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Abstract

As big data is expected to contribute largely t@reenic growth,
scalability of solutions becomes apparent for dgplent by
organisations. It requires automatic collection @nocessing of large,
heterogeneous data sets of a variety of resoudesding with various
aspects like improving quality, fusion and linkidgta sets to provide
homogeneous data to data analytics algorithmsatetable to detect
patterns or anomalies. This paper introduces twopoments in a data
sharing architecture for big data. It presentsdiia¢e of the art as basis
for a research agenda. Aspects like ransporagtorand processing are
important for big data, but not addressed by thisap.

1. Introduction

Big — and open data are mentioned as the most tengatechnology trends, contributing growth to eaciety and
economy (Brynjolfsson, 2012), (OECD, 2013). Orgati®s can make better predictions and better idesisy
increasing situational awareness (Endsley, 1995 )dllect, enhance, and process large data a dataavalue chain
has to be put in place (Esmeijer, et al.,, 2013ppeued by technology. Since different data sounoes/ide
heterogeneous data with a variety of technical &smBerners-Lee, 2009), functions like data tramsétion,
matching and linking of data sets are required fidgoNgomo & Auer, 2011). Other important aspectsdata
sharing are data quality (Batini & Scannapieco,8)d8at can be expressed by a large number of giepéZaveri,
et al., 2013), and data governance, that can teadrticular data sharing interventions (Eckartalg 2014). Many
solutions for data sharing are based on ApplicaBorgramming Interfaces (APIs) that need interpietaand thus
require a lot of time to make data processablenayytics (Hofman & Rajagopal, 2014). As the numbkopen data
sources increases (Zuiderwijk, et al., 2014), itdmes hard to access the proper sources. Prop@tesri, et al.,
2013) need to be added to support the data vahia (Bsmeijer, et al., 2013).

An analysis of data sharing platforms is alreadged(Hofman & Rajagopal, 2014), but did not yet écdesall
functionality required by a data value chain memtith before. By proposing a data collection architeg this paper
introduces a number of research questions foraptrability in big data applications. The architeetis based on
the results of research informed by practice wittapha version solution developed and validategrbgtitioners in
various national and international projects (Seinal., 2011). This paper does not address trahsfatstributed)
processing, and storage of large data sets, butnessthe availability of technology for these fumas.

First of all, the data value chain and resourcentation are discussed and secondly the archis@atamponents
are presented for identifying research questioneeiWapplicable, available software components paatly the
required functionality is presented.
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2. Introducing the data value chain

This section introduces the data value chain (Bemest al., 2013) providing requirements to arhaecture and
presents two design principles for developing thengonents, namely the use of semantic web standardsa
resource oriented architecture.

2.1. Data value chain

This section briefly introduces the data value elaid discusses its functionality. In order to tereadata collection
architecture as a framework for research questiamspre elaborate and detailed model is requiresihdJexpert
interviews, case interviews, and workshops as pyirimput — combined with desk research (OECD, 20({i8aisler,
et al., 2013) — (Esmeijer, et al., 2013) have ifiedtthe following steps in a data value chaire(aéso figure 1):

. Data generation and collection (e.g. inventdrglada sources and its qualities, enabling accedata sources)

. Data preparation (e.g. filtering, cleaning, fieation, adding metadata)

. Data integration (establishing a common dateessmtation of data from multiple sources)

. Data storage (e.qg. local databases, cloud stphatyrid solutions)

. Data analysis (e.g. text mining, network analyahomaly detection)

. Data output (e.g. visualization)

. Data driven action (e.g. decision making, cugtosegmentation)

. Data governance & security (e.g. governanceapy)
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Figure 1: The value creation process of data (Fsmeit al., 2013)

Taking a closer look at the steps in the data vah&n, some design issues become apparent fraeohaital
perspective. First of all, metadata is added ta datlata preparation stage, although this metélatabably always
identical each time data is collected from thabuese. Secondly, the data value chain positions mié¢gration after
data preparation, implying that functionality lidata cleaning is always specific for a particularadset and needs to
consider the particular formats and semantics aff dlata set. It would be better to first transfatata to a common
format before filtering and cleaning the data.d¥fili)g and cleaning could be based on machine legteichnology
(Witten & Frank, 2005). Data analysis comprise® ai®re than only the examples given; basic algmsticonsider



machine learning and multi-view clustering, whehe tlatter can support for instance customer segtient
Furthermore, they do not distinguish between lies streaming data like video and (un)structuretd eath discrete
values as stored in databases of organisationsnicadly, these types of data require differenthtesfogy, for
instance in terms of storage but also analyticalits might be applied to extract structured aatisof multi media
data, where the ex tracked data can be furtheysawml Transformation of multi media data is propabipported by
all types of open source components, either witbouwtith a decrease of quality.

