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ABSTRACT

The objective characterization of electro-optical sensors

difl¡cuit task. Up to now the sensor is cha¡àcterized usin the

minimum resolvable contrast (lvRC)'The performance of im¡ by a

human observer. Since in more a¡d more cameras some kind of image processing is applied, a more elaborate test is needed

that can measure the perforrnance of the combination of the sensor and the image processing. A good candidate is the TOD

(Triangle Orienøtion Discrimination) method, which is developed as an altemative for MRTD and the MRC methods. We

àre inv-estigating how the standard TOD-method can be extended to cameras with image processing and whether these

measurements can be automated.

An algorithm is under development, which is based on the TOD-method and predicts the characterization by human

obseriers of camera-system performances. The algorithm combines the TOD-method, an early-vision model, and an

orientation discriminato¡. Thi algorithm uses the same images as used in human-observer experiments. After correction for

the physical properties of the display and the human eye, the algorithm tries to find the orientation of the stimulus. The

utgorit¡* ca¡ aÈo predict the performance of only image processing using a simple scene-generator in stead of a camera

setup.

Keywords: automatic characterization, sensor performance, image enhancement performance, early'vision, ideal obsewer,

TOD, MRTD.

1. INTRODUCTION

a single
of image
ween the

started to

develop a test to charactenze the performance of a camera

.u-"ru depends on several factori. First ofall the characte e also

depends on the observation limited ou¡s

objects in a high clutter bac will contain both dim and bright areas. It is important to test all the

sit'uations in wfrictr image p artifacts. In the resea¡ch program we are investigating how the

standa¡d TOD-method uslng human observers can be extended to cameras with image processing and whether these

measu¡ements ca¡ be automated. This paper describes the algorithm that will be used to predict the cha¡acterization by

human observers of camera-system performances. The algorithm uses the same images as used in human-observer

experiments. After correctionfor thè physical properties of the diso-lay and the human eye, the algorithm tries to frnd the

orientation of the stimulus. It is also possible tò use this algorithm for the performance prediction of image processing itseii

by using a simple scene-generator in stead of a camera setup.
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2. TOD-METHOD

The Triangle Orientation Discrimination method (TOD) for the chuacteizatíon of cameras has been developed by TNO

Human Factors Research Instituter'2 ¿rs an alternative for MTRD and MRC methods. In the method the triangular shaped

stimuli a¡e recorded by a camera and displayed on a monitor. The øsk of the observer consists of indicating the orientation

of t}¡e presented triangle. There are only 4 choices: i.e. up, down, left or right. If the observer is not able to determine the

orientation he has to make a guess. The forced choice used in this method makes it relative easy to implement the TOD test

in a computer algorithm.

Figure I: The 4 di/þrent stimuli used in the TOD method, i.e. right, down, left and up orientation.

3. GENERALLAYOUT

The algorithm presented in this paper, uses real images as input. ln every step of the algorithm the image is kept in the

spatial domainãnd is not transformed to the spatial-frequency domain, since most image enhancement techniques work in

the spatial domain and therefore are diffrcult to describe in the spatial-frequency domain. Most of the existing models,

which predict the performance of a sensor system, use only spatial-frequencies and are thus not suitable for the

characterization of cameras with image enhancement techniques.

The purpose of the algorithm is to characterize automatically a camera system with any form of image processing. The

camera is placed in a test setup and the stimuli are presented to the camera. The data from the camera is digitized and used

as input for the algorithm.
ln the algorithm the whole process of an image being displayed on a monitor and observed by the human eye is modeled.

The left panel in figure 2 shows the flow diagram of the algorithm. In the Display Model the effects of a TV-monitor are

simulated. The model includes the non-linea¡ response and the limited dynamical range of the display. The Early Vision

Model calculates how the image from the display is projected on the retina of the human eye. In the next step the projected

image on the retina is presented to an orientation discriminator, which tries to determine the orientation of the triangle using

"o¡¡èhtion 
techniques. The result of the orientation discriminator is compared to the real orientation of the presented

stimulus and in the statistics block the scores of the orientation discriminator a¡e stored as a fu¡ction of the contrast, size

and orientation of the stimulus. If all the different triangles are processed, the algorithm determines the 7 SYo'cotrect contrast

level as a function of tnangle size.

Figure 2 : The left panel shows the flow diagram for the evaluation of real camera images,

the right panel shows the flow-diagram for the evaluation of only the image enhancement

techniques using generated images.
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It is also possible to apply the algorithm to generated scenes in stead of real camera recordings, using the flow diagram

ff#
r the

tests of the algorithm. The effects of a camera a¡e simulated in the camera model, which can be very simple if the aim of the

simulation is to investigate only the image enhancement technique. Therefore the camera model incorporates only the

instantaneous-field-of-view (IFOV) of the camera, gain, offset and Gaussian noise.

