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ABSTRACT
In this paper the multi sensor fusion results obtained within the European research project GEODE (Ground Explosive
Ordnance Detection system) are presented. The lay out of the test lane and the individual sensors used are described. The
implementation of the SCooP algorithrn improves the RoC curves, as the false alarm surface and the number of false
alarms b or manufacturers, of the sensors are used
as input fusion methods implemented are Bayes,Dempste grids to the input par¿rmeters for fusionmethods entire test lane is used for training and
evaluation. All four sensor fusion methods provide better detection results than the individual sensors.
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T.INTRODUCTION
In this paper we present the sensor fusion results obtained in the frame of the European research project GEODE
coordinated by THOMSON-CSF DETEXIS. In the consortium Em¡ad provides an experimental GpR, ELTA provides a
COTS GPR, Förster provides a dual frequency metal detector, Marconi communications provides a 3-5 ¡rm anc a s-to ¡rmwavelength band infra¡ed camera' THOMSON-CSF DETEXIS constructed a test lane fàcility and TNO-FEL studies rhe
multi sensor fusion methods.

From the data obtained during the tests the sensor manufacturers produce a confidence grid map for the entire test lane. The
five confìdence maps a¡e the input for the fusion methods. The confidence values are calculated for every grid cell of
2.5*2.5 cm of the 25 meter long and I meter wide section of test lane used for measurements.

The SCooP (Split Clusters on oversized Patches) algorithm is developed to present results in RoC cu¡ves that take both
the number of false alarms and the false alarm surface into account. tie graftrical representation of the detection results
allows a visual check ofthe sensor results.

The sensor fusion methods implemented are B probabilities and rules. For each of the fusion
methods, the mapping of the confidence values methods is described. The results of the fusion
methods are presented in ROC curves for the di sor combinations.

2. MULTI SENSOR DATA ACQUISITTON
In the THOMSOM-CSF DETEXIS, test lane 26 mine objects are buried or laid on the surface at known locations. AIso 6additional false alarm objects are placed in the test lane. In Table l, the layout of the mine objects and the false alarm
objects in the test lane is given.

The test lane is divided in three parts with different terrain types. The first part is bare agricultural ground, the second part is
the vegetation area, the third and last part is the bare sand arãa. The agricultural part is 15 meters l,ong, the vegetation;art 5
meter and the sand area is also 5 meter long. For the measurements, the differeni sensors were connécted to the trolli and
moved over the test lane to perform the needed measurements.

The result of the processing for each sensor is a confidence number for each grid cell of the test lane. The sensor fusion
algorithms are performed on each single grid cell..For the GEODE project, it was agreed to use a grid cell size of 2.5*2.5
cm, to make detection of the smallest APLs possible. This results in an overall griá dimension for the entire test lane of
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40*1000 grid cells. The confidence levels a¡e not the actual probability of a mine. The confidence numbers are used to
indicated the order in the probability of a object as detected with the sensor. This means that a higher confidence number
implies a higher probability of a mine, but these do not necessarily scale linearly.

ane # Name lml lml vfeøl S ize Denth

MAUS I ).50 t25 2
) Mle 59 1.75 l13 I I I

Mle72A J25 175 2 I

4 vs t.6 )--50 2.63 n t 't

PFM I )75 288 t
Fmr ).25 t.88 )
Cårtridge case ).50 t50
MK2 ).25 ;38 z

Piquet 62 ).75 6.25

l0 Morta¡ 60 )50 7.25 2

ll MD 828 IMI4I ).25 763 J

l2 Cylindric print )50 850
l3 Trio wi¡e )75 )50 3

t4 PRB 409 ).50 t 0.38
t5 Vle 5l )'t5 I l_50 I
l6 Vle72A. ).25 t2.50 ) I
t7 rs 50 )50 13.50