According to the data value chain, data governamzk security is part of the core of analytics. Heeve data
governance with interventions like ldentificationdaAuthentication is a requirement of a data oweestay in
control of its particular data (Eckartz, et al.12) These considerations are the basis for dewejdpe architecture.

2.2. Design principles

This section briefly presents two design principlEe first is to applgemantic web standards like Ontology Web
Language (OWL) and Resource Description Format (RioFboth modelling knowledge and linking datassky

constructing networked ontologies of those setss tireating Linked Data (Berners-Lee, 2009). Thienate goal is
to refer to data at its source and only accessl#tta when required, which has several advantagesbking in
control (Eckartz, et al., 2014) and always acceshd most up to date data. With respect to ddtaction of Linked

Data, different strategies can be taken, e.g. datavling for collecting data of known resources -tbe-fly

dereferencing by evaluating links to data when iregy and query federation by applying dereferegpdiay a
resource when data of that resource is requiredt{H& Bizer, 2011). Data crawling can be appliedewldata
resources are known; data can be collected frosethesources at regular time intervals. On-theldiseferencing is
used when additional data is required to decidaroaction and a reference (URI: Uniform Resour@mntifier) is

available. Customs introduces this mechanism fgorawing risk analysis (Hofman, 2013). Query federatis

applied to answer queries formulated by an appdinabr user, where the data resources providing da¢ not
known in advance. These patterns can be appligebiarchitecture for data collection.

The second design principle is to consider evemgthperson, and organization as a dagsource from an
Information - and Communication Technology (ICTyg@ective. A package, a container, a truck, a tdroker, and
a carrier are for instance all considered as atne®’ in logistics. Each of these resources car lsme type of
autonomy represented by its goals and capabi({@eshrer, May 2009). A resource can have an ovenaser, and a
virtual representation in an ICT system, e.g. aieahas a fleet management application storingktrdata as a
virtual representation of its trucks and a driveesithat truck as employee of that enterprise particular trip.
Physical objects can also have processing capesjlite. there virtual representation is attadiwethem somehow,
which makes them active objects that can shareatatanake decisions in the context of a goal (kse(Montreuil,
et al., 2013)). One resource can have one or et gkts, where these data sets can be quite sienglea sensor
providing a temperature in degrees Celsius, or ¢exnpe.g. an Enterprise Resource Planning (ERPesys
providing transaction — and master product da¢s fil

Resources are autonomous, which imposes data ghasirictions from a legal - like privacy or lifityi or a
commercial perspective. Since data is currentlp alsnsidered as an asset (OECD, 2013), autononesasinces
also expect to gain economic benefits from shadat, which is a barrier to process improvemenyritfsson,
2012). Resource autonomy will be reflected in adadlicy resulting from data governance (Eckartzale 2014).
Another aspect of importance from the perspectivbi@ data is to decompose a query into queriesn® or more
resources, depending on particular query charatitri Query decomposition can be compared withaayo
service composition based on matching of goals eaghabilities or services (Spohrer, May 2009), differs by the
fact that a query is formulated on a common sermantidel of one or more . Characteristics of data eéthese
resources in terms of for instance data qualitymesidered. Query decomposition, which differarfrthe three
patterns identified for Linked Data (Heath & Biz8011) requires further research. In the contexhisf paper, it is
identified as a required functionality for dataleotion.



3. Towardsdata collection architecture

The previous section introduced the data valuenchad two design principles, resulting in requirataeto ICT

components. This section introduces two ICT comptm¢hat can be further decomposed, namely a &tregi
component and a data processing engine. Both caenp®have to interface with each other and carepéoyged in

various ways, e.g. a data-sharing platform or peqreer solutions. Deployment aspects will not lscubsed,;

requirements to functionality of both components &urther discussed. By identifying functionalitygsearch
guestions can be formulated.

3.1. A registry component

In the past, various forms of registries have bseecified, e.g. Uniform Description Discovery amdefration
(UDDI) for web services (Erl, 2005) and the Unifoi®ervice Description Language (USDL, (Barros & Oder
2012)). Whereas UDDI comprises technical service¥/SDL format (Web Service Definition Language), RIS
distinguishes several aspects of a service sepgratg. an abstract specification of its functilitya pricing
structures, and its technical interfaces. The séosnf services is modelled by parameters, big itot clear how
these are to be specified. However, we consideastos as the core of data collection in big d8ig Pata Value
Association, 2015) and transformation between wariiechnical) formats. Accessing the data of aue= is for
instance by a REST API or as streaming data.

