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Now the world is very old
and the sky is very high
and we're just traffic in between
You and I [..]

Lloyd Cole
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Voorwoord

Dit proefschrift is het tastbare bewijs van vier jaar promotie-onderzoek. Hoe-
wel dit boekje de bekroning vormt, is het proces wat hiertoe geleid heeft voor
mij minstens even belangrijk. Dit traject wordt door iedere promovendus ver-
schillend afgelegd. Er zijn er bij die aan het begin van hun onderzoek zo op
een rijdende trein kunnen stappen. Bij mij was het omgekeerde het geval: er
was geen rails, en er was geen trein. De grote uitdaging was het ontwerpen en
bouwen van een eigen trein. Het bouwen begon met het vergaren van kennis.
Hier en daar moest ook nog een wiel worden uitgevonden. ' Daarna werden alle
onderdelen afzonderlijk getest. Dan het grote moment: voor het eerst zet de
trein zich in beweging... en hij rijdt! Natuurlijk moet hij direct weer terug naar
de werkplaats, want het kan altijd sneller, het kan altijd beter.

Nu de trein eenmaal rijdt, kan hij gebruikt worden om de wereld te ontdekken.
Onderweg kom je nog anderen tegen. Soms mag je een stuk over iemand anders
spoor, of mag je kijken in de machinekamer van een andere trein. Je leent eens
wat onderdelen, dan weer neem jijzelf iemand mee. Het netwerk vertakt zich!

Als de trein dan eindelijk lekker op stoom is, dien je naar huis terug te keren.
Men verlangt een verslag over hetgeen je gezien hebt tijdens je reizen. Maar
eenieder weet dat het schrijven van reisverslagen minder leuk is dan het reizen
zelf. Ook wil men een handleiding voor de besturing van jouw trein. Eenieder
weet ook dat het schrijven van een handleiding nog saaier is dan het lezen ervan.
Dan komt het eindstation in zicht. Je zet nog een keer flink wat druk op de
ketel. Vol trots laat je zien hoe hard jouw trein wel niet kan. Je stapt voor
het laatst uit. Iemand anders gaat nu met jouw trein verder. Nog één keer
bewonder je de locomotief, voordat hij definitief vertrekt. Even ben je bedroefd
als je terugdenkt aan die goede oude trein. Maar niet lang, want het volgende
project wacht. Deze keer wordt het een vliegtuig!

Wanneer u door dit proefschrift bladert, komt u de namen tegen van velen
die aan mijn trein een bijdrage hebben geleverd. Een aantal mensen wil ik met
name bedanken. Allereerst mijn (co-)promotor Gerrit de Leeuw. Jij had altijd
veel vertrouwen in mijn werk, en gaf mij alle vrijheid om mezelf te ontwikkelen.
Ook wil ik Peter Builtjes bedanken. Hoewel jij niet belast was met de dagelijkse
begeleiding, kon je wel goed aangeven waar de problemen lagen, wat mij gehol-
pen heeft om overzicht te houden. Daarnaast wil ik Rob van Dorland en Hans
Schrijver bedanken, die ook deel uitmaakten van het aerosol retrieval project.



vi Voorwoord

Tijdens de regelmatige bijeenkomsten vormden jullie een prima klankbord.
It is a pleasure to thank Phil Durkee, Ken Davidson and all the other staff

members of the meteorology department of the Naval Postgraduate School, for
their hospitality during my visits to Monterey. Phil's expertise in satellite remote
sensing was of great help when I first started in this field.

Daarnaast wil ik alle collega's van TNO-FEL bedanken, die in de afgelopen
jaren een prettige omgeving hebben gevormd om in te werken. Voor mij was het
van groot belang dat ik mensen om mij heen had die naar me wilde luisteren
wanneer ik met een probleem zat, of wanneer ik dacht een goed idee te hebben.
Tevens denk ik met veel genoegen terug aan de zeildagen, het karten en niet
te vergeten het laser-questen. Graag wil ik ook mijn ouders bedanken, die mij
altijd alle steun en mogelijkheden gegeven hebben. Zij gaven mij alle vrijheid
en hebben mij geleerd daarmee om te gaan, iets wat mij tijdens mijn onderzoek
zeer goed van pas kwam. Natuurlijk wil ik mijn vrienden hier niet vergeten.
Helaas (of gelukkig?) heb ik hen nog niet kunnen overtuigen dat aërosolen het
allerbelangrijkste zijn in het leven.

Als laatste wil ik Madeion bedanken. Talloze keren heb je mijn mooie plaat-
jes moeten bewonderen. Door de rust die je mij gaf, is jouw bijdrage aan dit
proefschrift veel groter dan je denkt!

Pepijn Veefkind, juli 1999.



Chapter 1

Introduction and Overview

1.1 Introduction

Perhaps the most important message from an atmospheric scientist to the public
and to the policy makers should be that man is changing the atmosphere rapidly.
Changing the atmospheric chemical composition will have large effects on the
human environment. The best known examples of such effects are the predicted
global warming due to the anthropogenic emission of greenhouse gases and the
depletion of the ozone layer due to the emission of man-made CFC's. While these
subjects have been given much attention, it is less well known that the concen-
tration and chemical composition of airborne particles, so-called aerosols1, have
changed as well. This is even more remarkable when it is realized that the per-
ception of air pollution that we are most familiar with is smog: the reduction of
visibility due to the increased aerosol concentration. Besides visibility reduction,
effects of aerosols include direct health effects, acid deposition, climate effects,
and effects on atmospheric chemistry.

In the 1970s and 1980s most of the interest in atmospheric aerosols was be-
cause of their direct health effects and their effects on visibility. In the large
urban regions in the United States, Europe, and Japan the aerosol concentra-
tion was increasing rapidly due to human activities. It was realized that these
increased aerosol levels can cause direct health problems such as respiration
problems, chronic bronchitis, and a depletion of the lung function. Also, the re-
lation between the increased aerosol concentrations and the decreased visibility
was studied. Related to the visibility reduction is the effect of aerosols on the
performance of electro-optical sensor systems. Knowledge of the aerosol optical
properties can be used to predict the detection range of such systems.

Over the last decade, there has been increased interest in the role of aerosols
in climate and atmospheric chemistry. Aerosols affect climate by scattering and
absorbing the incoming solar radiation, and by their effect on the albedo and
lifetimes of clouds. Due to the complex relation between the aerosol properties

'a definition of aerosols will be given in section 1.2
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and the Earth's radiation balance, and the lack of data on aerosols on a global
scale, aerosols are considered one of the largest uncertainties in today's climate
modeling. The role of aerosols in atmospheric chemistry was dramatically shown
by the depletion of the stratospheric ozone layer following the eruption of the
Mt. Pinatubo in 1992. It was realized that chemical reactions in the atmosphere
are not limited to the gas phase, but also occur on the surface of clouds droplets
and aerosols particles.

Aerosol properties can be measured on regional to global scales by satellite
remote sensing, which is the focal point of this thesis. Satellite remote sens-
ing will contribute to a better understanding of the aerosol distribution and
transport in general; in this thesis it will be discussed in the context of climate
change.

1.2 Atmospheric Aerosols

An aerosol is defined as a system of particles, solid or liquid, in gaseous suspen-
sion. By definition the atmosphere itself is thus an aerosol. However, in atmo-
spheric physics, the term "aerosol" is often used interchangeable with "aerosol
particle". In this terminology, atmospheric aerosols are all the particles in the
atmosphere larger than a few molecules and smaller than cloud droplets. In
practice, the atmospheric aerosol particles have diameters ranging from 1 x 10~3

to 100 fj,m. Aerosol particles can be emitted as particles (primary sources), for
example soil dust and sea salt particles, or formed in the atmosphere from pre-
cursor gases such as SOa and NO^ (secondary sources). Some of the aerosol
sources are clearly of natural origin, e.g., volcanic emissions and sea spray from
the oceans; other sources, such as sulfate and nitrate particles resulting from fos-
sil fuel burning, are clearly anthropogenic. There are also sources, e.g., biomass
burning and soil dust emissions, where both natural and anthropogenic sources
contribute. Often it is very hard to distinguish between anthropogenic and nat-
ural contributions to these sources.

Whereas most of the natural sources of aerosols can be expected to have
changed only moderately over the last centuries, anthropogenic sources have
grown dramatically during the 20th century. Industrial sulfate emissions have
doubled since 1950, following a slow increase over the preceding 100 years. Emis-
sions from biomass burning have undergone a steady increase over the last 150
years. Note that in this respect, natural emissions caused by eruptive volcanoes
represent a special case, because of their highly variable and short temporal
source strength.

The removal of aerosol particles from the atmosphere is achieved by pre-
cipitation ("wet deposition") or by direct uptake by the Earth's surface ("dry
deposition"). The efficiency of these processes is strongly dependent upon par-
ticle size, especially for particles with diameters between 0.1 and 10 fj,m. For
particles in the diameter range 0.1-1 jum, the most important sizes as far as
climate impact is concerned, wet deposition is the dominant sink process.

The time spent in the atmosphere by an aerosol particle is a complex function
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of its physical and chemical characteristics (size, hygroscopic properties, etc.),
and the time and location of its release. The lifetime of sub-micron aerosol
particles in the lower troposphere is estimated to be of the order of days to a
week. Due to these short lifetimes, together with the many different sources
with different spatial extents and emissions, the aerosol is highly variable in
both space and time. This applies to the concentration, the size distribution,
and to the chemical composition, and therefore also to the impact of aerosols on
climate. The influence of the main source regions (Europe, North America, and
China for industrial aerosols; South America and African Savanna for biomass
burning aerosols; and Sahara and Central Asia for mineral dust) is thus primarily
manifested within their immediate vicinity.

1.3 Climate Forcing

The driving force of the Earth's climate is absorption of solar radiation at the
surface, and, to a lesser extent, by the atmosphere. The absorption of solar
(shortwave) radiation is balanced by the outgoing thermal infrared (longwave)
radiation. Climate forcing is the change in either shortwave or longwave ra-
diation imposed on the Earth's radiation balance, driving the climate system
to a new thermal equilibrium. Over the industrial period, the concentration of
infrared absorbing gases such as carbon dioxide and methane have changed sub-
stantially. As indicated in Figure 1.1, the climate forcing of the anthropogenic
greenhouse gases, the so-called enhanced greenhouse effect, is estimated to be
approximately +2.5 Wm~2.

Over the last decade, anthropogenic aerosols have been recognized as another
major anthropogenic perturbation of'climate. Atmospheric aerosols exert both a
direct and an indirect forcing on climate: directly by scattering and absorption of
incoming solar radiation, and indirectly by their effect on the albedo and lifetimes
of clouds. As is indicated in Figure 1.1, the climate forcing by both the direct and
indirect effect is significant on a global scale. Owing to their short lifetimes, the
climate effect of anthropogenic aerosols will be concentrated downwind of their
source regions. In these area's, the climate forcing by anthropogenic aerosols
can balance, or even exceed the climate forcing by the man-made greenhouse
gases. In spite of the importance of aerosols for the Earth's radiation balance,
the uncertainties in the estimates of the aerosol forcing is large. Aerosols are
considered one of the largest uncertainties in today's climate modeling. These
large uncertainties are caused by the complexity of the aerosol climate effects
as compared to the forcing by the well-mixed greenhouse gases, and the lack of
data on a global scale. The climate effects of aerosols are more complex because
the aerosol forcing depends not only on the concentration but also on the size
and the chemical composition. Furthermore, due to the short lifetimes, their
spatial distribution is highly inhomogeneous and strongly correlated with their
sources.



Chapter 1. Introduction and Overview

Ï
5

^

o
O

- 1 • •

-2

[--,

—

Halocarbons
Nfl

CH4

Tropospl
dire

C02
FOÎ

T
1 Sulfate

^E~^ Tropospheric
Stratospheric Ozone

Ozone T

lerfc Aerosols
ct effect

>sil Fuel
Soot

Biomass
J_ Burning

I.

Tropospr
indir

Solar

eric Aerosols
3ct effect

Confidence level
High Low Low Low Very Very Very Very

Low Low Low Low

Figure 1.1: Estimated magnitudes and uncertainties of anthropogenic contribu-
tions to radiative forcing of climate (source: IPCC [1995]).

1.3.1 Direct Aerosol Forcing
In a pioneering study Charlson et al. [1992] estimated the magnitude of the
direct forcing due to anthropogenic sulfate aerosols. They used a combination
of a simple radiative transfer model and a chemical box-model describing mass
balance. This model yields for the area-average shortwave forcing AFß resulting
from an increase in sulfate aerosol concentration:

(1.1)

where:
FT is the solar constant, the mean solar irradiance at the top of the atmo-

sphere;
Ac is the fractional cloud cover;
T0 is the fraction of the incoming light transmitted by the atmosphere above
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Quantity Value Units Uncertainty
factor

FT
1 - AC

TO

1- RS
ß

!(RH)
aso-2
BSOT2

AFfi

1370 Wm~2

0.4
0.76
0.85
0.29
1.7
5 m2g

3.8 IQ-3 gm-2

-1.1 Wm-2

-
1.1
1.15
1.1
1.3
1.2
1.8
1.8
2.4

Table 1.1: Evaluation of global mean direct forcing by anthropogenic sulfate
aerosol, modified after Schwartz [1996]

the aerosol layer;
RS is the mean surface albedo of the underlying surface;
ß is the fraction of the radiation scattered upward by the aerosol;
f(RH) is the relative increase in the scattering coefficient due to relative

humidity (RH) above a reference value;
aSO2- is the light-scattering mass efficiency of sulfate aerosol, i.e. scattering

coefficient per sulfate mass at low relative humidity (RH = 30%);
BSO2- is the mean column burden of sulfate resulting from anthropogenic

emissions.
Equation (1.1) can also be expressed in terms of the aerosol optical depth (AOD),
using AOD = aso^-f(RH)BSO2-.

The negative sign in equation (1.1) denotes that the forcing represents a
cooling tendency. The factor | is introduced because only half of the Earth is
illuminated at a given time. Although more sophisticated descriptions of the di-
rect aerosol forcing have been published since, equation (1.1) gives much insight
in the variables controlling the direct forcing. Equation (1.1) indicates that the
mean radiative forcing is directly proportional to the column burden of sulfate
aerosol. Except for the column burden of aerosol mass, other microphysical pa-
rameters controlling the forcing are: the light-scattering efficiency, the increase
of light scattering with increasing RH, and the upward scattered fraction. These
variables are determined by the aerosol size distribution and the chemical com-
position. In Table 1.1 global mean values for the variables controlling the direct
sulfate forcing are evaluated. Prom the values given in Table 1.1, the magni-
tude of the global mean direct radiative forcing is estimated as -1.1 Wm~2. Also
given in Table 1.1 is the uncertainty factor. The overall uncertainty factor is
estimated as 2.4, i.e. the mean direct forcing is estimated between -0.5 and -2.6
Wm~2. The key sources of uncertainty are the microphysical factors (scattering
efficiency, upward scattered fraction, and dependence of the scattering on the
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Figure 1.2: January average of direct radiative forcing (in Wm~2) due to tropo-
spheric anthropogenic sulfate aerosol changes since pre-industrial times (1850-
1990). Adapted from Van Borland et al. [1997].

RH), and the atmospheric chemistry factors determining the column burden of
sulfate aerosol.

In contrast to most of the greenhouse gases, the lifetimes of atmospheric
aerosols in the troposphere is short. Together with the highly non-uniform dis-
tribution of aerosol sources, this results in very different geographical patterns of
radiative forcing by aerosols and greenhouse gases. The direct forcing by anthro-
pogenic aerosols will be at its maximum downwind of the large industrialized
regions. Figure 1.2 illustrates the highly non-uniform direct forcing by anthro-
pogenic sulfate aerosols. Because the vast majority of the anthropogenic sources
is situated on the northern hemisphere, the direct aerosol effect will cause a large
hemispheric difference in radiative forcing of climate.

Above the direct radiative forcing by anthropogenic sulfate aerosols was eval-
uated. It is noted that sulfate is not the only anthropogenic aerosol contribut-
ing significantly to direct radiative forcing. Chemical analysis of anthropogenic
aerosol shows that the organic aerosols and ammonium nitrate aerosols can con-
tribute equally or even exceed the contribution of sulfate aerosols to scattering
[Hegg et al., 1997, ten Brink et al., 1996]. Sulfate was discussed here as an ex-
ample, because it is much better understood than other types of aerosol.
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flectance (source: Schwartz and Slingo, [1996]).

1.3.2 Indirect Aerosol Forcing

In addition to the direct effect, aerosols also affect the Earth's radiation balance
by modifying the properties of clouds. Cloud formation occurs when water
vapor condensâtes on cloud condensation nuclei (CCN). Anthropogenic aerosols
usually contain relatively large amounts of water soluble material, and thus can
act as CCN. Increasing the CCN concentration will result in clouds with more,
but smaller, cloud droplets. Also, there is evidence that the lifetime of clouds
increases with the cloud droplet concentration [Albrecht, 1989]. Although the
mechanisms of indirect aerosol forcing is understood relatively well, it is very
hard to quantify the indirect aerosol effect.

Figure 1.3 illustrates the dependence of the cloud top reflectance on the
cloud droplet concentration. The sensitivity of the cloud top reflectance to an in-
crease/decrease in the cloud droplet concentration is largest for clouds with cloud
top reflectance around 0.5. The relative increase to a change in cloud droplet
concentration is largest for clouds with an intermediate cloud top reflectance,
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Figure 1.4: Droplet number concentration as a function of the potential conden-
sation nuclei (PCN) concentration. Adapted from Khlystov [1998].

which is typical for marine stratus and stratocumulus clouds. Assuming a 30 %
increase in cloud droplet concentration, Charlson et al. [1991] estimated the in-
direct aerosol forcing for the Northern hemisphere as -1.1 Wm~2. This estimate
clearly illustrates the potential of indirect aerosol forcing.

Relating the cloud droplet concentration to aerosol properties is complex,
since it depends on the meteorological conditions, such as the updraft velocity
and the mixing in the clouds, as well as on the ability of aerosol particles to act
as CCN. The ability to act as CCN depends not only on the size distribution
and the chemical composition of the particles, but also on the supersaturation
in the cloud. The peak supersaturation in clouds seldom exceeds 0.05%. At this
supersaturation only particles with dry diameters larger than approximately 0.1
/zm get activated. Therefore, the concentration of aerosol particles larger than
this diameter is important for assessing the aerosol indirect forcing. Figure
1.4 shows the droplet number concentration as a function of the number of
particles that are larger than the activation threshold (the potential condensation
nuclei). Based on this relation between the aerosol number concentration and
the number of cloud droplets Khlystov [1998] estimated the indirect forcing by
anthropogenic aerosols in the Netherlands as -6.5 ± 2.5 Wm~2.
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1.3.3 Modeling Needs

To fully describe the aerosol's radiative impact on climate the following infor-
mation should be available [Lacis and Mishchenko, 1995]:

• the optical constants (complex refractive index) for the chemical com-
pounds contained in aerosols, at all relevant wavelengths;

• the chemical composition, particle shape, and size distribution of aerosols
species;

• a physical model to describe the effect of hygroscopical particle growth
with changing relative humidity on the aerosol optical properties;

• a cloud microphysical model to determine changes in cloud droplet size,
cloud optical depth, and lifetimes in response to changes in the CCN con-
centration.

It is clear that such information is not available on a global scale. In fact, most
of the data available on aerosol properties is measured during short-term cam-
paigns, which might not be relevant for other regions or other seasons, or even
other conditions than encountered during the measurement campaign. Frequent
global monitoring of aerosol properties is only achievable by satellite remote sens-
ing. However, satellite remote sensing is limited to the aerosol optical properties.
Therefore a combined effort of satellite remote sensing, short-term intensive field
observations, and three-dimensional chemistry transport modeling is needed to
adequately describe the aerosol's impact on climate.

1.4 Aerosol Satellite Remote Sensing
To understand the effects of aerosols on climate, the spatial distribution of
aerosols should be known accurately. Because of the short lifetimes of aerosols
in the troposphere, the aerosol is highly variable in both space and time. Only
satellite remote sensing has the potential'to measure the highly variable aerosol
field on global scales during longer periods [IPCC, 1995].

Aerosol particles scatter and absorb solar radiation, thus modifying the ra-
diation field. It was early recognized that the solar radiation backscattered
to space was influenced by the aerosol and could be analyzed to determine
aerosol properties. The first applications of satellite remote sensing date back
to the mid-1970s and concerned the detection of desert dust over the ocean
[Griggs, 1975, Fräser, 1976]. The correction of aerosol influence on the remote
sensing of ocean color was considered by Gordon [1978]. Because the albedo of
the ocean is low and relatively well-known, most aerosol satellite remote sens-
ing studies have focused on the retrieval of aerosol properties over the ocean
[Durkee et al., 1991, Husar et al., 1997]. The first studies on the detection of
aerosols over land concerned the atmospheric corrections of land surface images
[Tanré et al., 1979].
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Sensor/
Satellite

AVHRR
NOAA
ATSR-2
ERS-2
GOME
ERS-2

VIS/NIR
channels

(fim)
0.64, 0.84

0.555, 0.659,
0.865, and 1.6
Continuous in
0.240 - 0.790

Spatial
Resolution

(km2)
1-4

1-4

320x40 or
80x40

Swath
Width
(km)
2000

512

960 or
240

Comments

No inflight calibration
Water vapor absorption
Inflight calibration
Dual view capability
Spectrometer

Table 1.2: Characteristics of the satellite sensors used in this work. Only the
channels in the visible (VIS) and near-infrared (NIR) are listed.

Until recently, satellite sensors that were used in aerosol retrieval were not
designed for this task. Satellite remote sensing requires well-calibrated multi-
spectral sensors. These sensors should have narrow spectral bands to avoid the
water vapor absorption regions [Kaufman, 1995]. Since recently, data from sen-
sors more suitable for aerosol retrieval is becoming available. Not only do these
sensors have more spectral information and a better calibration, also new con-
cepts are being tested. These new concepts include spaceborne spectrometers
with high spectral resolution, radiometers viewing the Earth from different an-
gles, and the capability of measuring the degree of polarization. Using these new
opportunities more aerosol parameters can be determined. To fully utilize the
possibilities of these new sensors, new aerosol retrieval algorithms have to be de-
veloped. These algorithms should be validated during intensive field campaigns
and applied to the global data sets. The global aerosol data sets should be used
in climate models to reduce the large uncertainties in the effect of anthropogenic
aerosols (Figure 1.1). In addition, satellite remote sensing can also be used in
field-campaigns, to determine if conditions encountered in ground based (point)
measurements are valid for a larger region. As satellite remote sensing provides
information on aerosol properties on regional scales, they can be very impor-
tant in the validation and improvement of three-dimensional chemical transport
models.

1.5 Satellite Sensors

In this work, data is presented from three satellite sensors: the Advanced Very
High Resolution Radiometer (AVHRR), the second Along Track Scanning Ra-
diometer (ATSR-2), and the Global ozone Monitoring Experiment (GOME).
Table 2.1 shows an overview of the characteristics of these sensors. In Figure
1.5 the wavelength range of these sensors is presented graphically.

The AVHRR is a radiometer aboard the NOAA satellites [Kidwell, 1997].
The first AVHRR was launched in 1979, since then at least one AVHRR sensor
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Figure 1.5: Spectral channels in the visible and near-infrared for the AVHRR,
the ATSR-2, and GOME.

has been in orbit. The spatial resolution of the AVHRR sensors is 1.1 km2 at
nadir, and the swath width is approximately 2000 km. With this large swath
width, the AVHRR provides daily global coverage. The AVHRR has four spec-
tral bands, of which there are two in the visible and near-infrared. The effective
wavelength of these two bands are 0.64 /mi for Channel 1, and 0.84 /mi for
Channel 2. With a spectral width of 0.15 and 0.20 /im, respectively, these bands
are very broad. The AVHRR has no inflight calibration facility for Channel 1
and 2.

The ATSR-2 is a radiometer aboard the European ERS-2 satellite, which was
launched in April 1995 [RAL, 1996]. The ATSR-2 has seven spectral bands, four
of these bands are in the visible and near-infrared (effective wavelengths 0.555,
0.659, 0.865, and 1.6 /mi). In-flight calibration of these channels is performed by
measuring the solar irradiance during parts of the orbit. The spatial resolution
is 1.1 km2 at nadir, and the swath width is 512 km. The ATSR-2 has a conical
scanning mechanism, providing two images for each location, measured at nadir
and at an viewing zenith angle of approximately 55° along track. The timespan
between these two images is about two minutes.

Besides the ATSR-2, the ERS-2 satellite also carries the spectrometer GOME.
GOME is a four-channel grating spectrometer, which measures from 0.240 //m
to 0.790 /tin, with a spectral resolution of 0.2 to 0.4 nm [ESA, 1995]. The de-
fault spatial resolution is 320x40 km2. However, the spatial resolution can be
improved to 80x40 km2. Since June 1997, these smaller pixels are used for three
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days per month. Each scan line consist of three pixels, thus the swath with of
GOME is 960 km for the default pixels, and 240 km for the smaller pixels. To be
able to correct for the polarization sensitivity of GOME, polarization is measured
by so-called polarization measuring devices (PMDs). For calibration purposes
the Sun is observed via a diffuser plate once per day. Spectral calibration is
performed using an onboard spectral line lamp.

1.6 Aim of this Work

On board the European ERS-2 satellite, which was launched in April 1995, two
instruments are available that can be used for aerosol retrieval. The Along
Track Scanning Radiometer (ATSR-2) is a two-angle view radiometer with 7
wavelength bands. The Global Ozone Monitoring Experiment (GOME) is a
spectrometer with a very high spectral resolution. Both instruments have a
unique new concept. To use these instruments for determining aerosol prop-
erties such as aerosol optical depth and size distribution, new aerosol retrieval
algorithms must be developed and validated. The new and innovating concepts
of both ATSR-2 and GOME make it possible to extract more aerosol information
from the data than thus far possible. Also, it is a challenge to combine infor-
mation from GOME and ATSR-2 in so-called sensor synergy studies to improve
the retrieval of aerosol properties.

