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1. SUMMARY 

Developments in the area of signature suppression make it 
progressively more difficult to recognize targets. In order to 
obtain a sufficient low degree of false alarms it is necessary to 
observe spatial and spectral properties. There is a genuine need 
to use spatial properties when analyzing the difference 
between a target area and a background area. This is more 
relevant today since modern signature suppression techniques 
have focused on the reduction of distinct features, like hot 
spots in the infrared band. The approach is to apply texture 
descriptors to characterize the background and also more or 
less camouflaged targets. In addition, other descriptors are 
used to characterize man made objects. It is necessary to focus 
on features which discriminate targets from the background, 
and this demands a more precise description of the background 
and the targets than usual. The underlying assumption is that 
an area with more or less observable targets has different 
statistical properties from other areas. Statistical properties 
together with detected target specific features like straight 
lines. edges, corners or perhaps reflections from a window 
have to be combined with methods used in data fusion. 
Experiments with a computer program that estimates the 
statistical differences between targets and background are 
described. These differences are computed using a number of 
different distance measures. 

44 images from the Search-2 image data set [20] are used and 
mean search time and number of hits are predicted using 
textural features. The long term goal is to find methods for 
assessing signature suppression methods, especially in the 
infrared wavelength area. 

Keywords: Terrain, texture, camouflage, assessment, optical, 
infrared, signature suppression 

2. INTRODUCTION 

This paper describes work done in an attempt to characterize 
the spatial variations in natural backgrounds. There is a 
genuine need to use spatial properties when analyzing the 
difference between a target area and a background area. This is 
more relevant today when modern signature suppression 
techniques are often used to reduce more distinctive features 
like hot spots in the infrared band which used to be sufficient. 
The approach here is to apply texture descriptors to 
characterize the background and also to the more or less 

camouflaged targets. In addition, other descriptors are used to 
characterize man made objects. These often have straight lines 
and edges. 

Using texture information together with other kinds of 
information such as multispectral and temporal features makes 
the analysis and the assessment possible of signature reduction 
methods, reconnaissance systems, optical countermeasures, 
weapon sights and target seekers. 

The literature contains attempts to performance assessment of 
signature suppression techniques [ 11. However, there is still a 
need to tind good methods. Many make assumptions that 
sometimes are difficult to verify. 
In the future, the developments in the area of signature 
suppression will make it more and more difficult to recognize 
targets. In order to obtain a sufficient low degree of false 
alarms it is necessary to observe spatial and spectral properties. 
Also motion, if present, is an important feature. It is necessary 
to focus on features that discriminate targets from the 
background, and this demands a more detailed description of 
the background than usual. If time is not critical an approach 
using geometrical models is preferable. Given limited time and 
resolution one has to rely on measuring selected features. The 
underlying assumption is that an area with more or less 
observable targets differs in statistical properties from 
background areas. Statistical properties together with detected 
target specific features like straight edges, comers or perhaps 
reflections from a window have to be combined with methods 
used in data fusion. Experiments with a computer program 
estimating the statistical differences between targets and 
background are described. The long term goal is to find 
methods for assessing signature suppression methods, 
especially for infrared, but also for visual wavelengths. 

Several ways to analyze images make it possible to assess 
different methods of signature reduction. One way is to 
visualize the properties of an image region in different ways. 

. Displaying the Wiener spectrum (another name for power 
spectrum) for a region of interest. Specific features may 
show up in such an image. 

. Displaying some relevant image transformations, like 
edge or line images. 
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Displaying a Wiener spectrum for a small region around 
every pixel in the image. In this case it is easier to 
examine local events in the image. 

Compute parameters that describe different features of the 
Wiener spectrum, like shape and distribution as examples 
of descriptors. 

Using one or several feature measures to define some 
kind of similarity measure or the opposite distance 
measures. 

Compute some measures that combine (uncamouflaged or 
camouflaged) target and background information. 

Visualization of feature images is important because it is 
sometimes impossible to condense all the information down to 
a single number. Just like in image quality, color or texture 
analysis, several dimensions are needed to characterize a 
situation accurately. However, to validate these measures, 
there is a big demand for simple figures like detection time or 
signal-to-noise ratio. 

An often-used method to visualize the similarity of a given set 
of features is trying to isolate targets from their background. In 
this case the image is segmented in target areas and 
background areas. 

The ultimate validation is of course to test a method in real life 
in a target detection experiment. Using images of the scenes, 
the process can be simulated with a computer. Having a large 
enough set of images it is possible to assess probability of 
detection and also for example false alarm rates etc. 