Semantics of a resource, that we will express &dagy (see before), can be specified at diffetenels, e.g. per
API, per data set of a resource, or a common ird¢ion model of various APIs or data sets (Erl, 200%e propose
to construct a networked ontology (Noy & McGuine®811) based on matching and linking different tgies
(Euzenat & Shvaiko, 2010). Resources can expressdhta sets in a common ontology if they all hdaéa in the
same domain, e.g. logistics, energy, and healthstMmsiness ontologies can be matched or linkeugesi
organisations exchange value based on servicehi@pday 2009). Semantics can be developed withs tike
Protégé and TopBraid Composer, where the latter alan be applied to automatically construct an OWL
representation of an XSD. Such an OWL represemtaifoan XSD has to be matched to a networked ogyolo
SPARQL Inference Notation (SPIN), a recommendatibthe World Wide Web Consortium, can represens¢ho
mappings. On the other hand, a resource can afgesxits API in terms of ontology by for instarspecifying its
own ontology and generating an XSD of that APIroplementing an RDF interface on top of its data.

As we have seen, not only semantics and techmitafface with communication protocols and UniforesBurce
Locator (URL) are important, but also the annotaiti resource and its data in terms of data quédigweri, et al.,
2013) and data policies including pricing and sigutinked data quality dimensions are contextistr intrinsic
dimensions, accessibility, representation, and ity (Zaveri, et al.,, 2013). These dimensions &rgher
decomposed into for instance completeness, amdudat@, and relevance of the retrieved data forteodnal
dimensions. They do not distinguish between pararsetf a data resource and a data set, sincediamnice trust can
be assigned to a resource and completeness ta aetafThey also consider value assignment of {heseneters by
data users, whereas resources will also assigredike licensing and completeness to addresssdieeliability
from a data governance perspective (Eckartz, e@l4). Further research is required with respechetadata of
resources and data sets and annotation mechanjsmsdsource and data user(s). From the perspeufigedata
user, particular metadata is required to cleardttia, whereas a user assigns this metadata bageacbime learning
technology (Lehman, 2009). A feedback to a resounight improve data quality creating mechanismsilaimto
Zoover or used by AirBnB common to travel and legsiResearch is also required whether annotatiensgecific
to each instance of a data set collected from aures, i.e. each instance of a data set is difféec it can be
annotated for all instances.

In open data communities, platforms like CKAN or @B API manager are applied as registries, wheieas t
functionality of these platforms differs (Hofman Rajagopal, 2014). These platforms do not supporiasécs or
annotation of APIs of data sets. They support gat&iders in publishing their APIs; searching foojper data sets is
by browsing through an a huge collection, possjpbuped in some reasonable way like geographidal skts.

Queries can also be expressed in semantics ugingstance SPARQL. Such a query might retrieve @mneore
URLs of data sets or resources with a required t@tino or to decompose the query into queries tyréc two or



more resources (query federation). The latter mightlt in a particular sequencing in which thessources should
be queried, also including functionality like comipnig data sets of different resources to one oidagahg
consistency across data sets of different resoui®aesh sequencing is represented by a (data) veerkilith
particular data manipulation functions (see negtise). A data collection strategy might provide rules that govern
the data workflow. These rules are for further agsk.

3.2. A data collection engine

The objective of a data collection engine is to bgamise data of heterogeneous data sets, potetikilor fuse
those data sets, and improve data quality (seed)efdata collection utilizes one or more of theethmechanisms
mentioned before (Heath & Bizer, 2011). A data extibn engine has to deal with different qualitydafta sets
provided. It has to support a data collection etygtthat addresses aspects like ‘inconsistencyusing data of two
or more resources and ‘trustworthiness’ as paiprofvenance’ (Zaveri, et al., 2013) by validatitng tcontent of one
data set of a resource against a similar dataf seteoor two other resources.

Data semantics and — annotation, expressing dat#yqand other aspects of both a data set and réataurce,
determine data processing. More particular, théofishg functionality is required to automaticallyltect and
process large (structured) data sets:

- Data workflow engine. A data collection strategy based on data set tatioo governs collection and
preprocessing. A data workflow engine provides saucontrol by for instance collecting and compaudaga of two

or more resources for validating (in)consistenci8ach an engine can also support the various waydam@m
collection (Heath & Bizer, 2011). A data workflowart be modelled as any other workflow utilising sli@ls like
Business Process Model and Notation (BPMN, (OM@&, 120

- Data set manipulation. This particular function processes an individdiata set collected from a resource. Data is
transformed to a common format with known semangind potentially cleansed based on data set amntgat
Cleansing can deal with incompleteness using fetailce Bayesian Belief Networks (Han & Kamber, 20@6can
also be useful to extract data from unstructuradtirmedia data sets using analytics (Schutte|.ef@14).