4, EARLY VISION MODEL

The Early Vision Model calculates how an image is projected on tl¡e retina of a human eye. In the model the physical

properties of the eye are included, like the dispeìsion of the light, absorption of the light in the eye and the size of the cones

ãn th" ,"tinu. The model calculates the mean number of photons absorbed in each cone. The presented model is based on the

Early Vision model presented by Geisler and Davila 3. In ttris model the following assumptions a¡e made:

. The observer knows where to expect the stimulus. Fovea observation.

o The eye does not move during each observation
¡ The is no defocusing of the eye during an observation

o Contributions of the cones dominate. Photopic view.

r Gray-value images only. No wavelength dependency.

o Only Poisson noise.

Figure 3 shows the flow diagram of the Early Vision model. The model has the display image as input.

Figure 3: Flow diagram of the Early Vision model.

tn the first step the intensity of the light from the monitor is conected for the distance between tlte observer and the monitor'

ln the seconditep the effeit of tt¡e optics of the eye are calculated. ln the last steps the blurred image is projected on the

fovea of the retina and the response of each cone is calculated.

In the eye optics block two effects a¡e simulated. First of all, only a part of the light that falls on the pupil is transmitted.

Figwe áa sËows the transmittance of the lens as a function of the wavelength4. Since there is no wavelength dependency is

the model, an average transmittance of 42o/ois used. After correction for the transmittance the image is bh¡¡red with the

foiot ,pr.ua functio-n (pSF) of the d in this model is derived from the line-spread ñnction presented

ly caåpbel and Gubiòch 
5'for wh ter of 3 mm. This PSF does not include the effect of diffirsely

,óutt"rrã light. The PSF, which is cribed by the sum of 2 Gaussia¡r distributions:

h(x,y) = al\(x,Y) + (l- a)14@,Y), (1)

where ø:0.5g3 is a mixing parameter, and ot= 0.M3 arc min and 6z:2.04 arc min the standa¡d deviations of the Gaussia¡

distributions h, (x,y).
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Figure 4: a) Transmission of the eye 
a,

" ú PSF for white iignt oia a pupil diameter of 3 mm 5,

c) Absorption efJiciency of the cones 
o 

'

After correction for the PSF of the lens the image is projected on the retina. Since it is assumed that the observer knows

roughly where to expect the next stimulus *. onty consider here projection on the photoreceptors in the fovea, Geisler and

Davila assumed that the photoreceptors where tightly packed 
-on 

a triangular gn-d anq that the cross-section of the

photoreceptors has a circdàr shape, Figure 5a shows schematically the triangular grid for the photoreceptors used by Geisler

and Davila. The lines indicate tåe lo1, 2o¡ and 30¡ areas of the PSF. A triangular grid with ci¡cula¡ cells is very difficult to

implement in a computer algorithm. thrrãfo." a sqwre grid with square cells is used in the algorithm' as is shown in figure

S¡. 1.ne precise snafe of ttre cells is not very important since the standard deviation o¡ of the PSF is l'5 times larger than the

radius oithe a 
"orr", 

which implies that a point lighrro*r" is always projected on several cones. The grid size of the square

grid is chosen such that the cone density is the same as for the triangular gfid.

ih.r" *" th¡ee ki¡ds of cones, which are sensitive to respectively red, blue and green light. In the model, it is assumed that

there a¡e no blue-sensitive cones in the fovea and twice ãs ma.ty red-sensitive cones as green-sensitive cones. In figure 4c

the spectral sensitivity of each type of cone is shown 6. Since there is no wavelength dependency is this model we assume an

ou"ràg"absorption 
"iñri"nry 

oî2 red-sensitive cones and I green-sensitive cone, which amounts to 23 Vo. After co¡rection

for the absorption efficiency ofeach cone Poisson noise is added.

Figure 5: Triangular cone grid used by Geisler and Davila and square cone grid used in

the algorithm described in this paper. The lines indicate the lov 2or and 3or

areas of the PSF. Both grids have the same number of cones per area'

B GR

0.15:¡ mnde

ìt" 2d o
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5. ORIENTATION DISCRTMNATOR

The orientation discriminator tries to determine the orientation of the triangle from the image onfhe fovea' The orientation

is determined by conelatinj the image which 4 ideal triangles, as shown io ftg*t l. The sizes of the ideal triangles are

adjusted to matón the rø" à"f m" triaigle in the fovea imagi. the orientation that yields the highest correlation is chosen to

be the correct one.

