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Abstract. Behavioral response studies (BRSs) aim to enhance our understanding of the behavior changes

made by animals in response to specific exposure levels of different stimuli, often presented in an

increasing dosage. Here, we focus on BRSs that aim to understand behavioral responses of free-ranging

whales and dolphins to manmade acoustic signals (although the methods are applicable more generally).

One desired outcome of these studies is dose-response functions relevant to different species, signals and

contexts. We adapted and applied recurrent event survival analysis (Cox proportional hazard models) to

data from the 3S BRS project, where multiple behavioral responses of different severities had been

observed per experimental exposure and per individual based upon expert scoring. We included species,

signal type, exposure number and behavioral state prior to exposure as potential covariates. The best

model included all main effect terms, with the exception of exposure number, as well as two interaction

terms. The interactions between signal and behavioral state, and between species and behavioral state

highlighted that the sensitivity of animals to different signal types (a 6–7 kHz upsweep sonar signal

[MFAS] or a 1–2 kHz upsweep sonar signal [LFAS]) depended on their behavioral state (feeding or non-

feeding), and this differed across species. Of the three species included in this analysis (sperm whale

[Physeter macrocephalus], killer whale [Orcinus orca] and long-finned pilot whale [Globicephala melas]), killer

whales were consistently the most likely to exhibit behavioral responses to naval sonar exposure. We

conclude that recurrent event survival analysis provides an effective framework for fitting dose-response

severity functions to data from behavioral response studies. It can provide outputs that can help

government and industry to evaluate the potential impacts of anthropogenic sound production in the

ocean.
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INTRODUCTION

Many marine mammals rely on sound for
foraging, maintaining group cohesion, naviga-
tion, finding mates and avoiding predators.
Hence, they may be profoundly affected by the
introduction of anthropogenic noise into the
marine environment. Examples of potentially
harmful noise sources include vessel noise and
active acoustic devices such as naval sonar or
airguns used for seismic prospecting (Richardson
et al. 1995, DeRuiter 2010). Potential adverse
effects of those sounds include reduction or
cessation of feeding (Miller et al. 2009, Goldb-
ogen et al. 2013), strong avoidance responses
(Tyack et al. 2011, DeRuiter et al. 2013, Miller et
al. 2014), and stranding (D’Amico et al. 2009).
Strong avoidance responses may exclude animals
from important habitats or result in separation of
dependent offspring and mother (Miller et al.
2012).

Controlled exposure experiments (CEEs) are
behavioral response studies (BRSs) that follow an
experimental design and are an important
approach for studying the short-term responses
of animals to specific doses of potential stressors.
A growing number of these studies have been
carried out in recent years on a number of
different cetacean species, specifically looking at
different acoustic stimuli (Kvadsheim et al. 2011,
2012, 2014, Miller et al. 2011, Tyack et al. 2011,
Southall et al. 2012, Dunlop et al. 2013). Together,
these studies are increasing our understanding of
species differences in sensitivity to sound, and
the importance of context in influencing how
individuals respond. These types of studies are
not unique to the marine environment and have
followed the example of many terrestrial studies
that have investigated the behavioral responses
of a range of species experimentally exposed to
human-induced disturbance (for example, Rocky
Mountain elk [Preisler et al. 2006], grassland
raptors [Holmes et al. 1993], waterbirds [Klein
1993] and ungulates [see Stankowich 2008 for
review]). The common objective across many of
these studies has been to determine the relation-
ship between the dose of a stressor (which can be
represented by many different metrics) and
response.

CEEs on cetaceans are costly to undertake.
Many species of interest occur at low density, or

are hard to monitor (for example if they are
difficult to locate or track, either at the surface or
underwater), and experiments can only take
place in good weather conditions and when
other interfering noise sources are not present.
Because of these factors, the sample sizes
associated with CEEs are usually very low:
typically fewer than 10 exposures per species
per field season, and sometimes substantially
fewer (e.g., Kvadsheim et al. 2014).

In a CEE, the focal species is selected based
upon research need and the focal animal is the
individual that becomes the focus of the study.
The behavior of the focal animal is monitored
using visual observations, passive acoustics,
animal-borne tags or a combination of these.
After pre-exposure observations, the focal whale
is exposed to a stimulus, such as a potentially
disturbing sound or control sound, and its
response is monitored. In many of the experi-
ments the dose of sound increases over the
duration of the exposure and therefore they can
be thought of as dose-escalation studies. The
increasing dose is achieved either by increasing
the level of the source, or by approach of the
vessel, which can increase the level of sound
received at the animal by transmitting the sound
stimulus while approaching the focal animal. To
understand the influence of this experimental
design on responsiveness, no-sonar control ex-
posures are also conducted where the vessel
approaches in the same manner but no sounds
are transmitted (e.g., Miller et al. 2011). Various
measurements are recorded before, during and
after exposure periods, including location of the
focal animal through time, vocal behavior,
underwater orientation, and behavior observed
at the surface. Care is taken to ensure that the
experimental animals are not injured or stressed,
for example by having mitigation protocols in
place that result in shut-down if animals ap-
proach too close or display an extreme response.

