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ABSTRACT

Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal
evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only
the spatial correlation in a separate wavefront reconstruction step. By accounting for the temporal evolution
of the wavefront it should be possible to further reduce the residual phase error and enable the use of fainter
guide stars. Designing a controller that takes full advantage of the spatio-temporal correlation in the wavefront
requires a detailed model of the wavefront distortion. In this paper we present a dedicated subspace identification
algorithm that is able to provide the required prior knowledge. On the basis of open-loop wavefront slope data it
estimates a multi-variable state-space model of the wavefront disturbance. The model provides a full description
of the spatio-temporal statistics in a form that is suitable for control. The algorithm is demonstrated on open-loop
wavefront data.
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1. INTRODUCTION

The control strategy used in the current generation of AO system is generally not able to take full advantage
of the spatio-temporal correlation in the wavefront disturbance. In standard AO control design1, 2 it is even not
uncommon to entirely neglect the temporal correlation in the wavefront. Based on physical insights, the standard
control law consists of a cascade of a static matrix multiplication and a series of parallel single-input single-output
(SISO) feedback loops. Given at one time instance a new wavefront sensor (WFS) measurement, the problem
addressed in standard AO control is that of finding (estimating) the deformable mirror (DM) actuator input
that would provide the best fit to the measured wavefront. Both maximum likelihood and maximum a posteriori
techniques are used to improve the accuracy of this estimate, however the modified wavefront statistics due
to closed loop operation is usually neglected. The parallel feedback loops, on the other hand, act as a servo
controller and are responsible for stability and closed-loop performance. In this perspective it is important to
note that the WFS measures the residual and not the open-loop wavefront. The actuator inputs generated by
the static matrix multiplication provide only an estimate of the correction increment that has to be applied to
the current actuator input and are not able to compensate the wavefront itself. To deal with this shortcoming
the servo controller has to posses integrating action. The individual feedback loops usually have a predefined
structure which has its roots in classical control theory. Common servo controller structures include the leaky
integrator, the PI controller and the Smith predictor. The control parameters, which are responsible for the
trade off between disturbance rejection, noise propagation and closed-loop stability, are usually determined on
the basis of heuristic tuning rules. No specific knowledge of the temporal aspects of the wavefront disturbance
is used.

From the above discussion it is to be expected that a lot can be gained by using a rigorous control strategy
that is able to account for both the dynamics of the wavefront and AO system components and the modified
statistics due to the closed loop behavior. The performance of an AO control system is usually limited by
the presence of measurement noise and the time delay between measurement and correction. By including the
temporal aspect it is possible to anticipate on future distortions and reduce the effect of the time delay. The
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close resemblance between wavefront prediction and optimal control has been pointed out in our previous work.3

Also the sensitivity to measurement noise may be reduced by including the spatio-temporal correlation. Photons
from different time instants and different WFS channels may all contribute to improve the wavefront estimate at
a certain position in the aperture plane. When the frozen layer hypothesis is satisfied for example, neighboring
WFS channels on the lee side provide direct information of the future development of the turbulence. The idea
to benefit from the temporal correlation has already been explored in literature. The modal control optimization
approach4, 5 is an important example in which the wavefront is decomposed in a set of modes of which the servo
bandwidth are individually tuned. A disadvantage of this approach is that spatial and temporal dynamics are
assumed to be decoupled and the performance depends on the chosen modal decomposition.

In this work the AO control problem is analyzed from a control perspective. The problem is conceived
as a multi-variable discrete-time disturbance rejection problem. With the objective of minimizing the residual
variance, the problem will be formulated in a H2-optimal control framework. This approach bears a close
resemblance with linear quadratic Gaussian (LQG) control and the use of optimal Kalman filters,6–9 but it
provides a more elegant way to deal with the fact that the WFS measures slopes while it is the residual phase
that we try to minimize. Except for the discussion by Gavel and Wiberg,9 which relies on the frozen frozen
layer hypothesis, each of the LQG approaches uses a rather restrictive disturbance model which still assumes
that the spatial and temporal dynamics can be decoupled. In this paper we present a dedicated subspace
identification algorithm that is able to identify a control-relevant disturbance model for AO systems of moderate
size. The disturbance model will be estimated on the basis of open-loop WFS measurements and provides a full
description of the spatio-temporal behavior of the wavefront. Data-driven modeling has the advantage that it
yields a good match with the prevalent turbulence conditions and it results in a disturbance model independent
from assumptions like the frozen flow hypothesis. With the identified disturbance model it is possible to compute
a controller that is able to exploit the spatio-temporal correlation in the wavefront. The problem of solving the
H2 optimal control problem will be considered in the companion paper.10