18 Vfle 59 ).25 4.50 I I 0
l9 )MN ).75 5.50
20 rs 50 0.50 16.50

Stone 0.75 7.25 I 2
22 Coca cola cm J.25 17.75

23 frio wire )75 18.13

24 VS 69 )_25 18.50 3 2
25 vs 2.2 ).75 19.25 2

26 HEC3AI )50 19.50 I
1n Mle 5l ).25 ¿0.38 I I
z8 Mle 5l );t5 ¿t.25 I I
29 Chew. sum oaD€r ).25 ¿1.75

t0 BLU 62 ).75 12.50 J I
Mle 59 t< ¿3.38

2 PMN )75 24.25 )

Table l: The layout of the TTIOMSOM-CSF DE-IEXIS test lane in Paris. The legend: for Metal 1=No meral, 2=Low metal
and 3=High metal; for Size l=Small arñ?;LuEe: for Depth 0=Surface, l=Slightly buried and 2=Buried. Objects l-18 are
laid in the bare agricultural area, objects 19-26 a¡e laid in the vegetation a¡ea and objects 27-32 a¡e laid in the bare sand area.

The GPR as supplied by ELTA is a high ground clearance GPR. The cent¡e of rhe object detecred by ELTA is indicated with
a circle of 40 cm diameter. The mine confidence for this area is the value calculated by the standard ELTA processing. The
second layer is 30 cm wide ring around the fust circle, the third layer is a 30 cm wide ring around the second layer (The
conlrdence values for the second and the third layer were set lo 35Vo and 5Vo of the centre value after optimisation). The
levels were optimised by evaluating the detection performance for each combination of levels. As criterion, the area under
the ROC was maximised.

The Emrad GPR system is based upon a four channel rada with a bandwidth comparable to the expected radar cross-section
of anti-personnel mines. The Emrad philosophy is that for reliable anti-personnel mine detection, it is considered to be
necessary to collect radar data on a 50 rnm square grid over the area to be searched. The spacing of the antenna elements, in
the existing radar, is approximately three times this value, so that to complete a search of the test lane, it was essential to
carry out successive scans with the antennas progressively scanned over the width ofthe test area.

The Förster dual frequency, continuous wave, Minex metal detector. The Förster metal detector is a very sensitive detector
for small quantities of metal. The current Förster processing does not detect small metal objects on top of a strong signal
produced by a large metal object. The areas where a strong signal is present, the detector blindness or uncertainty is
increased. This results in a non zero confidence level for these areas.
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Marconi processes the data of two infra¡ed cameras in the wavelength bands 3-5 pm and g-10 pm. The 3-5 pm c¿rmera has a
better detection performance than the 8-10 pm camera. This is probably the result of a different SNR between the cameras
(the 3-5 pm camera is of a newer generation). In this paper only ihe resuits of the 3-5 pm camera are presented.

2.2. GRAPHICAL REPRESENTATION OF DETECTION RESULTS

For the graphical representation of the detection results we use four strip graphs. In these graphs the same test lane ispresented four times in strips above each other. In t
second strip from the top the mine objects are represe
the top strip and the second srip is presented, this ind
a mine object. In the fourth and bottom sbip a representation c
is given. In Figure I the four suip graph representation is shown for arandom sensor.

To be able to present neutral results, this random sensor is introduced. This random sensor is created by generating anuniformly distributed confidence level grid. This confidence level grid has the same dimension as the other sensors in theGEODE sensor suite. To create objects (clusters with similar confid-ence level) with higher and lower confidence levels, therandom confidence levels are Gaussian filtered with a kernel width of about 3.

The confidence I ctor are coded in grey onto the first strip of Figure L The grey coding for theconltdence in the ht grey to black, und *hit" for the case the 
"onfid"n"" 

level is zero. In the thirdstrip we see that ted in the second strip are detected, as they have a conhdence level higher than
zero (white).
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Figure 1: Four strip graph representation of THoMSoM-csF DETEXIS tesr lane in paris for a random derecror. The sametest lane is presented fourlimes' Top strip is.the confidence map of the sensor, second strip is the location of the mines, Thirdstrip is the combination of the top strip and the second strip indicating what confidence level the sensor produces at the

3. SCOOP ALGORITHM
a simple Roc curve calculation. The flowchart for this first
.OC curve is shown in Figure 2 B. The simple implementation
ve would expect for a hypothetical ROC curve. The number of
)n rates. This is caused by the fact that at high detection rate
ntation considers a large cluster to be a mine when within the
It taken into account.