Image 

I Features I 

1 Multivariate distributions 1 

Detection rates 

Figure 2.1 Steps used in assessing differences between target 
and background. 

Figure 2.1 shows the different steps included when trying to 
find out which features are useful for the description of target 
and background properties. Several topics in figure 2.1 are 
discussed later. 

theory handling target detection in a cluttered environment. 
Theoretical work is often limited to the use of normal 
distributions for the background description. In a low 
observable situation this is completely unsatisfactory. 

3. FEATURES 

There are lots of texture measures in the literature. Designing a 
good set of features could be done using wavelet functions [7]. 
These are more or less limited in space and frequency 
domains. However, computing lots of wavelet functions is 
quite computationally expensive. 

Tamura [4] has studied the relationship between textural 
features and visual perception. The six features he used were 
coarseness, contrast, directionality, linelikeness, regularity, and 
roughness. He found good correspondence in a ranking test 
with an implementation of 16 typical digitally computed 
texture measures. Woodroof [S] has estimated that three 
features should be enough to characterize normal textures. 
Texture measures based on the Fourier transform are shown in 
151. 

It is important to find features that are useful when trying to 
quantify the difference between targets and background. 

Relevant properties for man made targets are given in the 
following section. 

Table 3.1 Characteristic features for manmade targets. 

I Simule features: I 
- straight edges 
- homogeneous regions 
- specular reflection (from a planar surface) 
- homogeneous glints (from a uniform surface) 
- circular structures (=wheels) 

1 Comnound features: 
- non-fractal (when one zooms in towards a part of a 

terrain scene, finer and finer details emerge. This will 
not happen to the same degree when looking at man 
made targets) 

- parallel edges 
- edge with at least one homogenous side 
- corners (= iunctions of edges) 

1 Motion aroDerties: I 
- vibrations I- tracks 
Thermal features properties: 
- “Hot spots” (from for example exhaust pipe) 
- tracks 
- heat from the motor engine, gun barrel etc 
Snectral features: . 
- variations in reflected radiance and self-radiance 

Previous work in trying to find measures to assess camouflage 
effectiveness includes an investigation [2]. Some contributions 
in the literature are found [3-61, but none has yet come up with 
a sufficient method. A major problem is the lack of a good 
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Table 3.2 Characteristic features for natural background. 

Terrain background (texture features): 
- coarseness 
- contrast 
- directionality 
- linelikeness 
- regularity 
- roughness 
Others: 
- Fractal (when one zooms in towards a part of a terrain 

scene, finer and finer details emerge ) 
- non-stationary properties 

Several features can be computed. Which features are useful to 
compute will be addressed later. About half of the features are 
based on image primitives like edges and blobs, that 
characterize targets. When computing these features the image 
is first for every pixel treated with an operator. The resulting 
image is then processed by a lowpass filter or something 
similar. This is done to find properties like concentrations of 
edges per region. For the background features, a local Wiener 
spectrum is computed for a region centered at each pixel. To 
save computation time, it is not necessary to compute the 
Wiener spectrum at every pixel. A coarse grid complemented 
with interpolation is adequate in most cases. In general, a good 
estimate is obtained if the grid separation is one fourth of the 
region size. When computing most of the features, a masking 
function may be applied to each local region to avoid boundary 
effects. It corresponds to an aperture function often used in 
spectral estimation. Here we use a very simple one, the 
Gaussian. 

3.1 Target related features 

The target related features used are: mean value, standard 
deviation, edge concentration, blob concentration, spoke 
maximum and edge coherence. 

Although being first order statistics the mean value (mean) 
and standard deviation (dev) are included as they correspond to 
often used measures. 

Figure 3.1 The inner and outer mask usedfor computation of 
the blob concentration. 

The blob operator (blob) is defined with the help of figure 3.1. 
The mean values for the inner window and the outer window 
are computed and the difference is used as feature value if it 
exceeds a certain low threshold. Due to the sharp boundaries of 
these windows, the blob operator has to be applied to every 
pixel in the input image. As a texture measure for the local 
region, the mean value of the operator output is computed in 
the region. 

The edge concentration (edgeconc) measure is the number of 
edge pixels in a local region around the center pixel. Edge- 
based texture measures have been investigated by Pietikainen 
and Rosenfeld [9] 

The spoke operator (spokemax), as described in [lo], is shown 
in figure 3.2. It consists of eight spokes and is applied to every 
pixel in the image. Based on in how many spokes an edge 
segment is present. as represented in figure 3.2 by an arc, the 
presence of a small circular object may be detected. The output 
is an image where the pixel value corresponds to the number of 
hits that occur. Eight hits indicates a more or less closed curve, 
while three or four hits may indicate a corner. Instead of 
computing the mean value, the maximum value for each local 
region is computed. 