Following data collection, typically the first
stage of analysis is to assemble and visualize the
observational data for each individual to deter-
mine whether or not it responded, gauge the
magnitude of any response and relate the onset
of response to sound exposure level (‘‘dose’’).
There is ongoing development of quantitative
methods for identifying responses or ‘‘change-
points’’ in behavior (for example, see DeRuiter et
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al. 2013, Goldbogen et al. 2013, Antunes et al.
2014; http://www.creem.st-and.ac.uk/mocha/);
however qualitative methods have also been
used effectively. The process of examining visual
observation and animal-borne tag records and
subsequent identification of putative responses
to exposure stimuli by panels of experts is
described in detail for the 3S BRS project in
Miller et al. (2012). Miller et al. (2012) note that
the results from such scoring exercises (herein
referred to as expert scoring) are one interpreta-
tion of the experiment outcome, and whilst they
believe that they identified most responses that
occurred during the experiments, there is the
possibility that some behavioral changes that
were scored as responses may not have been in
response to the sonar. Therefore, although there
is potential for bias, it is likely that the outputs
from expert scoring are precautionary, which is
the preferred stance from a policy perspective
(Miller et al. 2012). The output from expert
scoring is a detailed record of all behavioral
changes that are likely to be responses to the
stimuli for each exposure session with details of
the time the response started, the corresponding
exposure level (measured as sound pressure level
[SPL] and cumulative sound exposure level
[SELcum]) at the point of response, and an
assessment of the severity of the response (see
Miller et al. 2012: Appendix A). Since the dose
metrics relate to the sonar sound, the responses
identified during the no-sonar control experi-
ments have zero dose associated with them. Each
response is attributed a score between 0 and 9
which describes the severity of the response of
the animal. This scoring is derived from the
severity scale described in Southall et al. (2007),
and modified by Miller et al. (2012), and ranges
from no effect (0), effects not likely to influence
vital rates (severity of 1–3), effects that could
affect vital rates (severity of 4–6), to effects that
are thought likely to influence vital rates (severity
of 7–9).

The next stage is to combine the results from
individual exposures to estimate the likelihood of
response as a function of exposure intensity
(dose), and perhaps behavioral or environmental
context. There are two things to consider in our
approach to this analysis. First, there may be
multiple responses per exposure and multiple
exposures per individual animal. Second, there

may be individuals that showed no response
across the range of doses they experienced over
an exposure session. To account for the latter, a
framework is needed that allows inclusion of
right-censored data where it is assumed a
response will occur at some point above the
maximum dose received during the exposure
session, but it is unknown by how much. Right-
censored data are informative and should be
included in any analysis (Klein and Moeschberg-
er 2003). Miller et al. (2014) and Antunes et al.
(2014) describe a Bayesian hierarchical approach
that allows the inclusion of censored data,
accounts for multiple exposures per individual,
and estimates response variability between and
within whales. This approach, however, only
allows for analysis of one response per individ-
ual per exposure session. In their papers, Miller
et al. (2014) and Antunes et al. (2014) focused on
the threshold for the first avoidance response
observed in each exposure session.

Our aim was to find a framework for produc-
ing dose-response severity functions that would
allow us to consider all of the observed responses
per exposure session together, to account for
censored data, and to acknowledge the non-
independence of responses made by the same
individual.

CEEs are similar in many ways to clinical
trials, which seek to identify the toxicity of a
drug by administering different doses of the
drug and assessing responses, and also to
medical studies where the objective is to study
how long it takes until certain events occur. For
this reason we turned to the medical literature to
seek appropriate analysis methods for this
ecological question. We found that recurrent
event survival analysis (Kleinbaum and Klein
2005) is often used to address questions and
data similar to ours. This approach is used in
medical studies to assess time to events such as
tumor occurrence (where the recurrent events
are the same), or different disease symptoms
(where recurrent events are different; Klein-
baum and Klein 2005). It is also designed to
accept censored data, since an individual may
leave a study prior to the end, or not display a
symptom by the end of a follow-up period. The
use of survival analysis as a framework to
model time-to-event data has been primarily
utilized for modeling time-to-death, or time-to-

v www.esajournals.org 3 November 2015 v Volume 6(11) v Article 236

HARRIS ET AL.