Satellite remote sensing of aerosol properties is an example of an ill-conditioned
problem, with too little experimental parameters. The other required parame-
ters are provided through the use of models. However, these are not perfect and
it is therefore of crucial importance to extensively validate the aerosol retrieval
algorithms. This is best possible in so-called column closure experiments, dur-
ing which the key physical parameters are determined using several independent
methods. Validation in these column closure experiments permits the assess-
ment of measurement uncertainty. Good results help establish credibility for
satellite remote sensing of aerosol properties. Several of these column-closure
studies will be described in this thesis.

Besides the development and validation, also the application of satellite
aerosol retrieval during a number of case studies will be described. Satellite
aerosol retrieval can be used to derive aerosol fields on a regional scale. In
combination with meteorological data and transport models, it can be used to
derive the emission, transport, and deposition of aerosols. This information can
be used in climate models and three-dimensional chemical models, to improve
our understanding of the atmosphere and the effects of human activities.

1.7 Outline of this thesis

In Chapter 2 of this thesis the theory of remote sensing of aerosol properties will
be discussed. It will be shown how the aerosol optical properties are determined
by the size distribution and the chemical composition of the particles. Also, the
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effects of aerosols on the satellite measured radiance will be discussed.
Chapter 3 and 4 will be dedicated to the retrieval of aerosol properties over

the ocean. In Chapter 3 a description of the algorithm will be given, as well as
sensitivity assessment and a first validation. Most of this chapter was published
in the Journal of Aerosol Science (Vol. 29 No. 10, pp. 1237-1248, 1998). In
Chapter .4 the algorithm will be compared to airborne measurements during a
column closure experiment. This chapter appeared in the Journal of Geophysical
Research (Vol. 104 No. D2, pp. 2253-2260, 1999).

Chapters 5 and 6 will be dealing with aerosol satellite retrieval over land. In
Chapter 5 the two-angle view retrieval algorithm will be described, together with
the validation in a column closure experiment. This chapter was published in the
Geophysical Research Letters (Vol. 25 No. 16, pp. 3135-3138,1998). In Chapter
6, aerosol retrieval in the UV will be introduced, and different methods for
aerosol retrieval over land will be discussed. For a case study over northwestern
Europe, the regional distribution derived from satellite data and the results
will be discussed in terms of regional sources and transport. This chapter was
submitted to Remote Sensing of the Environment in January 1999.

In Chapter 7 satellite retrieval results are compared to results of a three-
dimensional chemical transport, over Europe for August 1997. Satellite retrieval
can be used for validation of such models. The models can be applied for inter-
pretation of the observed spatial aerosol distribution.

In Chapter 8 final remarks and conclusions will be given, together with rec-
ommendations concerning future work.
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Chapter 2

Theory of Aerosol Satellite
Remote Sensing

2.1 Introduction

Satellite sensors measure the top of the atmosphere (TOA) radiance. For a
cloud-free atmosphere, the TOA radiance is caused by scattering by molecules
and aerosols, and by reflection on the surface, as illustrated in Figure 2.1. Passive
satellite remote sensing of aerosols analyzes the top of the atmosphere radiance
to extract the aerosol optical properties. This is far from straightforward, be-
cause like most remote sensing problems, the problem of the retrieval of the
aerosol properties from the TOA radiance is ill-posed, meaning that there are
more unknowns than equations. To obtain a solution, assumptions have to be
made on part of the unknowns. In aerosol satellite remote sensing these in-
clude assumptions on the reflectivity of the surface, the shape of the aerosol size
distribution, and the chemical composition of the aerosol particles.

This chapter will focus on the background of aerosol satellite remote sensing.
In section 2.2 the aerosol optical properties and their dependence on the aerosol
particle characteristics are discussed. In section 2.3 the effects of aerosols on the
TOA radiance are described.

2.2 Scattering and Absorption by Aerosols

2.2.1 Definitions

A parallel light beam passing through a layer in the atmosphere is attenuated
by scattering and absorption by aerosol particles and gas molecules, see Figure
2.2. The attenuation from the initial intensity is described by the well-known
Lambert-Beer law. The extinction coefficient ae is defined as the fraction of
intensity lost from a collimated beam per unit of layer thickness, and is usually
given in units of m"1 or km"1. Since the attenuation of radiation is caused by

15



16 Chapter 2. Theory of Aerosol Satellite Remote Sensing

Figure 2.1: Schematic representation of the contributions to the top of the at-
mosphere radiance as measured by satellites. Photons can reach the satellite
sensor by (multiple) scattering in the atmosphere, reflection on the surface, and
combinations of atmospheric scattering and reflection on the surface. Because
most aerosol retrieval algorithms consider only cloud free regions, no clouds are
included in this figure.

both scattering and absorption, the extinction coefficient can be considered as
the sum of the scattering coefficient cra, and the absorption coefficient aa:

/ \ \ ƒ \ ^ J _ ƒ \ ^ ƒ o i \

Note that the extinction, scattering and absorption coefficients are all dependent
on the wavelength A.
Both gases and aerosol are responsible for the scattering and absorption, and
both processes are additive:

and

= crsp(A)+<7g9(A),

(A) =<7a p(A)+<7o f l(A),

(2.2)

(2.3)

with scattering and absorption by particles denoted with subscripts 'p', and
scattering and absorption by gas molecules denoted with subscripts 'g'.

The relative contribution of absorption to the extinction by aerosol particles
is commonly expressed in terms of the aerosol single scattering albedo o>o, which
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Figure 2.2: A parallel light beam passing through a layer consisting of air
molecules and aerosol particles. The incident beam will be attenuated by scat-
tering and absorption by both the molecules and the aerosol particles. The
scattered light will be re-distributed over all directions.

is defined as the ratio between the particle scattering and particle extinction
coefficient:

where aep is the particle extinction coefficient. When uj0 = 1 all the extinction is
caused by scattering, and when w0 = 0 all the extinction is caused by absorption.

The total column aerosol optical depth (AOD), is defined as the aerosol
extinction coefficient integrated over a vertical path from the ground to the top
of the atmosphere:

TOA
f

AOD(X) = / a e p(X,h)dh. (2.5)
Jo

The angular distribution of the scattered photons is characterized by the
phase function p(0), where 9 is the scattering angle, the angle between incidence
and the scattering direction. As p(6) is normalized over all scattering directions,
it does not depend on the total aerosol concentration. Several parameters can
be derived from the phase function to express the distribution of the scattered
radiation. The asymmetry parameter g is often used in simplified radiative
transfer calculations, that are implemented in climate models. The asymmetry
parameter is the average cosine of the scattering angle:

cos(0)p(A,0)sin(0)d0. (2.6)
o
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Parameter

Aerosol Optical Depth
Single Scattering Albedo
Scattering Coefficient (lxlO~4 mT1)
Back/Total Scattering

Polluted
Continental

0.2 - 0.8
0.8 - 0.95
.0.5-3
0.1 - 0.2

Clean
Continental
0.02 - 0.1
0.9 - 0.95
0.05 - 0.3

not
available

Clean
Marine

0.05 - 0.1
close to 1
0.05 - 0.2

0.15

Table 2.1: Typical range of aerosol optical properties of lower tropospheric
aerosols. Values are for 0.500-0.550 //m wavelength at low relative humidity.
Modified from IPCC [1995].

The asymmetry parameter g equals zero when the scattering is isotropic or sym-
metric about a scattering angle of 90° . If the scattering is completely directed
into the forward direction (0=0° ) g=l, and g=-l when the scattering is directed
completely into the backward direction (0=180° ).

2.2.2 Aerosol Optical Properties

The aerosol particles are characterized by their shape, size, chemical composi-
tion, and total concentration, which in turn determine the aerosol optical proper-
ties. The typical range for the aerosol optical depth, the single scattering albedo,
and the scattering coefficient, as observed in the lower troposphere, is given in
Table 2.1. Also shown in Table 2.1 is the ratio between backscattered to total
scattered light, which is used as a measure for the direction of the scattered light.
For spherical particles, the extinction coefficient follows from the Mie theory:

,0

= /
Jo

Qe(x,m)irr2n(r)dr, (2.7)

where Qe is the extinction efficiency which is a function of the size parameter
x = 27T7-/A, and the complex index of refraction m. The complex refractive index
is determined by the chemical composition. n(r) = dN/dr is the number size
distribution of the N particles.
It is important to note that in equation (2.7) the extinction coefficient is deter-
mined by the scattering efficiency weighted by its geometrical cross section irr2.
Therefore, the number size distribution n(r) that is commonly used to describe
the size distribution in aerosol models, does not contain much information on
the size range contributing most to the scattering coefficient. Hansen and Hov-
enier [1974] have shown that the parameter that best describes the radiative
properties of a given size distribution is the effective radius re, defined as:

fc
re = Ja

3n(r)dr

J0°° r
2n(r)dr '

(2.8)
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Figure 2.3: Dependence of the scattering efficiency of ammonium sulfate on
particle size. The wavelength is 0.53 fj.ro.; index of refraction 1.53. The scatter-
ing efficiency is expressed as the scattering coefficient per unit of mass SO^".
(Source: Schwartz [1996]).

The effect of particle size on the scattering efficiency is shown in Figure 2.3.
Here, the scattering per unit of sulfate mass of ammonium sulfate particles is
plotted as a function of the particle radius. The mass scattering efficiency is
largest when x = 2zr. « l; i.e. when the diameter of the particles is similar
to the wavelength of the light. Anthropogenic aerosol particles produced by
fossil fuel combustion, such as sulfates and nitrates, have diameters in the size
range between diameters of 0.1 and 1 /mi. For shortwave solar radiation, these
aerosols are thus in the size range with the highest scattering efficiency, see
Figure 2.3. Sea salt and soil dust particles usually have diameters >l/zm and
therefore scatter the shortwave radiation less effective.

Particle size is not only important for the scattering efficiency, it is also
affects the phase function, as illustrated in Figure 2.4. When the diameter of the
particle is small as compared to the wavelength of the light, the phase function is
symmetric in the forward and backward directions, but with increasing particle
size the light is more scattered into the forward direction. For large particles,
scattering is more concentrated in scattering angles between 0 and 30° , and in
scattering angles between 150 and 180° .

Because most of the aerosol particles consist of hygroscopic material, their
size, and therefore their optical properties will depend on the relative humidity
(RH) of its surroundings. A large portion of the hygroscopic aerosols consists
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Figure 2.4: Phase functions calculated for lognormal aerosol size distributions
with an effective radius of 0.17 urn, and 1.73 um, respectively. The wavelength
is 0.55 ^m, and the complex refractive index is 1.4 - O.OOSi. The small size
distribution (effective radius 0.17 ßm) is typical for anthropogenic aerosols; the
large size distribution (effective radius 1.73 fjm.) is typical for stationary marine
aerosols. [Gathman, 1983]

of salts such as ammonium sulfate, ammonium nitrate, and sea salt. The size
change with changing RH of these salt particles follows a hysteresis curve. When
the RH is increased starting at a low value, the particles do not grow until the
RH reaches the so-called deliquescence point. Above the deliquescence point the
particle grows gradually with increasing RH. Once the particle has been exposed
to a RH above the deliquescent point it remains in the supersaturated state when
the RH drops below the deliquescent state. This supersaturated state was found
to prevail in the atmosphere over the dry state [Rood et al., 1989]. The particle
returns to its dry state when the RH drops below the crystallization point. The
increase of the scattering coefficient due to particle growth is expressed as the
factor f(RH), which is the ratio of the scattering coefficient at a given RH to
the scattering at RH<40. Figure 2.5 shows the hysteresis curve of ambient air
as measured by Veefkind et al. [1996] in The Netherlands, using humidity
controlled nephelometry. It is noted that hygroscopic behavior will not only
affect the scattering coefficient, but will also affect the other optical properties,
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Figure 2.5: Aerosol scattering coefficient as a function of the relative humidity.
Filled dots are for increasing relative humidity, open dots are for decreasing
humidity (supersaturated state).

such as the phase function.
Above, only the simple case of spherical particles was considered. For spher-

ical particles the optical properties can be calculated using Mie theory, for non-
spherical particles only recently, an efficient method has been developed to cal-
culate the optical properties. The effect of non-spherical particles on the aerosol
optical properties was studied by Mishchenko [1993] . Comparisons between
spheres and randomly oriented spheroids showed that especially the phase func-
tion is very sensitive to the particle shape. The ratio of the phase function for
non-spherical particles to spherical particles can be as large as 3 for the scatter-
ing angles between 30 and 80° , and as small as 0.4 at scattering angles between
80 and 140° . For non-spherical particles it is important to take this effect into
account when interpreting satellite measurements. However, for most of the
aerosol particles the assumptions of spherical particles will be realistic, firstly
because of the process by which they were formed, and secondly because of the
hygroscopic nature of most aerosol particles. Secondary aerosols, such as sulfates
and nitrates, are formed by gas-to-particle conversion. Gas-to-particle conver-
sion, either on existing particles or forming new particles, will lead to spherical
particles. Also the hygroscopicity, leaving the particles most of the time super-
saturated, will also to lead to particles which are quite spherical. On the other
hand, mineral aerosols, such as desert dust are known to be strongly a-spherical.
For these aerosols it is important to take particle shape into account. In the
present work no cases involving desert dust are considered, and it is therefore
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Figure 2.6: Schematic of the Sun/satellite geometry

assumed that all particles are spherical.

2.3 Principles of Aerosol Satellite Remote Sens-
ing

Aerosol particles scatter and absorb radiation, and thus modify the radiation
field in the atmosphere. Satellite sensors measure the TOA radiance, which
is affected by the aerosol optical properties. Passive satellite remote sensing
analyzes the TOA radiance to extract the aerosol optical properties. Clouds will
have a very large impact on the TOA radiance. Aerosol retrieval is not possible
when clouds are present. Therefore, only the cloud-free case will be considered.
In the following, the reflectance p will be used instead of radiance, which is
defined as irLcos(00)/F0 where L is the radiance, F0 is the extraterrestrial solar
irradiance and OQ is the solar zenith angle.

The simplest case for retrieval of aerosol optical properties is above a black
surface. In this case, the TOA reflectance will be caused only by scattering
in the atmosphere by aerosols and molecules (Rayleigh scattering), commonly
referred to as the path reflectance. Both aerosol and Rayleigh scattering will
depend on the Sun/satellite geometry, which is described by the solar zenith
angle (0o), the satellite zenith angle (0), and the relative azimuth angle be-
tween the Sun and the satellite ((/> — 00), see Figure 2.6. The contribution of
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Figure 2.7: Path reflectance (patm) at 0.55 ^m as a function of aerosol op-
tical depth (AOD) for continental and maritime aerosol types as defined by
WMO [1983] and a Sun satellite geometry defined by: 00=45° , 0=30° , and
<j> — <£o=900 . The lines are linear fits through the points, the correlation coeffi-
cients are larger than 0.99 for both fits. The dashed lines show the AOD for the
continental and maritime type for the same value of the path reflectance.

aerosols to the TOA reflectance depends on the aerosol optical properties, and
the vertical distribution of the aerosols. In Figure 2.7 the path reflectance is
plotted as a function of the AOD, for two aerosol size distributions. This figure
demonstrates the quasi-linear relationship between the path reflectance and the
AOD [Durkee et al., 1986].The slope between the reflectance and the aerosol op-
tical depth depends strongly on the aerosol phase function, which in turn varies
strongly with the aerosol size distribution. The intercept is determined by the
Rayleigh scattering, and is independent of the aerosol optical properties.

The effect of the size distribution on the spectral behavior of the path re-
flectance due to the aerosols is illustrated in Figure 2.8. In this figure the path
reflectance corrected for the Rayleigh contribution and normalized for 0.55 /urn,
is plotted as a function of the wavelength for two aerosol types. The decrease
with the wavelength is much larger for the continental aerosol type than for the
maritime aerosol type. This difference is caused by the difference in size distri-
bution between the two types: the continental aerosol type consist of smaller
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Figure 2.8: Path reflectance corrected for the Rayleigh contribution and normal-
ized for 0.55 yum, plotted as a function of wavelength. For Sun/satellite geometry
and aerosol types see Figure 2.7.

particles than the maritime type. The spectral behavior of the AOD can often
be represented by a power law function [Angstrom, 1961]:

AOD(X) ~ A-0, (2.9)

where A is the wavelength and a is the Angstrom wavelength exponent.
The Angstrom is related to the slope of the aerosol size distribution. When par-
ticle scattering is dominated by particles small as compared to the wavelength,
a will be of the order 1.3-2. In the case that particle scattering is dominated
by particles larger than the wavelength a tends toward zero. As can be seen in
Figure 2.7, the reflectance is directly proportional to the AOD. Therefore, the
spectral behavior of the AOD will also have large effects on the spectral behavior
of the TOA reflectance. For relatively more smaller particles the reflectance will
decrease stronger with the wavelength than when relatively more large particles
are present. This can be used in retrieval algorithms to extract information on
the size distribution of the aerosol particles dominating the scattering.

The first global maps of AOD were produced using the NOAA/AVHRR op-
erational product [Husar et al., 1997]. This algorithm computes the AOD over
the oceans from the 0.63 p,m channel of the AVHRR. In this wavelength range
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Figure 2.9: Reflectance as a function of aerosol optical depth for a surface albedo
of 0.0, 0.2 and 0.4. Aerosol is of the continental aerosol type. The wavelength
and Sun/satellite geometry are the same as in Figure 2.7.

the albedo of the ocean is very low. Assumptions are made on the phase func-
tion and the single scattering albedo, by prescribing the aerosol size distribution
and chemical composition. In Figure 2.7 the arrows indicate the AODs for two
aerosol size distributions for a given value of the path reflectance, showing that
using a single size distribution will lead to considerable uncertainty in the re-
trieved AOD. To remove this uncertainty, Durkee et al. [1991] used both the
0.63 pm and the 0.83 jum channel of the AVHRR to extract information on the
size distribution. Application of this technique is difficult because the two bands
are very broad and not enough separated [Kaufman, 1995]. However, with the
new generation of satellite sensors, with more and smaller spectral bands, AOD
retrieval of the AOD is expected with errors <0.03-0.05 [Kaufman et al., 1997b].
In chapter 3 such an retrieval algorithm for use over the ocean is described in
more detail.

When the surface is not black, photons reflected by the surface as well as
photons scattered in the atmosphere contribute to the TOA reflectance. The
reflectance of a cloud-free and horizontally homogeneous plane parallel atmo-
sphere, overlying an isotropically reflecting (Lambertian) surface can be ex-
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pressed as:

P(A) = Potra(A) + '"ff r(A) (2.10)
1 - PafcW • r(\)

where:
Patm is the path reflectance due to scattering in the atmosphere;
psfc is the surface albedo;
T is the spherical albedo of the atmosphere; and
T is the sum of the direct and diffuse transmittance by the atmosphere.

All the variables in equation (2.10) depend on the Sun/satellite geometry.
The effect of aerosols on the top of the atmosphere reflectance is twofold: first
they increase the path reflectance (patm)> &nd second they reduce the trans-
mittance (T), thus decreasing the contribution of the reflection on the surface.
When the surface albedo is small, the first effect will dominate, but at larger
surface albedos the transmittance reduction becomes increasingly important, as
shown in Figure 2.9. For a given combination of aerosol properties and sur-
face albedo the scattering and extinction effects will cancel. For this case the
reflectance will not vary with the aerosol optical depth.

Aerosol retrieval over land surfaces is much less advanced than retrieval over
the ocean. In the visible and near-infrared, the land surface albedo is much
higher than for sea. The impact of the higher surface albedo over land is illus-
trated in Figure 2.10. In this figure a scene over land and a scene over the ocean,
which were taken almost simultaneously and within a few hundred kilometers,
are compared. The high surface albedo over land dominates the TOA reflectance
in the visible and near-infrared. One of the key problems for aerosol retrieval
over land is how to distinguish between surface and atmospheric contributions to
the TOA reflectance. Even when the surface albedo is known, which is usually
not the case, this is difficult because of the twofold effect of aerosols on the TOA
reflectance, as described above. Several methods are proposed to separate the
atmospheric and the surface contributions.

Kaufman et al. [1997b] showed for different soil covers that there is a linear
relation between the albedo in the mid-visible and in the mid-infrared. They
propose to estimate the mid-visible albedo from the mid-infrared reflectance,
for which the atmospheric contribution usually is negligible. Once the albedo is
known, information on the AOD and size distributions can be derived.

The use of the degree of polarization of the radiance is thought to have
great potential for aerosol retrieval over land [Herman et al., 1997b]. Because
polarization of the light is caused mainly by scattering in the atmosphere, it is
much easier to extract the aerosol information from the polarized radiance than
from the unpolarized radiance.

The extra information from two-or multi-angle sensors can also be applied
for aerosol retrieval over land. In chapter 5 an algorithm is presented based on
the two angle view of the ATSR-2. This algorithm uses both the spectral and the
directional information in the ATSR-2 data. An algorithm based on multi-angle
radiometry is presented by Martonchik et al. [1998].
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Figure 2.10: TOA radiance divided by the extraterrestrial solar irradiance, as a
function of the wavelength, as measured by GOME for a scene over the Nether-
lands and a scene over the North Sea.

The above described methods are all based on retrieval in the visible and
near-infrared. As can be seen in Figure 2.10, the TOA radiance in the UV (be-
tween 0.340 and 0.400 /an) differs little for the land and the sea pixel. In
this wavelength range the albedo of most land surfaces is low (0.02 - 0.04)
[Herman and Celarier, 1997]. In chapter 5 an algorithm will be presented that
uses this wavelength range. The UV can also be used to sense the presence of
absorbing aerosols such as desert dust and biomass burning aerosols [Herman
et al., 1997a]. This retrieval technique is based on the extinction of Rayleigh
scattering by aerosols. The resulting aerosol index is most sensitive to strongly
absorbing aerosols at higher altitudes.

Bibliography

Angstrom, A. (1961). Techniques of determining the turbidity of the atmosphere.
Tellus, 13:214-223.

Durkee, P. A., Jensen, D. R., Hindman, E. E., and VonderHaar, T. H. (1986).
The relationship between marine aerosols and satellite detected radiance. J.



28 Chapter 2. Theory of Aerosol Satellite Remote Sensing

Geophys. Res., 91:4063-4072.

Durkee, P. A., Pfeil, F., Frost, E., and Shema, R. (1991). Global analysis of
aerosol particle characteristics. Atmos. Environ., 24A:2457-2471.

Gathman, S. G. (1983). Optical properties of the marine aerosol as predicted
by the navy aerosol model. Optical Eng., 22:57-62.

Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of
venus. J. Atmos. Sei., 31:1137-1160.

Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C,, Seftor, C., and Celarier,
E. (1997a). Gobal distributions of uv-absorbing aerosols from nimbus 7/toms
data. J. Geophys. Res., 102:16,911-16,922.

Herman, J. R. and Celarier, E. A. (1997). Earth surface reflectivity climatology
at 340-380 nm from toms data. J. Geophys. Res., 102:28,003-28,011.

Herman, M., Deuzé, J. L., Devaux, C., Goluob, P., Bréon, F. M., and Tanré, D.
(1997b). Remote sensing of aerosols over land surfaces including polarization
measurements and application to polder measurements. J. Geophys. Res.,
102:17,039-17,050.

Husar, R. B., Prospéra, J. M., and Stowe, L. L. (1997). Characterization of
tropospheric aerosols over the oceans with the noaa advanced very high res-
olution radiometer optical thickness operational product. J. Geophys. Res.,
102:16,889-16909.

IPCC (1995). Radiative forcing of climate. In Houghton, J., Filho, L. G. M.,
Bruce, J., Lee, H., Haites, E., Harris, N., and Maskell, K., editors, Climate
change 1994, pages 1-231. Cambridge UP, Cambridge.

Kaufman, Y. J. (1995). Remote sensing of direct and indirect aerosol forcing, in:
Aerosol forcing of climate. In Charlson, R. J. and Heintzenberg, J., editors,
Aerosol forcing of climate, pages 297-332. John Wiley, New York.

Kaufman, Y. J., Tanre, D., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H.,
Herman, B. M., King, M. D., and Teillet, P. M. (1997a). Passive remote sensing
of tropospheric aerosol and atmospheric correction for the aerosol effect. J.
Geophys. Res., 102:16,815-16,830.

Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., and Flynn,
L. (1997b). The modis 2.1 ̂ m channel correlation with visible reflectances for
use in remote sensing of aerosol. IEEE Trans, on Geosci. and Remote Sens.,
350:1286-1298.

Martonchik, J. V., Diner, D. J., Kahn, R. A., Ackerman, T. P., Verstraete,
M. M., Pinty, B., and Gordon, H. R. (1998). Techniques for the retrieval of
aerosol properties over land and ocean using multiangle imaging. IEEE Trans
on Geosci. and Remote Sens., 36:1212-1227.

Mishchenko, M. I. (1993). Light scattering by size-shape distributions of ran-
domly oriented axially symmetric particles of size comparable to a wavelength.
Apll. Opt., 32:4652-4666.



Bibliography 29

Rood, M. J., Shaw, T. V., Larson, T. V., and Covert, D. S. (1989). Ubiquitos
nature of ambient metastable aerosol. Nature, 337:537-539.

Schwartz, S. E. (1996). The whitehouse effect- shortwave radiative forcing of
climate by anthropogenic aerosols, an overview. J. Aerosol Sei, 27:359-382.

Veefkind, J. P., van der Hage, J. C. H., and ten Brink, H. M. (1996). Neph-
elometer derived and directly measured aerosol optical depth of te atmospheric
boundary layer. Atmos. Res., 41:217-228.



30 Chapter 2. Theory of Aerosol Satellite Remote Sensing



Chapter 3

A New Algorithm to
Determine the Spectral
Aerosol Optical Depth over
the Ocean from Satellite
Radiometer measurements

Most of this chapter has been published in the Journal of Aerosol Science:
J.P. Veefkind and G. de Leeuw, A New Algorithm to Determine the Spectral
Aerosol Optical Depth from Satellite Radiometer Measurements, J. Aerosol Sei
29, 1237-1248, 1998.
A more comprehensive description of Fresnel reflection has been added to this
paper.

Abstract

A new aerosol retrieval algorithm is presented which computes the spectral opti-
cal depth over the ocean from spaceborne radiometers. It includes both multiple
scattering and the bi-directional reflectance of the ocean surface. The algorithm
is applied to data from the Along Track Scanning Radiometer 2 (ATSR-2).
This radiometer aboard the ERS-2 satellite has 4 bands in the visible and near-
infrared. The ATSR-2 has a dual view capability: the reflectance is measured
both at nadir and at a forward angle of approximately 55° along track. This fea-
ture is used to test the algorithm by comparing independent retrievals from the
forward and the nadir view, applied to Southern Hemisphere data from 23 July,
1995. The retrieved aerosol optical depths compare favorably. The retrieved
aerosol optical depths and spectral behavior are in agreement with expected
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values in clean marine environments.

