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Abstract
In this paper we present the results of infrared processing and sensor fusion obtained within thz European research

pro¡eci caøoDE (Ground Explosive tlri*nrt ùEtectioniystem) thnt strives for the realization of a vehicle'mounted,
-multisensoti 

anti-personnri l*d-*irc detection system for humanitarian demining. Thz system hns three sensor

types: an infrared camera, a ground penetrating radqr and. a metal detector The output of the sensors is processed to

p)oarr, ,or¡drnç values oi aviniat grid coiering the test bed. A confidence value expresses a confidence or belief

in a mine detection on a certain position. The grid with confídence values is the input for the decision-Ievel sensor

fusion and provides a co-registraiion of the sensors. We describe the methods TNO-FEL developedfor the processing
"of 

infrared'(3-5 p) dan tã produce confidence values. We show results of experiments with infrared processing and

ienior ¡usion on real,rri, data. The performance of the processing and fusion are measured with the SCOOP

evaluntion method thnt yields a less biased probabiliry of false alarm by taking into occount the spatial Lrrqngement

of false alarms.
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1 Introduction
The existence of (abandoned) land mines in a large number of post-war areas forms a major threat to

human lives in these areas. The majority of these minefields is cunently cleared by manual prodding, which

is a very slow and tedious process and which cannot circumvent that the number of active mines is still

worldwide increasing. As such, the detection of land mines by any (technical) means is an important

research issue.

Currentresearch focuses on the improvement of existent sensors t6l and the combination of multiple

sensors (i.e. sensor fusion) to land-mine detection 12,3,8,4,l,I2f .The use of one sensor is generally

believed to be insuffrcient for land-mine detection meeting the requirements of humanita¡ian demining for

the reason that a single sensor has a false-alarm rate which is too high or a detection rate which is too low.

The aim of sensor fusion is to make higher probabilities of deæction @(d¡) possible with a lower probability

of false alarms (p(fa)).In orderto combine orfuse sensors, the sensorreadings of the different sensors

must be converted to a common grid and common confidence values. We show the processing steps

taken for the infrared camera.

2 Data Acquisition
The experiments are based on data acquisition at the test lane of THOMSON-CSF DETEXIS, Paris,

Francelsee also [8]). This test lane measures 25by I square meter and contains 26 mines that are either

buried or laid on the surface. For more information about the mines, see [10]. Additionally, the lane

contains six false-alarm objects. Tiables I and2give details on the mines and false-alarm objects.
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Object Nanp x [m] y [m] Metal Size Depth

I MAUS 1 0.50 0.25 low larp suåce

2 Mb 59 0.75 1.13 no snnll slþtúþ burþd

3 l\tfüe,72A 0.25 t.75 bw snnll sr¡ûce

4 vs 1.6 0.50 2.63 low large br¡ried

5 PFM 1 0.75 2.88 hrgh large sr¡åce

6 Foot print 0.25 3.88 no Iarge sr¡åce

7 Cartrüge case 0.50 4.50 high snnll sþlrþ burbd

8 MK2 0.25 5.38 high snnll burbd

9 Pqwt 62 0.75 6.25 no snnll sr¡råce

10 MoÍar 60 0.50 7.25 high large burbd

1l MD 82B (M14) 0.25 7.63 Iow srrnll suåce

12 Cylindric print 0.50 8.50 no large surhce

t3 Trþ wire 0.75 9.50 txgh snnll surhce

t4 PRB 409 0.50 10.38 low large sltdrtly burþd

15 Mþ 51 0.75 11.50 no snnll surhce

t6 lvÍjr,72A 0.25 12.50 Iow srrnll suråce

t7 TS 50 0.50 13.50 low larp shdttly burbd

18 Mþ 59 0.25 14.50 no snall surhce

Table L ObjeÆts / 18 in the bare agricultural area in the test lane (continued on Table 2). The items in italics
are false-alarm objects.

The test lane is divided into three parts with different types of terrain. The first part is bare agricultural
ground, the second part is a vegetation area, and the third part is bare sand. The agricultural part is 15
meter long, the vegetation part five meter, and the sand area is also five meter long. For the measur€ments,
the sensors were one by one attached to atrolley and moved overthe test lane. The applied sensors were
a dual-frequency metal detector ofFörster, a mid wavelength band (3-5 prn) infrared camera and ground
penetating radar of Emrad. To perform decision-level sensor fusion, the raw sensor data is processed and
mapped to obtain decision-level data on a reference grid. The sensorprocessing results in confidence
levels on a grid with grid cells of 2.5 x2.5 cm. This grid cell size ensurexs that there a¡e even multiple cells
over the smallest land mine.