The remainder of this paper is organized as follows. In Section 2 we provide an accurate description of
the stochastic identification problem considered in this paper. Apart from explaining the problem this section
introduces a projection that will be used to account for the fact that only a part of the wavefront can be
reconstructed from the WFS measurements. In Section 3 we present a dedicated subspace identification algorithm
that is able to provide a control-relevant disturbance model. The proposed identification method has been
demonstrated on the basis of both open-loop WFS obtained from a breadboard setup and real-live data from the
JOSE seeing-monitor at the William Herschel telescope. The results of these validation experiments are reported
in Section 4. The paper concludes with a short discussion in Section 5.

2. PROBLEM FORMULATION

Computing the H2-optimal controller designed in companion paper10 requires accurate knowledge of second
order statistics of the uncompensated wavefront and the corresponding WFS signal. The stochastic identification
problem considered in this paper is concerned with the problem of determining a control relevant disturbance
model that is able to provide this information. It will be assumed that the phase distortion profile can be
represented by a finite dimensional discrete-time vector signal φk, where the subscript k denotes the time index.
Whether this representation is obtained by a zonal or modal representation is irrelevant as long as the variance
of the vector signal φk ∈ R

mp provides a good approximation of the phase variance over the aperture.

An important issue in the AO control problem is that the wavefront distortion φk can not be measured
directly. Only the WFS slope measurements sk ∈ R

ms are available for identification and control. It is generally
not possible to reconstruct the entire wavefront from this signal. In order to arrive at a well-posed identification
and control problem the unobservable part of the wavefront should be disregarded. We will assume that the
optical transformation from phase distortion profile φk to wavefront slope measurements sk is described by:

sk = Gφk + ηk, (1)

where G ∈ R
ms×mp is the geometry or phase-to-slope influence matrix and ηk is a zero-mean white noise term

which represents the measuring noise. Any dynamics introduced by the wavefront sensor is absorbed in the
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stochastic disturbance model. Since the disturbance model should describe the second order statistics of the
WFS signal sk, this is not very restrictive. The fact that only a part of the wavefront can be reconstructed
from the slope measurements manifest itself in a rank deficiency of the matrix G. The unobservable part of the
wavefront φk can be removed by considering the singular value decomposition (SVD) of matrix G:

G = UΣV T =
[
U1 U2

]
[
Σ1 0
0 0

] [
V T

1

V T
2

]
, (2)

where U ∈ R
ms×ms and V ∈ R

mp×mp are orthogonal matrices and the partitioning of the diagonal matrix
Σ ∈ R

ms×mp is such that the matrix Σ1 ∈ R
mr×mr contains all nonzero singular values. By substituting the

SVD in equation (1) and pre-multiplying both sides with the matrix UT
1 , we obtain the following reduced WFS

model
rk = Σ1ψk + UT

1 ηk, (3)

where rk � UT
1 sk ∈ R

mr and ψk � V T
1 φk ∈ R

mr . The newly defined signal ψk provides a reduced representation
of the observable part of the wavefront φk with respect to the basis V1. This can be seen by noting that through
the orthogonality of the matrix V the wavefront can be decomposed as φk = V1V

T
1 φk + V2V

T
2 φk. Whereas the

first term has a direct influence on the measured output signal sk, the second term cannot be observed as it
lies in the null-space of the matrix G. Another consequence of the orthogonality of the matrix V is that the
observable part of the wavefront V1V

T
1 φk = V1ψk and the signal ψk have the same Euclidean norm. This implies

that we can replace the role of the open-loop wavefront distortion φk by the reduced representation ψk when the
control objective is expressed in terms of the Euclidean norm. Similarly, the signal rk can be used as a reduced
representation of the WFS signal sk, where it is interesting to note that projection UT

1 removes the part of the
measuring noise that is not in the range space of G and cannot be caused by the wavefront. Furthermore, since
the matrix G is generally tall, the proposed projection results in a significant reduction of the signal that has to
be modeled.