symptom expression in the medical and epide-
miological domains; however there are docu-
mented examples of its application within
ecology. Muenchow (1986) advocated the use
of such models in ecology and proposed a
number of ecological questions that could be
phrased in terms of ‘‘time until an event occurs.’’
Examples include flower visitation events by
insects (Muenchow 1986), time of fish passage
in rivers (Zabel et al. 2014), tree mortality
(Woodall et al. 2005) and duration of tarantula
fighting (Moya-Loraño and Wise 2000). Most of
these authors note the novelty of the application
of survival analysis within their specific fields.
One particular area of expansion of its applica-
tion has been in plant pathology (see Scherm
and Ojiambo 2004 for summary) and it is here
that we found the only example of the use of
recurrent event survival analysis within ecology
(Thomson and Copes 2009). We were particu-
larly interested in the variant of these recurrent
event survival models called the marginal
stratified Cox proportional hazards model. In
the marginal approach each event is considered
as a separate process (i.e., there is no condition
on events being progressive, such as in a disease
where symptoms have to occur in a certain
order), and different response events can repre-
sent different response types that may occur in
the same subject (Kleinbaum and Klein 2005).

Here we demonstrate and evaluate the appli-
cation of recurrent event survival analysis to
develop dose-response severity functions in the
context of cetacean CEEs, using data on killer
whales, long-finned pilot whales and sperm
whales from the 3S BRS project (Miller et al.
2011).

METHODS

Data
The expert scored response data were provid-

ed by the 3S BRS project, which includes data on
killer whales, long-finned pilot whales and
sperm whales exposed to three different sonar
signals, as well as killer whale playbacks and
no-sonar control sessions (all data used are
publicly available; see Miller et al. [2011] for full
description of project and controlled exposure
experiments, Miller et al. [2012] for description
of expert scoring, and Appendix A of Miller et

al. [2012] for descriptions of scored responses).
Here we focus only on the exposures to two
sonar signals that were conducted as dose-
escalation experiments where the vessel ap-
proached the focal animal during exposure to
increase the received sound level at the animal:
a 6–7 kHz upsweep signal (MFAS) and a 1–2
kHz upsweep signal (LFAS). These signals were
the primary focus of the study and, as such, the
data come from a balanced study design where
the order in which signal types were presented
was alternated from one experiment to the next.
The data comprise 27 exposure sessions across
14 different individuals (four sperm whales,
four killer whales and six long-finned pilot
whales). No-sonar control exposures were not
included in this analysis because the sonar dose
is zero for all identified responses, and other
metrics of sound level such as ship noise related
to vessel approach have not been measured.

Behavioral responses during each exposure
event were identified by expert scoring (Miller
et al. 2012) and each identified response event
was assigned a severity score by the experts
according to the severity scale outlined in Miller
et al. (2012). The responses were also aligned
with the corresponding levels of the received
sonar signals recorded on the animal-borne tag
(DTAG; Johnson and Tyack 2003). Although the
severity scale ranges from 0 (no response) to 9
(severe response), we did not have enough data
across the scale to fit separate exposure-re-
sponse functions for each of the nine scores.
Therefore, we binned the data into three levels; 1
¼ mild (severity scores 1–3), 2 ¼ moderate
(severity scores 4–6), 3¼ severe (severity scores
7–9). Instead of including 0 (no response) as a
separate level, we included data from these
sessions as right-censored (described below).
We identified the first occurrence of each
response level within each exposure session for
inclusion in the model.

Recurrent event survival analysis is generally
used to assess time-to-event; however we were
interested in acoustic dose-to-event, and so we
replaced time with received acoustic energy in
the form of cumulative sound exposure level
(SELcum). SELcum is a measure of sound
energy integrated over the duration of the
exposure, which increases monotonically
throughout each sonar exposure session. In the
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3S dose-escalation experimental design, the
values of SELcum were highly correlated with
the maximum received sound pressure level
(Miller et al. 2014).

