [eq. (2.11)] is well 
approximated but the modulus, Q+, is considerably overestimated 
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:ompared with G*,,. The si mpli!ied quantiti es of eqs. (1. U) and 
(1.13) wit hout the sq uare term prov ide a better approximation for the 
modulus while the damping is too high. 

As damping values greate r than O.:) are very diffi cul t to measure 
with some precision, the use of a 11 additional elastic element is a 
neces:; ity. In Figure 3 resu lts are shown for the model of Figure 2 
wit h au addi t ional sp ring (S = 1200 psi) with which t he apparent tan o 
= t:J. / 7r of the complete system stays below 0.26. It i::; observed t hat 
the error i::; considerably smaller in t he transition region. Using the 
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simplif-i ed eqs. (1.12) and (1.13) it is less than 163 for the damping and 
less tha n 63 fo r the real part of the modulus. Because the overall 
damping is small t he inclusion of the square term has no appreciable 
effect. 

The region in which an added t iffnes. can be used in practice is 
limi ted because a measurement uncertainty in ~ is amplified in t he 
same proport ion as the damping is teduced [see eq. (1. 13) ]. The 
practical limi t of t his method is around a material da mping of 3. 
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TABLE I 
Parametern Of Generafoed Maxwell :\1odel 

G;, p~ i r -1 , sec 

() 200 00 

l 200 10 
2 400 1. 0 
~ 600 10 - 1 

4 800 10 - 2 
;) 2,200 io - a 
(i 6,200 10- • 
7 2.i , GOO 10 -'' 
8 141 , ()()() 10 -• 

The general trend of these results conforms to t hose of :U arkovitz 
and Parke5•6 obtained on a standard solid. 

A second example is given for a real material. 
A large number of free damped vibration experiments were pre­

viously conducted on a potassium chloride filled polyurethane elasto­
mer to determine its complex shear modulus and da mping over a wide 
range of freq uencies. 10 A generalized Maxwell model, consisting of a 
spring and eight spring-dashpot elements in parallel, was fitted to the 
test results using Tobolsky 's method. 11 The obtai ned G and r 

values are li sted in Table I. 
These parameters were then introduced into eqs. (2.8) and (2.11) 

to determine the forced motion modulus and da mping and into eqs. 
(1.7)- (1.13) for the free damped values. 

The solu tions of the n + 2 = lOth-order polynomial equation, 
h(p) , was carri ed out on an IBM 7094 computer for various values of 
m. The computations have in each case, as expected, produced a 
i;:ingle set of complex conjugate roots and therefore only one value of 
frequency w for each value of m. 

The computed quantities are compared in Figure 4. The results 
indi cate a similar trend as those of t he three-element model. 

4. Conclusions 

An analysis of a generalized -:\Iaxwell model, representing a visco­
elastic solid under conditions of fo rced and free osci llat ions shows that 
the complex moduli computed from t he two types of motions are not 
identical. For low damping t he approximation provided by a free-
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vibrati on experiment is good. The dev iat ions stay below 203 when 
the logari thmic decrement of the oscillatory system, which if needed 
is provided with an additi onal elastic element, is less tha n 0.6 . 

D amping values are improved by the inclusion of the square of the 
logari t hmic decrement in eq. (1.11), while a better approximat ion of 
t he modulus is obta ined when thi term is neglected. 
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