3.1 Introduction

Atmospheric aerosols play an important role in the Earth's radiation budget.
They are considered the largest uncertainty in climate modeling, being able to
-at least partly- balance global warming by anthropogenic greenhouse gases. At-
mospheric aerosols influence the radiative budget in two ways, first by backscat-
tering incoming solar radiation, and secondly by changing the albedo and lifetime
of clouds. Present estimates of the radiative forcing of the combined effects are
in the range between -0.4 and -3.0 Wm~2 on a global scale [Schwartz, 1996].

Because of the important role of aerosols for climate there is a distinct need
for aerosol monitoring on a global scale. Due to the many different aerosol
sources and their short lifetimes, tropospheric aerosols are highly variable in
both space and time. Only satellite monitoring can achieve the global coverage
and the necessary spatial resolution to measure the inhomogeneous aerosol fields
[IPCC, 1995].

Satellite remote sensing of aerosol optical properties is best possible over
surfaces with a low and preferably constant albedo. Most land surfaces have high
surface reflectivity's, which makes satellite remote sensing extremely difficult.
On the other hand, the albedo of the ocean is low and relatively well known.
Therefore most studies have focused on oceanic regions.

Satellite remote sensing of aerosol optical properties requires well-calibrated,
multispectral satellite sensors [Kaufman, 1995]. These sensors should have nar-
row spectral bands to avoid water vapor absorption regions. Most of the aerosol
retrieval studies in the past have used data of the Advanced Very High Resolution
Radiometer (AVHRR), which has two channels in the visible and near-infrared.
The calibration of these channels is a source of uncertainty [Kaufman, 1995], and
the spectral information is limited because the AVHRR bands are broad and not
well enough separated. Also, the near-infrared channel suffers from severe water
vapor absorption. Since recently, data from sensors more suitable for aerosol
remote sensing is becoming available. These sensors have more spectral bands
in the visible and near-infrared, that are narrow and thus avoid the water vapor
absorption regions. Also, most of the new sensors have an in-flight calibration
facility. With these new sensors it should be possible to determine the spectral
aerosol optical depth over the ocean within ±0.03. To fully utilize their possi-
bilities, these sensors require more advanced algorithms to compute the aerosol
optical properties.

In this contribution an algorithm is presented to retrieve the spectral aerosol
optical depth from satellite radiometer data over the ocean. The spectral aerosol
optical depth contains information on both the aerosol size distribution as well as
the concentration. The algorithm is designed to be applicable to different satel-
lite sensors. One of the major improvements is that the bi-directional reflection of
the ocean is taken into account. Past studies assumed the ocean to be black, or to
be a Lambertian reflector. Simulations have shown that these assumptions may
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cause serious errors in the retrieved aerosol optical depth [Tanré et al., 1997b].
The algorithm was applied to data from the Along Track Scanning Radiome-

ter 2 (ATSR-2). ATSR-2 is a radiometer carried aboard the ERS-2 satellite,
which was launched in April 1995. ATSR-2 has seven spectral bands, four of
these bands are in the visible and near-infrared (effective wavelengths 0.555,
0.659, 0.865 and 1.6 /an) and are potentially useful for aerosol retrieval. The
spatial resolution of the ATSR-2 is approximately 1x1 km2, and the swath width
500 km. A unique feature of the ATSR-2 is the dual view capability providing
two views of each region: first a forward view (zenith angle approximately 55° )
and about two minutes later a nadir view. The dual view is used to test the
retrieval algorithm. To this end, the aerosol optical depth is retrieved indepen-
dently from both the forward and the nadir view.

3.2 Algorithm Description

For cloud-free regions, the top of the atmosphere (TOA) reflectance, as measured
by satellite radiometers, is due to scattering in the atmosphere by aerosols and
molecules (Rayleigh scattering), and reflection by the surface. In most cases,
the contribution by aerosols is not dominating the TOA reflectance. In aerosol
optical depth (AOD) retrieval algorithms, the measured TOA reflectance is cor-
rected for Rayleigh scattering and surface reflection. Also, AOD retrieval algo-
rithm's have to make assumptions on the aerosol size distribution. To correct for
Rayleigh scattering, surface reflection, and to determine the best fit aerosol size
distribution, radiative transfer calculations are performed. In this section we
will first describe these radiative transfer calculations, and the assumptions that
are used to determine the surface reflection and the aerosol size distributions. In
the second part, we will describe how the AOD is computed from the measured
and calculated TOA reflectances.

3.2.1 Radiative Transfer Calculations

The AOD retrieval algorithm applies only to cloud-free scenes over the ocean.
For such cases, the TOA reflectance contains contributions from scattering in
the atmosphere, reflection by the ocean, and combinations of atmospheric scat-
tering and ocean reflection. To compute the TOA reflectance properly, the bi-
directional reflectance of the ocean surface should be taken into account. To this
end, the satellite measured reflectance is written as the sum of five components:

p = Pa + Tips,dirT<t + t^psjif^Ti + Tj./9s,di/t*t + t±Ps,isott, (3-1)

where:
pa is the path reflectance by aerosols and molecules;
T is the direct transmittance along an upward (t) or downward (4.) path;
t is the diffuse transmittance due to forward scattering by aerosols and molecules;
and
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Sunglint Skyglint

Figure 3.1: Difference between sunglint and skyglint. Sunglint is the direct con-
tribution of light that is Presnel reflected on the surface and transmitted on the
down-and upward path through the atmosphere. Skyglint is the contribution of
light that is Presnel reflected on the surface and forward scattered on the down-
ward, upward, or both on the down- and upward path through the atmosphere.

Ps,dir, Ps,dif±, Ps,dif[ and ps,iso describe the bidirectional surface reflection, see
below.

All contributions in equation (3.1) depend on the wavelength and on the
Sun/satellite geometry. The first component in equation (3.1), the path re-
flectance, is due to scattering in the atmosphere by aerosols and molecules. The
path reflectance would be the only contribution if the surface were fully absorb-
ing. The second component is the contribution of photons that are transmitted
on their downward path, reflected by the ocean, and transmitted on their way
up. This contribution involves only reflection by the ocean. The last three com-
ponents involve both scattering in the atmosphere and reflection by the ocean.
The third component accounts for photons that are scattered towards the surface
on their downward path, reflected by the ocean, and transmitted to the satellite
sensor. The fourth component accounts for photons that are transmitted on
their downward path, reflected by the ocean, and forward scattered toward the
sensor on their upward path. The last component accounts for photons that are
forward scattered on their downward path, reflected by the surface, and forward
scattered towards the satellite sensor on their upward path. All components of
equation (3.1) are computed exactly, except for the last one. For the compu-
tation of this last term it is assumed that the scattering is Isotropie. The use
of an approximate value is justified because its contribution on the total TOA
reflectance is small.

The algorithm uses a look-up table to compute the TOA reflectance from
equation (3.1). In these look-up tables the transmittances and reflectances of
equation (3.1) are stored as a function of the geometry and the wavelength.
The look-up tables are computed using the discrete ordinate method DISORT
[Stamnes et al., 1988]. Thus multiple scattering is taken into account. The effect
of polarization is neglected.

In equation (3.1) the reflection by the ocean is described by four terms (ps,dir,
Ps,difi,, Ps,dift and Pi,,iso)- Each of these terms contains contributions by spec-
ular (Fresnel) reflection, reflectance by oceanic whitecaps, and by subsurface
scattering. Fresnel reflection depends strongly on the geometry, while the re-
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flection by oceanic whitecaps and the subsurface reflection can in first order be
approximated as isotropic [Koepke, 1984, Gordon et al., 1988]. Therefore, the
four surface reflection terms in equation (3.1) differ only for the contribution
of the Fresnel reflection, the other contributions are assumed Lambertian. As
illustrated in Figure 3.1, Fresnel reflection contributes in two ways to the top of
the atmosphere reflectance: light can reach a satellite sensor after being Fresnel
reflected at the ocean surface and transmitted on its down-and upward path
through the atmosphere, which is referred to as sunglint, and photons can reach
the satellite sensor after being Fresnel reflected on the ocean surface and - at
least once - scattered in the atmosphere. In analogy to sunglint, this is referred
to as skyglint.

The contribution of sunglint to the TOA reflectance is described by the Fres-
nel contribution to ps,dir, which is computed using the formula's of Cox and
Munk [1954]. The contribution of sunglint to the top of the atmosphere re-
flectance varies strongly with the Sun/satellite geometry. In most geometries
the sunglint contribution can be neglected. By estimating the sunglint contribu-
tion, those geometries for which sunglint contributes significantly are avoided.
When the sunglint contributes significantly to the TOA reflectance, the pixel is
marked sunglint contaminated and is excluded from further processing. Skyglint
accounts for the Fresnel reflection contribution to the other surface reflection
terms (ps,dif\, Ps,diff and ps,iso)- While sunglint can be avoided by disregard-
ing certain Sun/satellite geometry's, this does not apply to skyglint. In fact,
for almost all geometry's the contribution of skyglint to the TOA reflectance is
significant. For the calculation of the contribution of Fresnel reflection to terms
Ps,dif±, Ps,dift and pStiso, a flat ocean surface is assumed. Simulations show that
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this assumption will cause only minor errors [Takhashima and Masuda, 1985].
In Figure 3.2 the reflectance with and without skyglint is plotted as a func-

tion of the aerosol optical depth. Figure 3.2 shows that the quasi-linear rela-
tionship between reflectance and aerosol optical depth is still valid when the
effect of skyglint is taken into account. Ignoring the skyglint will introduce seri-
ous errors in the retrieved aerosol optical depth. These errors will vary with the
Sun/satellite geometry, and the aerosol optical properties. A phase function that
is more peaked into the forward direction, due to more larger aerosol particles,
will result in more contribution by skyglint. For the aerosol size distribution and
geometries shown in Figure 3.2 the overestimation in the retrieval for a 'true'
aerosol optical depth of 0.2 when neglecting skyglint is +10% and +46% for
case 1 and case 2, respectively. This clearly demonstrates that skyglint should
be taken into account in satellite retrieval of aerosol optical depth.

The reflectance of oceanic whitecaps depends on the area of the ocean cov-
ered by foam, and on the effective reflectance of the whitecaps [Koepke, 1984].
The area of the ocean covered with foam is related to the surface windspeed
[Monahan and OMuircheartaigh, 1980]. The effective reflectance in the visible
and near-infrared is almost invariable with the wavelength. An effective re-
flectance for the whitecaps of 22±11 % as reported by Koepke [1984] is used.

The contribution to the reflectance by the ocean of subsurface scattering
is called the water-leaving reflectance. For open ocean conditions, the water-
leaving reflectance can be modeled as a function of the chlorophyll concentration
[Morel, 1988, Gordon et al., 1988]. The effect of the chlorophyll concentration
on the water-leaving reflectance is illustrated in Figure 3.3 for four chlorophyll
concentrations. For wavelengths >0.800 urn the contribution of water-leaving re-
flectance is neglected. In the AOD retrieval algorithm, the chlorophyll concentra-
tion can either be specified, or a value from the climatology obtained from mea-
surements with the Color Zone Coastal Scanner (CZCS) [Feldman et al., 1994]
can be used.

Retrieval of AOD from satellite radiometer measurements is not possible
without application of an aerosol model. The AOD retrieval algorithm applies
to open ocean and coastal regions. The aerosol in these regions is assumed to be
an external mixture of anthropogenic and sea-salt aerosol. The Navy Oceanic
Vertical Aerosol Model (NOVAM) [de Leeuw et al., 1989, Gathman et al., 1989]
was developed to predict the aerosol concentration and size distribution from
meteorological parameters, such as windspeed, temperature and relative humid-
ity. NOVAM was developed from extensive marine aerosol studies, and has been
tested in different marine environments. In NOVAM, the aerosol size distribution
is the sum of four modes. The four modes represent respectively industrial dust,
water solubles (sulfates and nitrates), stationary sea-salt, and freshly produced
sea-salt. The size distributions of the individual modes are slightly different from
the popular lognormal size distributions, and are described by:

ta^' (3'2)

where:
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AT is the total number of particles per cm3 ;
r is the radius of the particles;
r0 is the mode radius,
A is the amplitude; and
ƒ is the swelling factor depending on the relative humidity and denned as 1 for
80% relative humidity.
The mode radii for industrial dust and water solubles are taken as TQ =0.03
fini. For stationary sea-salt and freshly produced sea-salt the mode radii are
r0 =0.24 and r0=1.0 fJ,m respectively. Based on the four NOVAM modes, two
aerosol types are defined. The first type is based on the first two aerosol modes.
This type represents aerosols mainly produced by fossil fuel combustion and
industrial activities, and will thus be referred to as the anthropogenic type.
For the retrieval of column-integrated AOD, only the stationary sea-salt mode
is taken into account. Contributions from the freshly produced sea-salt are
neglected, based on simulations showing that usually they contribute negligibly
to the column integrated AOD in the visible and near-infrared.

The optical properties of the individual aerosol contributions were computed
using a Mie scattering code by De Rooij and Van der Stap [1984] , with the
relative humidity fixed to 80 %, the rationale for this procedure is explained
below.
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3.2.2 Aerosol Optical Depth Retrieval
The spectral AOD is computed from the spectral TOA reflectance measured by
the ATSR-2, and from the spectral TOA reflectance from the radiative transfer
calculations, as described above. The AOD retrieval is based on two assump-
tions. The first assumption is that the TOA reflectance can be approximated
as a linear function of the AOD [Durkee et al., 1986]. The second assumption
is that the multiple scattering reflectance from a mixture of two aerosol types
can be approximated by the weighted average of the reflectance of the individual
modes [Wang and Gordon, 1994].

The first step in the AOD retrieval is to exclude sunglint and cloud con-
taminated pixels from further processing. In this study the SADIST-2 ATSR-2
data products [Bailey, 1995] were used. The cloud and land flags provided in
this data product were used to screen for cloud and land regions. The sunglint
contribution was computed using the formula's of Cox and Munk [1954] , when
the sunglint reflectance was > 1 x 10~3 the pixel was marked as sunglint con-
taminated.

The 0.555 and 0.659 /xm channels of the ATSR-2 are affected by absorption
by ozone. To correct for this absorption, all ozone is assumed to be situated
in a layer at the top of the atmosphere. The ozone correction as a function of
total columnar ozone amount and the Sun/satellite geometry was determined
using the 6S model [Tanré et al., 1997a]. The TOA reflectance is assumed lin-
ear with the aerosol optical depth. Therefore, the TOA reflectance can be di-
vided into contributions from an aerosol free-atmosphere, and from the TOA
reflectance due to the aerosol. The latter contribution is assumed directly pro-
portional to the AOD. Prom equation (3.1), the TOA reflectance for an aerosol-
free (Rayleigh) atmosphere overlying the ocean surface (po) is computed. The
measured TOA reflectance is corrected for p0, to obtain the TOA reflectance
due tO the aerosol (paer,meaa}-

Paer,meaa = P ~ Po (3.3)

The aerosol reflectances are also computed assuming that the aerosol are only of
the anthropogenic (paer,ant) or the sea-salt (paer,sea) aerosol type. Based on the
assumption that the aerosol is an external mixture of the anthropogenic and the
sea-salt aerosol, paer,meas is fitted by a linear combination of the contributions
from the aerosol types:

ier,meas (Aj) + e(Aj) = fclPoer,ani(Ai) + fc2poer,sea(Ai) (3.4)

where e(Aj) accounts for the deviation between the measured and fitted paer

(note that for two wavelengths e(Ai)=0), and fei and fc2 are the relative contri-
butions of the anthropogenic and the sea-salt type, which are independent of the
wavelength.

To solve this equation for ki and fa, data are needed for at least two wave-
lengths. The mixture of the anthropogenic and the sea-salt type that fits the
spectral measurements best is determined by application of the least squares
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fitting method, thus minimizing £^e2(Aj). When ki < 0 the best fit aerosol
model is assumed to consist of the sea-salt type only, and when fa < 0 the best
fit aerosol model is assumed to consist of the anthropogenic type only. Finally,
the best fit aerosol mixture is used to compute the spectral AOD, assuming a
linear relation between paer and the AOD:

A r > n t \ \ i a n t + k2AODsea . . . ,
AOD(Xi) = - - - TT/W,mea*(Ai) (3-5)

where AODant is the aerosol optical depth for the anthropogenic aerosol type,
and AODsea is the aerosol optical depth for the sea-salt aerosol type.

3.3 Sensitivity Study

A study was performed to determine the sensitivity of the AOD to variations for
surface windspeed, chlorophyll concentration, surface air pressure and aerosol
size distribution that are used in radiative transfer calculations. To this end, a
reference data set was computed, containing the TOA reflectance as a function
of geometry and wavelength, for both the anthropogenic and the sea-salt aerosol
type, for a surface air pressure of 1013 hPa, a chlorophyll concentration of 0.3
mg/m3, and a surface windspeed of 8 ms"1. This reference data set was used as
input for the AOD retrieval algorithm, as described in the previous section. To
test the dependence of the retrieved AOD on the values of the input parameters,
the AOD was retrieved from the reference data set with input parameters that
were varied over a wide range. Two groups of error sources can be identified: the
effect of variation of the air pressure, the chlorophyll concentration, or the surface
windspeed is (almost) independent of the AOD, while the effect of variation in
the aerosol size distribution is directly proportional to the AOD.

The effect of using a surface windspeed of 13 ms"1 (instead of the "true"
8 ms"1) is illustrated in Figure 3.4, where the difference between the retrieved
AOD's (wavelength 0.659 /zm) is plotted as a function of the solar zenith angle.
For the nadir view the difference between the "true" and the retrieved AOD
varies in the range between -0.04 and -0.16, for the forward view this range is
between -0.02 and -0.05. Geometries for which sunglint can be expected were
avoided, therefore these errors are caused by oceanic whitecaps. Underestimating
the surface windspeed in the retrieval causes smaller errors than overestimation,
because the contribution of oceanic whitecaps to the TOA reflectance increases
non-linearly with the windspeed. The effect of variations of the air pressure
and chlorophyll concentration from their real values are small as compared to
those for the windspeed. Varying the air pressure in the range between 1000 and
1025 hPa (reference is 1013 hPa) or the chlorophyll concentration from 0.003 to
3 mg/m3 (reference is 0.3 mg/m3) caused variations in the retrieved AOD at
0.659 yum of <0.02 for the nadir view and <0.01 for the forward view.

The effect of the choice of the aerosol size distribution on the retrieved AOD
was tested as follows. Instead of fitting the aerosol model to the spectral input
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data (equation (3.4)), the aerosol size distribution was set to either the anthro-
pogenic or the sea-salt type in the retrieval algorithm. The AOD was retrieved
for two 'worst case' scenario's: (1) using the sea-salt aerosol type to retrieve
the AOD for the reference data set which was computed with the anthropogenic
aerosol type, or (2) using the anthropogenic aerosol type to retrieve the AOD
for the reference data set which was computed with the sea-salt aerosol type.
Because the errors due to a wrong choice of the aerosol size distribution is di-
rectional proportional to the AOD, it will be presented as a relative error. The
relative error in the AOD for the two worst case scenario's are plotted as a func-
tion of the across track (West to East) distance in an ATSR-2 image in Figures
3.5 and 3.6. As expected, the relative errors for these two worst case scenario's
are large (-40 to +60 %). These relative errors correspond to absolute errors
of -0.05 to +0.09 for Figure 3.5, and -0.02 to +0.03 for Figure 3.6. Figures 3.5
and 3.6 show that when an unrealistic aerosol size distribution is used, a large
error will be introduced. Another good indication of an unrealistic aerosol size
distribution is the jump in the retrieved AOD in the middle of the scan line
(around a scan distance of 250 km) for the nadir view (Figure 3.5 and 3.6). This
jump is caused by a sudden change of the satellite azimuth angle in the middle of
the scan for the nadir view. Since such a change does not occur for the forward
view, the sudden change in the AOD is absent. Figures 3.5 and 3.6 also indicate
the order of magnitude of the relative errors in the retrieved AOD when a single
size distribution is used instead of a variable aerosol model.
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Figure 3.5: Relative change in the retrieved AOD at 0.659 /xm for a single West
to East line in an ATSR-2 image, caused by computing the AOD using the sea-
salt aerosol type, whereas the input data was computed using the anthropogenic
aerosol type (see text). The solar zenith angle was 53° .
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Figure 3.6: Relative change in the retrieved AOD at 0.659 /xm for a single West
to East line in an ATSR-2 image, caused by computing the AOD using the sea-
salt aerosol type, whereas the input data was computed using the anthropogenic
aerosol type (see text). The solar zenith angle was 53° .
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3.4 Results and Discussion

The AOD retrieval algorithm was applied to ATSR-2 data of 23 July 1995. The
dual view capability of the ATSR-2 was used to make independent retrievals for
the nadir and the forward view. As explained in the previous section, compar-
isons between the AOD retrieved from the nadir and the forward view can be
used as an internal check for the algorithm. Three relatively clear images on the
southern hemisphere were selected, the locations of the center of the images are
given in Table 3.1. These images are situated in the South Pacific, the South
Atlantic, and in the Indian Ocean. All three are from regions without anthro-
pogenic aerosol sources. The AOD in these regions is expected to be low (<0.1).
These low AOD cases are the most difficult for AOD retrieval from satellite ra-
diometers, because the relative error due to assumptions, on for example the
surface windspeed, tend to be large.

The spatial resolution of the data is about 1x1 km2 at nadir. For the nadir
images part of the data from the 0.555 ßm channel is missing. For the forward
view most of the 0.555 fan and most of the 1.6 /an data is missing. Also, the
forward view data is interlaced, meaning that only 50 % of the pixels is obtained,
forming a 'checkerboard' pixel pattern. The data rate for the images is 8 bit for
each of the channels.

The AOD retrieval algorithm was applied to retrieve the AOD for the nadir
and the forward views independently. The cloud and land flags provided in
the ATSR-2 data were used to id.entify cloud-free pixels over the ocean. Daily
averaged meteorological data was obtained from the NCEP/NCAR database
[Kalnay and Co-authors, 1996]. The surface air pressure and surface windspeed
were similar: (for all the three images) surface air pressure around 1021 hPa and
surface windspeed in the range 7 to 8 ms"1. The total column ozone amount was
obtained from the Global Ozone Monitoring Experiment (GOME) [Stammes,
personal communication], which is on the same satellite as the ATSR-2.

Figure 3.7 shows the retrieved AOD at 0.659 ^m for the nadir and the for-
ward view, for the South Atlantic image. Figure 3.7 shows that retrieved AOD
compares best in large cloud-free regions. In between clouds and at their edges,
the retrieved AOD for the nadir view is higher than the forward view retrieval.
This is caused by a combination of two effects: firstly, the slant path of the
forward view causes the pixels to be larger for the forward than for the nadir

Image
South Atlantic
South Pacific
Indian Ocean

Location
26.86° S 30.52° W
29.19° S 80.43° W
31.72° S 43.63° E

AOD nadir
0.06±0.03
0.08±0.03
0.10±0.06

AOD forward
0.07±0.02
0.07±0.02
0.09±0.04

Table 3.1: Location, mean and standard deviation for aerosol optical depth at
0.659 urn for the nadir and forward retrievals. Data are for the ATSR-2 overpass
on 23 July, 1995.
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view. Therefore, sudden changes in the TOA reflectance are averaged of a larger
area, causing a more blurred image. Secondly, the atmospheric properties change
rapidly near clouds. The combined nadir and forward view measurement covers
a horizontal distance in the lower troposphere of about 10 km. Changes in the
atmosphere on scales smaller than 10 km will therefore result in differences in
the retrieved AOD for the nadir and forward view. Because the nadir viewing
direction makes it possible to measure closer to the edges of the clouds, the AOD
is expected to be higher because of the high relative humidities in these regions
which in turn affect the aerosol size distribution.

In Figure 3.8 the AOD for both the nadir and the forward view AOD are
plotted as a function of the longitude for the Indian Ocean image. The spikes
in the retrieved AOD for the nadir view are caused by cloud edges, apparently
the cloud mask didn't work properly for these few cases. The comparison be-
tween nadir and forward AOD is very good, except for the longitudes larger than
46.3° E. This area could be identified as an area with increased cloudiness, caus-
ing larger values for the nadir AOD, as described above. For all three images,
the nadir and forward AOD for large cloud-free regions are within ±0.02 of each
other. Systematic differences between nadir and forward view AOD, as would
be caused by using an unrealistic aerosol size distribution (see Figures 3.5 and
3.6), are not present. Also, sudden changes in the retrieved nadir AOD in the
middle of the image did not occur.

The averages and standard deviations for the AOD retrieved from the forward
and nadir images are presented in Table 3.1. These values are based on only
those pixels for which both a nadir and forward AOD were available. The mean
AOD for the nadir and the forward views compare favorably. In two out of three
cases the mean AOD for the nadir view is somewhat larger, due to cloud edge
effects described above. Also, the standard deviations are larger for the nadir
view. The sensitivity study showed that the nadir view retrieval is more sensitive
to assumptions for the windspeed, air pressure and chlorophyll concentration.
However the larger standard deviation can also be explained by the effect of the
8 bit digitization of the ATSR-2 data. Figure 3.9 shows the retrieved AOD for
the nadir view as a function of the latitude for a single scan line. Between 29.0
and 28.0° S the AOD decreases stepwise, which is caused by the digitization step
in the data. In AOD units, the digitization step is about 0.03 for the nadir view
retrieval. For the forward view, this is about 0.01.
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Figure 3.10: AOD retrieved from the nadir view of the ATSR-2, for 23 July
1995, plotted as a function of the wavelength, for large cloud-free regions in the
South Atlantic, South Pacific, and Indian Ocean images (see Table 3.1).

The spectral AOD for large cloud-free regions in each of the images of Table
3.1 are plotted as a function of wavelength in Figure 3.10. Figure 3.10 was
made using the nadir view, for which data was present for the 0.555, 0.659 and
0.865 urn channels, whereas for the forward view the data for the 0.555 /an data
was missing. The AOD at 0.659 /xm for these large cloud-free regions is <0.06,
in good agreement with expected values for these clean marine environments
[IPCC, 1995].