In the marginal variant of the stratified Cox
proportional hazards model, each individual is
considered to be at risk of all response levels.
Therefore for each response level the ‘‘start
time,’’ or in our case initial dose (SELcum),
was the same, i.e., the first dose of that
particular exposure session. If all three response
levels were observed, in ascending order of
severity, then the dose relating to each response
event was allocated accordingly. If, however, a
moderate or severe response was observed
without a preceding mild or moderate response,
then the dose allocated to the lower level was
the same as that observed for the higher level.
Similarly, if a mild response was observed at a
higher SELcum than a moderate response, then
we replaced the observed SELcum for the mild
response with the value for the moderate
response. This data structure does not imply
that responses have to occur in a progressive
manner, with mild responses occurring before
moderate, etc. Rather, this approach assumes
that observing one more severe response means
that the equivalent of all less-severe responses
has also occurred, simultaneously if not previ-
ously. This is a reasonable assumption in a
broad context of response severity and we have
therefore structured the data set to reflect this.
See Thomson and Copes (2009) for an example
of similar data structuring.

In the case of no response across all levels
within an exposure session, then each level was
allocated the cumulative received level (SELcum)
at the end of the exposure session, and the data
were labelled as censored. Similarly if only mild
and/or moderate response events were observed
then a censored value was allocated to the higher
severity response level.

Model specification
The data comprise K¼ 14 individuals and N¼

27 exposure sessions in total, with up to three
exposures per whale. Severity level was denoted
as S ¼ 1, 2, 3 and XSkn denoted the value of a
vector of covariates X for individual k (k¼ 1,. . . ,
K ) at exposure session n (n ¼ 1,. . . , N ) with
respect to the Sth stratum (severity level). Then a

marginal stratified Cox proportional hazard
regression model can be defined as Eq. 1.

hSðSELcumjXÞ ¼ h0SðSELcumÞexpðXTbÞ;
S ¼ 1; :::; 3 ð1Þ

where hS(SELcumjX) is the stratum-dependent
hazard function, h0S(SELcum) is the stratum-
dependent baseline hazard and b is the stratum-
dependent vector of regression coefficients,
which are estimated by the method of maximum
partial likelihood estimation (Cox 1975, Therneau
and Grambsch 2000). The hazard function in this
case gives the probability of a response occurring
at a given unit of SELcum, given that the
individual has not responded up to that point
(Kleinbaum and Klein 2005). We assumed that
the observations were clustered (and therefore
correlated) within individuals and that there was
independence between individuals (clusters).
The standard errors of the model estimates were
corrected for the correlations within the clusters
using a grouped jackknife procedure (Therneau
and Grambsch 2000: Section 8.2.1).

The covariates considered were species (killer
whale, sperm whale, long-finned pilot whale),
signal (MFAS, LFAS), exposure number (1–3) and
behavioral state in the pre-exposure period
(feeding, non-feeding). All were specified as
factor covariates with the exception of exposure
number. It was unclear whether exposure num-
ber should be included as a continuous covariate,
and therefore we fitted models where it was
included as a continuous covariate, an ordered
categorical covariate or factor covariate. Behav-
ioral state, feeding or non-feeding, was deter-
mined by the diving and vocalizing behavior of
the animals prior to exposure (based on the
behavioral description in Miller et al. [2011]) and
feeding was assigned if any feeding behavior was
observed during any part of the pre-exposure
period. We considered all combinations of
covariates up to, and including, all first-order
interaction terms and carried out backwards
selection from the full model, dropping the
covariate with the highest p-value (from a Wald
v2 test) at each iteration until all remaining
covariates had p-values less than 0.05. For the
best fitting model, we tested that the proportion-
al hazards assumption and the no-interaction
assumption were both met (Kleinbaum and Klein
2005). The proportional hazards assumption
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requires that the hazard for one individual is
proportional to the hazard for any other individ-
ual, where the proportionality constant is inde-
pendent of time (or SELcum in this case), and the
no-interaction assumption requires that b coeffi-
cients do not vary across severity categories
(Kleinbaum and Klein 2005). To test the propor-
tional hazards assumption, we carried out a v2

test to determine if the slope of the scaled
Schoenfeld residuals differed significantly from
zero (Grambsch and Therneau 1994). Schoenfield
residuals relate to the difference between an
individual’s covariate value when there is a
response event and the weighted average of the
covariate values for the other individuals still at
risk at the relevant SELcum. The weights are each
individual’s hazard (Kleinbaum and Klein 2005).
We tested the no-interaction assumption by
comparing a model with no interactions and a
model where each covariate interacts with the
stratum indicator (severity level) using a likeli-
hood ratio test. The fit of the best model was
evaluated using the Cox-Snell residuals, which
are the estimated cumulative hazards for indi-
viduals at their response (or censoring) times (or
corresponding SELcum in this case). If a model
fits the data well, then the cumulative hazard
function conditional on the covariate vector
should have an exponential distribution with a
hazard rate of one (i.e., the estimated cumulative
hazard of the Cox-Snell residuals should look
like a 45-degree line).

