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Abstract

In this paper we present the results of infrared processing and sensor fusion obtained within the European research
project GEODE (Ground Explosive Ordnance DEtection system ) that strives for the realization of a vehicle-mounted,
multi-sensor, anti-personnel land-mine detection system for humanitarian demining. The system has three sensor
types: an infrared camera, a ground penetrating radar and a metal detector. The output of the sensors is processed to
produce confidence values on a virtual grid covering the test bed. A confidence value expresses a confidence or belief
in a mine detection on a certain position. The grid with confidence values is the input for the decision-level sensor
fusion and provides a co-registration of the sensors. We describe the methods TNO-FEL developed for the processing
of infrared (3-5 um) data to produce confidence values. We show results of experiments with infrared processing and
sensor fusion on real sensor data. The performance of the processing and fusion are measured with the SCOOP
evaluation method that yields a less biased probability of false alarm by taking into account the spatial arrangement
of false alarms.

Keywords: AP land-mine detection, infrared processing, sensor fusion, performance evaluation.

1 Introduction

The existence of (abandoned) land mines in a large number of post-war areas forms a major threat to
hurnan lives in these areas. The majority of these minefields is currently cleared by manual prodding, which
is a very slow and tedious process and which cannot circumvent that the number of active mines is still
worldwide increasing. As such, the detection of land mines by any (technical) means is an important
research issue.

Current research focuses on the improvement of existent sensors [6] and the combination of multiple
sensors (i.e. sensor fusion) to land-mine detection [2, 3, 8,4, 1, 12]. The use of one sensor is generally
believed to be insufficient for land-mine detection meeting the requirements of humanitarian demining for
the reason that a single sensor has a false-alarm rate which is too high or a detection rate which is too low.
The aim of sensor fusion is to make higher probabilities of detection (P(d)) possible with a lower probability
of false alarms (P(fa)). In order to combine or fuse sensors, the sensor readings of the different sensors
must be converted to acommon grid and common confidence values. We show the processing steps
taken for the infrared camera.

2 Data Acquisition -

The experiments are based on data acquisition at the test lane of THOMSON-CSF DETEXIS, Paris,
France (see also [8]). This test lane measures 25 by 1 square meter and contains 26 mines that are either
buried or laid on the surface. For more information about the mines, see [10]. Additionally, the lane
contains six false-alarm objects. Tables 1 and 2 give details on the mines and false-alarm objects.
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Object Name X [m] y [m] Metal |Size Depth
1 MAUS 1 0.50 0.25 low large surface
2 Mk 59 0.75 1.13 no small slightly buried
3 M 72A 0.25 1.75 low small surface
4 VS 1.6 0.50 2.63 low large buried
5 PFM 1 0.75 2.88 high large surface
6 Foot print 0.25 3.88 no large surface
7 Cartridge case |0.50 4.50 high small slightly buried
8 MK 2 0.25 5.38 high small buried
9 Piquet 62 0.75 6.25 no small surface
10 Mortar 60 0.50 7.25 high large buried
11 MD 82B (M14) |0.25 7.63 low small suface
12 Cylindric print  |0.50 8.50 no large surface
13 Trip wire 0.75 9.50 high small surface
14 PRB 409 0.50 10.38 |low large slightly buried
15 Mk 51 0.75 11.50 no small surface
16 Mk 72A 0.25 1250 |[low small surface
17 TS 50 0.50 13.50 |low large slightly buried
18 Mk 59 0.25 1450 |no small surface

Table 1. Objects 1 18 in the bare agricultural area in the test lane (continued on Table 2). The items in italics
are false-alarm objects.

The test lane is divided into three parts with different types of terrain. The first part is bare agricultural
ground, the second part is a vegetation area, and the third part is bare sand. The agricultural part is 15
meter long, the vegetation part five meter, and the sand area is also five meter long. For the measurements,
the sensors were one by one attached to a trolley and moved over the test lane. The applied sensors were
a dual-frequency metal detector of Forster, a mid wavelength band (3-5 pum) infrared camera and ground
penetrating radar of Emrad. To perform decision-level sensor fusion, the raw sensor data is processed and
mapped to obtain decision-level data on a reference grid. The sensor processing results in confidence
levels on a grid with grid cells of 2.5 x 2.5 cm. This grid cell size ensurexs that there are even multiple cells
over the smallest land mine.