Since the statistical properties of the wavefront change on a time scale that is long compared to the time scale
of the fluctuations themselves, it is reasonable to conceive the reduced WFS signal rk as a wide sense stationary
(WSS) process. Looking at the wavefront disturbance from this perspective shows that it should be possible
to identify a disturbance model from open-loop WFS data and use this model to compute a controller that is
optimal over a certain time horizon. To guarantee a good performance over longer time periods the disturbance
model should be updated on a regular basis. In this way it is still possible to account for the changing wavefront
statistics that occur in the course of the night. By considering the reduced WFS signal as WSS, the signal can
be modeled as the output of a stable linear time invariant (LTI) system with a zero-mean white noise input
vk ∈ R

mr . Each element of the vector signal is represented by a separate output channel. This in combination
with the reduced WFS model (3) motivates us to introduce the following model structure for the disturbance
model

S :

⎧
⎨

⎩

xk+1 = Axk + Kvk

rk = Σ1C xk + vk

ψk = C xk + ek

, E
⎛

⎝

⎡

⎣
vk

ek

I

⎤

⎦
[
vT

l eT
l

]
⎞

⎠ =
[
Rve

0

]
δkl, (4)

where ek(� Σ−1(vk −UT
1 ηk)) is again zero-mean white noise signal and the measurement noise ηk is included in

the state-space representation of the WFS output rk. The proposed model structure is in innovation form with
respect to this output. This implies that the mapping from the white noise input vk to the WFS signal has a
stable inverse, which is a very useful property for controller design. In control and system theory, a state-space
representation S that provides a stably invertible description of the stochastic process is commonly referred to
as the minimum-phase spectral factor of the process.

Since Σ1 is known from the SVD (2), the calculation of the H2-optimal controller, developed in,10 only
requires the estimation of the state space matrices A ∈ R

n×n, Σ1C ∈ R
mr×n and K ∈ R

mr×mr from open-loop
observations of rk.

3. DATA-DRIVEN IDENTIFICATION OF A DISTURBANCE MODEL
In this section we present a dedicated subspace identification algorithm that is able to deal with the stochastic
identification problem described before. Based on open-loop data, the algorithm provides a full statio-temporal
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disturbance model for AO systems of moderate size. Before considering the algorithm, we will briefly examine
the motivation to use a subspace based identification approach.

3.1. Motivation for a subspace approach to disturbance modeling

As explained in Section 2, each element of the reduced WFS signal rk is represented as a separate output of
a large LTI system with zero-mean white noise input. The model structure S, obtained by incorporating the
reduced WFS model, is able to respect the mutual correlation that exists between each of the reduced WFS
channels rk and the observable part of the phase φk. It provides a complete characterization of the second order
statistics of and between each the channels. A possible complication of this extensive description is that even
for relatively small AO systems this leads to a rather large-scale identification problem. For this reason it is
extremely important the have an efficient identification algorithm.

Based on numerically robust matrix operations, subspace algorithms bypass the need for model parameteriza-
tion and non-linear optimization. This is an important advantage over the more traditional maximum likelihood
and prediction error methods,11 which rely on the optimization of structural parameters over a suitably chosen
cost-function. Except for some rather restrictive parameterizations, these methods give rise to a non-linear op-
timization problem. Apart from the danger of ending up in a local minimum, the computational load required
to search the parameter space increases rapidly with the number of variables. This is especially a problem in
the multivariate case where the mapping from each input to each output is usually parametrized independently.
Subspace identification, on the other hand, is able to treat the multivariate case within the same framework,
without any fundamental difficulties.

The subspace algorithm presented in this paper is basically an output only version of the SSARX algorithm
proposed by Jansson12 and is closely related to the canonical correlation analysis method.13 In analogy with
nomenclature introduced by Jansson, the algorithm will be referred to as SSAR. An important advantage of
the proposed algorithm is that it does not rely on the solution of a Riccati equation to perform a spectral
factorization. Most subspace algorithms for stochastic identification use a two-stage procedure which consists of
estimating a rational covariance model followed by a spectral factorization step. As demonstrated by Lindquist
and Picci,14 this procedure might easily fail since there is no guarantee that the estimated covariance model has
a valid spectral factor. The subspace algorithm used in this paper avoids this problem. By using the coefficients
of a high order autoregressive (AR) model, more structure is added to the data model used by the subspace
algorithm. This opens the possibility to estimate the state-space matrices A,Σ1C and K directly, without
the intermediate step of estimating a rational covariance model. Another advantage of the presented subspace
algorithm is that it can be extended to the case that the data is collected in closed-loop. This is especially
important since this may be used to update the disturbance model without interrupting the observations.