All statistical analyses were carried out in R
version 3.0.2 (R Core Team 2015) using the
Survival library (Therneau 2015), and in SAS
software version 9.3 (SAS Institute, Cary, North
Carolina, USA). We used SAS to carry out the
model selection procedure because our model
included factor covariates. SAS model output
provides p-values for factor level comparisons,
but also p-values that relate to the contribution of
the factor to model fit. The latter is not readily
available in R, but is required for backwards
selection.

RESULTS

Model selection and testing assumptions
The selected model included signal, species

and behavioral state as well as an interaction
term between species and behavioral state, and

between signal and behavioral state (Table 1).
Note that we have no data on sperm whales in a
non-feeding behavioral state and therefore we
could not make any inference or predictions
about non-feeding sperm whales. There was no
significant effect of exposure number (no order
effect) when included as a continuous, ordered
categorical or factor covariate. Fig. 1 shows that
the model fitted reasonably well to the data: at
high values of cumulative hazard rate the data
points lie above the 45 degree line, however, it is
in the tail of such functions where variability due
to estimation uncertainty is the greatest and so
these deviations are not of major concern (Box-
Steffensmeier and Jones 2004).

The best-fitting model met both the propor-
tional hazards assumption (global p-value from
v2 test ¼ 0.067) and the no-interaction assump-
tion (the model with interactions between covar-
iates and stratum was not significantly better
than the model without these interaction terms; p
¼ 0.184). As both assumptions were met, no
remedial action was required.

Biological interpretation
In this section we provide an overview of the

model output from a biological perspective, but
we advise caution applying the results from this
case study. Though the data are unique, the
sample sizes for each species were small and,
with the inclusion of explanatory covariates, we
are describing outputs which, in some cases,
result from a sample size of one individual (e.g.,
feeding killer whales exposed to LFAS). In
addition, we have not included no-sonar control
exposures in this analysis and so there is no
direct evaluation of the relative contributions of
vessel approach and sonar exposure in the
probability of response.

From the model we can produce dose-response
functions for the three different severity levels
averaged across all covariates and accounting for
censored data (Fig. 2). All dose-response func-
tions were generated using the survfit function
within the Survival library in R, which can be
used to produce survival curves based on a fitted
model. We can see from Fig. 2A that the
probability of a mild level 1 response increased
steadily from a SELcum of 87 dB re 1 lPa2s
through to 168 dB re 1 lPa2s at which point the
probability of response (P-response) was equal to
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1. The 50% probability of response (P-response¼
0.5) related to a SELcum of 154 dB re 1 lPa2s. The
shape of the response function for moderate level
2 responses was very similar but shifted to the
right slightly, with a P-response ¼ 0.5 at a
SELcum of 157 dB re 1 lPa2s (Fig. 2B). In both
cases the 95% confidence intervals suddenly
increased in size at around 165 dB re 1 lPa2s,
so much so that the intervals span the entire
range of probabilities (0 to 1; see Discussion). The
model predicted very low probabilities of a
severity level 3 response across the range of
observed SELcum (Fig. 2C).

The same patterns, with respect to the effect of
covariates, exist across all severity levels (the no-
interaction assumption was met indicating that
the b coefficients do not vary across the severity
levels) and so we only show the results for

severity level 2 here (Figs. 3 and 4; for the other
levels see Appendix: Figs. A1–A4). We do not
make any predictions for non-feeding sperm
whales.

Table 1. Maximum likelihood parameter estimates, standard errors, p-values and hazard ratios with 95% CIs for

the best fitting model.

Parameter df
Parameter
estimate SE p-value

Hazard
ratio

95% hazard ratio
confidence limits

Signal (MFAS) 1 �1.64 0.52 0.018 0.19 0.05, 0.75
Species (long-finned pilot) 1 �2.41 0.74 2.8e�07 0.09 0.04, 0.22
Species (sperm) 1 �2.11 0.61 4.3e�05 0.12 0.04, 0.33
Behavioral state (nonfeed) 1 �4.24 0.84 1.7e�05 0.01 0.002, 0.10
Species:behavioral state (long-finned pilot nonfeed) 1 1.25 0.84 0.07 3.49 1.25, 9.74
Species:behavioral state (sperm nonfeed) 1 NA NA NA NA NA, NA
Signal:behavioral state (MFAS nonfeed) 1 3.80 0.81 0.001 44.92 4.32, 467.5

Notes: Values are given for each level of the factor covariates and are relative to the reference level. The reference factor levels
were LFAS, killer whale and feeding. NA indicates no data.