Images of the infrared camera in the wavelength band 3-5 pm were recorded and pre-processed by
Marconi Communications. The mines in these images have a higher apparent temperature (and thus a
higher intensity in the image) then their surrounding.
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3 Performance evaluation

For a comparison of performance, Receiver-Operator Characteristics (ROC) curves are used. InaROC
curve, the detection rate is plotted as a function of the false-alarm rate. The detection rate is defined as the
fraction of the detected mines. The number of false alarms per unit area is calculated using the SCOOP
(Split Clusters On Oversized Patches) [8] evaluation method. The name SCOOP refers to the scoop size
area that need to be checked by the mine-clearance personnel, it is typically set to an area of 20 by 20
cm?.

Object Name X [m] y [m] Metal | Size Depth
19 PMN 0.75 15.50 | high large surface
20 TS 50 0.50 16.50 low large slightly buried
21 Stone 0.75 17.25 no large buried
22 Coca cola can 0.25 17.75 high large slightly buried
23 Trip wire 0.75 18.13 high large surface
24 VS 69 0.25 18.50 | high large surface
25 VS 2.2 0.75 19.25 |low large buried
26 HEC3Al 0.50 19.50 |low small surface
27 Mk 51 0.25 20.38 |no small slightly buried
28 Mk 51 0.75 2125 |no small slightly buried
29 |Chewmggum 1655|2175 |ow  |smal | buried
paper
30 BLU 62 0.75 22.50 |high small slightly buried
31 Mie 59 0.25 2338 |no small slightly buried
32 PMN 0.75 24.25 | high large surface

Table 2. Objects in the test lane (continued from Table 1). Objects 79 26 are in the vegetation area and
objects 27 32 are in the bare sand area. The items in italics are false-alarm objects.

The flowchart of the SCOOP evaluation method is shown in Figure 1. The grid cells which have a confidence
value above a threshold are clustered. Every clusteris treated differently depending on whether it contains
one or more mines. If a cluster does not contain any mines, it is counted as a number of false alarms equal
to the number of scoops it contains. Clusters with one or more mines that are larger in area than the
product of the number of mines and the scoop size also contribute to the number of false alarms. In this
case, the number of false alarms is set equal to the cluster area divided by the scoop size minus the number
of mines. The method is repeated for different threshold values to obtain a number of ROC points. The
SCOOP evaluation method results in a percentage of detected mines as a function of the number of false
alarms per unit area. This kind of performance measure is requested by the demining experts as an indication
of the reduction in workload. It takes into account that more time is needed to reject false alarms occupying
large areas (multiple *scoops’) than false alarms occupying small areas.
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4 Infrared image processing methods

In this section we describe two methods for mine detection using infrared data. The processing methods
described here made the infrared camera the best sensor of the GEODE sensor platform, as shown in the
experiments section. The methods rely on the principle that the mines have a higher (apparent) temperature
than their surrounding. This is reflected in a higher intensity in the infrared image. In Figure 2(a) the infrared
image data is shown for the GEODE test lane. One can clearly distinguish some of the mines listed in
Tables 1 and 2 (the origin is in the bottom left comer). Note that depending on the demining scenario (type
of soil, time of day) the mines can also have a lower apparent temperature. In that case, one has to use
negative contrast.

As there is a correlation between apparent temperature and mines an obvious choice for the conversion of
sensor data to confidence levels is to use the raw infrared data as confidence levels. Because the spatial
resolution of the infrared camera does not match the resolution imposed by the 2.5 x 2.5 cm grid cells for
sensor fusion, the infrared data must be resampled. The ROC for mine detection using an infrared camera
can then be calculated using the above-mentioned SCOOP algorithm, the result is shown in Figure 4(b).
The ROC expresses mine detection as a function of false alarmns for different global thresholds on the grid
with confidence levels, i.e. infrared image data.

However, global thresholding does not take into account the changing surroundings of mines. For instance,
the vegetation area of the test lane is much colder than the agricultural and bare sand area and global
thresholding cannot account for that. As such, our proposed methods apply local contrast enhancement to
make them invariant for the local background intensity. Furthermore, global thresholding would not reduce
the number and size of false alarms. Our proposed methods perform false-alarm reduction by selecting
blobs on morphological and size attributes. In order to do so, some a priori knowledge on the scoop size
is used.