The computational demands of the proposed subspace algorithm have been reduced by using an efficient
implementation. A single RQ factorization of the stacked block-Hankel matrix is used both to compute the
required AR coefficients and for data compression. In computing this RQ factorization it is possible to exploit
the displacement structure of the block-Hankel matrix. This is achieved by using the algorithm by Mastronardi
et al.15 The efficient implementation of the algorithm is beyond the scope of this paper.

3.2. The SSAR stochastic subspace identification method

The subspace identification algorithm used to identify the disturbance model from the open-loop measurement
data is based on an alternative model representation of the open-loop WFS signal rk ∈ R

mr . Consider the model
structure introduced in equation (4). By using the output equation for rk it is possible to eliminate the noise
term vk from the state update equation. This gives rise to the following equivalent representation:

{
xk+1 = Ãxk + Krk

rk = C̃xk + vk,
(5)

where Ã � A − KC̃ and C̃ � Σ1C. The state space representation (4) is required to be stable and strictly
minimum phase with respect to the output signal rk. The latter condition implies that |λi(A − KΣ1C)| =
|λi(Ã)| < 1, ∀i ∈ {1, . . . , n}, where λi(·) denotes the ith eigenvalue. The minimum phase condition on (4) is
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therefore equivalent to demanding that the alternative model representation (5) is stable. Furthermore it is
assumed that the matrix pairs {A,K} and {A,C} are controllable and observable,16 respectively. By recursive
application of the state update equation in (5), it is easy to show that the state of the system at a certain time
instant k can be expressed as:

xk = Ãpxk−p +
p−1∑

j=0

ÃjKrk−j−1. (6)

For stable Ã and sufficiently large p ∈ N, the first term in equation (6) can be neglected and the state xk can be
approximated by a linear combination of past open-loop WFS data rk. In matrix notation, this state estimate
can be expressed as:

x̂k = K

⎡

⎢
⎢
⎢
⎣

rk−p

rk−p+1

...
rk−1

⎤

⎥
⎥
⎥
⎦

, where K �
[
Ãp−1K . . . ÃK K

]
. (7)

Given the state at a time instant k, equation (5) can be employed to derive the following relation between the
data batch of present and future innovations {vj}k+q+1

j=k on the one hand and the data batch of present and future
open-loop WFS measurements {rj}j=k+q−1

j=k on the other hand:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

rk

rk+1

rk+2

...
rk+q+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̃

C̃Ã

C̃Ã2

...
C̃Ãq−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Γ

xk +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 0

C̃K 0 . . . 0 0
C̃ÃK C̃K 0 0

...
. . .

...
...

C̃Ãq−2K . . . . . . C̃K 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Ψ

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

rk

rk+1

rk+2

...
rk+q+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vk

vk+1

vk+2

...
vk+q+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8)

where q ∈ N is the number of block-Hankel rows which should be large enough to avoid singularity problems
in estimating the system matrices Ã and C̃. More specifically, the data equation (8) should contain sufficient
block-rows to guarantee that the matrix Γ has full column rank.12 With the pair {A,C} being observable, a
sufficient condition to satisfy this requirement is to demand that the parameter q is larger than the system order
n. For stochastic systems with large numbers of outputs this condition may be overly conservative. As we will
see in the numerical validation experiments in Section 4, it may be useful to choose the parameter q much smaller
than the system order that is eventually used to describe the process. A same reasoning holds for the parameter
p in (7). This parameter should be chosen sufficiently large to guarantee that the matrix K has full row rank.

The partitioning of the matrices and vectors in equation (8) is such that there a clear distinction between
present and future data samples. By substituting the state estimate (7), we obtain an expression that relates
vectors derived from past and future open-loop WFS and innovation data to the matrices K, Γ and Ψ derived
from the system matrices (Ã, C̃,K). Since the underlying system is assumed to be time-invariant, the above
equations hold also for time-shifted versions of the state, open-loop WFS and innovation vectors. It is therefore
possible to relate the unknown matrices ΓK,Ψ to matrices composed of time-shifted columns of open-loop WFS
and innovation data. To represent this matrix relation in a compact way, let us introduce the block Hankel
matrix

Hi,q,N �

⎡

⎢
⎢
⎢
⎣

ri ri+1 . . . ri+N−1

ri+1 ri+2 . . . ri+N

...
...