The spectral behavior of the AOD contains information on the aerosol size
distribution. A steep decrease of the AOD with the wavelength indicates that
the AOD is dominated by particles with a diameter smaller than the wavelength.
When there is little decrease or even an increase, this indicates that the AOD
is dominated by particles larger than the wavelength. The latter is observed for
the South Atlantic and South Pacific cases shown in Figure 3.10. For the Indian
Ocean case, the AOD decreases with the wavelength, but the decrease is such
that aerosol size distribution is dominated by the larger (sea-salt) particles, as
expected in these clean marine environments.

3.5 Conclusions

A new aerosol retrieval algorithm was applied to ATSR-2 data. The algorithm
was tested by comparing independent aerosol optical depth retrievals from the
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forward and the nadir view. This method is applied to data from the Southern
hemisphere from 23 July 1995. There is good agreement between the aerosol
optical depths from the forward and the nadir view for larger cloud-free regions.
In between clouds and at their edges the aerosol optical depth retrieved from the
nadir view is higher than for the forward view. This is caused by a combination
of the larger pixel size for the forward view, and the horizontal inhomogenity
of the atmosphere near the clouds. The 8 bit digitization of the data causes
digitization steps in aerosol optical depth units of approximately 0.01 for the
forward view and 0.03 in the nadir view. The retrieved aerosol optical depths
and the spectral behavior are in agreement with expected literature values for
clean marine environments. Together these results give confidence in the re-
trieval algorithm. An assessment of the sensitivity of the algorithm to the input
parameters was presented. In the near future the algorithm will be tested against
ground based sunphotometer measurements.
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Chapter 4

Aerosol Optical Depth
retrieval using ATSR-2 and
AVHRR during TARFOX

This chapter has been published in the Journal of Geophysical Research : J.P.
Veefkind, G. de Leeuw, P.A. Durkee, P.B. Russell, P.V. Hobbs, and John M.
Livingston, Aerosol Optical Depth Retrieval using ATSR-2 and AVHRR data
during TARFOX, J. of Geophys. Res., vol. 104, D2, 2253-2260, 1999.

Abstract
Satellite retrieved aerosol optical properties are compared to aircraft measure-
ments for a case study during the Tropospheric Aerosol Radiative Forcing Ob-
servational Experiment (TARFOX). Two satellite instruments are used: the
Along Track Scanning Radiometer 2 (ATSR-2) and the Advanced Very High
Resolution Radiometer (AVHRR). The aerosol optical depth in the mid-visible
(0.555 /zm) retrieved from the ATSR-2 data agrees within 0.03 with colocated
sunphotometer measurements. Also, the spectral behavior of the aerosol op-
tical depth is retrieved accurately. Good correlation is found between aerosol
optical depths for AVHRR channel 1 (0.64 /zm) and sunphotometer derived val-
ues, but the satellite retrieved values are 0.05 to 0.15 lower. The Angstrom
wavelength exponent is determined both from the ATSR-2 and the AVHRR
data. The ATSR-2 derived Angstrom exponents are in good agreement with
the values computed from the sunphotometer data. The Angstrom exponents
determined from AVHRR data show very large variations. Both the ATSR-2
and the AVHRR.aerosol optical depth images show a large gradient. Vertical
profile data of temperature, relative humidity, and particle scattering indicate
that this gradient is probably caused by changes in the dry aerosol properties,
rather than a change in the relative humidity.

49
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4.1 Introduction

Atmospheric aerosol particles influence the Earth's radiation balance in two
ways: by scattering and absorption of the incoming solar radiation (direct ef-
fect), and by changing the albedo and lifetimes of clouds (indirect effect). The
radiative forcing caused by anthropogenic aerosol particles due to the combined
effects is estimated to be in a wide range between -0.4 and -3.0 W/m2 on a global
scale [Schwartz, 1996]. These estimates are of the same order of magnitude, but
of opposite sign, as the radiative forcing by anthropogenic greenhouse gases. The
impact of aerosol particles is considered the largest uncertainty in climate mod-
eling. One of the main reasons for this large uncertainty is the lack of data on a
global scale. Satellite monitoring can achieve the global coverage and the neces-
sary spatial resolution to measure the inhomogeneous aerosol fields, necessary as
input for climate models. The retrieval of aerosol properties from satellite data
requires well-calibrated multispectral sensors [Kaufman, 1995]. These sensors
should have narrow spectral bands outside the water vapor absorption regions.
Most aerosol retrieval studies in the past have used the visible and near-infrared
channels of the advanced very high resolution radiometer (AVHRR) [e.g., Dur-
kee et al., 1991; Husar et al., 1997]. The calibration of these channels is a
source of uncertainty [Kaufman, 1995], and the spectral information is limited
because the AVHRR bands are broad and not sufficiently separated. Also, the
near-infrared channel 2 suffers from severe absorption by water vapor.

The Along Track Scanning Radiometer 2 (ATSR-2) is the first of a se-
ries of satellite sensors that are more suitable for aerosol retrieval. These im-
proved sensors require more advanced aerosol retrieval algorithms to fully uti-
lize their potential. For validation of these algorithms, so-called "column"
closure experiments are very useful. This was one of the major goals of the
Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX)
[Russell et al., 1999a]. TARFOX was an intensive field program dedicated to
measure the direct radiative forcing by tropospheric aerosol particles. TARFOX
was conducted offshore from the eastern United States in July 1996, one of the
most polluted regions on the globe.

In this contribution a comparison is presented between the results from an
aerosol retrieval algorithm developed at the Netherlands Organizaton for Ap-
plied Scientific Research- Physics and Electronics Laboratory (TNO-FEL) (see
chapter 3) and TARFOX data. This algorithm retrieves the spectral aerosol
optical depth (AOD) over the ocean. It includes both multiple scattering and
the bidirectional reflectance of the ocean surface. The algorithm was designed
to be applicable to different sensors. In this chapter it is applied to ATSR-2 and
AVHRR data.

The ATSR-2 is a radiometer aboard the European ERS-2 satellite, which
was launched in April 1995. ATSR-2 has seven spectral bands, four of these
bands are potentially useful for aerosol retrieval. The effective wavelengths of
these four channels are 0.555, 0.659, 0.865, and 1.6 /^m. In-flight calibration
is performed by measuring the Sun's irradiance during some parts of the orbit.
The spatial resolution is approximately 1x1 km2 at nadir. The swath width is
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500 km. The ATSR-2 has a dual view: the reflectance is measured at nadir and
at approximately 55° along track. Independent retrievals from the nadir and
the forward image compare favorably, see chapter 3.

The AVHRR has two shortwave channels: one visible and one near-infrared.
The effective wavelengths of the visible and near-infrared channels of the AVHRR
aboard the NOAA-14 are 0.64 and 0.84 fj,m. The spatial resolution is 1.1 km2

at nadir, and the swath width is approximately 2000 km. A detailed description
of the AVHRR is given by Kidwell [1997].

The ATSR-2 is more suitable for aerosol retrieval than the AVHRR because
it has more channels that cover a wider wavelength region. Also, the in-flight
calibration is an advantage. The drawback of the ATSR-2 is the smaller swath
width. The swath of the AVHRR is more than four times larger, providing better
global coverage. Also, the AVHRR has a long historical database dating back
to the late seventies.

The AOD retrieved from ATSR-2 and AVHRR data will be compared to
the AOD measured with a sunphotometer mounted on an aircraft. When the
aircraft is flying at low altitude, this is one of the most direct ways to validate
aerosol satellite retrieval algorithms. Also, aircraft profile data are used together
with satellite data to improve the interpretation of AOD images.

4.2 Retrieval Algorithm
A detailed description of the aerosol retrieval algorithm applied to ATSR-2 data
is given in chapter 3. The algorithm was designed to be applicable to different
sensors. Here it will be applied to ATSR-2 and AVHRR data. Specific details
for these two sensors are discussed in some detail.

The algorithm applies only to cloud-free scenes over the open ocean. In the
visible and near-infrared the reflectance of the ocean outside sunglint areas is
low. For weakly absorbing aerosols, the upwelling radiance at the top of the
atmosphere (TO A) over such dark surfaces increases with increasing AOD. In
fact, there is a near-linear relationship between the TOA radiance and the AOD
[Durkee et al., 1986]. In the following, reflectance will be used instead of radi-
ance. The reflectance (p) is defined as irL/F0cos00, where L is the radiance,
FO is the extraterrestrial solar irradiance, and 00 is the solar zenith angle. The
TOA reflectance contains contributions from scattering in the atmosphere, re-
flection at the surface, and combinations of atmospheric scattering and surface
reflection. To compute the TOA reflectance properly, multiple scattering and
the bidirectional reflectances of the ocean should be taken into account. To this
end, the satellite measured reflectance is written as the sum of five components
[Tanré et al., 1979]:

P = Po. + T±Ps,dirT^ + t^pStdif\T^ + T±ps,difït-t + tipSiisot^ (4.1)

where pa is the path reflectance by aerosols and molecules, T is the direct trans-
mittance along an upward (t) or downward (|) path, t is the diffuse transmit-
tance due to forward scattering by aerosols and molecules, and ps,dir, Ps,dif±,
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Ps,dift and Ps,iso describe the bidirectional surface reflection. All contributions
in equation (1) depend on the wavelength and on the Sun/satellite geometry.

The first component in equation (1), the path reflectance, is due to atmo-
spheric scattering by aerosols and molecules. The second component is the
contribution of light that is reflected at the surface and transmitted along the
downward and upward path through the atmosphere. The last three terms are
due to combinations of scattering in the atmosphere and reflection at the surface.
For the specular (Fresnel) reflecting ocean surface the contribution of these com-
binations is significant in almost all geometries. Simulations show that ignoring
these terms will lead to serious errors in the retrieved AOD.

The ocean albedo is assumed to be the sum of subsurface reflection, reflection
on oceanic whitecaps, and specular reflection. For the open ocean the subsur-
face reflection is a function of the chlorophyll concentration [Morel, 1988]. The
reflection by oceanic whitecaps is taken to be a function of the surface wind
speed [Koepke, 1984]. The direct contribution of specular reflection to the TO A
reflectance is computed using the Cox and Munk [1954] sunglint formulas. A
flat ocean surface is assumed for the computation of the diffuse contribution
of specular reflection. Simulations show that this will cause only minor errors
[Takhashima and Masuda, 1985].

Reflectances and transmissions for Rayleigh atmospheres and atmospheres
containing both gases and aerosols were calculated as a function of wavelength
and geometry and stored in look-up tables. These tables were computed us-
ing the DISORT multiple scattering code [Stamnes et al., 1988]. The major
advantage of using look-up tables in combination with equation (1) is the com-
putational speed, whereas bidirectional reflectance and multiple scattering are
accounted for as well.

The first step in the retrieval of the spectral AOD is the correction for absorp-
tion by ozone. Next the TOA reflectance for a Rayleigh atmosphere overlying an
ocean surface is subtracted from the measured reflectance. For the AVHRR this
is followed by a water vapor absorption correction. The water vapor is assumed
to be well mixed with the aerosol [Tanré et al., 1992]. The total column water
vapor amount is computed using the split-window technique of Dalu [1986]. The
reflectance left after subtraction of the contribution from a Rayleigh atmosphere
overlying an ocean surface is due to the aerosol. The aerosol is assumed to
be an external mixture of an anthropogenic and a sea-salt aerosol type. These
two types are based on the Navy Oceanic Vertical Aerosol Model (NOVAM)
[Gathman and Davidson, 1993]. The two aerosol types are mixed such that the
spectral behavior of the reflectance due to the aerosol best fits the measure-
ments. This assumes that the multiple scattering from a mixture of two aerosol
types can be approximated by the weighted average of the reflectance of the two
individual modes [Wang and Gordon, 1994]. The spectral AOD is computed for
this mixture, assuming a linear relationship between the TOA reflectance and
the AOD.
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4.3 Experiments

During the TARFOX field campaign, measurements were performed from many
different platforms. These included satellite observations from different polar
and geostationary satellites, measurements from four aircraft platforms, ground-
based observations from a number of different stations, and measurements from
two research vessels. Satellite data from two sensors (ATSR-2 and AVHRR) will
be compared with measurements from the University of Washington (UW) Con-
vair C-131A aircraft [Hobbs, 1999]. Below a description is given of some of the
measurements that were performed aboard the UW C-131A during TARFOX.

Aboard the UW C-131A was the six-wavelength NASA Ames Airborne Track-
ing Sunphotometer (AATS-6) [Matsumoto et al., 1987]. AATS-6 was used to
derive the AOD of the column above the aircraft in four bands with center
wavelengths 0.380, 0.451, 0.525, and 1.021 fan, with widths 0.005 /mi. AOD
values and uncertainties were derived as described by Russell et al. [1993,1999].
Light scattering by aerosol particles was measured with two integrating neph-
elometers: an MRI model 1567 measuring at 0.540 /zm, and an MS Electron
three-wavelength nephelometer measuring at 0.450, 0.550, and 0.700 jan. Both
instruments were measuring at low relative humidity. The aerosol size distribu-
tion, in the size range between 0.1 and 3.0 //m diameter, was measured using
a Particle Measuring Systems (PMS) optical counter type PCASP, which was
calibrated using latex spheres. During satellite overpasses the UW C-131A flew
at low altitude (~30 m above the sea surface), thus being able to measure the
AOD of (almost) the total column. Also profiles were flown to obtain informa-
tion on the vertical structure of the atmosphere and the aerosol properties as a
function of height.

4.4 Results and Discussion

During the TARFOX field campaign from July 10 to July 31, 1996, the ATSR-2
passed seven times over the area. Unfortunately, the majority of these overpasses
were cloud contaminated. On other days there were no low-level flights during
the ERS-2 overpass. However, on July 25, a day with very few clouds, both data
from an ERS-2 overpass and from the sunphotometer are available. Results from
this day are presented below. First, a brief overview of the synoptic conditions
will be given. To validate the ATSR-2 aerosol retrieval algorithm, results will
be compared with sunphotometer data. Also AVHRR retrieved AOD will be
compared with sunphotometer data. Finally, profile data from the UW C-131A
will be used to investigate the observed AOD pattern.

4.4.1 Synoptic Situation

Prefrontal conditions existed over the TARFOX area on July 25, 1996, with
southeasterly flow at 3-5 ms""1 due to a 1015 hPa low-pressure center forming
inland over the North Carolina/Virginia border. Figure 4.la shows the ATSR-2
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near-infrared (0.865 ßm) image of the TARFOX area. A broad area of low clouds
associated with an easterly moving low-pressure center is present in the northern
part of the area. Some cumuloform cloudiness associated with the dissipating
trailing cold front exists in the southern region of the image. Otherwise, the
area is generally clear.

4.4.2 ATSR-2 Retrieval

On July 25, 1996, the ERS-2 passed thé TARFOX experimental area at 1552
UTC. The aerosol retrieval algorithm was applied to retrieve the spectral AOD
from the ATSR-2 data. To identify clear pixels over the ocean, the cloud and
land flags provided in the ATSR-2 data product were used. Pixels for which the
sunglint reflectance exceeded 1 x 10~2 were marked as sunglint contaminated and
excluded from further processing. As mentioned above, the ATSR-2 has a dual
view capability, providing two images for different viewing angles (forward and
nadir) of the same region. The nadir image for July 25, 1996 is contaminated
by sunglint. Therefore, only the forward view will be considered. The image for
the AOD at 0.659 /zm is presented in Figure 4.1c. The AOD image shows strong
aerosol gradients in the TARFOX area. A region with lower optical depth values
(~0.15 at 0.659 /mi) is centered around 38° N, 74° W. North of this region, the
AOD increases by a factor of 2-3 over a distance of a few hundred kilometers.
To the south and east of the region with lower optical depth, the AOD increases
by a factor of 1.5-2. However, there are more clouds present in these regions
which makes the interpretation more difficult.

Simultaneous with the ERS-2 overpass, the UW C-131A performed a flight
track at low altitude (altitude ~30 m) (a so-called satellite underflight). The
ERS-2 underflight was performed between 1544 and 1554 UTC. The position of
the aircraft was between 37.4 and 37.6° N, and 75.2 and 75.0° W (see Plate Ib).
The sunphotometer aboard the UW C-131A measured the AOD of the total
column (minus the lowest 30 m). In Figure 4.2 the mean spectral AOD over the
low-altitude track is compared with the AOD retrieved from the ATSR-2 data,
averaged over the underflight area. The ATSR-2 data and the sunphotometer
data are not available at the same wavelengths. However, it is reasonable to
assume a smooth variation of the AOD with the wavelength, and thus the data
points of both methods can be interpolated. Application of this procedure shows
that the ATSR-2 and sunphotometer AOD in the mid-visible (0.555 /on) compare
within 0.03. Not only is the AOD at this single wavelength retrieved with good
accuracy, but the retrieval also reproduces the spectral behavior of the AOD
well. The latter contains valuable information on the aerosol size distribution.

The observed AOD is of the order of 0.3-0.7 at 0.659 /tni (see Figure 4.1c).
In oceanic background conditions, values of 0.05-0.08 are observed, see chapter
3. The high optical depth observed during TARFOX, together with the strong
wavelength dependence (Figure 4.2), indicates that the aerosol is predominantly
of anthropogenic origin.
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Figure 4.1: (a) ATSR-2 near-infrared (0.865 urn) image for July 25, 1996, 1552
UTC; (b) AVHRR near-infrared (0.84 /mi) image for July 25, 1996, 1845 UTC;
(c) ATSR-2 retrieved aerosol optical depth at 0.659 /mi (the box indicates the
position of the UW C-131A during the overpass); (d) AVHRR retrieved aerosol
optical depth at 0.64 /mi, the UW C-131A flight track is indicated by the black
line oriented in a S-N direction at 74.2° W.
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Figure 4.2: Aerosol optical depth retrieved from ATSR-2 data, and aerosol opti-
cal depth derived from colocated airborne sunphotometer measurements. Error
bars indicate the standard deviation.

4.4.3 AVHRR Retrieval

On July 25, the NOAA-14 satellite passed over the TARFOX area at 1845 UTC,
almost 3 hours after the ERS-2 pass. For application of the aerosol retrieval
to the AVHRR data, the visible and near-infrared channels (channels 1 and
2) were calibrated using postlaunch calibration methods [Rao and Chen, 1996].
To identify cloud-free pixels over the ocean, a very simple empirical land/cloud
screening method was used. For every pixel the channel 1 to channel 2 reflectance
ratio, Sia, was computed. All pixels for which 1.5 < 5j2 < 3.5 were identified as
cloud-free ocean pixels [Wagener et al., 1997]. The same sunglint criteria as for
the ATSR-2 were applied. The AVHRR near-infrared (channel 2) image together
with the retrieved AOD for channel 1 (0.64 /urn) is shown in Figures 4.1b and
4.1d. In general, the AVHRR AOD image (Figure 4.1d) shows similar features
as the ATSR-2 image (Figure 4.1c). The region with relatively low AOD is also
present in the AVHRR image, although less obvious because of the clouds in
this region. Also, the observed AOD gradients in the AVHRR image are smaller
than for the ATSR-2 retrieval.

During the NOAA-14 pass the UW C-131A aircraft was heading north at
low altitude. This AVHRR underflight started at a latitude of 37.6° N at 1842
UTC and ended at 38.7° N at 1906 UTC. As shown in Figure 4.1d, the flight
track starts in the region with low AOD and passes right through the AOD
gradient. Before and after the low-altitude track, the airplane made a vertical
profile. For comparison of the AVHRR optical depth with the sunphotometer
data, the latter were converted to 0.64 /im. The AOD can often be represented
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by a power law function [Angstrom, 1961]:

AOD(X) ~ A-Q (4.2)

where À is the wavelength and a is the Angstrom wavelength exponent.
Such a power law fit was used to convert the sunphotometer data to 0.64

^m. In Figure 4.3a the AVHRR channel 1 (effective wavelength 0.64 p,m) AOD
is compared with the sunphotometer derived AOD at 0.64 /an. The AVHRR
AOD is averaged over a small longitude interval between 74.15 and 74.20° W.
Figure 4.3a shows good correlation between the sunphotometer derived AOD and
the AVHRR channel 1 AOD, except for two regions between 37.7 and 38.1° N.
Both peaks in the retrieved AOD in that region are caused by clouds. Outside
the cloud-contaminated areas, the trends and features in the data trace very
well. Over the whole track the AVHRR retrieved AOD is 0.05-0.15 lower than
the sunphotometer derived value. The ATSR-2 data and the size distributions
measured with the PCASP on board the UW C-131A indicated that the aerosol
was of anthropogenic origin. When the aerosol type in the AVHRR retrieval
was fixed to the anthropogenic type, the difference between the retrieval and
sunphotometer derived values was <0.1.

Despite the 3 hour timespan between the ATSR-2 and AVHRR overpass, the
AOD patterns (Figures 4.1c and 4.1d) compare well. Therefore it is interest-
ing to compare the ATSR-2 retrieval with the sunphotometer data measured 3
hours later. Figure 4.3b compares the retrieved ATSR-2 AOD at 0.555 //m with
the sunphotometer derived value at this wavelength. To take into account the
consequences of advection, the retrieved AOD was averaged between 73.5 and
74.5° W. The difference between the ATSR-2 retrieval and the sunphotometer
derived values is <0.1 over the entire flight track. In the center of the region
with low optical depth, the ATSR-2 AOD is somewhat lower. This difference
might be caused by the 3 hour timespan between the airplane and the satel-
lite measurement. Also, the ATSR-2 retrieval was averaged over a large area,
whereas the sunphotometer measures along one single track.

The spectral behavior of the AOD depends strongly on the aerosol size dis-
tribution. The Angstrom wavelength exponent a (equation (2)) is related to
the slope of the particle size distribution. When a increases, this indicates that
the aerosol optical properties are increasingly dominated by particles smaller
than the wavelength. When large particles dominate the aerosol optical prop-
erties, the Angstrom wavelength exponent tends toward zero. In Figure 4.3d
the Angstrom wavelength exponent derived from the sunphotometer's 0.525 and
1.021 [im channels is plotted as a function of the latitude, together with the
Angstrom wavelength exponent computed from the ATSR-2 0.555 and 0.865 /un
channels. The ATSR-2 data were averaged over the same longitude range as in
Figure 4.3b. The absolute values of the sunphotometer and ATSR-2 Angstrom
wavelength exponent are in good agreement. At low latitude, the sunphotome-
ter data seem to follow the trend in the ATSR-2 data. For higher latitudes the
sunphotometer data seem to be fixed around 1.5, whereas the ATSR-2 Angstrom
wavelength exponent decreases. The retrieved AOD (Figure 4.3b) and the re-
trieved Angstrom wavelength exponent (Figure 4.3d) are strongly anticorrelated.



60

2500

Chapter 4. AOD retrieval over the ocean during TARFOX

(a) (b) (c)

20 30 20
POT. TEMP (aC)

50 80 O.e+0 1.6-4 2.e-4
RH (%) Bsp (rrf1)

3.e-4

Figure 4.4: Comparison between profile 1 (near 37.8° N, 74.4° W) and profile
2 (near 38.6° N, 74.2° W). (a) Potential temperature plotted as a function of
height; (b) relative humidity as a function of height; and (c) the dry aerosol
scattering coefficient (Bsp) at 0.550 /un plotted as a function of height.

These figures show that when the AOD is at its maximum, the Angstrom wave-
length exponent is at its minimum, and vice versa. This observation indicates
that in this case at low AOD the aerosol slope of the size distribution is steeper
(relatively more small particles) than at higher AOD.

In Figure 4.3c the Angstrom wavelength exponent derived from the AVHRR
retrieval is plotted together with the sunphotometer derived data. The AVHRR
derived values for the Angstrom wavelength exponent clearly show large varia-
tions. This variability is caused by the lack of spectral information due to the
wide spectral bands of the AVHRR, and the large digitization step, especially in
channel 2.

4.4.4 Aerosol Optical Depth Gradient

AOD gradients as observed in Figures 4.1c-and 4.Id can be caused by a difference
in the "dry" aerosol properties, by a difference in relative humidity, or by a
combination of these effects. Most aerosol particles are hygroscopic; they accrete
water when the relative humidity increases. Therefore the scattering coefficient
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(and thus the AOD) also increases with increasing relative humidity. A change in
the dry aerosol properties includes all changes in concentration, size distribution,
and chemical composition, except changes due to relative humidity. The question
is whether it is possible to distinguish between an AOD gradient due to a change
in the dry aerosol properties and a gradient caused by a change in the relative
humidity.

To investigate the nature of the optical depth gradient, the UW C-131A
vertical profile data were used. As mentioned above, two profiles were measured
around the time of the AVHRR overpass, one in the region with low AOD
(profile 1), and one in the region with high optical depth (profile 2). Profile
1 was measured from 750 m down to the surface near 37.9° N, 74.4° W, and
profile 2 from the surface up to about 2.5 km, near 38.6° N, 74.2° W. The ratio
between the AOD for the profile 2 area to the profile 1 area, as derived from
the sunphotometer data, is 1.7±0.1 at 0.550 /zm. The potential temperature
and relative humidity for the two profiles are shown in Figures 4.4a and 4.4b,
respectively. Both profiles show a mixed layer depth of approximately 250 m.
The relative humidity in this layer is about 85%. Above this mixed layer the
atmosphere is stable. In Figure 4.4c the dry aerosol scattering coefficient as a
function of height is presented. In the mixed layer the dry scattering coefficient
is relatively low and constant with height. Just above this layer there is a strong
peak in the dry scattering coefficient. This peak is much stronger for profile 2
than for profile 1. Above this maximum the scattering coefficient is still higher
than in the mixed layer. This vertical aerosol distribution can be explained by
a mixed layer of marine origin, with layers containing anthropogenic aerosol at
altitudes aloft. The dry AOD between the surface and 790 m for profiles 1 and
2 was computed by integrating the dry scattering coefficient. The ratio between
the AODs in this layer for profiles 2 and 1 is 2.0, 1.9, and 1.7 for 0.450, 0.550,
and 0.700 urn, respectively. These numbers are similar to the AOD ratio of
1.7±0.1 at 0.550 /im, as derived from the sunphotometer. The relative humidity
profiles are very similar, and thus cannot explain a 70% higher total AOD for
profile 2. Therefore the observed AOD gradient is likely due to a change in the
dry aerosol properties. It is noted that only a small part of the AOD is in the
layer below 790 m (see Figure 4.4c). Unfortunately, we have no data above 790
m to support this conclusion.