Images of the infrared camera in the wavelength band 3-5 pm were recorded and pre-processed by
Marconi Communications. The mines in these images have a higher apparent temperature (and thus a
higher intensity in the image) then their sunounding.
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3 Performance evaluation
For a comparison of performance, Receiver-Operator Cha¡acteristics (ROC) curves are used. In a ROC

cur1y'e, the detection rate is plotted as a function of the false-alarm rate. The detection rate is defined as the

fraction of the detected mines. The number of false alarms per unit area is calculated using the SCOOP

(SplitClusters On Oversized Patches) [8] evaluation method. The name SCOOPrefen tothe scoop size

area that need to be checked by the mine-clea¡ance personnel, it is typically set to an atea of 20by 20

crfi.

Object Nanp x [m] y [m] Metal Size Depth

t9 PMN 0.75 15.50 hieh large surhce

20 TS 50 0.50 16.50 low large sligtrtþ burbd

2t Stone 0.7s 17.25 no wge burþd

22 Coca cola can 0.25 17.75 hieh la¡ge slþlrtly burbd

23 Trþ wirc 0.75 18.13 hidt large surhce

24 VS 69 o.25 18.50 hish large suråce

25 YS 2.2 o.75 19.25 low wge burbd

26 TIEC3Al 0.50 19.50 low snall suråce

27 Mle 51 0.25 20.38 no snnll slþlrtly burbd

28 Mb 5l 0.75 21.25 no snBIl sligtrtly burbd

29
Chewing gum
paper

o.25 2t.75 low snnll burbd

30 BLU 62 0.75 22.50 hieh snall slþltly burþd

31 MIe 59 0.25 23.38 no srrnll slþltly burbd

32 PMN 0.75 24.25 hidr large surhce

Tabte 2. Objects in the test ìane (continued from Table 1). Objects 19 26 arc in the vegetation a¡ea and

objects 27 i2 æe tn the bare sand area. The items in italics are false-alam objects.

The flowchart ofthe SCOOP evaluation method is shown in Figure 1. The grid cells which have a confidence

value above athreshold are clustered. Every clusteris ûeafed differently dependingonwhetheritcontains

oneormoremines.If aclusterdoes notcontainanymines, itis counted as anumberof falsealarmsequal

to the number of scoops it contains. Clusters with one or mote mines that a¡e larger in area than the

product of the number of mines and the scoop size also contribute to the number of false alarms. In this

ca.se,the numberof false alarms is setequaltothe clusterareadividedbythe scoop sizeminusthe number

of mines. The method is repeated for different threshold values to obtain a number of ROC points. The

SCOOPevaluationmethod results inapercentage of detectedmines a.s afunctionofthenumberof false

alarms per unit a¡e¿- This kind ofperformance measure is requested by the demining experts as an indication

of the reduction in worHoad. It takes into account that more time is needed to reject false alarms occupying

large areas (multþle'scoops') than false alarms occupying small area.s.
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4 Infrared irmage processrngine methods
In this section we describe trvo methods for mine detection using infrared data. The processing methods
described here made the infrared camera the best sensor of the GEODE sensor platfoÍrL as shown in the

experiments section. The methods rely on the principle that ttre mines have a higher (apparent) temperature

than their surrounding. This is reflecæd in a higher inænsity in ttre inûared image. In Figure 2(a) the infared
image data is shown for the GEODE test lane. One can clearly distinguish some of the mines listed in
Tables I and2 (the origin is in the bottom left corner). Note that depending on the demining scenario (fype

of soil, time of day) the mines can also have alower apparenttemperature. In that case, one has to use

negafive contrast.

As there is a correlation benveen apparent temperature and mines an obvious choice for the conversion of
sensor data to confidence levels is to use the raw infrared data as confidence levels. Because the spatial

resolution of the infrared camera does not match the resolution imposed by the2.5 x 2.5 cm grid cells for
sensor fusion, the infrared data must be resampled. The ROC for mine detection using an infrared camera

can then be calculated using the above-mentioned SCOOP algorithm, the result is shown in Figure 4O).
The ROC expresses mine detection as a function of false alarms for different global thresholds on the grid
with confi dence levels, i.e. infrared image data.

However, global thnesholding does not take into account the changing sunoundings of mines. For instance,

the vegetation area of the test lane is much colder than the agricultural and bare sand area and global
thresholding cannot account forthaf. As such, ourproposed methods apply local contrast enhancement to

make them invariant for the local background inænsity. Furthermore, global thresholding would not reduce

the number and size of false alarms. Our proposed methods perform false-alarm reduction by selecting
blobs on morphological and size attributes. ln order to do so, some a priori knowledge on the scoop size

is used.