. . .
...

ri+q−1 ri+q . . . ri+N+q−2

⎤

⎥
⎥
⎥
⎦

, (9)

where the first subscript refers to the time-index of the top left entry, the second refers to the number of block-
rows and the third represents the number of columns. The number of columns depends on the available amount
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of data and is generally such that q � N . Using the same notational convention, the block Hankel matrix
constructed from innovation data vk will be denoted by Vi,q,N . In this notation, the data equation obtained by
combining time-shifted versions of equation (7) and (8) can be expressed as:

(I − Ψ)Hk,q,N ≈ ΓKHk−p,p,N + Vk,q,N (10)

Equation (10) forms the basis of the proposed subspace identification algorithm, which starts with estimating
the matrix C̃K. To estimate the matrix C̃K from the measurement data rk, it is important to recognize that
first block-row of the matrix Ψ is zero. Since the first block-row of the matrix Γ is equal to C̃, it follows from
equation (10) that

Hk,1,N ≈ C̃KHk−p,p,N + Vk,1,N . (11)

This equation expresses the present open-loop WFS values as a linear combination of past data and the present
innovation and is therefore nothing else than a high-order autoregressive (AR) model of the open-loop WFS
signal. Since the innovation signal vk is a zero mean white noise sequence, its current value is uncorrelated with
past open-loop WFS data. As a result, an unbiased estimate of the matrix C̃K can be obtained as the argument
that solves the least squares problem

̂̃
CK = arg min

eCK
‖H1,k,N − (C̃K)Hk−p,p,N‖2

2. (12)

From the above interpretation of equation (11), it is clear that the matrix C̃K provides a direct estimate of
the AR coefficients C̃ÃjK, j ∈ {0, 1, . . . , p−1}. This observation is used in the next step of the subspace
identification algorithm to form an estimate of the matrix Ψ. Like the matrix CK, Φ is fully determined by the
first few AR coefficients of the stochastic process. When the parameter p is chosen such that p ≥ q, an estimate
of the matrix Ψ can be simply obtained by extracting the AR coefficients for the matrix C̃K and arranging
them in the proper form. This estimate becomes consistent when the parameters p is allowed to increase. By
substituting Ψ̂ in equation (10), more structure is added to the data equation, which enables us to make a clear
distinction between the effect of future and past open-loop WFS data rk. This results again a linear matrix
equation, perturbed by a zero mean white noise, from which the matrix ΓK can be obtained by solving the least
squares problem

Γ̂K = arg min
ΓK

‖(I−Ψ)Hk,p,N − (ΓK)Hk−p,p,N‖2
2. (13)

When the parameters p and q (with p ≥ q) are sufficiently large, the matrices K and Γ are both full rank. This
implies that can be factorized to determine the column space and row space of the matrices Γ and K, respectively.
Let the SVD of the matrix Γ̂K be given by

Γ̂K = UnΣnV T
n , (14)

where the matrix Σn ∈ R
n×n contains the dominant singular values and Un and V T

n denote the matrices
composed of the corresponding left and right singular vectors. Since the rank of the matrix ΓK is known to be n,
the number of singular values that differ significantly from zero can be used as an estimate of the system order
n. Furthermore, the left and right singular matrices Un and Vn of the SVD can be used to estimate the matrices
Γ and K up to an unknown non-singular similarity transformation T ∈ R

n×n, i.e.

UnΣ1/2 = Γ̂T =

⎡

⎢
⎢
⎢
⎣

CT

CTAT

...
CTA

q−1
T

⎤

⎥
⎥
⎥
⎦

, Σ1/2V T
n = T−1K̂ =

[
Ãp−1

T KT · · · ÃT KT KT

]
, (15)

where (AT , CT ,KT ) = (T−1AT,CT, T−1K). The non-uniqueness, expressed by the presence of the similarity
transformation T , is caused by the freedom in choosing the basis for the column and row space of Γ̂K. All possible
bases however, result in a similarity-equivalent triple (AT , CT ,KT ). The particular choice of T has no influence
on the mapping from the innovation signal vk to the open-loop WFS signal rk define by (5). An estimate of the
matrix C can now be obtained by extracting the first mr rows from the matrix UnΣ1/2. Furthermore, the matrix
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K is estimated by selecting the last mr columns of the matrix Σ1/2V T
n . The matrix A is finally estimated by