Fig. 1. Cox-Snell residuals from the selected model.

The dashed line represents slope ¼ 1.

Fig. 2. The probability of a response averaged across

all covariates (species, signal type and behavioral state)

versus received acoustic energy (SELcum (dB re 1

lPa2s)) for (A) severity level ¼ 1 (mild), (B) severity

level¼ 2 (moderate) and (C) severity level¼ 3 (severe).

The dashed lines represent 95% confidence intervals.
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Comparing the sensitivity of all three species,
we see that killer whales have a higher
probability of responding at lower SELcum than
long-finned pilot whales and sperm whales
across all signal types and behavioral states
(Fig. 3). There was little difference in the
probability of response of long-finned pilot
whales and sperm whales.

There were differences in the way species
responded depending on their behavior state,
hence the significant interaction term between
these covariates. For example, long-finned pilot
whales were predicted to respond to MFAS at
slightly lower SELcum when non-feeding com-
pared to feeding, but the opposite was true for
LFAS where they were predicted to respond at
much higher SELcum when non-feeding com-
pared to feeding. By contrast, killer whales had
a lower probability of responding to both
signal types when in a non-feeding state
compared to feeding, although the difference

was much more marked for the LFAS signal

(Fig. 3).

Regarding sensitivity within species, sperm

whales were predicted to respond to LFAS at

lower SELcum compared to MFAS (Fig. 3, data

only for feeding sperm whales). Killer whales

and long-finned pilot whales were also predicted

to respond to LFAS signals at lower SELcum

when feeding compared to MFAS (Fig. 4) whilst

the opposite is predicted when in a non-feeding

state (Fig. 4). This explains the significant

interaction term between signal and behavioral

state, which was due to a large difference in

sensitivity to LFAS across behavioral states

rather than a difference in sensitivity to MFAS.

However, as noted earlier there is only one

datum each for feeding killer whales exposed to

LFAS and feeding long-finned pilot whales

exposed to LFAS, and therefore we need to limit

our inference from these results.

Fig. 3. The probability of a response occurring in killer whales (dashed line), long-finned pilot whales (dotted

line) and sperm whales (solid line) versus received acoustic energy (SELcum (dB re 1 lPa2s)) for severity level¼ 2

when signal¼MFAS (A and C) and LFAS (B and D) and behavioral state¼ feeding (A and B) and non-feeding (C

and D). Mean probabilities are all shown in black, while 95% confidence intervals are shown in grey. Similar plots

for severity levels 1 and 3 are shown in Appendix: Figs. A1 and A2.
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DISCUSSION

Recurrent event survival analysis as applied to data
from acoustic exposure experiments: pros and cons

The use of recurrent event survival analysis
within the context of cetacean CEEs has allowed
us to generate dose-response severity functions
from an integrated multi-signal, multi-species
model whilst dealing appropriately with cen-
sored data. The model was effective in estimating
model parameters despite low sample size.

Recurrent event survival analysis has enabled
us to expand upon previous exposure-response
analysis of CEE data (Antunes et al. 2014, Miller
et al. 2014), allowing us to generate functions for
responses of different types whilst acknowledg-
ing that multiple responses may have been
observed within one exposure session and by
one individual across multiple exposure sessions.
Here we chose to model responses of different
severity levels, but an alternative would be to

divide the data into behavioral categories instead
and model the onset of different response types
(e.g., vocal response, dive response, avoidance
response). The latter would allow us to deter-
mine whether different contexts result in differ-
ent types of responses as well as different
severity levels.

One of the main motivations for searching the
medical literature for an analysis method was to
find a framework that would accommodate
censored data. In experiments such as BRS CEEs
it is important to include the data from exposures
when animals did not respond, to avoid negative
bias whereby we might predict animals, on
average, to respond at lower doses than we
observed. In this study, the main visible conse-
quence of including the censored data was the
very large confidence intervals seen in Fig. 2. This
is due to the nature of these data, which were
collected as part of a dose-escalation study
whereby nearly all of the data points at SELcum

Fig. 4. The probability of a response occurring during LFAS (dashed line) and MFAS (solid line) exposures

versus received acoustic energy (SELcum (dB re 1 lPa2s)) for severity level ¼ 2 for long-finned pilot whales (A

and C) and killer whales (B and D) and when behavioral state¼ feeding (A and B) and non-feeding (C and D).