K--h 
/ \ 

Figure 3.2 The spoke opera&. 

The implementation of the edge coherence (edgecoh) follows 
the method given in [ 1 I]. Other work in the same direction 
includes [ 12,131. Its purpose is to indicate close parallel edges. 
Like the edge concentration feature, the edge image is used as 
input. Instead of summing the edge pixels for any direction, 
here only edges lying along the principal direction are 
summed. If the direction for an edge element differs from the 
principal direction it is weighted with respect to the difference 
in direction. If the edge magnitude is denoted mugn then the 
edge coherence is computed according to, 

edgecoh = (mugnc - csumt)jcsumn 

where 
magnc = edge image value in the center of the region 

csumt = c( magn cos( dird?ff )) 

csumn = C (map) 

and dirdiff= difference in direction between the center pixel 
and the others. 

3.2 Background related features 

The background features are all based on. the Wiener spectrum, 
which is the squared magnitude of the local Fourier transform, 
and is called power spectrum in signal processing. They are 
isotropy, autocorrelation length, fractal dimension, directional 
autocorrelation, main direction, shape. low, medium and high 
frequency band energy, angular deviation, angular entropy and 
Fourier transform energy. 
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Given the spatial frequenciesf,,f, and the Wiener spectrum 
magnitude mug+& the isotropy is defined as in [ 141 

isotropy = 255. 
~sumu - sumv~ 

(sum24 + sumvy - 4 sumuvz 

where 
SZWIU =&* .MCl’gn, ,“) 

sumv ‘=C(fY \ 
magnfx Jy J 

sumuv = C 
c 

f, fV magn ,xx, ,. 
Y 1 

When computing the autocorrelation length. basically the 
Wiener spectrum is integrated in the angular dimension. Only 
the frequency magnitude& of the spatial frequency is used. 
The feature is defined as 

autocorr = 10.0 ’ f,,, . ;msum: fsum 

where 

msum = C magn 
f*Jy 

fsum = 1 fxf, .magnI. ( 
f 

XT y 1 

JJY = Nyquist frequency (=half the sampling rate) 

Fractal geometry is a popular area for describing terrain and 
landscape. In addition, fractal dimension and lacunarity are 
two properties that can be computed [ 151. Fractals for texture 
analysis have been studied by Garding [ 161 and others. The 
Wiener spectrum is again treated as a function of the 
magnitude of the frequency. The fractal dimension is estimated 
from the Wiener spectrum magnitude using a least square tit of 
an angular integrated Wiener spectrum. 

The lacunarity @-acterr) represents the amount of deviation an 
image exhibits from being fractal. Here it is a measure of how 
good a line will fit to the angular integrated Wiener spectrum. 

The three features directional autocorrelation (dirautoc), mean 
direction (eigenmean) and shape (shape) are computed using a 
mass model of the Wiener spectrum and computing the inertia 
ellipsoid. The latter is computed by solving the eigenvalue 
problem 

A.I--/I./4 =o 

where A = covariance matrix with components a,,, Here the 
Wiener spectrum is used as a distribution function, 

Solving the eigenvalue equation gives two roots, hi and h2 
which correspond to the major and minor radius of the inertia 
ellipsoid. 

The directional autocorrelation feature is defined as 

dirautoc = const I, 

The main direction is defined as the direction of the principal 
axis of the inertia ellipsoid. 

The shape feature corresponds to the elongeness of the inertia 
ellipsoid and is defined as the ratio between the minor and the 
major radius 

The next three texture measures, low, medium and high 
frequency band energy are probably the most relevant features 
when the problem is to characterize the scale of a pattern. The 
Wiener spectrum is summed in three different frequency 
bands. If the Nyquist frequency is&, then the frequency 
limits are 

lowband: 0 toJ,J4 

midband: 1;,y/4 -r;,J;! 

highband:&/ -j& 

Figure 3.3 shows the summation areas. 

Figure 3.3 Summation areas when computing Lowband, 
Midband and Highband. 