4.5 Conclusions

AOD retrieved from satellite data have been compared to aircraft sunphotometer
data. The data were obtained on the eastern seaboard of the United States on
July 25,1996. Aerosol retrieval using ATSR-2 data compares very well with colo-
cated measurements of an airborne sunphotometer. In the mid-visible the dif-
ference between the ATSR-2 retrieval and the sunphotometer values was <0.03.
Also the spectral behavior of the AOD was retrieved accurately. The latter con-
tains valuable information on the aerosol size distribution. AVHRR retrievals for
the same day were somewhat more problematic. The AOD for AVHRR channel
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1 (0.64 /im) correlated well with the sunphotometer data, but the absolute val-
ues of the satellite retrieval were 0.05 to 0.15 lower. The Angstrom wavelength
exponent was determined from both the ATSR-2 and AVHRR. The ATSR-2 de-
rived values are in good agreement with the values from the sunphotometer. The
Angstrom exponent determined from the AVHRR shows very large variations,
caused by the lack of spectral information due to the wide spectral bands, and
the large digitization steps in the data.

Both the ATSR-2 and the AVHRR retrieval showed a strong horizontal
aerosol gradient. These gradients could have been caused by either a change
in the relative humidity or changes in the dry aerosol properties. To investigate
the nature of the aerosol gradient, aircraft profile data of temperature, relative
humidity, and (dry) aerosol scattering coefficient were used. It was concluded
that the aerosol gradient was likely due to changes in the dry aerosol properties.
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Chapter 5

Retrieval of Aerosol
Optical Depth over Land
using two-angle view
Satellite Radiometry during
TARFOX

This chapter was published in Geophysical Research Letters:
J.P. Veefkind, G. de Leeuw, and P.A. Durkee, Retrieval of Aerosol Optical Depth
over Land using two-angle view Satellite Radiometry during TARFOX, Geophys.
Res. Lett., 25, 3135-3138, 1998.

Abstract

A new aerosol optical depth retrieval algorithm is presented that uses the two-
angle view capability of the Along Track Scanning Radiometer 2 (ATSR-2). By
combining the two-angle view and the spectral information this so-called dual
view algorithm separates between aerosol and surface contributions to the top
of the atmosphere radiance. First validation of the dual view algorithm was per-
formed during the Tropospheric Aerosol Radiative Forcing Observational Exper-
iment (TARFOX), which was conducted at the mid-Atlantic coast of the United
States in July 1996. The satellite retrieved spectral aerosol optical depth is in
good agreement with the aerosol optical depth from ground-based Sun/sky ra-
diometers in three out of four cases. This shows the potential of aerosol retrieval
over land using two-angle view satellite radiometry.
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5.1 Introduction
Atmospheric aerosol particles play an important role in the Earth's radiation
balance. They scatter and absorb solar radiation (direct effect) and affect the
albedo and lifetimes of clouds (indirect effect). The radiative forcing by man-
made aerosols of the combined direct and indirect effects is estimated to be of
the same order of magnitude, but opposite of sign, as the radiative forcing by
the anthropogenic greenhouse gases. Aerosols are considered one of the largest
uncertainties in today's climate modeling. To a large extent this uncertainty is
caused by a lack of data on a global scale. Due to the short lifetimes of aerosols
in the troposphere (hours to days) and due to the occurrence of many differ-
ent sources with different spatial extents and emissions, the aerosol is highly
variable in both space and time. This applies to the concentration, the size dis-
tribution, and the chemical composition, and therefore also to the aerosol optical
properties. Only satellite remote sensing can provide the spatial and temporal
resolution to measure the inhomogeneous aerosol fields. However, retrieval of
aerosol properties from satellite measured radiances is not straightforward. The
radiance at the top of the atmosphere is the sum of several components, includ-
ing aerosol scattered light and light reflected by the underlying surface. When
the surface albedo is high, as is often the case over land, the contribution of
aerosol scattering to the total radiance may be relatively small, which renders
the retrieval of the aerosol contribution rather uncertain. Several methods have
been proposed to distinguish between contributions to the satellite measured
radiance by aerosols and by the surface (for a review see Kaufman et al. [1997a].
The use of multi-angle satellite radiometry for aerosol retrieval was proposed by
Martonchik and Diner [1992]. However, data from multi-angle satellite radiome-
ters is scarce. Flowerdew and Haigh [1996] presented an algorithm that uses the
two-angle view data from the Along Track Scanning Radiometer 2 (ATSR-2).

In this contribution, we present a new algorithm based on ATSR-2 data in
which the surface reflection is treated in a similar way as by Flowerdew and
Haigh [1996] . However, the new algorithm uses not only the information from
the two-angle view, but also the spectral information to distinguish between
atmospheric and surface contributions to the top of the atmosphere radiance.
The spectral aerosol optical depth (AOD) is computed using an aerosol model
that fits the spectral measurements best. First validation of the dual view algo-
rithm was performed during the Tropospheric Aerosol Radiative Forcing Obser-
vational Experiment (TARFOX), which was conducted at the mid-Atlantic coast
of the United States, in July 1996 [Russell et al., 1999] by comparing satellite
retrievals to ground based measurements. Validation in these so-called column
closure experiments permits the assessment of measurement uncertainties, and
can establish credibility for satellite remote sensing of aerosol properties.
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5.2 The ATSR-2 sensor

The ATSR-2 was launched on board the European ERS-2 satellite in April 1995.
ATSR-2 is a radiometer with 7 wavelengths, 4 of these bands are in the visible
and near-infrared (effective wavelengths 0.555, 0.659, 0.865, and 1.6 ^m) and
potentially useful for aerosol retrieval. The spatial resolution of the ATSR-
2 is 1x1 km2 at nadir, and the swath width is 500 km. The ATSR-2 has a
conical scanning mechanism, thus producing two views of each region: first a
forward view (zenith angle approximately 55° ) and about two minutes later a
nadir view. The horizontal distance of the lower troposphere covered by the
combined forward and nadir measurements is less than 10 km. On these spatial
and temporal scales the atmosphere is assumed to be invariable and horizontally
homogeneous.

5.3 The Dual View Algorithm

The dual view algorithm applies only to cloud-free scenes. For such cases, the
total (aerosol + Rayleigh) optical depth in the visible and near-infrared is usu-
ally less than 1. Over land, the contribution of the surface reflection in this
optical depth regime is dominated by the direct contribution, i.e. photons that
are reflected at the surface and transmitted on their downward and upward path
through the atmosphere. Away from the surface hot-spot, a Lambertian surface
may be assumed in such cases [Flowerdew and Haigh, 1996]. The orbit of the
ERS-2 is such that the ATSR-2 rarely observes the surface hot-spot in the North-
ern Hemisphere [Godsalve, 1995]. For a Lambertian surface the reflectance at
the top of the atmosphere (p) is given by:

P(A) = patm(A) + P ' y r ( A ) (5.1)

where:
Patm is the contribution of atmospheric scattering;
Psfc is the surface albedo;
s is the spherical albedo of the atmosphere;
T is the transmittance of the atmosphere;
and A is the wavelength.

The surface reflection depends both on the wavelength and on the geometry.
However, the surface reflection can be approximated by a part that describes
the variation with the wavelength and a part that describes the variation with
the geometry [Flowerdew and Haigh, 1995]. Under this assumption, the forward
view surface albedo (psfc,f) may be written as:

P./c,/(A) = fc-p./c,„(A) (5-2)

where />S/C)„ is the nadir view albedo; and k is the ratio between the forward
and the nadir surface reflection.
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The ratio k depends only on the variation of the surface reflection with the
geometry and is assumed to be independent of the wavelength. Experimental
data shows that the surface reflectances at wavelengths in the visible (0.555
and 0.659 /zm) are proportional to those in the mid-infrared (1.6 and 2.1 /urn)
[Kaufman et al., 1997b]. Note that this does not apply to the 0.865 /un channel,
which therefore can not be used.
For the forward view, substituting equation (5.2) into equation (5.1) yields:

„ f\}PfW =

C,n(")

where the subscripts ƒ are for the forward view. The approximation in equation
(5.3) has been made because in general k • psfc,n(X) • s(X) <S 1.

For most continental aerosol types, except for desert dust, the aerosol ex-
tinction decreases rapidly with wavelength and the AOD at 1.6 /urn will be small
as compared to the AOD in the visible. Ignoring the atmospheric contribution
at 1.6 fim, k is approximated as the ratio between the top of the atmosphere
reflectances for the forward and for the nadir view at this wavelength. Since k
is assumed independent of the wavelength, this value for k can also be used for •
the visible channels of the ATSR-2 (0.555 and 0.659 /xm). The unknown surface
albedo can be eliminated by using equation (5.1) for the nadir view and equation
(5.3) for the forward view:

T„(A) *- ï>(A)

where the subscripts n are used for the nadir view.
In equation (5.4), pn and p/ are measured and k is approximated as described
above. All other terms are a function of the AOD. To compute the AOD from
equation (5.4), an aerosol model is applied. The dual view algorithm has been ap-
plied to an area at the east coast of the United States. The aerosol in this region
is assumed to be an external mixture of sea-salt aerosol and aerosol from an-
thropogenic sources. These two aerosol types are defined from the Navy Oceanic
Vertical Aerosol Model (NOVAM) [de Leeuw et al., 1989]. The mixture of the
two aerosol types that fits the spectral behavior of the measured reflectance in
the 0.555, 0.659 and 1.6 /zm channels best, is used to compute the AOD and the
surface albedo for these channels.

5.4 Results and Discussion

During the TARFOX intensive field campaign from 10 to 31 July 1996, the
ATSR-2 passed seven times over the area. Figure 5.1 shows the near-infrared im-
age and the AOD as determined by the dual view algorithm for the ATSR-2 pass
on 25 July 1996. Figure 5.1 illustrates the potential of the dual view algorithm for
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Figure 5.1: Near-infrared image (1.6 fim) (upper) and aerosol optical depth
retrieved using the dual view algorithm for 0.659 /um (lower), for the ATSR-2
overpass over the TARFOX area on July 25, 1996, 15:52 UTC. In the near-
infrared image, the symbols indicate the ground stations used in this study (see
text).
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AOD retrieval over both land and water surfaces. The AOD image for this day
shows a strong spatial gradient. A region with relatively low AOD values ( 0.2
at 0.659 pm) is centred around 38 N 74 W. This AOD pattern was supported
by satellite retrievals from algorithms that compute the AOD over the ocean
(see chapter 4), as well as by airborne Lidar measurements [Ferrare et al., 1997].
Despite the differences in surface reflective properties between land and ocean,
Figure 5.1 does not show distinct jumps in the retrieved AOD across the land to
sea boundaries. Over land, the uncertainty in the retrieved AOD is larger than
over the ocean, due to the higher and less homogeneous surface albedo, and the
non-perfect match between the forward and nadir view pixel. At the land to
sea boundary the dual view algorithm tends to fail. This is caused by the small
difference in scene between the forward and the nadir view of the ATSR-2, in
combination with the suddenly changing surface albedo at the coastline.

During TARFOX the aerosol optical depth was measured at five ground-
based stations. At each station a Sun/sky radiometer measured the direct solar
radiation in six spectral bands (0.340, 0.380, 0.440, 0.670, 0.940 and 1.020 //m)
[Holben et al., 1998]. Figure 5.2a shows the comparison between the aerosol
optical depth as determined with the Sun/sky radiometer at Wallops Island
(37.93° N, 75.47° W) and the colocated AOD from the dual view algorithm, for
25 July 1996. The Sun/sky radiometer measurements and the ATSR-2 image
were within 3 minutes of each other. The AOD from the Sun/sky radiometer and
the AOD retrieval over land are in excellent agreement. Not only the AOD at
a single wavelength is retrieved accurately, but also the spectral behavior of the
AOD. The latter contains important information on the aerosol size distribution.
The high AOD observed on 25 July 1996, in combination with the rapid decrease
of the AOD with the wavelength, indicates that the aerosol is predominantly of
anthropogenic origin. This is supported by in situ measurements of physical and
chemical aerosol properties [Hegg et al., 1997].

The difficulty of comparisons, similar to the one shown in Figure 5.2a, is
to find co-located ground-based and satellite measurements. Often the satellite
retrieval or the Sun/sky radiometer data is missing due to clouds over the ground
station at the time of the satellite overpass. When the AOD varies little in
space and time, the Sun/sky radiometer measurements closest to the time of the
overpass can be compared to satellite retrieval data closest to the ground station.
Such a comparison is shown in Figure 5.2b for Wallops Island for 31 July 1996. In
this case the Sun/sky radiometer measurement was taken approximately 1 hour
after the satellite overpass, and the satellite retrieval is for an area within 20 km
of the ground station. Figures 5.2c and 5.2d show similar comparisons for Sandy
Hook (40.43° N, 73.98° W) for 28 July 1996, and for Hampton Road (36.77° N,
76.43° W) for 31 July. All the cases with high AOD (Figures 5.2a, b and d)
show good agreement between AOD determined from the Sun/sky radiometer
and from the dual view algorithm. Figure 5.2c shows the performance of the dual
view algorithm for low AOD. For this case the retrieval in the visible is about
a factor of two larger than Sun/sky radiometer derived AOD. However, the
standard deviation in the retrieval is relatively large, and the satellite retrieved
and Sun/sky radiometer derived values are within the experimental uncertainty.
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Figure 5.2: AOD determined from the Sun/sky radiometer measurements, and
AOD from the dual view algorithm using ATSR-2 data. Error bars indicate the
standard deviation. Fig. 5.2a is for Wallops Island (37.93° N, 75,47° W) for 25
July 1996; Figure 5.2b is for Wallops Island for 31 July 1996, Fig. 5.2c is for
Sandy Hook (40.43° N, 73.98° W) for 28 July 1996, and Fig. 5.2d for Hampton
Roads (36.77° N, 76.43° W) for 31 July, 1996.
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The large variation is caused by the difference scene between the forward and
nadir view, in combination with the inhomogeneous surface albedo over land.

5.5 Conclusions
An aerosol optical depth retrieval algorithm is presented that uses both the
two-angle view and the spectral information of the ATSR-2 measurements. This
so-called dual view algorithm applies both over land and over the ocean. Aerosol
optical depth retrievals over land are compared to Sun/sky radiometer measure-
ments during TARFOX. For three cases with high aerosol optical depth (0.3-0.5
at 0.659 ^m), the satellite retrieved aerosol optical depth and that derived from
the Sun/sky radiometers are in good agreement. For one case with lower aerosol
optical depth (~0.1 at 0.659 //m) the agreement is less good (difference about
100%), but still within the experimental uncertainty. The results of this valida-
tion are very encouraging, and new validation studies for different regions will
be performed in the near future.
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Chapter 6

Regional Distribution of
Aerosol over Land derived
from ATSR-2 and GOME
data

This chapter has been accepted for publication in Remote Sensing of the Envi-
ronment:
J.P. Veefkind, G. de Leeuw, P. Stammes, and R.B.A. Koelemeijer: Regional
Distribution of Aerosol over Land derived from ATSR-2 and GOME data

Abstract
Two aerosol optical depth retrieval algorithms, using different instruments and
different methods, are compared. The first method uses both the directional and
the spectral information of the Along Track Scanning Radiometer 2 (ATSR-2) to
compute the aerosol optical depth in the visible and near-infrared. The second
algorithm uses data in the wavelength range between 0.340 and 0.400 fan from
the Global Ozone Monitoring Experiment (GOME) to determine the aerosol
optical depth in the UV. Both ATSR-2 and GOME are on board the ERS-2
satellite. The two methods are applied to data from the ERS-2 overpass over
northwestern Europe on 25 July 1995. The retrieved aerosol optical depths com-
pare favorably. Also, there is good comparison between the satellite retrievals
and ground based measurements. Optical depth images show a large aerosol
plume over Belgium and northern France. Back-trajectories indicate that the
sources for this aerosol plume are the industrialized regions in Germany and
Belgium.

75
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6.1 Introduction

Over the past decade, it has been recognized that aerosol particles play an im-
portant role in climate and atmospheric chemistry. Aerosol particles affect the
Earth's radiation balance in two ways: directly by scattering part of the incom-
ing solar radiation back to space, and indirectly by modifying the albedo and
lifetimes of clouds. In a pioneering study, Charlson et al. [1992] showed that
the total (direct + indirect) radiative forcing by anthropogenic sulfate aerosol
particles is of the same order of magnitude, but opposite of sign, as the ra-
diative forcing by man-made greenhouse gases. Downwind of the major indus-
trial regions, the radiative forcing by the man-made greenhouse gases might
be (over)compensated by the combined direct and indirect aerosol effects. It
should be noted that besides anthropogenic sulfate aerosols, also anthropogenic
carbonaceous and anthropogenic nitrate aerosols contribute significantly to the
radiative forcing [Hegg et al., 1997, ten Brink et al., 1996].

The lifetimes of anthropogenic aerosols in the troposphere are of the order
of days to a week, which is small as compared to the lifetimes of most of the
greenhouse gases. Due to these short lifetimes, in combination with the many
different aerosol sources with different spatial extents and emission strengths,
the aerosol is highly variable in both space and time. This applies to their
concentration, size distribution as well as the chemical composition. Aerosols
are considered one of the major uncertainties in today's climate models. To
a large extent this uncertainty is caused by a lack of knowledge of the aerosol
properties on a global scale. Only satellite remote sensing has the potential to
measure the highly variable aerosol field [IPCC, 1995].

Until recently, it was thought that satellite aerosol retrieval was only possible
over dark surfaces, such as the ocean. However, new sensors with improved cali-
bration and spectral information over a range of wavelengths, make it possible to
retrieve aerosol properties over land [Kaufman et al., 1997a]. The key problem
in aerosol retrieval over land is to distinguish between contributions from the
aerosol and those from surface reflections to the top-of-the-atmosphere (TOA)
radiance. In the UV, the albedo of most land surfaces is relatively low. This
property was used by Herman et al. [1997] to detect UV-absorbing aerosols
from data obtained by the Total Ozone Mapping Spectrometer (TOMS). An-
other promising technique for aerosol retrieval over land is the use of two- or
multi-angle radiometry. In chapter 5 it was shown that aerosol retrieval over
land using data from the Along Tracking Scanning Radiometer 2 (ATSR-2),
a dual-view imaging radiometer on board the European ERS-2 satellite, com-.
pared favorably with ground based sunphotometer measurements. Using the
dual-view algorithm proposed in chapter 5, both the aerosol optical depth at
a single wavelength, and its spectral behavior can be retrieved. Hence, also
important information on the aerosol size distribution can be obtained.

Besides the two-angle view radiometer (ATSR-2), there is also a spectrometer
on board the ERS-2 satellite, namely the Global Ozone Monitoring Experiment
(GOME). It measures the spectrum of the TOA radiance at wavelengths from
0.240 to 0.790 /mi with a spectral resolution of 0.2 to 0.4 nm. The large wave-
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length range and high spectral resolution provides the opportunity to apply
different aerosol retrieval algorithms to GOME data. However, due to the large
pixel size of 320x40 km2 the application of GOME is limited because most of the
retrieval algorithms apply only to cloud-free scenes, which are difficult to find
for such large areas. Fortunately, there is a large amount of GOME data from
the validation phase (1995-1996) for which the pixel size is 80x40 km2. This
pixel size has been used here. In this contribution a method is presented that
uses GOME data in the UV, where the surface albedo is low both over land and
over the ocean [Herman and Celarier, 1997]. This method is based on scattering
by aerosols in the UV, and therefore differs from the method by Herman et al.
[1997] , which is based on the extinction by aerosols.

Having both a spectrometer (GOME) and a two-angle view radiometer (ATSR-
2) on the same satellite makes it possible to directly compare the two different
aerosol retrieval techniques. This is illustrated with data from a case study over
northwestern Europe, for a completely cloud-free case on 25 July 1995. To fur-
ther validate the satellite retrieval methods, the aerosol optical depth determined
from the ATSR-2 and GOME data are compared to ground based measurements.
Finally, the regional distribution of the aerosol for this case is discussed.

6.2 Aerosol Remote Sensing Methods

Like most remote sensing applications, satellite aerosol retrieval is a so-called ill-
posed problem, meaning that there are more unknowns than equations. Retrieval
of the aerosol optical depth (AOD) is therefore impossible without applying an
aerosol model. In section 6.2.1 we will describe the aerosol model that will be
used in the retrieval algorithms. The radiative transfer models used to compute
the TOA reflectance will be described in section 6.2.2. In section 6.2.3 and 6.2.4
the algorithms to retrieve aerosol properties from ATSR-2 and GOME data are
described. The cloud screening procedure is described in section 6.2.5.

6.2.1 Aerosol Model

The aerosol size distribution and their chemical composition are determined by
the geographic locations of emission sources, type of emission, transport and
removal processes. Because most aerosol particles are hygroscopic, their size
and chemical composition are a function of the relative humidity. In this contri-
bution, retrievals over northwestern Europe will be presented. Large amounts
of aerosol precursor gases, such as SÛ2 and NOs, are emitted by the heavily
industrialized areas in this region. In the coastal regions aerosol particles from
marine origin will be present when the air-mass is advected from the sea. In
general, these marine particles which are produced by the breaking of waves,
are much larger compared to those from (anthropogenic) continental origin. In
the aerosol retrieval algorithms described below, a two-mode aerosol size distri-
bution is used. The smaller mode represents the aerosol particles from anthro-
pogenic (continental) origin, and the larger mode represents the aerosol particles
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Wavelength (^m)
0.400
0.555
0.659
0.865
1.600

Anthropogenic
1.40-5.00xlO-3

1.41- 2.41 xlO-3

1.41- 2.41 xlO-3

1.40-2.42xlO-3

1.35-2.63X10-3

Marine
1.40 -5.00 xlO-4

1.39-5.38X10-9

1.38-3.24xlO-8

1.38 -2.95 xlO~6

1.36-2.87xlO~4

Table 6.1: Complex refractive index for the anthropogenic and marine modes at
80% relative humidity.

from marine origin. The size distributions of the individual modes are slightly
different from the popular lognormal size distributions, and are described by
[Gathman et al., 1989, Gathman and Davidson, 1993]:

dN A 2 r . .
— = 7exp[-ln(—)], (6.1)

where:
N is the total number of particles per cm3;
r is the radius of the particles;
TO is the mode radius;
A is the amplitude; and
ƒ is the swelling factor depending on the relative humidity and denned as 1

for 80% relative humidity.
The mode radius for the anthropogenic mode is taken as r0=0.03 /urn, and for
the marine aerosols 'as ro=0.24 /an. The relative humidity is assumed to be
80%. The complex refractive indices for the two aerosol types at 80% rela-
tive humidity are listed in Table 6.1. 'The optical properties for the anthro-
pogenic and marine modes were computed using the Mie scattering code MIEVU
[De Rooij and Van der Stap, 1984]. Using Mie theory implies that the particles
are assumed spherical. The anthropogenic aerosol particles are predominantly
formed by gas-to-particle conversion, which will generally lead to spherical par-
ticles. In addition, most of the anthropogenic and sea salt aerosol particles are
hygroscopic. The accretion of water vapor by the particles will also lead to
particles that are quite spherical.

6.2.2 Radiative Transfer Model
The aerosol retrieval methods compare the measured TOA reflectance to values
determined by radiative transfer modeling. Because radiative transfer calcula-
tions are time consuming, it is convenient to use pre-calculated lookup tables
of the radiative transfer parameters used in the algorithms. Radiative trans-
fer computations were performed to determine these parameters as a function
of the Sun/satellite geometry and the wavelength. Lookup tables were created
for atmospheres containing the anthropogenic and marine aerosol types (de-
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scribed above), as well as for the aerosol-free (Rayleigh) case. Aerosol particles
of anthropogenic and marine origin are predominantly situated in the atmo-
spheric boundary layer. For this reason, the atmosphere was divided into two
layers: the upper layer containing only molecules, and the lower layer with only
aerosols. For the ATSR-2 retrieval algorithm, the lookup tables were computed
using the discrete ordinates method [Stamnes et al., 1988], thus ignoring the ef-
fects of polarization. For the GOME UV retrieval algorithm the polarization
effects are accounted for, by using a doubling-adding radiative transfer code
[Evans and Stephens, 1991] to create the lookup tables.

6.2.3 The ATSR-2 dual view algorithm
The ATSR-2 is a radiometer with seven wavelength bands, four of these bands
are in the visible and near infrared (effective wavelengths 0.555, 0.659, 0.865
and 1.6 //m) and potentially useful for aerosol retrieval. In-flight calibration of
these channels is performed by measuring the solar irradiance during parts of the
orbit. The spatial resolution of the ATSR-2 is approximately 1x1 km2 at nadir,
and the swath width is 512 km. The ATSR-2 has a conical scanning mechanism,
thus producing two views of each region: first a forward view (viewing zenith
angle approximately 56° at the surface), and about two minutes later a nadir
view.

The key problem in aerosol retrieval over land is to distinguish between con-
tributions to the TOA reflectance from scattering in the atmosphere, and from
reflection by the surface. The so-called dual-view algorithm uses both the di-
rectional and the spectral information in the ATSR-2 data to separate between
atmospheric and surface contributions [chapter 5]. The dual view algorithm only
applies to cloud-free scenes. For such cases the total (aerosol + Rayleigh) optical
depth is usually less than 1 in the wavelength range of the ATSR-2. Over land,
the contribution of the surface reflectance in this optical depth regime is domi-
nated by the direct contribution, i.e. photons that are reflected at the surface and
transmitted on their upward and downward path through the atmosphere. Ig-
noring the directional effect in the higher order atmosphere-surface interactions,
the TOA reflectance measured by the satellite sensor may be approximated by:

(6'2)

where:
pa is the contribution of atmospheric scattering (path reflectance);
PS is the directional surface reflectance;
RS is the surface albedo;
T is the total (direct plus diffuse) transmittance along the downward and

upward path through the atmosphere;
s is the spherical albedo of the atmosphere for upward directed irradiance;

and
A is the wavelength.