Mean probabilities are all shown in black, while 95% confidence intervals are shown in grey. Similar plots for

severity levels 1 and 3 are shown in Appendix: Figs. A3 and A4.
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above 165dB were censored data points repre-
senting animals that did not respond to the
maximum sound level received. The preponder-
ance of censored data for high SELcum values
leads to very large uncertainty over this part of
the function.

The output of the model can be viewed either
as dose-response functions for each severity level
averaged across all covariates (Fig. 2), or as dose-
response functions for particular combinations of
covariates (Figs. 3 and 4). The output from our
case study data set shows little difference in the
functions for the mild and moderate severity
levels, which implies a similar probability of
observing a mild or moderate response for a
given dose. However, it should be noted that the
similarity in these functions is partly an artifact of
our assumption that if a moderate or severe
response was observed, but not a mild response,
then all responses at least as severe as that
response have also occurred at the same received
level. In this data set, this assumption resulted in
19 instances (out of a possible 31) where a mild
response was allocated the received level ob-
served for a moderate response. The effect of this
assumption would be reduced in data sets where
more mild responses were observed. Alternative-
ly, we could remove the need for such an
assumption if we chose to model different types
of response (e.g., vocal, movement) rather than
different intensities of response. However, this
assumption predominantly affects the function
for the mild level 1 severity responses, which
may be of least interest from a regulatory point of
view.

Miller et al. (2014) and Antunes et al. (2014)
modelled the onset of the first avoidance/hori-
zontal movement response observed for each
exposure session using a Bayesian hierarchical
model which fitted the observed thresholds to an
assumed, underlying dose-response model. The
advantage of the Bayesian framework over the
survival analysis approach is that previous
knowledge could be used to derive initial
estimates (priors) of dose-response, which can
be useful when faced with such small sample
sizes. Miller et al. (2014) used simulation studies
to demonstrate that the Bayesian approach was
able to recover an underlying dose-response
function with limited bias based upon the size
of the data set they were able to obtain in the

field, providing reassurance that the posterior
estimates of the dose-response model were not
overly influenced by the uninformative priors
used in that case, but rather reflected trends in
the data. In addition, the priors and the
underlying form of the model constrain the
resulting exposure-response function to conform
to the expected shape for such functions. The Cox
proportional hazards model has no such con-
straints and therefore there is the possibility of
extremely wide confidence intervals for regions
of acoustic dose where data are sparse, or
exposure-response functions with unexpected
shapes. We did not experience the latter problem
with this case study data set but it is something
that may need to be addressed in future
iterations. The advantage of the survival analysis
approach over the Bayesian hierarchical model is
the ability to model multiple response events
within one framework rather than carrying out
multiple, independent analyses on each response
type.

The proportional hazards assumption that
there is a constant hazard ratio across time
(SELcum) underpins the use of Cox proportional
hazards models, and if this assumption is
violated then the use of these models is inappro-
priate. In our case study the assumption was met,
but only marginally. It is worth noting that there
are options to consider if the assumption is
violated (e.g., see Kleinbaum and Klein [2005] for
details), and we discuss these briefly here. The
first option would be to stratify by the covariate
that is causing the violation. In our case we had
already chosen to stratify by severity level to
address our particular question of interest and so
it would not have been viable to stratify by
another covariate. The second option would be to
add an interaction term between the covariate
causing violation and SELcum, or a function of
SELcum, which is referred to as an extended Cox
model (Kleinbaum and Klein 2005).

Case study results
From a biological perspective, the novelty of

the model fitted here is the inclusion of a
contextual variable (pre-exposure behavioral
state), and the combining of species in one
model. Both Miller et al. (2014) and Antunes et
al. (2014) discussed the importance of context in
explaining the remaining within- and between-
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whale variability in their models, but neither
study modelled the effect of contextual variables
beyond sonar frequency and exposure order. This
is understandable given the data, as in both cases
they were fitting to data from a single species
and therefore sample size precluded the inclu-
sion of more than a few covariates. Even when
we combined the data from three species, our
sample size was fairly limited, and by including a
contextual variable and first-order interaction
terms we have pushed the data to its limits.
When we divide the data by species, signal type
and behavioral state this results in some catego-
ries with a sample size of one. We are therefore
cautious in our biological interpretation of the
model output from this case study. However,
there are similarities in the results between our
study and previous analyses of these same data
using different methodologies (Miller et al. 2012,
2014, Antunes et al. 2014), which gives us
confidence in the application of the model.

It is also worth noting that while we show
results from backwards model selection based on
p-values, there are alternative model selection
options. We also explored the use of AIC-based
model selection with the same data set and the
selected model was the same using both ap-
proaches, however the AIC method resulted in
quite a few models with AIC values close to the
selected model and so, given this awareness of
competing models, we further emphasize caution
when interpreting the biological results.