In the following sections we describe our proposed methods. The methods result in some different operating
points (a certain detection rate with a certain number of false alarms) on the ROC.
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Figure 1. The flowchart for the SCOOP performance
evaluation method.
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4.1 Method 1
Method 1 is a sequence of resampling, blob search and contrast enhancement. It consists of the following
processing steps:

1. resampling : reduce the size of the infrared image to GEODE standard grid size by resampling the
image. The resampling is done by selecting the local maximum in the image data for each grid cell.

2. blob search : search in the resampled image for blobs with a positive contrast. Blobs are generated by
applying all possible thresholds to the image. Select those blobs whose size is between I x [and u X u.
Optimal / and u on the GEODE dataset are found to be 9 and 9 respectively.

3. local contrast enhancement : calculate the local average intensity and local variance in intensity for
every grid cell using a window size of 40 x 40 grid cells (one square meter). Normalize the intensity of
each grid cell to its local mean and variance.

4, output : As output, give the maximum value calculated in step 3 for each blob found in step 2 to all grid
cells in that particular blob.

The processing steps are visualized in Figures 2(a) to 2(d). The ground truth (mines) is shown in
Figure 2(h).

4.2 Method 2

This method is an adaption of method 1. It outperforms the previous method for lower number of false
alarms but is less good for higher number of false alarms. See also Figure 4(b) in Section 6. As such,
depending on the required detection rate and number of false alarms, one can choose for one of the
methods.
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Figure 2. Infrared processing steps on GEODE data for both methods. Method 1: (a)
resampling (b) blob search (c) local contrast enhancement (d) maximum. Method 2:
(e) resampling (f) normalization (g) projection(h) Ground truth.




1. resampling : reduce the size of the infrared image to GEODE standard grid size by resampling the
image. The resampling is done by selecting the local maximum in the image data for each grid cell.

2. local positive contrast enhancement : normalize the resulting resampled image to its local mean and
local standard deviation (positive contrast). The window size used in the mean and standard deviation
calculation is 40 x 40 grid cells, corresponding with one square meter.

3. multi-level thresholding : create for each threshold 7 € [0;255] a binary image of the resampled
image. The result is a stack of binary images.

4. multi-level opening and closing : for each stack element (binary image) blobs are removed based on
size and shape properties using image operators (binary openings and closings) from mathematical
morphology [13]. The remaining blobs are reshaped into squares comesponding with the SCOOP size (8
x 8 grid cells).

5. projection of resulting levels on confidence grid : project all blobs in each stack element onto a
confidence grid in which the confidence level is determined by the normalized intensity value of the blob.

The steps taken for method 2 are visualized in Figures 2(e) to 2(g). The false-alarm reduction is clearly
visible as only a selected number of blobs remain present on the confidence grid.

S Sensor-fusion methods

In this section we discuss our concept of decision-level sensor fusion. The advantage of decision-level

fusion is that all knowledge about the sensors can be applied separately. Each sensor expert knows the
“ most about the capabilities and limitations of their own sensor and can they can use this information to

optimize the detection performance. The availability of this expert knowledge was the reason for choosing

decision-level fusion for our application.

In our application, a fusion technique is considered to be a function that separates mines from background
on the basis of the output of the different sensors. The output of each sensor is a measure of confidence in
the presence of a mine and is called the confidence level.

The general layout of our concept of a sensor-fusion method is shown in Figure 3. The input of each
sensor-fusion method is a confidence level per grid cell. A confidence level at a certain location expresses
a confidence or belief in a mine detection on that position, but it is not necessarily a probability of detection
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in a statistical sense. The confidence levels are used to indicate an order in probability of a detection of an
object given a certain sensor. This means that a higher confidence level implies a higher probability of a
mine, but these do not have to scale linearly.

The output of the fusion process is one for a detection and zero for no detection per grid cell. Each of the
methods scales the influence of each of the sensors in a different way. This mapping requires one parameter
(u,; u,; u,) per sensor. This mapping may remove the differences in definitions of the confidence levels.
The mapped inputs are combined in a fusion function to acquire a single value per grid cell. The mapping
functions and the fusion function are given in Table 3. For a more detailed description of the mapping and
fusion functions we referto [3,4,9, 7, 5, 11].