Note that pa, ps, and T all depend on the Sun/satellite geometry.
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Because of the geometry dependence of the surface reflection, pa will have
different values for the forward and nadir viewing direction of the ATSR-2. How-
ever, the surface reflection can be approximated by a part describing the varia-
tion with the wavelength, and a part describing the variation with the geometry
[Flowerdew and Haigh, 1995]. Using this approximation, it follows that the ratio
between the surface reflectance for the ATSR-2 forward and nadir views is in-
dependent of the wavelength. Thus the forward view surface reflection (AS, ƒ (A))
may be written as:

P.,/W = *-P.,»(A), (6.3)

where pa<n is the nadir view surface reflection; and k is the wavelength-independent
ratio between forward and nadir view surface reflection that depends only on the
Sun/satellite geometry.
For most continental aerosol types, except for desert dust, the aerosol extinction
decreases rapidly with the wavelength and the AOD at 1.6 pm will be small
compared to the AOD at wavelengths in the visible. Ignoring the atmospheric
contribution at 1.6 /im, the value of k can be estimated from the TOA re-
flectances for the forward and nadir view at this wavelength. Data presented in
Kaufman et al. [1997b] show that for a variety of land surfaces types the surface
reflections at 0.555 and 0.659 //m are proportional to those in the mid-infrared
(1.6 and 2.1 /mi). This does not apply to the 0.865 //m channel, which therefore
cannot be used in the dual view algorithm. Equation (6.2) is used to describe
the TOA reflectance for the nadir and forward surface reflection, respectively.
By combining the forward and nadir view information, the unknown surface re-
flectance (pa «) and the unknown surface albedo (Ra) can be eliminated [chapter
5]:

Pn(A)-/Jq,n(A) _

Tn(A)

where the subscripts n and ƒ refer to the nadir and forward view respectively.
For computation of the AOD from equation (6.4) it is assumed that the path
reflectance increases linearly with the AOD [Durkee et al., 1986]:

Pa(A) = MA) + c(A) • AOD(X), (6.5)

where po is the path reflectance for an aerosol free atmosphere; and c is the slope
between pa and AOD, which depends on the aerosol phase function.
The AOD is computed from equation (6.4) by substituting (6.5) in (6.4) and
applying an iterative procedure. For the z'-th iterative step the AOD is given by:

, (6-6)AODi(X) = I ^"V'V .-/y / Cfi(A) C/(A)

where p'n = p- po-
The ratio A; for the i-th iterative step is computed from the 1.6 /mi channel as:

(g

pn(1.6fj,m) -
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The iterative procedure is initiated using AOD(1.6)=Q. Usually convergence of
(6.6) is reached within a few iterative steps.
The spectral AOD is computed using (6.6) for different mixtures of the an-
thropogenic and marine modes. The method of least squares is used to find
the mixture for which the spectral behavior of the retrieved AOD best fits the
spectral behavior of the used model AOD.

6.2.4 GOME UV method

GOME is a four-channel grating spectrometer which measures the TOA radiance
between 0.240 and 0.790 /im with a spectral resolution of 0.2 to 0.4 nm. The
default size of the GOME pixels is 320x40 km2. However, in the validation phase
the pixel size was 80x40 km2, and since June 1997 the pixel size is 80x40 km2

for three days per month. GOME is sensitive to the polarization of the light. To
be able to correct for the polarization sensitivity, the polarization of the TOA
radiance is measured by so-called Polarization Measuring Devices (PMDs). For
calibration purposes, GOME is observing the Sun via a diffuser plate once per
day. Spectral calibration is performed using an on board spectral line lamp.

Aerosol retrieval is best possible over surfaces with low and preferably con-
stant albedo. Herman et al. [1997] showed that between 0.340 to 0.380 /mi
the albedo of most land surfaces is between 0.02 and 0.04, and nearly inde-
pendent of the wavelength. The smooth variation of the aerosol optical prop-
erties over a wavelength range can usually be described by a few parameters
[Tanré et al., 1996]. Therefore, using numerous wavelengths will add little infor-
mation. For this reason, five wavelength bands at effective wavelengths of 0.342,
0.355, 0.368, 0.388, 0.400 fim with widths of 1 nm were selected from the GOME
spectra. These wavelength bands were selected for their minimum in gaseous
absorption and to avoid the so-called ring effect in solar Fraunhofer lines. In the
absence of clouds, the TOA reflection of a cloud-free and vertically homogeneous
atmosphere overlying a Lambertian surface with albedo Ra can be written as
[Chandrasekhar, 1950]:

p(\) = /»„(A) + -—££$-—T(X), (6.8)
1 — -K«(A) • s(A)

where the same notation as in equation (6.2) is used.
To separate the atmospheric and surface contributions to the TOA reflectance,
an assumption on the surface albedo, fls, is made. The aerosol is assumed to be
an external mixture of the anthropogenic and marine aerosol type. The TOA
reflectance for different aerosol mixtures and AOD are computed from the lookup
tables using equation (6.8). To find the best-fitting combination of mixture and
AOD the method of least-squares is applied, thus minimizing £2, which is defined
as:

)-pm(A i)]2 , (6.9)



82 Chapter 6. Regional distribution of aerosol over land

where: p is the computed reflectance for a given aerosol model and AOD; and pm

is the measured TOA reflectance; and A» is the wavelength of the i-th wavelength
band.

The largest errors in this retrieval method are expected to be caused by the
assumptions on the aerosol size distribution and the chemical composition, and
the assumed surface albedo. An error analysis was performed to investigate the
sensitivity of the method to these assumptions. Data was simulated for different
surface albedos and aerosol models using the 6S model [Tanré et al., 1997], for
the geometry encountered in the case study described below. The simulated data
set was created for the aerosol models 'Urban', 'Maritime' and 'Continental', as
proposed by WMO [1983]. To test the surface albedo sensitivity, the surface
albedo was varied while the same aerosol model was used as in the lookup ta-
bles. The simulated data set was used as input for the retrieval algorithm, and
the retrieved AODs were compared to the 'true' values. The most important
conclusions of this error analysis are:
-The retrieval method is sensitive to absorption by the aerosol. For strongly
absorbing aerosols (WMO Urban model, single scattering albedo as low as 0.66)
the retrieval algorithm tends to negative values for the AOD. The absorption
sensitivity is caused by the weak absorption of the aerosol model used to compute
the lookup tables. Strongly absorbing aerosols will absorb part of the important
Rayleigh and surface contributions, which will lead to under-estimations, or even
negative values, for the retrieved AOD.
-For the WMO Maritime and WMO Continental models the difference between
the retrieved and 'true' AOD was between 1 and 34 %.
-For land surfaces (albedo 0.02 - 0.04) the assumed surface albedo should be
within 0.01 of the 'true' value to ensure that the retrieved AOD is within 0.1 of
the 'true' value.
The overall uncertainty of the retrieval method depends on the accuracy of the
assumed aerosol model and surface albedo. When the surface albedo is within
0.01 of the 'true' value, the uncertainty of the AOD retrieval is estimated 30%
or 0.1, whichever is greatest.

6.2.5 Cloud detection in ATSR-2 images
The operational ATSR-2 cloud flagging product is developed for sea surface
temperature retrieval, and cannot be used over land. Therefore, we developed
a cloud detection algorithm for ATSR-2 data which can be used both over land
and ocean. The cloud detection algorithm is based on the APOLLO algorithm,
which was developed for cloud detection in AVHRR images [Olesen and Grassl,
1985, Saunders and Kriebel, 1988]. A sequence of cloud detection tests is applied
to all pixels in the ATSR-2 image. Pixels are flagged cloudy if the reflectivity at
0.66 ^m, the color ratio (0.87/0.66 A*m), the brightness temperature at 11 /zm,
or the brightness temperature difference (11-12 fj,m) exceed specified thresholds.
The thresholds are determined from the data itself by histogram analysis. Dif-
ferent thresholds are used over land and sea. The cloud detection results in a
classification of all pixels in clear and cloudy pixels.
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6.3 Observational Data

On 25 July 1995, the ERS-2 satellite passed over northwestern Europe at 1050
UTC. The ATSR-2 1.6 pm image is shown in Figure 6. la, together with the
ground tracks of the eastern and nadir pixels of GOME. The 25th of July 1995
was in the commissioning and validation phase of GOME, during which the pixel
size was set to 80x40 km2. The satellite retrievals will be compared to ground-
based measurements at three locations indicated in Figure 6.1a. In Petten,
The Netherlands (52.75° N, 4.65° E) and De Bilt, The Netherlands (52.10° N,
5.18° E) the direct solar irradiance was measured with pyrheliometers. The mid-
visible AOD can be derived from the direct solar irradiance when data on the
amount of precipitable water is available [Halthore et al., 1997]. The latter was
derived from the radiosonde from De Bilt at 1200 UTC. The direct solar irradi-
ance in the UV (0.368 //m) was measured in De Bilt with a UV-A pyrheliometer.
The AOD at this wavelength was derived in the morning (between 0505 and 0720
UTC) and afternoon (between 1610 1825 UTC) using the Langley plot method.
In Lille, France (50.60° N, 3.15° E) the spectral AOD was determined using a
Sun/sky radiometer of the AERONET network [Holben et al., 1998]. -

6.4 Results

6.4.1 ATSR-2 retrieval

Figure 6.1a shows very few clouds over northwestern Europe for 25 July 1995.
The cloud flagging method described in section 6.2.5 indicated some sub-pixel
cloudiness in the southern part and northeastern part of the image. The area
over The Netherlands, Belgium and northern France above about 50° N was
cloud-free. The dual-view algorithm was applied to the ATSR-2 data. The
AOD at 0.555 /xm retrieved from the ATSR-2 data is shown in Figure 6.1b. This
image shows a large aerosol plume over Germany, Belgium and northern France.
The AOD at 0.555 /xm in this plume reaches values larger than 0.5, whereas to
the north of the plume the AOD is smaller than 0.15. Over less than 100 km
the AOD changes by more than a factor of 3, clearly demonstrating the large
spatial variability of the aerosol. The AOD image shows some artifacts over
shallow water bodies. Apparently the i-factor approximation (equation (6.3)),
which was developed for use over land surfaces, is not valid for these areas. The
higher AODs in the area around (51.5° N, 9° E) are an artifact caused by the
occurrence of sub-pixel clouds in this area.

To validate the satellite retrieval, the dual-view algorithm results were com-
pared to the results of ground-based aerosol measurements. In Figure 6.2a the
AOD retrieved from the ATSR-2 data and the AOD computed from the Sun/sky
radiometer direct solar irradiance measurements at Lille are plotted as a function
of the wavelength. Unfortunately, the Sun/sky radiometer data and the ATSR-
2 data are not available at the same wavelengths. However, it is reasonable to
assume a smooth spectral variation of the AOD, and thus the data points from
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Figure 6.1: (a) ATSR-2 near infrared (1.6 pm) image over northwestern Europe
for 25 July 1995, 1050 UTC. Squares indicate the location of the ground stations
at Petten (52.75° N, 4.65° E), De Bilt (52.10° N, 5.18° E) and Lilie (50.60° N,
3.15° E). Lines indicate the GOME pixels for the nadir and east tracks, (b)
Distribution of the aerosol optical depth at 0.555 /^m for the scene of Figure
6.la as computed from the ATSR-2 data using the dual view algorithm.
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Figure 6.2: (a) Aerosol optical depth for Lille for 25 July 1995,1050 UTC, plotted
as function of the wavelength. Squares for the satellite retrieval from ATSR-2
data using the dual view algorithm; open circles for the Sun/sky radiometer
data; errorbars indicate the standard deviation in the measurements, (b) Aerosol
optical depth for De Bilt for 25 July 1995, plotted as a function of the wavelength.
Squares for the satellite retrieval from ATSR-2, open circles for the broadband
pyrheliometer results, and triangles for the UV direct solar irradiance results.
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each method can be interpolated. Application of this procedure shows that the
ATSR-2 and Sun/sky radiometer data agree within 0.05 optical depth. Prom the
direct solar irradiance measured by the pyrheliometers in Petten and De Bilt,
the AOD at 0.659 /mi was computed using MODTRAN 3.5 computations. In
De Bilt the AOD at 0.659 /tm was 0.09±0.02; and in Petten the AOD at 0.659
//m was 0.12±0.02. The AOD at 0.659 /mi from the dual view retrieval was
0.07±0.05 in De Bilt and 0.09±0.05 in Petten. Thus the values for the AOD
derived from ATSR-2 and from the ground based pyrheliometer measurements
are within the experimental uncertainty. Also the spatial variations show a sim-
ilar trend. The AOD at 0.368 /an, derived from Langley plots for the UV direct
solar irradiance measurements in De Bilt, was 0.16 and 0.22 for the morning and
the afternoon, respectively. These values are in agreement with the low AOD
values from the ATSR-2 and pyrheliometer measurements in De Bilt. The AOD
from the ATSR-2 retrieval for De Bilt, as function of the wavelength, is plotted
in Figure 6-2b, together with the ground-based results described above. The
AOD from the UV measurements seems to be higher than the ATSR-2 retrieval
and the pyrheliometer results. However, the difference in wavelength and time
between make comparison difficult.

6.4.2 GOME retrieval

surface albedo results

The ground tracks of the nadir and the east pixels of GOME are shown in
Figure 6. la. The ground stations are nearest to, or covered by, the nadir GOME
pixels. Therefore we will focus on the nadir GOME pixels, which were cloud-
free. To compare GOME and ATSR-2 data, the ATSR-2 retrieved AOD values
were averaged over the GOME pixels. In Figure 6.3 the TOA reflectance at two
wavelengths, as measured by GOME, is plotted as a function of the AOD as
retrieved from the ATSR-2 data. In the UV (0.368, Figure 6.3a) there is a clear
linear relationship between the TOA reflectance and the AOD from ATSR-2. In
the visible (0.680 /an, Figure 6.3b) such a relationship is absent, due to the non-
negligible spatial variations of the surface albedo. In the UV the surface albedo
is much lower and far more constant. Using radiative transfer calculations and
the y-axis intercept of Figure 6.3a, the surface albedo at 0.368 /an was estimated
to be 0.013±0.005. The same analysis was performed to determine the surface
albedo at the other wavelengths used in the GOME retrieval algorithm. The
surface albedo for all the wavelengths is shown in Table 6.2.

The surface albedos listed in Table 6.2 are slightly lower than those reported
by Herman et al. [1997b] for land surfaces (0.02 to 0.04), however these authors
did not correct for contribution by aerosols. The surface albedo shows little
spectral variation, except at the lower end. At 0.342 /an the surface albedo is
significantly higher than at the other wavelengths.

The slope between the TOA reflectance and the AOD is very sensitive to
the aerosol phase function [Durkee et al., 1986], which in turn depends strongly
on the aerosol type. The linear relationship between the TOA radiance and the
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Figure 6.3: Comparison between the reflectance as measured by GOME and the
aerosol optical depth as retrieved from ATSR-2. In Figure 6.3a the reflectance
at 0.360 fim is plotted as a function of the aerosol optical depth at 0.555 /xm;
in Figure 6.3b the reflectance at 0.680 /^m is plotted as a function of the aerosol
optical depth at 0.555 /xm.

AOD, as observed in Figure 6.3a, indicates that the phase function does not vary
strongly over this region. The UV aerosol algorithm was applied to the GOME
data, using the surface albedos as listed in Table 6.2.
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Wavelength (/urn)
0.342
0.355
0.368
0.388
0.400

Surface Albedo
0.024±0.005
0.015±0.005
0.013±0.005
0.011±0.005
0.011±0.004

Table 6.2: UV Surface albedo determined from the GOME nadir reflectances
and ATSR-2 AODs between 49.4 and 53.3° N.

48 49 50 A 51 52* J 53

Lille De Bilt Petten

LATITUDE (degrees)

54

Figure 6.4: (a) Aerosol optical depth at 0.400 /xm as determined from the GOME
and ATSR-2 data plotted as a function of latitude for the nadir track of GOME,
see Figure 6.la. (b) Same as (a) but for the Angstrom wavelength exponent.
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aerosol optical depth results

The AOD can often be well represented by a power-law function:

AOD(X) ~ A-° (6.10)

where a is the Angstrom wavelength exponent; and A is the wavelength in //m.
Such a power law fit was used to convert the ATSR-2 data to 0.400 /im, in
order to compare the ATSR-2 and GOME retrieval results. Figure 6.4a shows
the GOME AOD and the ATSR-2 AOD, both for a wavelength of 0.400 urn,
plotted as function of latitude. The AODs from the two retrieval methods agree
within 0.1, except for latitudes larger than about 52.5° N. In this region with
shallow waters the ATSR-2 retrieval is unreliable, as discussed above. In Figure
6.4b the Angstrom wavelength exponent as determined from the GOME and
ATSR-2 data is plotted as a function of the latitude. For the ATSR-2 the AOD
(Figure 6.4a) and Angstrom wavelength exponent (Figure 6.4b) correlate very
well. This good correlation shows that there are more and smaller particles
inside the plume than outside the plume. However, the Angstrom wavelength
exponent determined from the GOME data does not show this correlation. The
GOME Angstrom wavelength exponent shows much more variation than the
ATSR-2 values, which is probably caused by the small wavelength range (0.342
- 0.400 /un) used in the GOME retrieval.

A further comparison between GOME and ATSR-2 aerosol retrieval is pre-
sented in Figure 6.5. Figure 6.5a shows the AOD retrieved from the GOME
pixel including De Bilt, and the ATSR-2 AOD averaged over this GOME pixel,
both as a function of wavelength. Figure 6.5b is similar to 5a, but for the GOME
pixel nearest to Lille. Combining the information from the two aerosol retrieval
methods yields information on the AOD and its spectral behavior from the UV
to the near-infrared. Therefore, power-law fits through the combined GOME
and ATSR-2 data were computed, which are plotted in Figure 6.5a and 6.5b.
For the De Bilt pixel the Angstrom wavelength exponent from the power-law fit
is 0.7±0.1, for the pixel near Lille it is 1.6±0.1. The latter is in good agreement
with an Angstrom wavelength exponent of 1.8±0.2 from the Sun/sky radiometer
in Lille. Note that the Sun/sky radiometer is a point measurement whereas the
GOME pixel covers a 80x40 km2 area.



A
E
R
O
S
O
L
 O
P
T
I
C
A
L
 D
E
P
T
H

A
E
R
O
S
O
L
 O
P
T
I
C
A
L
 D
E
P
T
H

(D O

s
*

&- o

P 'ro

p Ko -I
-

p b)
p bo -l—

I m r— m i

p b p œ O
)

00

CD

O

-t
—

O Ko
p u 4
-

O O m CO 37

at, D CD CD



6.4. Results 91

58°N-

54°N-

50°N-

46°N-

0°E 4°E

Longitude

16°E

Figure 6.6: Back-trajectories for airmasses reaching De Bilt and Lille on 25 July
1995, 1100 UTC, overlaid on the aerosol optical depth image (Figure 6.1b). Each
symbol (dot for De Bilt, cross for Lille) on the back-trajectory represents one
hour; the back-trajectories end at a height of about 150 m.

6.4.3 Back-Trajectories

In the previous sections, data were presented of aerosol properties determined
from satellite measurements and ground based observations. The image con-
structed from the ATSR-2 data shows a large aerosol plume over Germany,
Belgium and northern France (Figure 6.1b). The occurrence of this plume and
the large aerosol gradient was confirmed by ground based measurements and by
GOME retrievals. Also, combination of GOME and ATSR-2 retrievals showed
a higher Angstrom wavelength exponent in Lille. These two facts together indi-
cate that in this case of 25 July 1995, the particles dominating the scattering are
smaller in Lille than in De Bilt. The regional distribution of aerosols is caused
by both transport and local sources. To investigate this in detail, the airmass
history for De Bilt and Lille were determined. The back-trajectories for De Bilt
and Lille are shown in Figure 6.6. The time interval between each point in Fig-
ure 6.6 is one hour. Both back-trajectories end at an altitude of approximately
150 m. Over the last 4 days the back-trajectory for De Bilt was between 900
and 150 m height, and for Lille between 400 and 150 m. The airmass that ends
at De Bilt, which is north of the aerosol plume, has passed over Scotland, the
North Sea and the mainly rural northeastern part of The Netherlands. The
airmass ending in Lille (in the aerosol plume) has followed a more southerly
route, passing over some industrial regions in the UK, and particularly over the
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industrial and densely populated areas in the German Ruhr area. Therefore it is
most probable that the aerosol plume was mainly due to anthropogenic sources
in Germany and Belgium.

6.5 Summary and Conclusions

Aerosol optical depths retrieved over land from GOME and ATSR-2, two satellite
instruments on the ERS-2 satellite, are compared for a case study over north-
western Europe for 25 July 1995. The retrieval methods differ in the wavelength
ranges to which they apply, in the viewing directions used and the assumptions
on the surface reflection. First, results from the ATSR-2 dual-view algorithm
were compared to ground based observations at three locations. The AOD from
the ATSR-2 dual view algorithm agreed within the observational uncertainty
with co-located Sun/sky radiometer and pyrheliometer derived values. To com-
pare the two satellite aerosol retrieval methods the ATSR-2 derived AODs were
averaged over the GOME pixels. Comparison of the AODs at 0.400 //m showed
that for most of the pixels the two methods agreed within 0.1 optical depth.
The Angstrom wavelength exponent compared less good, which is probably due
to the small wavelength range used in the GOME retrieval (0.342 to 0.400 /im).
By combining the two retrieval methods, aerosol properties from the UV to the
near infrared can be retrieved from the same satellite platform. The regional
aerosol distribution for 25 July 1995 shows a large aerosol plume over Belgium
and northern Prance. Back-trajectories indicate that this plume was formed by
anthropogenic sources in the Germany and Belgium. The large aerosol gradient
illustrates the high spatial variability of the aerosol in the troposphere.
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Chapter 7

Comparison of Aerosol
Satellite Remote Sensing
and a 3D chemical
transport Model

The model calculations presented in this chapter were performed by Ad Jeuken.
He developed this model in co-operation with F*rank Dentener.

Abstract

Comparisons are presented between aerosol optical depth derived from aerosol
satellite remote sensing and from aerosol fields calculated with a 3D chemi-
cal transport model, for Europe for August 1997. The 3D chemical transport
model describes the sulfur cycle coupled with methane oxidation and tropo-
spheric background chemistry. The satellite retrieval is based on GOME data in
the wavelength range between 0.340 and 0.400 /zm. To independently test the
model and the retrieval, results are compared to ground-based sunphotometer
data. The correlation coefficient between GOME retrieved aerosol optical depth
and sunphotometer data is 0.80. For the model derived aerosol optical depth
and sunphotometer data the correlation is much less. However, this low value
is biased by a few days for which the model predictions differ strongly from the
measurements. For two periods of three days each, spatial correlation between
model and GOME data was evaluated. The mean absolute difference between
the model and GOME aerosol optical depth was 0.23. The model data shows
a positive offset of approximately 0.2. This offset might be due to an excess of
sulfate predicted by the model in the free-troposphere.
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7.1 Introduction

Aerosols are important for a variety of processes in the atmosphere. Three-
dimensional (3D) chemical transport models are being developed that can accu-
rately describe the global aerosol fields. These models can be used as diagnostic
tools to predict the effects of changes in emissions and depositions on global
climate. Many different aerosol species, each with its own source strength and
spatial extent, add to the aerosol radiation effects [Tegen et al., 1997]. In addi-
tion, the radiative forcing of aerosols does not only depend on the concentration,
but also on the aerosol size distribution, particle shape and chemical composi-
tion. Owing to their relatively short lifetimes in the troposphere, the aerosol
properties are highly non-uniformly distributed, in both space and time.

To test 3D chemical transport models, their results must be compared with
experimental data. Ground-based, airborne, and satellite measurements can be
used. Ground-based experiments can provide detailed information on the aerosol
size distribution and chemical composition. However, most of these measure-
ments are point measurements near the surface, and may not be representative
for the aerosol throughout the boundary layer and above. Aircraft observa-
tions are very expensive and therefore not suitable for long term monitoring.
Satellite remote sensing on the other hand can provide daily measurements of
column integrated aerosol properties, such as the spectral aerosol optical depth
(AOD), on spatial scales ranging from a few kilometers to global. The spectral
AOD holds information on the aerosol load and on the aerosol size distribu-
tion [Tanré et al., 1996], and limited information can be derived on the chemical
composition. The drawback of satellite remote sensing measurements are the
lack of profile information, and the relatively large time span (usually more than
24 hrs) between two successive satellite overpasses over an area.

Combination of aerosol satellite remote sensing and transport models can be
applied for interpretation of observed spatial aerosol distributions, as observed
from the satellite, and vice versa. Also, combination of remote sensing and
transport models should be considered for data assimilation [Jeuken et al., 1999].
In data assimilation the satellite measured aerosols fields are used as input for the
transport models which then provide "smart" interpolations to fill the (spatial
and temporal) gaps between satellite overpasses. Data assimilation can be used
to predict the evolution of the aerosol field. This information can be used as a
first guess for the aerosol retrieval algorithms for the next overpass.

In this chapter some of the above ideas are tested by combining data from
aerosol satellite remote sensing with calculations from a 3D chemical transport
model. The comparison is made for a scenario over Europe, for August 1997.
The 3D chemical transport model describes the sulfur cycle, from which the total
AOD is estimated. To account for other aerosols than sulfate, such as nitrate
and organic aerosols, a correction factor is applied based on ground-based mea-
surements [ten Brink et al., 1996, Diederen et al., 1985]. Because sulfate aerosol
is much better understood than most other aerosol species, it is used as a tracer
for these other species. Like sulfate, most of the nitrate and organic aerosols
are the result of anthropogenic activities. The model results are compared with
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AOD retrieved from observations from the Global Ozone Monitoring Experiment
(GOME) in the wavelength range between 0.340 and 0.400 /xm, see chapter 6
for a description of GOME and the retrieval algorithm. Besides results from the
3D chemical transport model and satellite observations, also data is used from
the AERONET sunphotometer network [Holben et al., 1998] to validate both
the model and satellite retrieval results.

7.2 Modeling the Sulfur Cycle using the TM3
model

The 3D chemical transport model is developed bv Jeuken and Dentener. In
this section a brief description of the model is given, a more comprehensive
description can be obtained from Jeuken [1999].

The tracer transport model (TM3) calculates the horizontal and vertical
transport of tracer mass using meteorological fields from the ECMWF. Global
fields of wind, surface pressure, temperature, humidity, cloud cover, cloud liq-
uid/ice water, surface precipitation and several other surface parameters are
available. The ECMWF input fields are updated every six hours. A spatial
resolution of 2.5° x2.5° is used for TM3. By computing the derivative fields,
the TM3 output is on a 1.25° xl.25° grid.