6. STATISTICS

of all the different stimuli, calculated as a function of

obability function gives the es at n independent

thisexperimentwewanttoasu¡ed¡andz.Forthiswe
have to use a kind of inverse binomial calculation. The exact formula for the expectation value ofp is given by:

ln ')(x+1)!(n -¡)! - -r+1
(r) = çn *D 

)=: 
,",.íP)dP - (n + 1) 

[; J (, .'. rx = ñ,

where P1*,n¡þ) is the binomial probabilþ distribution. The variance inp is given by:

(2)

(3)oz,=(n.,,[;) _þ), =
(x+1)(n-x+l)
(n+2)2(n+3)'

In order to optimize the algorithm the number of measu¡ements r¡ is kept as low as possible. Therefore, it is essential that the

exact formulas, given aboíe, are used and not their well-known approximations for large values of n:

n>>l

n>>l

o
o246

contrast [o/o]

Figure 6: Fraction coruect orientation discrimin t'

by the atgorithm. The solid lines repre d'

iontrastTs defines as the 750'4 correct poinr in

(4)

(5)

After the calculation of p the contrast is determined at which 75o/o of the orientations were determined correctly. Figure 6

shows an example of thó probability correct determined by the algorithm as a function of the stimulus contrast'
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The line indicates a ñt to the data using a Weibull function:

p = 0.25 + 0.7 5 / 1.5Gttc)P,

where C is the contrast, C75 the 75%o contrast threshold, and p a parameter that determines the steepness of the curve. The
75 %o correct contrast tb¡eshold will be determined for different stimulus sizes.

7. RESULTS

As a first test the results of the algorithm'were compared to a simple human observer experiment. The experiment, which
was performed at the TNO Human Factors Research Institute, involved I single observer looking at generated triangles on a
computer display. The luminar¡ce background level was 22 cd/t* and the distance between the observer and the display was
8 m. The du¡ation time of the triangular stimuli was 0.53 seconds. The aim of the experiment was to test the vision model
used in the algonthm, and not to test a camera or any image processing. Figure 7 shows the 75 %ó conect contrast
thresholds, denoted by the triangles, versus the stimulus size in arc min. The size of the triangle is defined as the square root
of the triangle a¡ea. The results of the simulation results are depicted by the crosses after they were multiplied by a factor 9
to match the experimental results. The algorithm is thus able to predict the co¡rect shape of the curve but overestimated the
performance of this specifrc human observer, indicating that the noise in the eye or in the brain was underestimated. The
only noise present in the model in Poisson noise in the photon absorption process in the photoreceptors. It is very likely that
there are several sources fo¡ noise in the eye and the human brain, but since there are no quantitative numbers for these
noises they were not explicitly implemented in the model. In conclusion, the relative dependence of the contrast th¡eshold
on the stimulus size is in this experiment predicted correctly by the simulation algorithm. A single scaling factor was needed
to reproduce the results of the human observer experiment.

(6)

no camera, no image processing

i Simulation,
a Human observer

^+

+
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10

Stimulus Size larc min)
Figure 7: The calculated TOD 750.4conect contrast-thresholds as afunction of the stimulus sizefor an obsertter looking at

stímuli at a display I meters away at a luminance background level of 22 cd/m2. The stimulus size is defined as the
square root of the stimulus area. The triangles denote the measured threshold results for a human obseryer, and the
crosses denoted the simulation predictions. The simulation results were muhíplied by afactor 9.
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As a second test of the algoritbm the ToD confrst thresholds were calculated for a different implementations of histogram

equalization. Figure g d;;;;* 
"ple 

of the simple generated scene used in this test and the result after global histogram

equalization.

Figare 8: The lefi panel shows an example of a generated scene with the triangular stimulus'

' Th" rigit panet shows the resuh after global histogram equalizatìon.

the
resPect
mall

nificant than the background noise' The histograrn

It to detect the stimulus' Figure 9 shows the TOD contrast
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Global Histogram equalization
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Figure 9: The calculated TOD contrast thresholils as a function of the stimulus size for dilferent implementalions

"¡ 
nirr"irîl"q"Ar*r¡i^. The algorithm uied. a scenà generator and a simple camera model'
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difference in behavior of these simple image enhancements correctly. More tests and comparisons with human observer

experimeuts are needed before any statement can be made about the absolute values of the predictions.

CONCLUSIONS

An algorithm is presented, which is able to predict the characterization by human observers of the performances of cameras,

which have a kind of image processing incorporated. The algorithm combines the TOD-method, an early-vision model, and

an orientation discriminator. The algorithm uses the same images as used in human-observer experiments. The algorithm
can also be used to predict the performance of only image enhancement techniques.
The fust results indicate that the algorithm is able to reproduce the results of huma¡ observer experiments. Furthermore, the

algorithm is able to correctly predict the relative difference in behavior of simple image enhancement techniques.

At this point the algorithm can be used to indicate whether, for detection tasls, one image enhancement technique is better

than another. The next step in the development of the algorithm is to try to quantify the difference in performance and to

desigrr more representative backgrounds. More comparisons with human observer experiments a¡e foreseen in the near

futu¡e.
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