6 Experiments

In this section we show results of experiments with both processing methods on the infrared (3-5 pm)
dataset as recorded within the GEODE project. Furthermore, we show results of sensor fusion using the
infrared camera, GPR, and metal detector. The results of both processing methods and sensor-fusion
algorithrns are evaluated with the SCOOP algorithm as described in Section 3 and [8]. The implementation
of the SCOOP algorithm improves the ROC curves, as the false alarm surface and the number of false
alarms are both taken into account.

method mapping function | fusion function
best sensor none selection
naive Bayes lincar scaling product

Dempster-Shafer | uncertainty kevel | Dempster’s rule of combination

rules linear scaling summation

fuzzy probabilities | fuzzy membership | minimum

voting threshold surmmation

Table 3. The different functions for scaling the input and combining these into a single (fused) result.

6.1 Infrared processing

In Figure 4(b) we have shown the ROC curve of processing methods 1 and 2 for the infrared dataset of
GEODE. The GEODE dataset has about 50 percent surface mines (see Tables 1 and 2) which can easily
be detected without almost any false alarms. Additionally, the ROC curve in case of no processing
(confidence levels are raw sensor data) is presented for comparison. Figure 4(a) gives the ROC curves of
the other sensors on the same test lane, the ROC curve of processing method 1 is added for comparison.

From Figure 4 we may conclude that the infrared sensor outperforms the other sensors on this particular
dataset. Only the metal detector has an operating point at 64% detection with one false alarm that is
comparable in performance.
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Figure 4. (a) ROC curves of the confidence levels of the infrared camera (processing method 1), metal detector and
ground-penetrating radar. (b) ROC curves for infrared image processing of the GEODE dataset for no processing
(global thresholding of raw sensory data) and methods 1 and 2.

6.2 Sensor fusion

For an unbiased comparison of sensor-fusion methods, with the limited data set we have, a leave-one-out
evaluation method is used, see [14]. In the leave-one-out evaluation method, the parameters for each
method are acquired on a training set, which contains all but one sample (a region containing one mine and
onaverage 1 m?). The acquired parameters from the training set are tested on the single sample left out (the
evaluation set). This is repeated for all mines and their surrounding region as evaluation set. The results
from the training and evaluation sets are summed and normalized to acquire a detection rate and number of
false alarms per m?.

The results of this leave-one-out evaluation in Figure 5 show that some of the sensor-fusion methods
perform better than the best sensor on the evaluation set. Furthermore the method with most parameters,
the rule-based method, performs best on the training set, but has the worst performance on the evaluation
set. This performance loss is a confirmation of what we already expected, see [8]. The Dempster-Shafer
implementation seems to be the most robust, while Fuzzy Probabilities gives very unpredictable results.
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Figure 5. ROC curves for the different sensor-fusion methods evaluated with leave-one-out for the sensor combination
low ground clearance GPR, metal detector, and infrared. The training set results are given in (a) and the evaluation set
results are given in ().

7 Conclusions

We have shown an increase of performance for the infrared processing for the GEODE dataset when
compared with the original infrared processing. Our processing methods made the infrared sensor the best
sensor for that particular dataset.

A point of concern is that the current implementations of processing methods are not computationally
efficient and cannot, in their current state, perform in real time. We see, however, possibilities to increase
processing speed by changing the implementation of the methods to an implementation based on DSP
boards.

Another point of concern is the scenarios in which the infrared processing must operate. From the results
of the GEODE and LOTUS [4] datasets we may conclude that infrared processing performs better for
mines on the surface. We have the opinion that the processing may be optimized for different scenarios.
Our design of the test lanes for the LOTUS trials is done in such a way that different scenarios and
corresponding sketches can be used to determine the performance of infrared processing under different
circumstances.

Conceming sensor fusion, the results of the independent training and evaluation sets, obtained by using a
leave-one-out method, show that the Dempster-Shafer implementation performs better than the best
sensor, The decrease in performance of the rule-based method is the largest, which is according to our
expectations.

This method is clearly overtrained due to the many optimization parameters. The fuzzy probabilities method
gives very unpredictable results. The voting fusion-method performs similar compared to the other methods.

The actual performance (if a very large data set is used) of these methods will be somewhere between the
results of the training and evaluation sets. Our current experiments on the LOTUS datasets [4] can validate
that assumption.
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