The sulfur species in TM3 are SO2, SOf, DMS, and MSA. The sulfur cy-
cle is coupled to a tropospheric background chemistry scheme, which solves the
CH^CO-NOx-HOz chemistry [Roelofs and Lelieveld, 1995]. Emissions of SO2

are taken form the GEIA data base. Here the two level seasonal emission distri-
butions are used. Volcanic emissions are derived from the work of Andres and
Kasgnoc [1998]. For DMS the compilation of ocean surface concentrations of
Kettle and Andreae is used, in combination with the Liss and Merlivat [1986]
exchange coefficient parametrization to calculate DMS emissions. The total
global SO2 emission is about 75 Tg per year.

Both gas phase and in-cloud reactions of SO2 are considered. About 36%
is oxidized by OH in the gas phase, the rest by H202 and Os in the cloud
resulting in the formation of sulfate. The removal path via ozone is strongly pH
dependent. The pH is calculated from all bases, weak and strong acids, that are
available in the model (also ammonium). To determine the amount of dissolved
SO2 in the cloud droplet, the effective Henry equilibrium coefficient is calculated.

The main removal mechanism of sulfate is wet scavenging either by rain
drops or cloud drops. The precipitation at the surface is scaled with a normal-
ized zonally and seasonally average climatology of the vertical distribution of
precipitation formation. The resulting vertical distribution of precipitation for-
mation rates is directly related to the amount of tracer being scavenged inside
the cloud [Langner and Rodhe, 1991].

Dry deposition of sulfate is calculated with a single deposition velocity ob-
tained from a unimodal mass size distribution over land and a bimodal mass size
distribution over sea.
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SOa is removed at the surface mainly by dry deposition. Dry deposition of
all tracers in the model is calculated with the extensive scheme of Ganzeveld
et al. [1998]. In this scheme the deposition velocity of SO2 depends on the
aerodynamic resistance and surface characteristics like for example soil pH, soil
wetness or snow cover. The deposition over sea is dependent on the surface
roughness which varies with wind speed.

7.3 Modeling the Aerosol Optical Depth
The TM3 model provides the spatial and temporal distribution of the mass of
sulfate ions. In TM3 an effective aerosol size distribution is used. To derive
the AOD of the sulfate aerosol, assumptions are made on the aerosol size distri-
bution. Other aerosol species, such as nitrates and organic aerosols contribute
significantly to the total AOD [ten Brink et al., 1996]. Additional assumptions
have to be made to account for the contribution of these aerosol species. A
complication is that the optical properties of especially organic aerosols are not
well known. The approach to take this into account will be discussed below.

Following the approach of Kiehl and Briegleb [1993] , the AOD is expressed
as:

AOD(X) = f(RH, A ) s ° 4 ° 4 , (7.1)
XS04

where:
<*sc>4 (A) is the mass extinction efficiency of sulfate; i.e. extinction coefficient

per unit of mass SOf at relative humidity <40%;
BSO* is the sulfate column burden;
XsOt is the fraction of the aerosol extinction at low relative humidity caused

by sulfate aerosol; and
f(RH, X) is the relative increase of the scattering coefficient at given RH to

the scattering at low (<40%) RH.

In equation (7.1) otsot and f(RH) depend on the aerosol size distribution and
chemical composition of the particles. The aerosol size distribution was assumed
to be lognormal, with a geometric mean radius of 0.05 p,m and a geometric
standard deviation of 2.0. All sulfate aerosol was assumed to be in the form of
ammonium sulfate [ten Brink et al., 1996]. The dry density of the particles was
taken as 1.7 g cm~3. a,so4 was evaluated using a Mie code. The resulting aso4

is plotted in Figure 7.1 as a function of the wavelength.
Using the above assumptions, the AOD by sulfate aerosol at low RH is cal-

culated from the model predicted sulfate mass and the sulfate mass extinction
efficiency. Besides sulfate aerosol, also nitrate, organic and also sea salt aerosols
contribute significantly to the AOD over Europe. The contribution of these
non-sulfate aerosol particles to the column AOD is assumed a constant fraction
of the sulfate contribution. The justification for this assumption is based on
good correlation between aerosol scattering measured by nephelometers and the
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Figure 7.1: The mass extinction efficiency for dry ammonium sulfate in m2g 1

SOj1, as a function of the wavelength. A lognormal size distribution with mean
geometric radius of 0.05 pm and geometric standard deviation of 2.0 is used.
The refractive index is taken as 1.53 - 0.0.

sulfate mass [Diederen et al., 1985, ten Brink et al., 1996]. The factor xsot in
equation (7.1) accounts for the AOD due to the non-sulfate aerosol. Very few
data are available to determine a value for xso* • Studies in the Netherlands in
the 1980s and 1990s showed that the contributions of sulfates and nitrates to
aerosol scattering are comparable [Diederen et al., 1985, ten Brink et al., 1996].
Large parts of the fine particle mass could not be identified, and were presumed
to be carbonaceous material. Ten Brink et al. [1996] speculated that the con-
tribution of sulfate to particle scattering was between 30 and 40%. Diederen
et al. found that sulfate scattering contributed 38% to the total aerosol extinc-
tion. Based on these studies, the sulfate contribution to the AOD at low RH
is estimated to be 40%, hence a value of 0.4 is used for xso* ui equation (7.1).
It is noted that this number is based on data from two studies conducted in
the Netherlands. Elsewhere in Europe xso4 may have a different value due to
differences emissions. Therefore, the use of this factor introduces uncertainty in
the modeled AOD.

Most aerosol particles absorb water vapor when exposed to increasing RH.
The particle growth results in more scattering by the aerosol particles, and
consequently a higher AOD. To account for the increase of aerosol extinction
with increasing RH, the factor f(RH,X) is used in equation (7.1). This factor
is the ratio between aerosol extinction at given RH to aerosol extinction at low
RH (<40%). The increase of the scattering coefficient with increasing RH can
be measured by humidity controlled nephelometry. Figure 7.2 shows f(RH)
as measured in the Netherlands in November 1993, for days with a continental
airmass [ten Brink et al., 1996, Veefkind et al., 1996]. A polynomial fit to the
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20

Figure 7.2: Increase of the scattering coefficient as a function of the RH, as
measured using humidity controlled nephelometry. Line shows a sixth order
polynomial fit through the points.

experimental data is used to describe f(RH). Mie calculations showed that the
wavelength dependence of f(RH) can be ignored.

The compute the humidity effect on the AOD (equation (7.1), the polynomial
fit shown in Figure 7.2 is used together with the RH derived from the ECWMF
fields. Usually, most of the aerosol will be in the boundary layer. Therefore, the
mean RH of the model boundary layer is used to compute f(RH). This intro-
duces errors when large portions of the aerosol are situated above the boundary
layer. Also, due to the strong non-linear behavior of f(RH), using the mean RH
will always lead to an underestimation of f(RH).

7.4 GOME UV Aerosol Retrieval
For aerosol satellite remote sensing the UV retrieval method described in chap-
ter 6 was applied to GOME measurements in the wavelength range between
0.340 and 0.400 /urn. In this wavelength range the surface albedo of most land
surfaces is low. In chapter 6, results were presented from application of the algo-
rithm to GOME data from the validation phase, during which the GOME pixel
size was 80x40 km2. The retrieval results were validated using sunphotometer
data and results from the ATSR-2 dual view algorithm. In this chapter GOME
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data for August 1997 is usedf which has the default pixel size of 320x40 km2.
Each GOME scanline consists of three (east, nadir and west) of such pixels.
The retrieval algorithm compares the measured reflectance to radiative transfer
calculations. For the 320x40 km2 GOME pixels a single Sun/satellite geome-
try cannot be assumed for these calculations. Particularly for the nadir pixel,
the geometry changes rapidly since the viewing azimuth angle changes rapidly
in the middle of the scan line. Therefore, the GOME pixel is broken up into
six sub-pixels. The reflectance of the total pixel is computed by summing the
contributions of these sub-pixels.

Surface albedos as listed in Table 6.2 were used. Additionally, for sub-pixels
over the sea, the Fresnel reflection of the sea surface was taken into account. The
contribution by molecular (Rayleigh) scattering dominates the satellite measured
radiance in the UV. Therefore, it is very important to compute the Rayleigh
scattering as accurate as possible. Since the Rayleigh optical depth varies with
the surface air pressure, variations in the surface air pressure should be taken
into account. Daily average values for the air-pressure were taken from the
NCEP/NCAR reanalysis [Kalnay and Co-authors, 1996].

The retrieval algorithm only applies to cloud-free pixels. Two cloud-screening
methods were applied. The first one uses the data from the Polarization Mea-
suring Devices (PMDs) of the GOME instrument. The PMDs are three broad-
band channels with a pixel size of 20x40 km2. A PMD-pixel is marked cloud-
contaminated when the ratio between the spectral variance and the spectral
average of the three PMDs exceeds a threshold value [Koppers, 1997]. As an
artifact, this screening method will also flag pixels with high albedos, such as
snow or ice covered surfaces. The PMD cloud-screening method fails when only
a small part of the PMD pixels is covered by clouds. However, sub-pixel clouds
can bias the retrieved AOD. Therefore the data was checked manually for cir-
rus and sub-pixel clouds using the nearest in time AVHRR visible and infrared
data. Usually the AVHRR overpass is approximately three hours later than the
GOME overpass.

7.5 Observational Data

For August 1997, AOD values from the TM3 model, the satellite retrieval, and
ground based sunphotometers over Europe were compared. The largest wave-
length used in the satellite retrieval is 0.400 fim. For this reason, all comparisons
are presented for this wavelength. The AOD is computed from the total sulfate
column and the boundary layer RH, as described above.

Satellite retrieval was performed for all GOME data for August 1997 for
the area between 35° and 75° N, and between 10° W and 30° E. In total there
were 49 overpasses over this region. Due to the degradation of PMD 1, the
calibration of GOME in the UV is unreliable [Tanzi et al., 1998]. The error due
to this degradation was estimated between 10 and 40% for AOD between 0.2 and
1. To correct for this effect the fractional polarization for PMD 1 was increased
with 10%.
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Sunphotometer data from the AERONET network [Holben et al., 1998] was
collected for Lille, Prance (50.6° N, 3.1° E), Ispra, Italy (45.8° N, 8.6° E) and
Aire Adour, France (43.7° N; 0.3° E). These sunphotometers measure the direct
solar radiation at 0.440, 0.670, 0.870 and 1.020 /xm. The AOD at 0.400 //m
was computed from the sunphotometer data by fitting a power law function
through the sunphotometer derived spectral AOD. For Aire Adour and Ispra
the standard cloud screened level 2 data product is used [Smirnov et al., 1999].
For Lille it was noted that the standard cloud screening was too strict. When
AVHRR images indicate that it was clear over Lille, the data was still rejected
by the cloud screening algorithm. Therefore, for Lille the unscreened level 1 data
was used, and filtered using the following screening criteria. First, if the AOD
at any of the wavelengths was missing the data was rejected. Second, if the solar
zenith angle was larger than 60° the data was rejected. Third, if the AOD at
0.440 (i,m is larger than 0.7 and the Angstrom wavelength exponent smaller than
0.7 the data was marked as cloudy and rejected.

7.6 Results and Discussion

7.6.1 Timeseries

Both the satellite retrieval and the model results were validated by compar-
ing them to sunphotometer timeseries. It is noted that this comparison is not
straightforward. The sunphotometer data is often not available at the time of
the model output or at the time of the satellite overpass. The sunphotome-
ter data show little diurnal variations, except when a change of airmass occurs
during the day. Such a temporal variation at the sunphotometer site shows as
spatial variations in the satellite data. The large GOME pixels tend to smooth
the spatial variations. To compare the GOME data, daily averages and stan-
dard deviations for the sunphotometer data were computed. In Figure 7.3 the
timeseries of the AOD at 0.400 /zm is shown for Lille, Ispra and Aire Adour, for
August 1997. The average, standard deviation and number of days for which
data is available are listed in Table 7.1.

AERONET
GOME
Model

Lille
ave std n
0.64 0.29 24
0.67 0.29 11
0.72 0.40 31

Ispra
ave std n
0.59 0.28 21
0.43 0.17 5
0.78 0.35 31

Aire Adour
ave std n
0.41 0.16 15
0.48 0.10 10
0.57 0.27 31

Table 7.1: Average (ave), standard deviation (std), and number of days with
data (n), for the aerosol optical depth (0.400 //m) derived from AERONET
sunphotometers, GOME satellite retrieval, and TM3 model, for Lille, Ispra, and
Aire Adour, Agust 1997.
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Figure 7.3: Timeseries of aerosol optical depth at 0.400 pro. for August 1997,
as derived from AERONET sunphotometer data, GOME satellite retrieval, and
TM3 model. The AERONET date are daily averages, the GOME data are at the
time of the satellite overpass (between 930 and 1130 UTC), and the TM3 model
data is for 1200 UTC. For clarity the data for successive days are connected by
lines. Figure 7.3a is for Lille, France; Figure 7.3b for Ispra, Italy; and Figure
7.3c for Aire Adour, France.

Due to the large pixel size (320x40 km2) most of the GOME pixels are cloud
contaminated, and rejected in the aerosol retrieval algorithm. For only few
occasions, a cloud free GOME pixel could be identified that covered one of the
AERONET sunphotometer sites. When no satellite retrieval data was available
for the sites, the nearest pixel for which a valid satellite retrieval was available
was used, provided that this pixel was within 200 km of the sunphotometer
location. As can be seen in Table 7.1, even application of this nearest neighbor
filling method provided GOME retrieval data for only about 28% of the days.
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For the comparison of sunphotometer data with the GOME retrieval results, it
should be realized that the sunphotometer data are daily averages at a single
location, whereas the GOME data are for a large area at the time of the satellite
overpass. The AOD can vary strongly over a few. hundred kilometers [chapter 4,
chapter 6], but also the daily variations can be large.

The timeseries in Figure 7.3 show that for Lille (Figure 7.3a) the sunphotome-
ter and the GOME retrievals correlate well. For Ispra (Figure 7.3b) and Aire
Adour (Figure 7.3c), only for few days both GOME and sunphotometer data are
available. In most cases they compare reasonably well. In Figure 7.4 the GOME
AOD is plotted versus the sunphotometer AOD for all three locations. The
correlation for these data is 0.82. The différences between the sunphotometer
data and the GOME retrieval can be explained by errors in the GOME retrieval
algorithm, spatial and temporal variations in the AOD, or combinations of these
effects. Although the data was carefully checked for cloud contamination, errors
in the retrieval results due to unidentified sub-pixel clouds can not entirely be
excluded.

The AOD from the TM3 model was computed from the model result at 1200
UTC. The data for 1200 UTC were selected as nearest to the GOME overpass
over Europe is between 930 and 1130 UTC. The -AOD at the sunphotometer
locations was calculated by interpolating between the 1.25° x 1.25° model output
grid (~ 90x140 km2). The timeseries of the TM3 model derived AOD for the
AERONET sunphotometer sites (Figure 7.3) show that the model AOD is of the
same order of magnitude as the sunphotometer and GOME results. During some
periods the trends in the AOD are quite similar, while for other periods they
show no correlation. For example, good correlation is observed for Lille between
13 and 18 August (Figure 7.3a), and for Aire Adour (Figure 7.3c) between 11
and 15 August. An example of a period when no correlation is apparent is for
Ispra (Figure 7.3b) between 20 and 25 August.

In Figure 7.5, the model AOD is plotted versus the sunphotometer derived
values. In 80% of the cases the model AOD are within a factor of two of the
AERONET data. The correlation is strongly biased by the data for 1 to 5
August, when in particular for Aire Adour the model overpredicts the AOD.
It is noted that the model AOD is based on some very crude assumptions on
the aerosol size distribution, aerosol composition and treatment of hygroscopic
growth. Also, TM3 model data on large grids are compared to daily averaged
point measurements. Given these crude assumptions, a factor of two seems a
satisfactory result.

7.6.2 Spatial Correlation
To further evaluate the GOME AOD retrievals versus the TM3 results, spatial
variations were compared for two periods: 10 to 12 August and 20 to 22 August
1997. These periods were selected because of the relatively large number of
cloud-free GOME pixels. In total seven valid GOME overpasses occurred during
these two periods. The orbit number, number of pixels for which aerosol retrieval
was successful, and the total number of pixels, are listed in Table 7.2.
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Figure 7.4: Scatterplot of aerosol optical depth at 0.400 /zm from GOME satellite
retrieval and derived from AERONET sunphotometer data, for Lille, Ispra, and
Aire Adour, for August 1997.
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Figure 7.5: AOD at 0.400 urn derived from the TM3 model versus AERONET
sunphotometer data for August 1997.
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The total column burden of sulfate for 11 and 21 August, as computed by
the TM3 model, are shown in Figure 7.6. The spatial distributions of sulfate
aerosol on these days were strongly different. The cloud patterns are shown in
the AVHRR images in Figure 7.7, showing the afternoon overpass over Europe.
The role of clouds in determining the sulfate distributions is non-trivial. On
one hand, sulfate is formed in clouds by the processes described in section 7.2,
on the other hand, sulfate is effectively removed by precipitating clouds. For
11 August the maximum of about 60 mg m~2 SO J was situated northwest of
Scotland. The high values over the UK coincide with a cloud system coupled with
a frontal zone. In-cloud oxidation can explain the high values in this region. A
thunderstorm system over the Mediterranean coast of France coincides quite well
with a strong gradient in the sulfate concentration. The low sulfate concentration
over the eastern Mediterranean might be caused by rain out in this thunderstorm
system. For 21 August the maximum was situated over the European mainland,
showing values of more than 65 mg m~2 SOf. This maximum is caused by a
high pressure system, with stagnant air in which pollution can build up. Over
north Scandinavia more sulfate aerosol is predicted for 21 August. The low
values over the UK may be explained by the large frontal zone, in which wet
removal may have dominated over in-cloud formation.

The AOD image for the GOME retrieval on 11 and 21 August 1997 is shown
in Figure 7.8. Due to the swath width of GOME (960 km) and cloud contami-
nation, AOD values are only available for a small part of Europe. In Figure 7.9
the model and GOME AOD are plotted as a function of latitude, for the GOME
overpass on 11 August. The GOME tracks for the east, nadir and west pixels
are presented separately in Figures 7.9a, 7.9b and 7.9c. The model AOD shows
peaks around 45° N and around 56° N, for all three tracks. The few GOME
data do not allow for a direct comparison with the model spatial variation. Nev-
ertheless, the data available are useful for a first evaluation of the model AOD
prediction. For example, the nadir and west pixel show variations between 45° N
and 57° N that are similar to those in the model results, although the location of
the peaks do not exactly match. This may be due to the difference in spatial res-

Date
10 Aug 1997
11 Aug 1997
12 Aug 1997
20 Aug 1997
20 Aug 1997
21 Aug 1997
22 Aug 1997

Orbit
12058
12072
12086
12200
12201
12215
12229

Cloud-free
25
96
52
33
58
77
96

Total
207
300
267
210
237
267
240

Table 7.2: Date, orbit number, number of cloud-free pixels and total number of
pixels for GOME overpasses over Europe for 10 to 12 August, and"for 20 to 22
August, 1997.
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Figure 7.6: Calculated sulfate column burden (in mg m~2 SOj) for 11 August
1997 (upper panel) and 21 August 1997 (lower panel). Lines show the tracks of
the centers of the GOME east, nadir and west pixel tracks, for the overpasses
on these davs.
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Figure 7.7: AVHRR channel 2 (0.86 /mi) image for afternoon overpass on 11
August 1997 (upper panel) and 21 August 1997 (lower panel). Lines show the
tracks of the centers of the GOME east, nadir and west pixel tracks, for the
overpasses on these days.
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Figure 7.8: Aerosol optical depth at 0.400 ^m from GOME overpass on 11
August 1997 (upper panel) and 21 August 1997 (lower panel). Note the different
scales.
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olution, temporal variations, inexact matching of locations, model assumptions
and sub-pixel cloud contamination. The GOME data for the east pixel (Figure
7.9a) is hard to interpret. From the AVHRR image, it is unclear whether the
increases in AOD around 51° N and 55° N can be trusted or are artifacts caused
by sub-pixel cloud contamination.

The GOME and model AOD for 21 August 1997 are shown in Figure 7.10.
The model AOD shows a maximum over the European mainland around 50° N,
which is most pronounced for the west track (Figure 7.10c), which passes exactly
over the area with the highest sulfate load. In Figures 7.10a en 7.10b a second
maximum is found around 60° N. In all tracks a strong peak in AOD is present
between 66° en 68° N. This maximum is caused by a combination of increased
sulfate load and a high RH (>9U%). For all three pixel tracks the GOME data
trace the model results reasonably well. The west pixel track shows the largest
AOD gradient, in good agreement with the spatial distribution of the sulfate
aerosol in Figure 7.6.

In addition to the comparison of the spatial variation of the AODs derived
from the TM3 model and from the GOME data, a comparison of all results for
the two periods (Table 7.2) is presented in Figure 7.11. This Figure shows that
for most pixels the model AOD is higher than the GOME values. The differ-
ence between the model and GOME AODs is on average 0.14 with a standard
deviation of 0.23. In 75% of the cases the model AODs are within a factor of
two of the GOME data. As mentioned above, the data in Figure 7.11 is for two
periods: 10-12 August, and 20-22 August. For the first period, the difference
between the model and GOME AODs is on average 0.06 with a standard de-
viation of 0.20. For the second period, the difference was on average 0.20 with
a standard deviation of 0.24. For the first period 87% of the model AODs are
within a factor of two of the GOME values, for the second period 68%.

Figure 7.11 suggests that the model AODs are positively offset compared to
the GOME values. This is more evident from the data in Figure 7.12, where
the model AOD is plotted versus the GOME values for the overpass for only
21 August. The offset of approximately 0.2 can easily be seen in this figure.
Since no negative offset was found in the comparison between the GOME and
AERONET data (Figure 7.4) most probably the model values are biased. The
positive offset in the model AOD can be caused by an overestimate of free
tropospheric sulfate. Because the residence time is much longer, the sulfate
is well distributed in the free troposphere. As a result, the free tropospheric
contribution to the AOD will be relatively constant in space and time. An excess
of sulfate in the free-troposphere thus shows up as a constant offset in the AOD.
In model intercomparison studies, the current version of the TM3 model shows
relatively high sulfate concentrations in the free troposphere [Jeuken, personal
communication]. This is probably caused by a too simple wet removal scheme.
A new version of the model is under development.
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Figure 7.9: Aerosol optical depth at 0.400 /xm from GOME aerosol retrieval
algorithm and from the TM3 model for 11 August 1997, plotted as a function of
the latitude, (a) GOME east pixel track; (b) GOME nadir pixel track; and (c)
GOME west pixel track.
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Figure 7.10: As Figure 7.9, but for 21 August 1997. Note that the vertical scales
differ from those in Figure 7.9.
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Figure 7.11: Aerosol optical depth at 0.400 fim derived from the TM3 model
plotted versus the values from the GOME satellite retrieval for the orbits listed
in Table 7.2. The line shows the identity line for the two data sets.

7.7 Conclusions

AOD derived from the TM3 sulfate concentration is compared to satellite re-
trievals from GOME data. Comparisons with ground based sunphotometer data
show good correlation (correlation coefficient 0.80) for the GOME retrieval. For
the model derived AOD the correlation with the sunphotometer data is much
less. The model AOD is typically within a factor of two of the sunphotometer
data. This is a reasonable result, given the many assumptions used in calculating
the sulfate concentration by the TM3 model, and in estimating the AOD from
the sulfate concentration. To derive the AOD from the sulfate concentration
the aerosol size distribution is assumed constant, the contribution of non-sulfate
aerosol is taken proportional to the sulfate AOD, and boundary layer RH is used
to assess the hygroscopic growth of the aerosol particles. These assumptions
alone can cause differences of the order of a factor of two or more. Furthermore,
the comparison between the sunphotometer data and the TM3 model is difficult
due to the difference in spatial and temporal resolution. However, this also holds
for the GOME retrievals.

For two periods of three days each, GOME retrievals were compared to TM3
model derived AODs over Europe. Cloud contamination, and the limited swath
width of GOME cause that retrieval data are only available over a small part
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Figure 7.12: As Figure 7.11, but for GOME overpass on 21 August 1997.

of Europe. In spite of the limited amount of GOME data, certain features in
the spatial aerosol distribution were observed in both the GOME and the model
data. The difference between the model and GOME AOD was 0.14 with a
standard deviation of 0.23 for all data for the two periods. Most of the model
values (75%) were within a factor of two of the GOME values. This factor of
two was also observed between the model results and the sunphotometer data.

The model AOD were positively offset compared to the GOME data. This
offset can be explained by an excess of sulfate predicted by the TM3 model in
the free troposphere. This was supported by model intercomparisons, and is
probably caused by a too simple wet removal scheme. A new version of the
model is currently under development.

Overall the GOME and the model results are in reasonable agreement, con-
sidering the large assumptions in modeling the AOD. Since only the sulfur cycle
was accounted for in the TM3 model, it is anticipated that better agreement
will be obtained when other important aerosol species, such as nitrate and car-
bonaceous material, are modeled as well. The satellite retrieval is limited by
swath width and the large pixel size of GOME. This causes a large number of
cloud contaminated pixels and limited spatial coverage. In the coming years,
new spaceborne spectrometers with a larger swath and a smaller footprint will
be launched. Combination of 3D chemical transport models and satellite remote
sensing has great potential, both for validation of the models, for interpretation
of satellite data, and in assimilation of satellite data.



7.8. Acknowledgments 115

7.8 Acknowledgments

This work is supported by the Netherlands Space Research Organization (SRON),
under contract EO-008. The GOME data were kindly provided by the Eu-
ropean Space Agency (ESA) through DLR. The authors would like to thank
Dr. D. Tanré from the Laboratoire d'Optique Atmosphérique (LOA), Univer-
sité de Lille, and Dr. G. Zibordi from the European Commission Joint Re-
search Centre, for the AERONET data. The Ferret analysis package, devel-
oped by NOAA PMEL, was used in the preparation of this work (available at
http://ferret.wrc.noaa.gov/).