At very low confidence thresholds the detected clusters cover a large area. when this is considered as a single object, as isthe case in simple implementati as expected continuous increasing. The SCoop Oõrit gr"rt*, a"
3J#::i:i"i3::j.:J|,i:i,T',H, l",n:'ilåi'i1îiï::i,',i,fi"¡;"'?;,:,:"";.,i,";tt;.#;,
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Figure 2: The flowchart for the simple ROC imptementation, and the resulting ROC curve for the random sensor.

The SCOOP algorithm is implemented as follows: Each cluster is considered separately: the cluster size (in grid cells) is
calculated and the number of mines within the cluster is determined. For every mine wìthin the cluster, the cluster size is
reduced with the standa¡d dig area (an area of 20 by 20 cm or 64 grid cells). if the effective cluster size is still above the
standard dig area, each dig area which fits in the effective cluster size is counted as one false alarm. The flowchart of the
evaluation method with the SCOOP algorithm is presented in Figure 3 A. With the SCOOp algorithm rhe number of false
alarm objects per square meter is 25, ifthe area is completely covèred by a single object.

ln-Figure 3 B, the previously described random sensor is evaluated using the method with the SCOOP algorithm. In this
ROC curve, we see that there is now a functional relationship between thã false alarms per square meter and the detection
rate as opposed to simple implementation. From now on, we will only use the evaluation methoà with the SCOOp algorithm,
since it produces comparable ROC curves for confidence grids.
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Figure 3: The flowchart for the implementation of RoC with the scoop algorithm, and the resulting ROC curve for the
random sensor The number of false alarms is with the SCOOP implementatiron continuously increasing with the detection
rate.
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4. INDTVIDUAL SENSOR RESULTS
The individual sensor results are presented in 4 strip graphs, Figure 4 to Figure 7, as described in paragraph 2.2. T\e
resulting RoC curves for the individual sensors are iñcluoe¿ in Figure 12, in which the comparison i, rnu¿" between
detection results offusion methods and the individual sensors.
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Figure 4: Output of ELTA's processing and the ground truth.

--i:"r-;,--_r I't-
¡

- {Í-
IT."1

, 't-;4.'-'tC
¡

I
\

Figure 5: Output of Emrad's GPR after spatial processing by TNo and the ground truth of the test lane.

Figure 6: output of Förster's processing and the ground truth of the test lane.
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Fîgure 7: Output of Marconi's processing for the 3-5 ¡.tm camera and the ground truth of the test lane.

5. FUSION IMPLEMENTATION
5.1. OPTIMISATION METHOD

To get optimal detection performance, the pa¡ameters of Dempster-Shafer, Bayes and fuzzy probabilities has to be set
correctlyl. There is one parameter attached to each ofthe three r"nro.r, besides the th¡eshold. Eàci ofthese three parameterswill be set to ll different levels independently. The tlueshold will be varied in l0l steps. This gives ã toral of
I I 3* l0l = 134,43 I parameter settings.

For each parameter setting, the detection performance is evaluated using the scooP algorithm. This evaluation results into
a detection rate and a number of false alarms per square meter, which is a point in the ROC diagram. Out of the 134,431
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point's in the best points are selected. These points are connected together and presented in an RoCcurve' Note nt in the RoC to the other, not only the threshold has-to be adapted, but that also theother three p different for the other point.

5.2. DEMPSTER.SHAFER

For Dempster-shafer2, three inputs per sensor are needed: the probability mass assigned to a mine M(m), the probabilitymass assigned to background M(b) and the unassigned probabilii mass M(mub). The sum of these masses is always one, sothere are only two independent masses.