Inthefollowing sections we desøibe ourproposedmethods. Themettrods resultin some differentoperating
points (a certain detection rate with a cefain number of false alarms) on the ROC.
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Ftgure 1. The flowchart for the SCOOP performance
evaluation method.
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4.1Method 1

Method I is a sequence of resampling, blob search and contrast enhancement. It consists of the following

processing steps:

1. resampling : reduce the size of the infrared image to GEODE standard grid size by resampling the

image. The resampling is done by selecting the local mærimum in the image dar¿ for each gdd ce[.

2. blob search : sea¡ch in the resampled image for blobs with a positive contrast. Blobs are generated by

apptying alt possible thesholds to the image. Select those blobs whose size is between I x I a¡d u x u-

Optimal I anð uon the GEODE dataset a¡e found to be 9 and 9 respectively.

3.local contrast enhancement : calculate the local average intensity and local variance in intensity for

every grid cell using a window size of 40 x 40 gdd cells (one square meter). Normalize the intensity of

each grid cell to its local mean and variance.

4. ouþut : As outpu! give the maximum value calculated in step 3 for each blob found in step 2 to all Std
cells in that particular blob.

The processing steps are visualized in Figures 2(a) to 2(d). The ground truth (mines) is shown in

Figure 2(h).

4.2Method2
This method is an adaption of method 1 . It outperforms the previous method for lower number of false

alarms but is less gooã for higher number of false alarms. See also Figure 4(b) in Section 6. As such,

depending on theiequired detection rate and number of false alarms, one can choose for one of the

methods.

Figure 2. Infiared processilg steps on GEODE dnta lot both methods' Method I: (a)

reiampling (b) blob search (c) local contrast enh^ncemeqt (d) maximum. Method 2:

(e) resampling (fl normalization (g) projection(h) Ground truth.
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1. resampling : reduce the size of the infrared image to GEODE standa¡d grid size by resampling the
image. The resampling is done by selecting ttre local ma¡rimum in the image data for each grid cell.

2. local positive contrast enhancement : normalize the resulting resampled image to its local mean and
local standard deviation (positive contrast). The window size used in the mean and sønda¡d deviation
calculæion is 40 x 40 gnd cells, corresponding with one square meter.

3. multi-level thresholding : create for each threshold r rE [0;255] a binary image of the resampled
image. The result is a stack of binary images.

4. multi-level opening and closing : for each stack element (binary image) blobs are removed based on
size and shape properties using image operators (binary openings and closings) from mathematical
morpholory [13]. Theremainingblobs arereshapedinto squares correspondingwitht]re SCOOP size (8
x 8 grid cells).

5. projection of resulting levels on confidence grid : project all blobs in each stack element onto a
confidence grid in which the confidence level is determined by the normalized intensþ value of the blob.

The steps taken for metho d2 arcvisualized in Figures 2(e)to 2(g). The false-alarm reduction is clearly
visible as only a selected number of blobs remain present on the confidence grid.

5 Sensor-fusion methods
In this section we discuss our concept of decision-level sensor fusion. The advantage of decisionJevel
fusion is that all knowledge about the sensors can be applied separately. Each sensor expert knows the
most about the capabilities and limitations of their own sensor and can they can use this information to
optimize the detection performance. The availability of this expert knowledge was the reason for choosing
decisionJevel fixion for our application.

Inourapplication, afi¡siontechnique is consideredtobe afunction that separates mines frombackground
on the basis of the ouþut of the different sensors. The ouþut of each sensor is a measure of confidence in
the presence of a mine and is called the confidence level.

The general layout of our concept of a sensor-fusion method is shown in Figure 3. The input of each
sensor-fusion method is a confidence level per grid cell. A confidence level at a certain location exprcsses
aconfidence orbelief in amine detection on thatposition, butit is not necessarily aprobability of detection

rnapprng
functtons

Confidence level sensor 1

Confidence level sensor 2

threshold' ð background
Confidence level sensor 3

FUSION

Figure 3. The generic decision-level sensor-fusion layout.

66



in a statistical sense. The confidence levels are used to indicate an order in probability of a detection of an

object given a certain sensor. This means that a higher conltdence level implies a higherprobability of a

mine, but these do not have to scale linearly.

The ouþut of the fusion process is one for a detection and zero for no detection per grid cell. Each of the

methods scales the influence ofeach of the sensors in a different way. This mapping requires one pararneter

(uriur;ur) per sensor. This mapping may remove the differences in definitions of the confidence levels.

nir.upir¿inputs are combinedin afusionfunctionto acquire asinglevaluepergrid cell. Themapping

functions andthe fusionfunction are giveninTiùle 3.Foramore detailed descriptionofthemapping and

fusion functions we refer to 13, 4, 9,7, 5, l7f .