solving the overdetermined equation

(UnΣ1/2) ̂̃A = UnΣ1/2, (16)

where Un and Un denote the matrices obtained by deleting, respectively, the mr first and last rows of Un. The
estimated triple (Ã, C̃,K) in combination with the singular value matrix Σ1 ∈ R

mr×mr provides a complete
specification of the atmospheric disturbance model (4) needed to compute the closed-loop optimal controller.10

Using the definition of the matrices Ã and C̃, it is possible to explicitly compute A and C. This last step may
even not be necessary in some cases. As will be demonstrated in Section 3 of the companion paper10 on controller
design, the H2-optimal controller of an AO system that is quasi static in the sense that the WFS and DM are
static expect for a unit delay, can be conveniently expressed in terms of the identified matrices Ã, C̃ and K.
Also for the numerical validation experiments described in Section 4, it is not necessary to explicitly compute
the matrices A and C.

4. NUMERICAL VALIDATION ON OPEN-LOOP DATA

The wavefront disturbance modeling approach outlined in Section 3.2 has been validated in two realistic mea-
surement scenarios. The first scenario comprises of a breadboard setup developed by the Dutch company TNO
Science and Industry and the second scenario corresponds to real-life measurements taken from the JOSE seeing
monitor at the William Herschel telescope. The latter data set was also used in our previous paper.3 The main
difference with the current approach is that disturbance modeling is made fully compatible with the H2-optimal
controller design and that all channels of the reduced WFS signal rk and the observable part of the wavefront
ψk are modeled simultaneously. Part of the wavefront reconstruction is therefore already performed in the iden-
tification of an atmospheric disturbance model. This opens the possibility to formulate the H2-optimal control
problem without first considering a wavefront reconstruction step.10 Both the spatial and temporal behavior of
the uncorrected wavefront distortion are modeled on the basis of the available WFS measurements only.

The performance of the identified disturbance model is evaluated by considering the one-step ahead prediction
problem. For the outlined disturbance modeling approach in Section 3.2, the one-step ahead prediction of the
ψk is readily derived from the identified innovation model (5) and given by11:,

FKP :

⎧
⎨

⎩

xk+1 = Ãxk + Krk

r̂k = C̃xk

ψ̂k = Cxk

(17)

Using equation (17) the wavefront prediction error can be computed as εk = ψ̂k − ψk = FKPrk − Σ−1rk.
The prediction error is compared with the random walk approach. In the random walk approach the best
estimate of the wavefront at next sample instant is given by the wavefront reconstructed from the current WFS
measurement. This is equivalent to saying that r̂k+1 = rk, which in analogy with (17), leads to the following
state space prediction model:

FRW :

⎧
⎨

⎩

xk+1 = rk

r̂k = xk

ψ̂k = Σ−1
1 xk

, (18)

The random walk approach has a close resemblance with the common AO law, where the time delay between
measurement and correction is neglected. Remark that the state dimension of the latter predictor equals the
dimension of the reduced WFS signal.

The criterion used to evaluate the performance of the identified wavefront disturbance model is explicitly
defined in equation (19). It represents the average of the mean square error of the one-step ahead prediction
normalized to the space and time averaged mean square value of the observable part of the wavefront φk. Let
the j-th component of the observable part of the wavefront signal at time instant k be denoted by ψk(j), and let
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the total number of time measurements be denoted by N , then the considered performance criteria are given by:

J1 =

∑nr

j=1

∑N−1
k=1 (ψ̂k+1(j) − ψk+1(j))2

∑nr

j=1

∑N−1
k=1 ψ2

k+1(j)
(19)

J2(j) =
1

N − 1

N−1∑

k=1

(φ̂k+1(j) − φk+1(j))2 (20)

with φk+1 = V1ψk+1. Criterion J2 can be used to construct a two-dimensional graph, taking the spatial location
of the j-th component of φk into account. We will use the notation JKP

1 and JRW
1 to distinguish between the

performance of both prediction models. The same convention is adopted for J2.