For each sens fidence level, so for each sensor this confidence level needs to be mapped onto thethree probabil 1, a simple approach is chosen: the unassigned mass will be kept constant for each ofthe sensors' a assigneã to a mine is linear with the confidence level. These two conditions fullydetermine the

The probability mass assigned to a mine M(m) is zero at probability mass assigned to backgroundM(b) is zero for conltdence level l. The uncertainty leve psbr-shafer implementation is optimisedfor all sensors, using the optimisation method, described range = [0,1].

The Roc curves for the Dempster-Shafer method for both sensor combinations are presented in Figure l0 A.

Confidence level -->

Figure 8: Mapping the confidence level onto the three probability masses: M(m), M(b) and M(mvb).
5.3. BAYESIAN REASONING

assumption of independence of the individual sensors. The conditional probability p*n-.(mlconf)
every confidence level (conf) and each sensor. This conditional prouãbitity Ir u"ry'ãimcult toc amount of data available from rhe test lane. The conditional probability is given by:

1

6

5¡ô
È

P*n*, (mlConÐ = (l - lJ).Conf +IJl2,

witt¡ U the level of uncertainty. This uncertainty is varied
P**,(mlconf)=-0.5), in eleven steps independent for each sensor.
optimisation merhod described in paragrafh S. t.

from U=0 (so Pr"nro, (mlConf) = ConÐ to U=l (so
These uncertainty levels are the parameters used in the

The result of the Bayesian fusion is the product of the multiplication of the th¡ee sensor probabilities. Each sensor mappingcombination results into a joint probabiliìy grid. The resultin! Roc curve is presented in Figure l0 B.

5.3, FUZZY PROBABILITIES

The confidence level is mapped onto the a fuzzy probabilities?'a with a Gaussian membership function. The centre of theGaussian kernel is set at the confidence level. The width of the t"rrïit tr," pa¡aÍieter which has to be optimised, using the
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method described in paragraph 5.1. Small width implies that the sensor has a large influence, whereas a large width implies a
limited influence. The width is varied between 0.01 and I in I I steps on a logarithmic scale.

The three fuzzy probabilities a¡e combined using the minimum operator and the cent¡e of area (COA) defuzzification
method' This means that for every probability level, the minimum of the th¡ee membership functions of the fuzzy
probabilities is taken. Of the resulting joint fuzzy probability, the probability, for which rhe area can be divided into two
equal areas, is determined. This probability is the output of the fusion process. The resulting ROC curve is presented in
Figure I I A.

5.5. RULES

For both combinations of th¡ee 
_sensors 

we implemented the rules fusion methods. The Emrad GpR confidence values range
from 0 to 6' ELTA GPR confidence ranges from 0 to 255, Förster confidence ranges from 0 to 255 and Marconi IR
confidence ranges from 0 to 100. An example of a rule for Em¡ad GPR, Förster MD and Marconi 3-5 pm IR camera is:
((GPR >= 3) AND (MD >=255)) OR
((GPR >= 6) AND (MD >= 128) AND (IR >= 74¡¡ OR
((MD >=l) AND (IR > =93))
The optimal rule set found for this sensor combination can be found in Table 2, and the resulting ROC curve in Figure I I B.

false alarms letection rate xle I rule 2 rule 3
).04 ).12 5.255.90 i.191.93
)08 ).16 6.255.72 5,l9l,93
\.44 036 5,255.0
)56 040 5.255.0
072 ).48 1,2s5,0
).88 J52 1.255.0 ).1.93tu ).56 ].255.0 1-128.74 0.I.93
l.l6 )64 ),255.0
t92 )68 ).255.0 ).8.88
2.52 )72 ;0.0 ),255,0

96 )80 ;,0,0 ).255.0
s2 )84 5.0.0 ).255.0 ),8,88

3.68 )92 t.0-0 ),255.0
548 ).96 I0.0 ).255.0
836 100 L0.0

Table 2: The number of false alarms and detection rate for different rules. The three values in rules represent the threshold
level on the confidence value for the sensors. The sensors used in this rule set are Emtad, Förster and Marconi 3-5 ¡rm.