6 Experiments
In this section we show results of experiments with both processing methods on the infrared (3-5 Um)

dataset as recorded within the GEODE project. Furthermore, we show results of sensor fusion using the

infrared c¿rmer4 GPR, and metal detector. The results of both processing methods and sensor-fusion

algorithmsareevaluatedwiththe SCOOPalgorithmasdescribedin Section3 and [8]. Theimplementation

of the SCOOP algorithm improves the ROC curves, as the false alarm surface and the number of false

alarms are both taken into account.

nethod napping function fision flnction

best sensor none sebction

naive Bayes linear scaling product

Denpster-Shafer uncertainty bvel Denpster's n¡le of conbination

rules linear scaling surnnation

fuzy probabilitbs fi¡2ry rcnbershþ nrnrfllum

voting thrcshold sunnntion

Tbbte j. The different fuactions for scaling the input and combining these into a fingle (Jused) result.

6. 1 Infrared processing
In Figure 4(b) we have shown the ROC curve of processing methods I and2for the infrared dataset of

GEODE. The GEODE dæaset has about 50 percent surface mines (see Tables 1 and 2) which can easily

be detected without almost any false alarms. Additionally, the ROC curve in case of no processing

(confidence levels are raw sensor data) is presented for comparison. Figure 4(a) gives the ROC curves of
the other sensors on the same test lane, the ROC curve of processing method 1 is added for comparison.

From Figure 4 we may conclude that the infrared sensor outperforms the other sensors on this particular

dataset. Only the metal detector has an operating point at64%o detection with one false alarm that is

comparable in performance.
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Figure 4. (a) ROC cunes oÍthe confidence levels oÍthe infrared camera (processing method 1), metal detector ald
ground-penetrating radar. (b) ROC cumes for infrared image processing ol the GEODE dataset for no processing
(global thresholding of raw sensory data) and methods I and 2.

6.2 Sensorfusion
For an unbiased comparison of sensor-fusion methods, with the limited dafa set we have, a leave-one-out
evaluation method is used, see [14]. In the leave-one-out evaluation method, the parameters for each
method a¡e acquired on atraining set, which contains allbut one sample (aregion containingone mine and
on average I nf). The acquired parameters from the training set are tested on the single sample left out (the
evaluation set). This is repeated for all mines and thei¡ surrounding region a.s evaluation set. The results
from the training and evaluæion sets a¡e summed and normalized to acquire a detection rate and number of
false alarms perm2.

The results of this leave-one-out evaluation in Figure 5 show that some of the sensor-fusion methods
performbetterthan the best sensor on the evaluation set. Furthermore the method withmostparameters,
the rule-based method, performs best on the fiaining se! but has the worst performance on the evaluation
set. This performance loss is a confrmation of what we already expected, see [8]. The Dempster-shafer
implementation seems to be the most robust, while Fuzzy Probabilities gives very unpredictable results.
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7 Conclusions
We have shown an increase of performance forthe infrared processing forthe GEODE dataset when

comparcd wittr the original infrared processing. Our processing methods made the inûmred sensor the tlest

sensor for that particular dataset.

A point of concern is that the current implementations of processing methods are not computationally

efficient and cannot, in their current state, perform in real time. We see, however, possibilities to increase

processing speed by changingthe implementation of the methods to an implementationbased onDSP

boards.

Anotherpoint of concern is the scenarios in whichtheinfra¡ed processingmustoperate. Fromtheresults

of the GEODE and LOTUS [4] datasets we may conclude that infra¡ed processing performs better for

mines on the surface. 'We have the opinion thæ the processing may be optimized for different scenarios.

Our design of the test lanes for the LOTUS trials is done in such a way that different scenarios and

corresponding sketches can be used to determine the performance of infrared processing under different

circumstances.

Conceming sensor fusion, the results of the independent training and evaluation sets, obtained by using a

leave-one-out method, show that the Dempster-Shafer implementation performs better than the best

sensor. The decrease in performance of the nrle-based method is the largest, which is according to our

expectations.

This nrethod is clearly overtrained due to the many optimization paranreten. The fuzzy probabilities method

gives very unpredictable results. The voting fusion-nrethod performs similar compared to the other methods.

The actual performance (if a very large data set is used) of these methods will be somewhere be¡peen the

results of ttre taining and evaluarion sets. Our cunent experiments on the LOTUS datasets [4] can validate

that a^ssumption.
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