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Comparison of Complex Moduli Obtained from

Forced and Free Damped Oscillations
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and C. J. NEDERVEEN, T.N.O., Delft, Netherlands

f Synopsis

While the concept of the complex modulus is based on a forced vibration ex-
periment it i1s a frequent practice to perform instead a much simpler free damped
oscillation test from which an approximate value of the modulus is then evalu-
ated. The validity of this approach and the ensuing errors are discussed and illus-
trated on a multielement generalized Maxwell body. It is shown that with modi-
fications the method is applicable even for highly damped materials.

1. Introduction

The definition of the complex modulus is based on a forced oscilla-
tion experiment in which the lag angle between the imposed sinusoidal

o strain and the resulting sinusoidal stress as well as the shape of the

stress—strain diagram are measured.! Because the measurement of a
¢ lag angle is rather difficult it is a frequent practice to perform, in-
4" stead, a free damped vibration experiment measuring the natural

frequency and the logarithmie deecrement from which an approximate
ralue of the complex modulus is then computed.?

It is to be noted, however, that the decaying oscillations are no
longer sinusoidal and, consequently, results obtained from them are
inexact, the approximations being less and less accurate with increas-
ing damping.?*

The difference between results obtained in the two types of experi-
ment will be analyzed with the assumption that a generalized Maxwell
body, having a large number of spring and dashpot elements, can
adequately represent the behavior of a real material. The method has
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114 R. A. HELLER AND C. J. NEDERVEEN

been utilized for simple models before;»® a more realistic example will
be discussed here.
The complex modulus

7* = (/(1 4 j tan 6) (1.1
is the constant of proportionality between an imposed sinusoidal stress
o = o exp juwt (1.2)

and the resulting deformation

g gy s 1 s
Y= = !?};[ exp J (wl — d) (1.3)

In the free vibration case a mass m is attached to the model. For
very soft materials an external spring with spring constant S is also
added to the model and one of two second-order differential equations

my + [G—(1 4+ jtané™) + S]y =0 (1.4)
or
my + [GT(1 + jtan 6t — (\/2) tan 6t + S]y = 0  (1.5)

is solved with suitable initial conditions where GG—, G+, and tan 6~
or tan 8+ of eqs. (1.4) and (1.5) are not necessarily identical with G*
and tan é of eq. (1.1).

The solution of eqs. (1.4) and (1.5)

v = Cexpjowt (1 + 7 N?2) (1.6)

when substituted into eq. (1.4) yields?

G- = mw® (1 — AN2/4) — S (1.7)
and
A
tan é— = (1.8)

1 — \/4 — S/mw?
where X may be obtained from the measured logarithmic decrement,
A as

A= 7w\ (1.9)
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Several authors®® have debated the validity of eqs. (1.4), (1.7), and
(1.8) and use, instead, eq. (1.5) which yields

Gt = me*(l + N\2/4) — S (1.10)
and

A
1+ \/4 — S/mw?

tan 6t = (1.11)
when damping is small the square term in eqs. (1.7), (1.8), (1.10),
and (1.11) is neglected. Denoting the corresponding modulus and
damping by ' and tan §’, respectively, the following equations re-
sult

Q' = mw?* — S (1.12)
and

A A

tan 8’ = : = 1.13
i 1 — S/mw? (1 — S/mw?) ( )

2. Analysis of Forced and Free Oscillations of a
Generalized Maxwell Body

A generalized Maxwell body consisting of m + 1 springs and
dashpots as shown in Figure 1, has the same deformation v in each

t 0 = 0, SINwt
Gi .S &=
Co T TzD:J Tvﬁ_'

o

FORCED VIBRATION

FREE VIBRATION

H

Fig. 1. Generalized Maxwell model.



116 R. A, HELLER AND C. J. NEDERVEIN

element while the stress ¢; in the 7th element is related to the rate of
deformation through the relation

o gq

: 2.1
¢. T G el

v =

where (7; is the shear modulus (spring constant) and 7; the relaxation
time of the 7th member. The total stress on the model is

o= Y o 22
i =0
Performing a Laplace transformation on eqs. (2.1) and (2.2)
1 a,(0) .
py — v(0) = a (p + 1frda, — o (2.3)
ri I
and
1 =0

is obtained.

In eq. (2.3) ¥(0) is the initial strain and ¢;(0) the initial stress in
the 7th element.

Substituting eq. (2.3) into eq. (2.4) and solving for &

PG ~ 0i(0) — Giy(0) (2.5)
i—=op + 1/7; i =0 p+ 1/7, -
1s obtained.

The complex shear modulus, which is the coefficient of ¥, may be
obtained in its real and imaginary form by replacing p with jo

- PG, '
Gp) = _— (2.6)
! ig(l P+ 1/7
k(Y $ _j,“’(""i, 9 17
(o) iZojo + 1/7; et}
and

n ) 2(?’ )

= T - B0 O, (2.8)

‘Zol A+ (r)?
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. wr (),
S XU @8]
from which
¥ = (@2 + @*,)'" (2.10)
and
tan § = G*.,,/G*,, (2.11)

Attaching a mass m and an elastie spring S to the model applving a
tel . <]
foreing function f({) and assuming nonzero initial conditions (0
= > ’Y
= v, and y(0) = v, the motion will be deseribed by the differential
aquation

my + o + vS = () (2.12)
or after Laplace transformation
mp*y — mpyo — myo + & + S = F(p) (2.13)

Substituting & from eq. (2.5) and solving for ¥
z'Y - 1(())
r (p) + mpyo + myo + Z !
1=0 p + ]/Tl ¢ i
v = - a, (2.14)
U
S + mp? +
! 120 P + l/Tz
results.
IYor free vibrations F(p) = 0. Multiplying both the numerator

and denominator of eq. (2.14) by ]I (p + 1/7,), ¥ may be expressed as
=0

the ratio of two polynomials

o)
h(p)

where h(p) is a polynomial of order n + 2.