- Data integration. This function considers more than one data seéh@mst. Two types of approaches for data
integration are distinguished, namely fusion of twwomore data sets to one data set and linkingarmmore data
sets. Fusion is performed on two or more data thetisare similar, i.e. their semantic models areafdarge part
identical (there might be some deviations in twadele). An example is the fusion of traffic datanfréwo or more
resources. Notice that the instances of two dat reay be different, e.g. they contain traffic dafawo areas.
Fusion can be applied for various reasons, e.gpl@eness, consistency and provenance, and iskbssly related
to a data collection strategy. Linking data setsnly done on those data instances that have consommepts in two
or more data sets. A most common example of lirdad is on geographical coordinates and visualidatig sets on
maps.

4. Resear ch questions

This section introduces two main research questiweiscan be further specified. These two mainakesequestions
that will be further detailed, are:
1. Resource profiles to find and collect (largefadsets in these adaptive complex systems.
2. Seamless interoperability for creating adaptimeplex systems.

Besides these basic research questions, therdsargyagtems architecture questions, like the iaterfbetween a
registry and a data collection engine. Furthermomdividual components need to interface to comsteusolution
that can be deployed. We will not address thesstiums in this paper; they are very relevant faualcdeployment.

4.1. Resource profiles

In the previous sections, we have argued thatdifficult to find useful, annotated data due tbtgpes of reasons.
We have also argued on the importance of datarsettation for data processing. Lack of semantiasnis of the
reasons that we will address in section 4.2. Wes fadso introduced some definitions in a loosely veay. resource,



data set, and instance of a data set. Proper tigfimiare required to be able to develop softwiil<e,a resource is
the owner or keeper of one or more data sets, wéaarie data set has a known semantics and mangdasta

This section identifies the following research diogss that build upon these definitions:

- Profile of a data set of aresource. There are not yet profiles specified that expeasslable instances of a data set
in a known semantic model andprovide technicalitdets to how instances can be collected. Suclofigoshould
also include the value instances of a data setaande expressed in known semantics (e.g. a terhpera degrees
Celsius) or more complex ones like utilization cdter depths for vessels. An example of profiles lmarfound in
(Kotok & Webber, 2002), but these focus on busimpeesesses instead of semantics of data sets.

- Annotation and metadata. There is not yet a set of metadata of data sqisessing all types of features like
presented in (Zaveri, et al., 2013), that can el de annotate data sets. Metadata to annotatee®ig given by
(Barros & Oberle, 2012), a standardised set neelle identified to express various features of data like quality
(Batini & Scannapieco, 2006), pricing, etc. There #ols that are able to improve data quality .(©&RE —
Ontology Repair and Enrichment — and RDFUnit), ibis not ambiguous which quality features theyradd and
thus which metadata and annotations they couldfibéirgen.

- Data governance rules andinterventions, resulting indata policies. A decision model (Eckartz, et al., 2014) is
available, but there are not yet interventions gigel; let alone supported by tooling. Tools likeS® API
Management provide some sort of access managemeranly on API level, resulting in management fAP| for

a (group of) data user(s). Access mechanisms soenalt yet specified, e.g. Attribute Based Accesst®| (Goyal,
et al., 2006) and homomorphic encryption (Gent@0%® are examples of potential interventions impetimg
particular data policies.

- Query decomposition, (federatedpearch andfind data sets. Linked data addresses query fedefayigHeath &
Bizer, 2011) and SPARQL can be used to query datarding to a known semantic model, but as anrwtatare
lacking and queries need to be formulated in laggsdike SPARQL, it is yet difficult to query foath. Patents are
in request that address particular types of queresiages (e.g. (Schutte, et al., 2014)).

A resource can have one or more data sets. In soo@sions, a profile is already standardised bgnantunity,
e.g. based on a common semantic model with itsatipg technical solutions. In those occasionst fhafile acts
as a template implemented by more than one resdiscmantics is probably expressed by an orydloat can be
matched or linked to existing ontologies (EuzenaBkdvaiko, 2010) to construct networked ontologiesols like
LogMap or YAM++ can be used for this purpose.