The rule sets are derived by selecting the minimal rule set for a set of minesl. A difference is that in the procedure as
described earlier only one value of each sensor corresponded with a mine, where with the real data used now several values
in the confidence grid a¡e related to a single mine. Fòr fusion this leads to the problem that the position of the maximum
confidence for a given mine for one sensor might not coincide with the maxima for the other sensors.

For fusion this leads to the problem that the position of the maximum confidence for a given mine for one sensor might not
coincide with the maxima for the other sensors.

This problem is visualised in Figure 9, with the simplification that only six grid cells for a mine are drawn instead of the 64
(8 by 8) grid cells we use in reality. With the six mine confidence combinations, we will get the rules:
from grid cell2: (GPR >= 3) AND (IR >= l)
from grid cell 3: (GPR >= l) AND (MD >= t) AND (IR >= 2¡
from grid cell 4: (MD >= 4) AND (IR >= 2)
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Figure 9: what is the best rule to catch this mine' given these six grid cells over a mine? For each gnd cell the confidenceresult of the three sensors is given and due to not coinciding .*iä. the best rule is not directly clear.

Grid cells l' 5 and 6 will lead to less restrictive rules compared to the rules of grid cells 2, 3 or 4,and so are not of interest.Which of the rules should be used is dependent on:o rules needed for other mines
o the number of false alarms generated for each of the rules.
This is solved by keeping all these rules for each mine, and selecting the optimal rule set in a selection process using allmines and the whole test lane' so for every mine we can have several-rules, and we have to select that combination of ruleswhich has the lowest false alarm rate. Fuli detection rate is guaranr""¿iv keeping at least one rule for every mine. This isimplemented by an exhaustive sea¡ch procedure.

This will lead to the point with 100% detection rate on the Roc curve. other points on the Roc curve ¿¡¡e calculated byexcluding combinations of mines such that, for a given detection rat;, the false alarm rate is as low as possible. Thesecombinations of mines are the result of a search process with early p*níng. The result is that every point on the Roc curvehas a different rule set' The resulting Roc curves for both ,"nro. óoruiiation, are presented in Figure I I B.

6. MULTI SENSOR FUSION R"ESULTS

6.1. SENSOR FUSION METHODS

In this paragraph the resulting Roc curves of the four implemented sensor fusion methods, Bayes, Dempster-sha fer, fuzzyprobabilities and rules' are presented for both sensor combinations. The sensor combinations contain either the ELTA GpRor the Emrad GPR.
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Figure l0: Roc curves for Dempster-Shafer and Bayes fusion methods for both sensor combinations.
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Figure I l: ROC curves for fttzzy probabilities and rules fusion methods for both sensor combinations.

6.2. COMPARISON OF SENSOR FUSION METHODS

In this paragraph the different sensor fusion methods are presented for the two possible sensor combinations with a single
GPR, metal detector and a single infra red camera. The ROC curves of the individual sensors used in the combination are
also presented in each figure. The fusion method ROC curves have a dotted line connecting the calculated poins and the
individual sensors have a continuous line connecting the calculated points.

Figure l2: A: ROC curves for the different sensor fusion methods for the sensor combination Emrad GPR, Förster and
Marconi 3-5 ¡-tm. B: ROC curves for the sensor combination ELTA GPR, Förster and Marconi 3-5 ¡rm. The individual sensor
ROC curves for the sensors in the combination are presented with continuous line connecting the calculated points.

7. CONCLUSIONS
All conclusions are based on the measurements of the 25 meter test lane of THOMSOM-CSF DETEXIS in Paris. The
number of measurements is limited compared with the number of variables.

The number of variables a¡e: terrain type three (agriculture, vegetation and sand), size two ( large and small mines), meøl
three ( no metal, low metal and high metal content mines) and burial depth three (on the surface, slightly buried (1-5 cm) and
deep buried (>5 cm) mines). This leads to 54 possible combinations. In the test lane only 26 mines a¡e present and 6 selected
false alarm objects.
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Due to absence of multiple measuremenß of all possible combinations the entire test lane is use.d for Eaining and evaluation.
7.1. CONTRIBUTIONS OF THE INDIVIDUAL SENSORS TO THE SENSOR FTJSION PROCESS

within the GEODE project, every sensor has as primary input to the sensor fusion process a confidence level grid. Everysensor manufacturer shives for a high confidence level for his sensor on a location on the grid corresponding to each mine.However' for each mine the differen-'t sensors have thei¡ maximum conhdence values on diflerent locations on the grid. Thismeans that the sensor fusion processes sometimes can not utilise the optimum results of every sensor as the sensor fusionprocesses are performed on a single grid cell level.