Our results suggest that pre-exposure behav-
ioral state (feeding or non-feeding) can make a
difference to the way in which an individual
responds to exposure and that this differs
depending upon species and signal type. This
agrees with research on bowhead whales which
were observed to react differently to seismic
airgun sounds depending on whether they were
feeding or migrating (Richardson et al. 1986,
1999, Miller et al. 2005), and on blue whales
which were found to have different levels of
responsiveness depending on their diving and
foraging behavior (Goldbogen et al. 2013). The
importance of context has long been recognized
(Southall et al. 2007, Ellison et al. 2012, Miller et
al. 2012) and here we have only managed to
investigate one aspect of this. However, as
sample size increases, we anticipate that it will
be possible to include other relevant contextual

variables, for example relating to social settings.
Combining the data from multiple species into

one model has allowed us to borrow strength
across the individual data sets and increase the
sample size, providing an opportunity to incor-
porate more explanatory variables as described
above. It has also allowed us to compare directly
the responses of each species within one model
and determine whether the descriptive differenc-
es resulting from Miller et al. (2014) and Antunes
et al. (2014) whereby killer whales were deemed
more sensitive than pilot whales is a quantita-
tively significant difference (Table 1). Direct
comparison between species is complicated by
the interaction of their responses with context,
but the killer whale is significantly more sensitive
than pilot whales and sperm whales in all
situations, except when exposed to LFAS whilst
in a non-feeding state. We believe there is
significant scope to expand the multi-species
approach using this framework.

Future work
We have demonstrated the utility of this

framework using the 3S BRS data on killer
whales, long-finned pilot whales and sperm
whales as a case study. When further expert-
scored data become available, we anticipate
using the framework as a tool for meta-analysis
across multiple BRS projects. Despite the antici-
pated increase in sample size, there will un-
doubtedly be new analytical challenges relating
to an increase in the number of covariates, and
levels within covariates.

A significant challenge will be the inclusion of
no-sonar control exposures, where the source
vessel approaches the animal without sonar
transmissions. Although it is desirable to include
the data from these experimental sessions in our
analysis to better understand the contribution of
the vessel approach to responsiveness, they have
been excluded to date because of difficulties in
defining an appropriate dose metric for inclusion
in analysis. The sonar dose is zero and not
escalating, and other, potentially relevant sound
metrics such as ship propulsion noise, have not
been measured. Expert scored response data
have been published for the no-sonar control
exposures (Miller et al. 2012, Sivle et al. 2015) and
results showed that these exposures had both the
fewest responses scored per session and the
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lowest proportion of sessions with maximum
severity scores of 4 or greater. This implies that
there was a lower probability of individuals
responding to the approaching vessel than to
sonar exposure, and that when they did respond
it was to a lesser extent. However, without
including data from both sonar exposures and
no-sonar control exposures in one dose-response
analysis framework we cannot quantitatively
evaluate the features of the sonar exposure that
are driving a response, in particular the role of
the approaching vessel. Miller et al. (2014) also
excluded the data from no-sonar control expo-
sures in their Bayesian dose-response analysis;
they believed that it was unlikely that the
responses identified by expert scoring were a
result of ship propulsion noise alone, but that in
some cases the approaching vessel may have had
an effect on overall responsiveness. One possi-
bility for the future may be to investigate
different dose metrics, such as whale-vessel
range, which, unlike received sound level, is a
measure that is available for both sonar and no-
sonar control exposures.

Conclusions
The analogous nature of the scientific ques-

tions, experimental approaches, and data from
BRS CEEs and medical studies has led to a novel
application and extension of recurrent event
survival analysis within ecology. Replacement
of time with received acoustic energy allowed us
to produce event curves relative to a relevant
metric (sound dose) and there are likely many
other metrics in ecology to which this extension
may be applicable. We believe the framework is
an effective analytical tool for fitting dose-
response severity functions, a key output of BRSs
that are much needed by regulatory communi-
ties.
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Richardson, W. J., B. Würsig, and C. R. Greene, Jr. 1986.
Reactions of bowhead whales, Balaena mysticetus, to
seismic exploration in the Canadian Beaufort Sea.
Journal of the Acoustical Society of America
79:1117–1128.

Scherm, H., and P. S. Ojiambo. 2004. Applications of
survival analysis in botanical epidemiology. Phy-
tophathology 94:1022–1026.

Sivle, L. D., P. H. Kvadsheim, C. Curé, S. Isojunno, P. J.
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