4.2. Seamlessinter operability

Various sources have stressed the importance ofless interoperability, e.g. (Montreuil, et al., 13) and (Chituc,
et al., 2009). Seamless interoperability is alsusédy defined as ‘the ability to easily configuhe ttransformation
between any two data structures’. Whereas a loteséarch effort has focussed on service orientggee for
instance (Li, et al., 2013), research towards canshg semantic models for interoperability andegration of
database management systems or other data resbascbgen limited. Common data models for inteimtabration
have been developed by organisations (Erl, 2008}, dnly on a limited scale to interoperability betm
organisations, e.g. for logistics (Pedersen, ef8ll1) and customs (World Customs Organizatioa02o support
message specification and generating message iraptation guides (Hofman, 2011). Research in theasémweb
community has been on ontology development ancttirdata see for instance (Berners-Lee, 2009) hieuissue of
semantics and ease of transformation between angdta structures is not solved yet.

Seamless interoperability can be expressed atreliffdevels (Wang, et al., 2009). In this paper, dedine
seamless interoperability as the ability of a resource to support its speatiprofile, which can be detailed to the
levels indicated by (Wang, et al., 2009):

- Syntax transformation, which considers the conversion between any twiases for technically sharing data.
Examples are the support of data extraction frodatabase by transforming SQL into RDF. Tools likBRMA,
OnTop, and DataTank provide this kind of capaletitiNote that syntax transformation requires kndgdeof
semantic transformation to assure data quality.

- Semantic transformation. Automatic transformation between any two data sgéthout any human intervention is
not yet solved. Semantic transformation is requitedfuse and link data sets of different sourcestect



inconsistencies, etc. There are examples to appbhme learning for matching data sets, but onthése have the
same technical representation (Euzenat & Shvail@QPwith tools like LogMapLite and LogMap. Althoughere is
an open standard for expressing semantic transfamsa SPIN, it is yet only implemented by one emiise. In case
machine learning is applied to automatic semandéiosformations, it requires a large number of latgt sets like
messages and XML documents with their implementagicides or XSDs.

- Governance. This is a separate aspect for further researmhnbeds to address ontologies and transformations.
Ontologies can easily be incorporated into otheologies, either by reference or as import, to trores networked
ontologies and match ontologies. In case of refeéngn one needs to be sure that be sure that theed ontology
will still be available. Applying machine learning semantic transformation results in value sincgramatically
reduces interoperability implementation time. Gogice mechanisms should be in place to assurkrtbigledge is
available to integrate resources.

Semantic transformation addresses is requiredpfodile of a data set is going to be implementedabglata
resource or at data collection. Semantic — andastiot behaviour is required f@daptive complex systems like
smart cities and logistics in which various apgiima domains have to be interoperable and wherednstellation
of participating resources changes dynamically.s€hgystems have a network (see for instance (Dekkéx))
structure for collaboration. Interoperability impientation time, required for participating in suchystem, needs to
be minimal or even zero.

5. Conclusions and further work

We have constructed an architecture with two basimponents supporting to support a big data vahaéncand
used this architecture to identify research quasti@esides the basic research questions afiling andseamless
interoperability, there needs to be further research towards deglotyof an architecture that utilizes distributed
transport, processing, and storage of large data Ber instance, to prevent unnecessary datanghadross the
Internet, it might be feasible to analyse data ketlly by transporting a data collection engimel @an analytics tool
to a resource and provide the results to anoth&a dallection engine. These aspects, covered byinfgance
Software Defined Networks (Kreutz, 2015), needHertresearch including the integration betweencsired and
unstructured, multi-media data, e.g. by extractstigictured data from unstructured data sets. Naise that
utilizing RDF as syntax during data transport walpidly increase data size. The architecture adsotd be extended
to support behaviour in a more complex manner tfea collection. Situational awareness (Endsle@5)]vith
different types of analytics like descriptive, diagtic, predictive, and prescriptive, results itiats that have to be
shared amongst participants in a complex systemth@shumber of participants in those networks iases, the
amount of data to be shared and interoperabilitypiexity is also expected to increase. Where wg adbressed
research questions for interoperability in big datamplex systems require additional functionaldata governance
rules and data policies will also require functiitgdike identification and authentication, trugirivacy enhanced
technology, etc. that is also required by complgstesns. These types of architectural questions riegHer
research.

Another research issue is to apply semantics ia daalytics. Current algorithms are agnostics ¢t damantics;
they just require homogeneous data sets to detdtdrps and anomalies based on statistic or niuakgorithms
(Witten & Frank, 2005). A research question is ownterface between data collection and data &oalin terms
of technical representation of data sets.

Although this is not explicitly mentioned in our &, the focus has been primarily on structuredh datts
(Berners-Lee, 2009). Unstructured, multi media daight require additional functionality that is flurther research.
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