The ELTA GPR is a cors single sensor mine detection solution. As sensor used in the sensor fusron system, this has thefollowing drawbacks:
r The spatial accuracy is rather low. In combination with other sensors, it is difficult to make one to one correspondencesbetween the ELTA detections and the detections of the other r"nrorr.¡ The system is not capable of generating alarms corresponding to low mine probability. This means that the output of theELTA GPR can not be used to decla¡e area free of mines.

The Emrad GPR is a product currently still under development. It's current strength is that it is capable of detecting of allmines' However it's capability with regard to clutter rejection lr 
"ãiv"tfully developed. As it cunently is not capable togenerate detections in a range with low false alarm ratei (smaller th- z rulr" alarms per square meter), it,s contribution rosensor fusion in the ranges with low false alarm rates is limited.

The metal detector proves to be very valuable in detecting mines with a medium to high metal content. For scenarios where alot of such mines occur, this sensor will thus be very ¡mportant.

Due to the low number of surface laid mines present in the THoMSoM-csF DETEXIS test lane, the contribution of the IRcamera is limited' Howgver, especially in thl range with low false alarm rate, the IR camera contributes to improve thedetection performance of the sensor fusion system.

7 .2 MULTT SENSOR FI]SION

From the results as given in Figure r0 and Figure l r, we can conclude that:o For all fusion methods the results as presented in the Roc curves is better than the results of the individual sensors.¡ Rules gives for every point on the ROC the best performance.o The order of average performance of the fusion methods is: rules, fuzzy probabilities, Dempster-shafer and Bayes.However' the differences in performance between the sensor fusion methods are not very large.

The results given above should be seen in the light that we use the same data set for training and evaluation. As the rulesensor fusion method has considerable more o"q:."".t of.freedom comparea to the other senúr fusion methods, it can beexpected that performance of the rules method will deteriorate -ore *iren independent training and evaluation data is usedcompared to the other methods' As such, we currently cannot state which methòds should be rised in an operational sensorfusion system.

7.3 FUTURE RESEARCH

The work of the GEoDE project is continued in the Lorus (Light ordnance detection with releoperared unmannedSystem) project' For the sensor fusion processing.m.**"tr;;;;;igns with improved location accuracy should improvethe sensor fusion results' The processing of the in¿ivi¿ual sensors rrrãJã be more aàapted,o**á, to fusion processing.
In future data acquisition campaigns, considerable more data should be collected, to be able to generate independent trainingand evaluation sets' only when these indepenrlent sets -;;;ñ"lo-final conclusions can ãe drawn regarding the bestsensor fusion method to be used in an operational system.

within the GCFF (GEODE common File Format), object data is stored for all the sensors. within the current sensor fusionprocesses this object data is not used' vy'e realise this data 
"outa 

prou" oseful in the sensor fusion process. Future resea¡chshould investigate towards rhe use of the object data into rh" ,**; f;ioi o.or"rr.
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,A,n operational system foreseen as the hnal results of a development process of which the GEODE project is a part, will
consist of an automated sensor fusion system in combination with a man in the loop to hnalise any detection decision. Under

the assumptions that such a system will have:

. a forwa¡d speed of one meter per second,

¡ a width of one meter,

¡ an allowed operator load ofone possible detection per second to be classified by the man in the loop,

the automatic sensor fusion system should be capable ofreducing the false alarm rate to less then one false alarm per square

meter while keeping its detection rate close ro lOOEo. As such, we can conclude that both the individual sensors as well as

the sensor fusion system need substantial improvemenß before an operational system can become reality.
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