The inverse transform of eq. (2.15) yields the deformation of the
model.  Considering a system with less than eritical damping, the
motion will eonsist of a damped sinusoidal vibration superimposed
on several creep terms.?

Because only one mass is attached to the model the system has a
single degree of freedom and will vibrate at a single frequency w.

(2.15)
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Consequently, eq. (2.15) when expanded into n + 2 partial fractions
will produce two terms with complex conjugate and n terms with real
denominators

) awta@th) | @

"Th) T G+t e | pH+ 6

(2.16)
o ..
+p+03+‘..+p+0n+‘l

and after inversion.
v = Ae*'sin (wt + ¢) 4+ ae ¥ + ... 4 aup0e Ot (2.17)

where k and » are the real and imaginary parts of the single pair of
complex roots and 6, . . . 6,4 the n real roots of the polynomial A(p).
The values of k and w are independent of the initial conditions and,
therefore, the complex modulus can be determined directly.
Varying the applied mass, m, and spring constant, S, the logarith-
mic decrement A = 27k/w can be computed as a function of the
frequency w for any given set of ; and ;. These values may then
be substituted into eq. (1.9) to obtain X\ which in turn may be used to
compute three different values of G from eqs. (1.7), (1.10), and (1.12)
and three values of the damping, tan §, from eqs. (1.8), (1.11), and
(1.13). These may then be compared with G*, and tan § of eqs.
(2.8) and (2.11) which are based on a forced vibration experiment.

3. Numerical Comparison

The method is illustrated for a standard solid consisting of a
spring (G, = 200 psi) and a Maxwell element (7, = 1 see, G = S00 psi)
in parallel. Results are plotted as functions of the angular frequency
w in Figure 2.

It is to be noted that for small damping the free and forced moduli
and tan 6 coincide. Appreciable differences occur for inecreasing
damping and especially for values greater than 0.6.

The inclusion of the \2/4 terms, with a minus sign in eqs. (1.7) and
(1.8) creates large errors in both modulus and damping.® When it is
used with a plus sign in eqs. (1.10) and (1.11) the damping, tan §,
obtained from foreced vibration computations [eq. (2.11)] is well
approximated but the modulus, G+, is considerably overestimated
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Fig. 2. Modulus and damping of standard solid.

ompared with G*,,. The simplified quantities of eqs. (1.12) and
(1.13) without the square term provide a better approximation for the
modulus while the damping is too high.

As damping values greater than 0.3 are very difficult to measure
with some precision, the use of an additional elastic element is a
necessity.  In Figure 3 results are shown for the model of Figure 2
with an additional spring (S = 1200 psi) with which the apparent tan é
= A/x of the complete system stays below 0.26. It is observed that
the error is considerably smaller in the transition region. Using the
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Fig. 3. Modulus and damping of the standard solid shown in Fig. 2 with added
elastic member for free vibrations.

simplified eqs. (1.12) and (1.13) it is less than 169 for the damping and
less than 69, for the real part of the modulus. Because the overall
damping is small the inclusion of the square term has no appreciable
effect.

The region in which an added stiffness can be used in practice is
limited because a measurement uncertainty in A is amplified in the
same proportion as the damping is reduced [see eq. (1.13)]. The
practical limit of this method is around a material damping of 3.
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TABLE 1
Parameters Of Generalized Maxwell Model

G, psi Ti, S€C
0 200 @
1 200 10
2 400 1.0
3 600 1072
4 800 1072
5] 2,200 1073
6 6,200 10~
7 25,600 10—
8 141, 000 106

The general trend of these results conforms to those of Markovitz
and Parke®® obtained on a standard solid.

A second example is given for a real material.

A large number of free damped vibration experiments were pre-
viously conducted on a potassium chloride filled polyurethane elasto-
mer to determine its complex shear modulus and damping over a wide
range of frequencies.’® A generalized Maxwell model, consisting of a
spring and eight spring-dashpot elements in parallel, was fitted to the
test results using Tobolsky’s method.'' The obtained ¢ and r
values are listed in Table 1.

These parameters were then introduced into eqgs. (2.8) and (2.11)
to determine the forced motion modulus and damping and into eqs.
(1.7)-(1.13) for the free damped values.

The solutions of the n 4+ 2 = 10th-order polynomial equation,
h(p), was carried out on an IBM 7094 computer for various values of
m. The computations have in each case, as expected, produced a
single set of complex conjugate roots and therefore only one value of
frequency w for each value of m.

The computed quantities are compared in Figure 4. The results
indicate a similar trend as those of the three-element model.

4. Conclusions

An analysis of a generalized Maxwell model, representing a visco-
elastic solid under conditions of forced and free oscillations shows that
the complex moduli computed from the two types of motions are not
identical. For low damping the approximation provided by a free-
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Fig. 4. Modulus and damping of a generalized Maxwell model shown in Fig.
with constants listed in Table I.

vibration experiment is good. The deviations stay below 209, when
the logarithmic decrement of the oscillatory system, which if needed
is provided with an additional elastic element, is less than 0.6.

Damping values are improved by the inclusion of the square of the
logarithmic decrement in eq. (1.11), while a better approximation of
the modulus is obtained when this term is neglected.
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