4.1. The breadboard data

The atmospheric turbulence is emulated via a circular plan parallel glass plate mounted on a motor drive unit.
Distortions are etched on one side of the glass plate such that it resembles a Kolmogrorov spatial frequency
distribution with a D/r0 = 5, where D is the diameter of the telescope and r0 is Fried’s parameter. In this way
a single frozen layer disturbance can be emulated. The other main components of the breadboard are a laser
source, a Shack-Hartmann sensor, a CCD camera and a data acquisition system. The phase-to-slope matrix G
is defined according to the Fried geometry.1, 2

The experiment reported here is representative for all experiments conducted. It has considered N equal
to 104 samples and the sampling frequency equal to 25 Hz. The rotational speed of the glass plate is such
that the Greenwood frequency is 4.75Hz. This may seem small but in combination with the rather low sample
frequency it gives rise to a considerable temporal error. The number of active spots of the WFS was equal to 50
and therefore ms = 100. The number mr of observable components of the phase was equal to 77. The results
of the experiment are displayed in Figures 1 and 2. In Figure 1 the criterion J1, defined in (19), is plotted
as a function of the order n of the state space model KP in (17) (crosses). When making use of the random
walk prediction model in (18), the criterion J1 equals the dotted line. Since the order of the predictor (18) is
mr = 77, we should compare the prediction error obtained with the random walk approach with the performance
obtained with an atmospheric disturbance model of order n = 77. The ratio of these prediction errors equals
JKP

1 /JRW
1 = 0.058. This is corresponds to an improvement of mean square residual phase error by 94%. In

Figure 2 we display the criterion J2 over the aperture to get an idea of the spatial distribution of reduction in
prediction error. The prediction was performed using the state space model KP (17) with an order 500. For that
order of the predictor (17) the ratio of mean square residual phase is JKP

1 /JRW
1 = 2.3 ·10−2, when averaged over

all components of the reconstructed phase. The maximal reduction is achieved in the middle of left front edge
and is equal to 4.1 · 10−3. This is almost equal to the reduction in the center of the WFS. This indicates that for
the experimental scenario considered, a more accurate prediction at a particular location can be achieved when
use can be made of neighboring measurements.

A final remark is made about the computation time of the novel prediction scheme outlined in section 3.2.
The computation time mainly depends on the dimension parameters p, q. Both were considered equal in the
calculations. The resulting calculation times on an Intel Pentium IV, 1.70GHz, 512 Mb for different values of
the block-Hankel parameter q are displayed in Table 1.

q time [sec] q time [sec]
10 68.03 20 510.28
15 222.28 30 1627

Table 1. Computation time as a function of the block-Hankel size parameter q

4.2. Open-loop data from the William Herschel Telescope

Uncontrolled telescope WFS data from the William Herschel Telescope, situated on La Palma, Canary Islands,
have been obtained. The data sets were recorded on June 5 and 8, 1997, in good seeing conditions, 0.5-0.7arcsec
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Figure 1. Normalized mean square wavefront pre-
diction error J1 as a function of the model order.
The dashed lines correspond to the performance and
equivalent model order of the random walk predic-
tor (18).

Figure 2. Reduction of the mean square wavefront pre-
diction error JKP

2 (j)/JRW
2 (j) over the aperture.

FWHM. The instrument used is the JOSE seeing monitor.17 Its key features are an 8×8 Shack-Hartmann array
with 0.5m sub-apertures and 2.4arcsec field of view, imaged onto a 64× 64 pixels CCD, resulting in a pixel scale
of 0.27arcsec/pixel and it is operated at a wavelength of 700nm. The data sets were taken at a frame rate of
296Hz and each data set contained N = 10000 centroid positions on the CCD with an accuracy of approximately
0.1 pixels. Just as in the simulation experiments on the breadboard data, a phase-to-slope matrix G with Fried
geometry is used to define the relation between the observable part of the wavefront and the WFS measurement
signal. The selected data set contained 48 active spots (i.e. ms = 96 gradient measurements) and the number
mr of observable components of the phase was equal to 67.