Bibliography

Andres, R. J. and Kasgnoc, A. D. (1998). A time-averaged inventory of aerial
volcanic sulfur emissions. J. Geophys. Res., 103:25,251-25,261.

Dentener, F., Feichter, J., and Jeuken, A. (1998). Simulations of 222radon using
off- and online models. Tellus, page in press.

Diederen, H., Guicherit, R., and Hollander, J. (1985). Visibility reduction by air
pollution in the netherlands. Atmos Environ., 19:377-383.

Ganzeveld, L., Lelieveld, J., and Roelofs, G.-J. (1998). Dry deposition
parametrization of sulfur oxides in a chemistry and general circulation model.
J. Geophys. Res., 103:5679-5694.

Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A., Vermote,
E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., and
Smirnov, A. (1998). Aeronet- a federated instrument network and data archive
for aerosol characterization. Remote Sens. Environ., 66:1-16.

Jeuken, A. (1999). KNMI, pO-box 201, 3730 AE de bilt, the netherlands. e-mail:
jeuken@knmi.nl.

Jeuken, A., Eskes, H., Holm, E., Velthoven, P. V., and Kelder, H. (1999). Assim-
ilation of TOVS total ozone columns in a three-dimensional tracer transport
model. J. Geophys. Res., page in press.

Kalnay, E. and Co-authors (1996). The ncep/ncar 40-year reanalysis project. .
Bull. Amer. Meteor. Soc, 77:437-471.

Kiehl, J. T. and Briegleb, B. P. (1993). The relative roles of sulfate aérosols and
greenhouse gases in climate forcing. Science, 260:311-314.

Koppers, G. (1997). Radiative Transfer in the Absorption Bands of Oxygen:
Studies of their Significance in Ozone Chemistry and Potential for Aerosol
Remote Sensing. PhD thesis, Stockholm University.

Langner, J. and Rodhe, H. (1991). A global three-dimensional model of the
tropospheric sulfur cycle. J. Aim. Chem., 13:225-263.



116 Chapter 7. Satellite observed and modeled AOD

Liss, P. and Merlivat, L. (1986). Air-sea gas exchange rates: Introduction and
synthesis. In Menard, P., editor, The Role of Sea-Air Exchange in Geochemical
Cycling, pages 113-127. Reidel, Dordrecht.

Roelofs, G.-J. and Lelieveld, J. (1995). Distribution and budget of 03 in the
troposphere calculated with a chemistry general circulation model. J. Geophys.
Res., 100:20,983-20,998.

Smirnov, A., Kolben, B., Eck, T., Dubovik, O., and Slutsker, I. (1999). Cloud
screening and quality control algorithms for the AERONET data base. Rem.
Sens Environ., page submitted.

Tanré, D., Herman, M., and Kaufman, Y. J. (1996). Information on aerosol
size distribution contained in solar reflected radiances. J. Geophys. Res.,
101:19,043-19060.

Tanzi, P., Hegels, E., Aben, I., Bramstedt, K., and Goede, A. (1998). Preliminary
results on the performance degradation of earth radiation spectra measured
by GOME. In Optical Remote Sensing of the Atmosphere and Clouds, page
3501. SPIE.

Tegen, I., Hollrig, P., Chin, M., Fung, L, Jacob, D., and Penner, J. (1997).
Contribution of different aerosol species to the global aerosol extinction
optical thickness: Estimations from model results. J. Geophys. Res.,
102(020) :23,895-23,915.

ten Brink, H. M., Veefkind, J. P., Waaijers-IJpelaan, A., and van der Hage, J.
C. H. (1996). Aerosol light-scattering in the netherlands. Atmos. Environ.,
30:4251-4261.

Veefkind, J. P., van der Hage, J. C. H., and ten Brink, H. M. (1996). Neph-
elometer derived and directly measured aerosol optical depth ofte atmospheric
boundary layer. Atmos. Res., 41:217-228.



Chapter 8

Concluding Remarks

Aerosols are important for many processes in. the atmosphere. They are the
largest uncertainty in global climate models. To a large extent this uncertainty
is caused by a lack of aerosol data on a global scale, both as regards their oc-
currence, their physical and chemical properties, and/or their effects on e.g.
climate, through their optical properties, and their influence on clouds. Due
to the limited lifetimes of aerosols in the lower troposphere the aerosol field is
highly variable in space and time. Several examples of this variability are pre-
sented in Chapter 4,5 and 7. Frequent measurement of the global aerosol field
is only achievable by satellite remote sensing. However, aerosol satellite remote
sensing is far from straightforward. It is a notoriously underdetermined problem,
for which many assumptions have to be made in the retrieval algorithms. These
assumptions regard not only the surface reflectivity, but also the aerosol prop-
erties itself. Validation of aerosol algorithms in so-called closure experiments is
therefore of crucial importance.

Aerosol satellite remote sensing puts high demands on the satellite sensors.
The sensors should have narrow spectral bands outside gaseous absorption re-
gions, and the data should be well-calibrated. Data from sensors that meet
these requirements are available only for the last few years. Earlier, data came
from sensors that were not designed for aerosol satellite remote sensing. Their
application is therefore limited.

In this thesis different aerosol retrieval techniques were presented. Until
recently it was thought that aerosol retrieval was only possible over surface areas
with a low and preferably constant albedo, such as oceans. Due to the difference
in surface reflectivity properties, aerosol retrieval over the ocean differs strongly
from aerosol retrieval over land. The differences are not only in the treatment
of the surface reflectivity, but also on the choice of the wavelength range that
is best suitable for aerosol satellite remote sensing. In addition, aerosol sources
over the continents differ from those over the ocean. The capabilities of new
sensors make it possible to retrieve aerosol over land as well. In fact, most of
this thesis is on aerosol retrieval over land. However, aerosol retrieval over land
is still less advanced and less accurate than aerosol retrieval over the ocean.

117



118 Chapter 8. Concluding Remarks

All the retrieval algorithms presented in this thesis apply to cloud-free scenes.
Especially for sensors with a poor spatial resolution like GOME, this is a serious
limitation for the application of aerosol satellite remote sensing.

8.1 Aerosol retrieval over the ocean

Chapters 3 and 4 are dedicated to aerosol retrieval over the ocean. In chapter 3
the aerosol retrieval algorithm for this application was described. For accurate
aerosol retrieval it is important to include multiple scattering as well as the bi-
directional surface reflection. The bi-directional surface reflection is especially
important over the ocean since Fresnel reflection by the sea surface causes both
sunglint and skyglint. Serious errors in the retrieved AOD occur when this effect
is not accounted for. A sensitivity study showed that the largest uncertainties
in the retrieval method can be expected due to the assumptions as regards the
oceanic whitecaps and the assumed aerosol size distributions.

In chapter 4 the ocean aerosol retrieval algorithm is tested in a so-called clo-
sure experiment. The retrieval algorithm was applied to ATSR-2 and AVHRR
data and the results were compared to sunphotometer measurements. The
ATSR-2 has more and smaller spectral bands, and is better calibrated than
the AVHRR. Comparison with airborne sunphotometer data showed that the
AOD from the ATSR-2 retrieval is more accurate than the AVHRR retrieved
values, demonstrating that the retrieval significantly improves when data are
used from a sensor that is more suitable for aerosol retrieval. Another key result
is that both the AOD and its spectral behavior, which can be used to assess the
aerosol size distribution, can be retrieved accurately. Within a few years a num-
ber of satellite sensors will be available that meet the requirements for aerosol
retrieval over the ocean. It is therefore anticipated that an accurate global data
set of AOD and Angstrom parameters over the ocean can be constructed within
a couple of years.

8.2 Aerosol retrieval over land

Aerosol retrieval over land surfaces is much more difficult than over the ocean.
The key problem in aerosol retrieval over land is to distinguish between surface
and atmospheric contribution to the satellite measured reflectance. In this thesis
two methods are presented for aerosol retrieval over land: the ATSR-2 dual view
algorithm and the GOME UV method. The ATSR-2 dual view algorithm, which
was presented in chapter 5, uses both the spectral and the directional information
in the ATSR-2 data. In the dual view algorithm, the shape of the bi-directional
surface reflectance is assumed independent of the wavelength, which is a much
weaker assumption than prescribing the surface albedo. In chapters 5 and 6 the
dual view algorithm was validated using ground based sunphotometer results
for the US east coast and Europe. These comparisons show that the dual view
algorithm can retrieve the AOD as well as its spectral behavior. The dual view
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algorithm clearly demonstrates the added value of a sensor concept with a two
or multi-angle view. Using a relatively simple method, aerosol retrieval of the
AOD and Angstrom parameter is possible over different type of land surface. As
the ATSR-2 was launched in 1995, it should be possible to construct a global
aerosol database over land starting in 1995. It is expected that the dual-view
algorithm will fail over areas with high surface albedo, such as deserts or snow
cover.

The GOME UV aerosol retrieval algorithm uses data in the wavelength range
between 0.340 to 0.400 /an. In this wavelength range the albedo of most land
surfaces is low. The satellite measured reflectance is therefore dominated by
scattering in the atmosphere. The GOME UV algorithm uses prescribed surface
albedo values. In chapter 6 and 7 the GOME UV algorithm was validated using
ground based sunphotometer data and ATSR-2 dual view results. These results
are encouraging, given the simple treatment of the surface albedo. However,
due to the large pixels size of 320x40 km2 GOME has limited application. Most
of the GOME pixels are cloud contaminated, and a global database of aerosol
retrievals for cloud free GOME pixels will be strongly biased to certain meteoro-
logical conditions. Future sensors measuring in this wavelength range will have
a much smaller footprint. Therefore aerosol retrieval in the UV, over both land
and sea, has strong potentials.

8.3 Application of aerosol retrieval

Satellite remote sensing can provide the spatial aerosol distribution. In detailed
field experiments data is usually obtained at single locations, or for a limited
area. Satellite remote sensing can be used as additional tool, providing the
spatial aerosol distribution over a much larger area. A disadvantage of aerosol
satellite remote sensing is that no information is provided on the vertical dis-
tribution. In chapter 4 aerosol retrieval over the ocean was combined with in
situ aircraft observations, providing information on the three dimensional aerosol
distribution.

Analysis of aerosol fields produced by aerosol satellite remote sensing con-
tributes to development and validation of models that describe the global aerosol
field and effects of changing emissions. On the other hand the models can help
to understand the observed aerosol field, and fill the gaps both in space and time
between the satellite data. In chapter 7 satellite remote sensing is compared to
results from a three dimensional chemical transport model. Although the model
can be strongly improved, in particular by adding nitrate and organic aerosol
species, this first comparison of actual model data with satellite retrieval results
is encouraging.
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8.4 Future Outlook
The ideal satellite sensor for aerosol retrieval should have a spectral range from
the UV to the mid infrared, a moderate spectral resolution (~1 nm), a spa-
tial resolution of a few kilometers, a wide swath width providing daily global
coverage, a multi-angle view, and the possibility to measure the polarization.
Also, the use of geostationary satellites should be considered, as they can ob-
serve changes in the aerosol field over the day. Clearly such an ideal sensor is
not available in the near future. This work describes algorithms with sensors
that partly cover the features of the ideal aerosol retrieval sensor. The ATSR-2
is a radiometer with a few narrow spectral bands, good spatial resolution and a
two-view capability. GOME is a spectrometer with a wide spectral range and
high spectral resolution. Based on these sensors, new retrieval algorithms have
been developed that show good results both over the ocean and over land. In
the coming years the satellite instruments will be further improved, and it is
anticipated that aerosol retrieval will improve considerably as well. As the ideal
sensors will not be available, the synergy of different sensors will become impor-
tant. Combination of data from different sensors at different stages during the
retrieval process will improve the overall aerosol retrieval. For sensors with a
very wide spectral range, different algorithms may apply that can be combined
in the retrieval process.

Satellite remote sensing provides column integrated aerosol optical proper-
ties. Interpretation of this data will give some information on the sources of the
aerosol particles. Combination of satellite remote sensing with three-dimensional
chemical transport models will give insight in the processes governing the aerosol
spatial and temporal aerosol distribution. In data assimilation studies, remote
sensing data of aerosol properties and their precursor gases such as SÛ2 and
NÛ2 should be combined with the models. Ultimately, these studies should lead
to models that can predict the effects of the changing aerosol emissions on the
human environment.



Appendix A

List of Acronyms

AERONET Aerosol Robotic Network, Network of Sun/sky radiometers.
AOD Aerosol Optical Depth.
ECN Netherlands Energy Research Foundation.
ATSR-2 Along Track Scanning Radiometer 2; Two-view

radiometer on ERS-2.
AVHRR Advance Very High Resolution Radiometer;

Radiometer on NOAA satellites.
ENVISAT ESA Environmental Satellite to be launched in 2000.
ERS-2 ESA Remote Sensing Satellite launched in 1995.
ESA European Space Agency.
GOME Global Ozone Monitoring Experiment;

Spectrometer on ERS-2.
KNMI Royal Netherlands Meteorological Institute.
NASA USA National Aeronautics and Space Administration.
NOAA USA National Oceanic and Atmospheric Administration.
PMD Polarization Measuring Device of GOME.
SRON Netherlands Space Research Organization.
SCIAMACHY Scanning Imaging Absorption Spectrometer for

Atmospheric Cartography; spectrometer on ENVISAT.
TNO-FEL Netherlands Organization for Applied Scientific Reserach,

Physics and Electronics Laboratory.
TOMS Total Ozone Mapping Spectrometer;

Ozone monitoring instrument.
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Summary

Aerosol particles are important for many processes in the atmosphere. They af-
fect global climate by scattering and absorbing the incoming solar radiation and
by modifying the albedo and lifetimes of clouds. Aerosol effects are a leading
uncertainty in predicting global climate change. To a large extent this uncer-
tainty is caused by the lack of knowledge on the occurrence and concentration
of aerosols, which are highly variable. On a global scale, this information can
only be obtained by satellite remote sensing.

Most aerosol retrieval techniques apply only to cloud-free conditions. Aerosol
particles modify the top-of-the-atmosphere radiance. In the absence of clouds,
the radiance measured by a satellite sensor is caused by scattering in the at-
mosphere by aerosols and molecules, and by reflection by the Earth's surface.
A key problem in aerosol retrieval is to distinguish between the atmospheric
and surface contributions. These can best be separated when the reflectivity of
the surface is low and constant, as for example over the ocean. Over land the
reflectivity is much higher and usually not known with enough accuracy, which
greatly complicates aerosol satellite retrieval. In addition to assumptions on the
surface reflectivity, also assumptions on the aerosol properties have to be made
in the retrieval algorithms.

In this thesis three aerosol retrieval algorithms are described. One of these
applies to retrieval over the ocean, the other two were primarily designed for
use over land. These algorithms compute the aerosol optical depth, which is the
column integrated aerosol extinction coefficient along a vertical path through
the atmosphere.

The retrieval algorithm for use over the ocean was designed to be applica-
ble to different satellite sensors. Both multiple scattering and the bi-directional
ocean reflectance is accounted for. The aerosol is assumed to be a mixture of
a sea salt type and an anthropogenic type. The spectral information in the
measured radiance is used to determine the best fit mixture of these two types.
The total size distribution is then used to compute the aerosol optical depth.
Sensitivity analysis shows that the largest uncertainties in the retrieved aerosol
optical depth are caused by the aerosol models and by reflection by oceanic
whitecaps. The ocean retrieval algorithm was tested in a field experiment con-
ducted at the east coast of the USA in July 1996. The algorithm was applied to
data from the Along Track Scanning Radiometer 2 (ATSR-2) and the Advanced
Very High Resolution Radiometer (AVHRR). Comparisons between aerosol op-
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tical depth derived from ATSR-2 data and aerosol optical depth measured with
a sunphotometer, showed that the aerosol optical depth and its spectral behav-
ior are retrieved accurately. The spectral behavior is important since it can be
used to assess the aerosol size distribution. The retrieval from ATSR-2 data was
significantly better than from AVHRR data, which indicates that the retrieval
significantly improves for sensors with more spectral information and a better
calibration. The combined satellite and airborne data provided information on
the three-dimensional aerosol distribution, demonstrating the use of satellite
data in intensive field experiments.

The dual view algorithm was designed for aerosol retrieval over land from
ATSR-2 data. It uses the dual view capability of the ATSR-2, which provides two
views for each region. The information from the two viewing directions and the
spectral information is used to separate the surface and atmospheric contribu-
tions to the top-of-the-atmosphere radiance. The dual view algorithm assumes
that the shape of the bi-directional surface reflectance is independent of the
wavelength, and that the effect of aerosols is small at 1.6 p.m.. Validation exper-
iments at the US east coast and for northwestern Europe show good agreement
between the satellite retrieved spectral aerosol optical depth and sunphotometer
derived values. The dual view algorithm can thus be applied for assessing the
aerosol load and the aerosol size distribution over land.

A second algorithm that was designed for aerosol retrieval over land uses
data from the Global Ozone Monitoring Experiment (GOME) in the wavelength
range between 0.340 and 0.400 /urn. In this wavelength range the albedo of most
land surfaces is low. The aerosol optical depths retrieved using the GOME
UV method show good agreement with ground-based sunphotometer data and
with ATSR-2 dual view results. The major difficulty with GOME data is the
poor spatial resolution of 320x40 km2 or 80x40 km2, which leaves few cloud-free
pixels. However, the validation experiments clearly show the potential of aerosol
retrieval over land in the UV.

Aerosol satellite remote sensing can contribute to the development and val-
idation of chemical transport models. These models have the ability to predict
the effects of changing emissions on the global aerosol field. Vice versa, model
results can also be used as a source of information that can help understanding
the satellite observed aerosol field. Results from the TM3 chemical transport
model are compared to GOME UV retrievals for a scenario over Europe for Au-
gust 1997. The TM3 model computes the sulfate aerosol mass from which the
total aerosol optical depth is computed using assumptions on the aerosol size
distributions and on the contribution of non-sulfate aerosol species. The model
results are in reasonable agreement with the satellite retrieval results, partic-
ularly in regard of the large assumptions in the method to derive the model
result.

Results in this thesis show successful retrieval of information on the concen-
tration and size of aerosol particles from satellite measurements. Prom the short
lifetimes of aerosols in the lower troposphere, it is expected that the spatial and
temporal variations of the aerosol field are large. This is confirmed by the case
studies presented in this thesis. Especially in the heavily industrialized regions,
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such as western Europe and the US east coast, variations in the aerosol optical
depth of more than a factor of three are observed over a few hundred kilometers.
In the remote marine environment the variations are much smaller.
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Samenvatting

Aerosolen zijn kleine deeltjes, zoals stof, roet en zeezout deeltjes, die in de at-
mosfeer zweven. Deze deeltjes spelen een belangrijke rol bij veel processen in
de atmosfeer. Ze beïnvloeden het mondiale klimaat op twee manieren: door
verstrooien en absorberen van zonnestraling, en door hun effect op de reflecti-
viteit en levensduur van wolken. Aerosol effecten vormen één van de grootste
onzekerheden in voorspellingen van mondiale klimaatveranderingen. Voor een
belangrijk deel worden deze onzekerheden veroorzaakt door het gebrek aan ken-
nis over de concentratie en eigenschappen van het aerosol, welke sterk variëren in
zowel plaats als tijd. Op mondiale schaal kan informatie hierover alleen worden
verkregen door gebruik te maken van satelliet metingen.

Doordat aerosol deeltjes kortgolvige straling verstrooien en absorberen heb-
ben ze effect op de hoeveelheid straling, zoals die gemeten wordt aan de top van
de atmosfeer met satelliet sensoren. Het proces om deze uit ruwe stralingsmetin-
gen aerosol eigenschappen te bepalen wordt aerosol retrieval genoemd. Vrijwel
alle aerosol satelliet retrieval methoden zijn alleen toepasbaar in onbewolkte
condities. In het onbewolkte geval wordt de straling die gemeten wordt door
een satelliet sensor veroorzaakt door verstrooiing in de atmosfeer en reflectie
door het aardoppervlak. Één van de belangrijkste problemen in aerosol satelliet
remote sensing is onderscheid te maken tussen de bijdragen van de atmosfeer
en die van het oppervlak. Dit is relatief eenvoudig als de reflectivieit van het
oppervlak klein en constant is, zoals bijvoorbeeld het geval is voor oceanen. De
reflectiviteit van landoppervlakken daarentegen is in het algemeen veel groter en
meestal slecht bekend. Dit compliceert de aerosol retrieval in hoge mate, omdat
er aannamen moeten worden gedaan over oppervlakte reflectiviteit. Daarnaast
dienen er in de retrieval algoritmes ook aannamen worden gemaakt over de
aerosol eigenschappen.

In dit proefschrift worden drie aerosol retrieval algoritmes beschreven. Één
daarvan is alleen toepasbaar boven zee, de andere twee zijn in eerste instantie
ontwikkeld voor retrieval boven land (maar ook toepasbaar boven zee). Met deze
algoritmes wordt de aerosol optische dikte bepaald: de extinctie geïntegreerd
over een verticaal pad door de atmosfeer.

Het algoritme voor retrieval boven de oceaan is zodanig ontworpen dat het
toegepast kan worden op data van verschillende satelliet instrumenten. Zowel
multiple verstrooiing als de bi-directionele reflectie van het zeeoppervlak worden
in beschouwing genomen. Er wordt aangenomen dat het aerosol een mengsel is
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van een antropogeen en een zeezout aerosol component. De spectrale informatie
in de gemeten straling wordt gebruikt om het best passende aerosol mengsel te
bepalen. Hiermee wordt vervolgens de aerosol optische dikte berekend. Een ge-
voeligheidsstudie heeft aangetoond dat de grootste onzekerheden in de berekende
aerosol optische dikte worden veroorzaakt door de gebruikte aërosolmodellen en
door de reflectie van schuimkoppen op de oceaan. Het algoritme voor retrieval
boven de oceaan kon worden getest tijdens een veldexperiment dat in juli 1996
plaatsvond aan de oostkust van de Verenigde Staten. Het algoritme werd.toe-
gepast op data van twee satelliet sensoren: de ATSR-2 (Along Track Scanning
Radiometer 2) en de AVHRR (Advanced Very High Resolution Radiometer).
Vergelijkingen tussen aerosol optische dikte bepaald uit de ATSR-2 data, en die
gemeten met een zogenaamde zonnefotometer, toonden aan dat de aerosol op-
tische dikte en het spectrale verloop daarvan goed kon worden bepaald uit de
satelliet metingen. De ATSR-2 retrieval was significant beter dan die van de
AVHRR, hetgeen laat zien dat de retrieval sterk verbetert wanneer data worden
gebruikt met meer spectrale informatie en een betere calibratie. Door satelliet-
en vliegtuiggegevens te combineren kon een beeld worden gevormd over de drie-
dimensionale aerosol verdeling in de troposfeer. Hiermee werd de meerwaarde
van satelliet gegevens in een veldexperiment aangetoond.

Het zogenaamde dual view algoritme werd ontwikkeld voor aerosol retrieval
boven land uit ATSR-2 metingen. Het ATSR-2 instrument meet ieder gebied
onder twee verschillende kijkrichtingen. Door de directionele informatie uit de
twee kijkrichtingen te combineren met de spectrale informatie, kan er onder-
scheid gemaakt worden tussen de respectievelijke bijdrage van de atmosfeer en
van het oppervlak aan de gemeten straling. Het dual view algoritme neemt
aan dat de vorm van de bi-directionele oppervlaktereflectiviteit niet afhangt van
de golflengte, en dat de aerosol bijdrage bij een golflengte van 1.6 pm klein is.
Validatie-experimenten aan de oostkust van de Verenigde Staten en in West
Europa laten zien dat de spectrale aerosol optische diktes uit het dual view al-
goritme goed overeenkomen met resultaten van zonnefotometer metingen. Met
het dual view algoritme is het dus mogelijk uit satelliet metingen schattingen te
maken van de aerosol concentratie en de aerosol grootteverdeling boven land.

Een tweede algoritme dat is ontwikkeld voor aerosol retrieval boven land, ge-
bruikt metingen in het golflengtegebied tussen 0.340 en 0.400 pm van het GOME
(Global Ozone Monitoring Experiment) instrument. In dit golflengtegebied is de
reflectivitiet van de meeste grondoppervlakken laag. De aerosol optische diktes
uit het GOME UV algoritme komen goed overeen met zonnefotometer waar-
den en met ATSR-2 dual view resultaten. Helaas is de ruimtelijke resolutie van
GOME beperkt (320x40 km2 of 80x40 km2), zodat er weinig wolkenvrije pixels
zijn. Zoals al eerder opgemerkt zijn wolkenvrije pixels noodzakelijk voor aerosol
retieval. De validatie-experimenten demonstreren wel dat aerosol retrieval in het
UV veel potentieel heeft.

Aerosol satelliet remote sensing kan bijdragen aan de ontwikkeling en valida-
tie van chemische transportmodellen. Met deze modellen kunnen de effecten van
veranderende emissies op het mondiale verdeling van aerosol worden voorspeld.
Vice versa kunnen de model resultaten ook worden gebruikt om satellietwaar-
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nemingen van het aërosol-veld te begrijpen. Resultaten van het TM3 chemische
transportmodel zijn vergeleken met GOME UV retrievals voor Europa voor au-
gustus 1997. Het TM3 model berekent de aerosol sulfaat massa, waaruit de
totale aerosol optische dikte wordt berekend. Daarbij wordt gebruik gemaakt
van aannamen over aerosol grootteverdelingen over de bijdrage van aërosolen
waarin geen sulfaat voorkomt. De model-resultaten zijn in redelijke overeen-
stemming met de satelliet retrievals, met name gezien de aannamen die moeten
worden gemaakt voor het berekenen van het modelresultaat.

De resultaten in dit proefschrift laten zien dat het goed mogelijk is om in-
formatie over de concentratie en grootte van aerosol deeltjes in de atmosfeer uit
satelliet waarnemingen te bepalen. Aerosol deeltjes hebben een korte verblijftijd
in de atmosfeer, waardoor grote variaties in zowel ruimte als tijd kunnen worden
verwacht. Resultaten in dit proefschrift bevestigen dit beeld. Met name in de
sterk geïndustrialiseerde gebieden, zoals de oostkust van de Verenigde Staten
en West Europa worden variaties van meer dan een factor drie over een paar
honderd kilometer waargenomen. In een schone maritieme omgeving zijn de
variaties veel kleiner.
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