Figures 3 and 4 correspond to the results displayed for the simulations on the breadboard data. Just as for
the breadboard simulations, the reduction in mean square residual phase error increases with the model order n
of the identified disturbance model. The model order needed to outperform the random walk prediction model
is much higher than for the breadboard data, but still below the model order of the random walk predictor itself.
Since the number of observable components of the phase is mr = 67, the prediction error should be compared
with the performance obtained with an atmospheric disturbance model of order n = 67. The ratio of the mean
square prediction errors for this model order equals JKP

1 /JRW
1 = 0.59, which corresponds to a reduction of

40%. For model orders n ≥ 65, the state space model KP provides a better prediction than the random walk
approach. When the model order n is 500, the ratio of the space and time averaged mean square prediction error
obtained by both methods is JKP

1 /JRW
1 = 0.18. Figure 4 provides insight in the spatial distribution of achieved

reduction in prediction error. It is interesting to note that the smallest gain in reduction is obtained around the
central obscuration of the telescope. This in another indication that the prediction performance can benefit from
neighboring channels.

In order to check the validity of the assumption that the observable part of the atmospheric wavefront
distortion and the corresponding open-loop WFS signals can be considered as a wide sense stationary over a
reasonable amount of time, two wavefront data sets have been considered which have been recorded 3 minutes
apart. The first data set has been used to identify a stochastic disturbance model, while the performance of the
prediction quality is validated on the second data set. Just as in the previous experiments, the block-Hankel
size parameter was chosen equal to q = 20 and order of the disturbance model was n = 256. This resulted in
a reduction of mean square residual prediction error of JKP

1 /JRW
1 = 0.1971 (−7.05dB). The reduction is close

to the reduction achieved in the previous experiments, where the same data set is used for identification and
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validation. This implies that the second order statistics didn’t change a lot over a period of three minutes, which
demonstrates that the stationarity assumption is reasonable.
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Figure 3. Normalized mean square wavefront pre-
diction error J1 as a function of the model order.
The dashed lines correspond to the performance and
equivalent model order of the random walk predic-
tor (18).

Figure 4. Reduction of the mean square wavefront pre-
diction error JKP

2 (j)/JRW
2 (j) over the aperture.

5. CONCLUSIONS

This paper outlines a subspace identification algorithm to model the wavefront distortion due to atmospheric
turbulence from open-loop wavefront sensor (WFS) measurements. Data-driven modeling has the advantage
that it does not depend on discutable assumptions like the assumption of a Kolmogorov spatial distribution or
the frozen flow hypothesis. The uncorrected wavefront distortion and the corresponding WFS signal is conceived
as a wide sense stationary stochastic process. This implies that the atmospheric disturbance can be modeled
as the output of stable linear time invariant (LTI) system with a zero-mean white noise input. Each element
of the uncorrected wavefront distortion and WFS signal is represented by a separate output channel of the LTI
system. In this way the disturbance model is able to account for the spatio-temporal correlation in the wavefront
distortion.

The proposed algorithm explicitly accounts for the fact that only a part of the wavefront can be reconstructed
from the open-loop WFS data. By exploiting the singularity in the static relation between WFS measurements
and phase, this can even be used to the advantage of the method by reducing the number of channels that has to
be modeled. Apart from reducing the size of the identification problem, the reduction leads to an improvement in
the numerical conditioning of the calculations. The proposed method yields an atmospheric disturbance model
that is in the proper form for control. Indeed, the chosen model structure allows to derive an analytical expression
for the optimal controller under certain conditions, as will be outlined in the companion paper.10 The algorithm
has been implemented in a computational efficient way to allow the identification of a disturbance model that
describes the relation between all phase points and WFS signals for an AO system of moderate size.

The algorithm has been validated in a simulation study on open-loop data, in which we consider both data
obtained from a breadboard setup as well as real-live data from the JOSE seeing-monitor at the William Herschel
telescope. In the validation experiments the identified disturbance model is used to predict the wavefront one
sample in advance. The prediction capabilities are compared with the random walk predictor which uses the
current reconstructed wavefront as the best estimate for the distortion at the next sample. The considered wave-
front prediction problem is relevant as it plays in important role in optimal control. The simulation experiments
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show that a significant reduction in the mean square prediction error can be obtained when compared to the
random walk approach. The ratio of mean square prediction errors is 0.057 for the breadboard data and 0.18
for the data obtained from the William Herschel telescope. This corresponds to a reduction of respectively 97.6
and 81.7 percent. Finally the simulations on the JOSE data confirm that the atmospheric wavefront distortion
can be considered as wide sense stationary at least over a time scale in the order of a few minutes.
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