The total Fourier transform energy is simply defined as 

fteneray = k. magnsum 

where k is a constant and 
magnsum = c log(magn + I), log(dc) 

magn = Wiener spectrum magnitude, 

dc = magnitude at zero frequency 

A high value in ftenergy means that the image has a high 
degree of variation. 
Knowing that the Wiener spectrum often falls of very rapidly 
with frequency, the use of logarithms gives high frequencies 
more weight. 
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3.3 Feature examples 

Figure 3.4 shows an image divided into square grids of local 
regions and the corresponding Wiener spectra. Normally the 
regions are highly overlapped, with a center distance of one or 
two pixels. 

Figure 3.4 Local spectra for a typical image. From left: the 
input image divided into the regions and the local spectra. 

The different background features relate to properties of these 
spectra. A few examples of feature images are given in figure 
3.5 

Figure 3.5 An image (upper lef), isotropy (upper right), 
autocorrelation length (lower lefo and medium frequency 
band (lower right). 

4. DISTANCE MEASURES 

We want to be able to express the difference between two 
areas as a distance using a space defined by some of the 
previously described features. The distance measures, see 
[2,2 I], have different underlying assumptions concerning the 
feature distribution. If mean values and standard deviations are 
used to characterize a feature, the distribution is normally 
assumed to be Gaussian and the features are assumed to be 
independent. Some distances used fall in this class. The reason 
for this is the simplifications made when applying them in 
practice. By using the covariance matrix, dependent features 
can be handled and the Mahalanobis distance is an example of 
this class. The Wilks measure uses no assumptions. 

Because of a high degree of correlation between the different 
measures, it is advantageous to use distance measures that do 
not assume independent variables. Using this assumption leads 
to incorrect results. 

Often it is of interest to use well-known quantities that have 
been used for a long time. One such measure is the signal-to- 
noise ratio (SNR) which is very common in connection with 
electrical signals. It is not easy to define an useful SNR for 
images, but attempts have been made by many researchers. 

The different distance measures may be divided into three 
groups depending on how an area for target or background, is 
characterized. Most common is to use mean value and standard 
deviation. 

Some measures take explicit consideration to dependent 
features. The Mahalanobis distance uses the covariance matrix 
to characterize one area and uses a feature point for the other. 
The original formulation of the Bhattacharrya measure makes 
no assumption about the target and background statistics, but 
often an approximation is used, where the distributions are 
assumed to be Gaussian and separable. The Wilks measure is a 
measure of similarity, which make no assumptions. 

In table 4.1 the different measures used are listed. 

Table 4.1 Listing of several distance measures. 

# Distance Comments 
1 Wilks Parameter free 
2 Bhattacharrya May be parameter free 
3 Mahalanobis Uses the covariance matrix 
4 Yaki 
5 Disabs 
6 Dissar 

Only mean values 
Onlv mean values 

I 

71 L 
I i 

Tsnr I 
8 dT-sum 
9 dT_suma 
10 dT rss 
11 1 dT-rss4 
12 I Thvle I _- - -, -- 
13 Doyle-mod 
14 Doyle-log 
15 Doyle hybrid 

Includes a constant 
Includes a constant 
Includes a constant 

4.1 The distances 

4.1.1 Wk.9 
The following description is given by Liu and Jernigan [14]. 
Let xi@ be the i:th feature value for the k:th sample of class g, 
where i = 1,2,. ,m and m = the number of extracted features; 
g=l,2,. .;G (G classes) and k=l,2,. .,np (number of samples in 
class g). N = C nR is the total number of samples. The Wilks 
statistic is a measure of class separability that depends on 
within class and between class scatter matrices. The within 
class scatter matrix, IV. and between class scatter matrix, B, are 
defined as 

and 
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B = [b,] > I,,XN, 

where 

w,, = f 2 (Xigk 
g=I k=l 

and 

- >( 
- 

Xii: ’ i.xk - x jg 
- 

b,, = i n p (Xix - x, )( iYin - xi ) 
g=I 

x,I: and 5, are the mean value of class g and the total sample 

mean value for the i’th feature 

The sum of within and between class scatter is the total scatter 
matrix T 

tj,=g 2 (X,*,k-X,)(X,++ 
&!=I k=l 

The Wilks statistics is the ratio of within class scatter to total 

scatter; IJ = lI+T1 

4. I .2. Bhattacharrya 
This is a measure of the overlap between two normalized 
distributions. If the distributions aref(x) and g(x), the 
Bhattacharrya coefficient b,, is defined as [ 171. 

This quantity is related to false alarms and false detections. 

In one implementation the features from the two regions to be 
compared are assumed to be Gaussian with mean values ,u,, pl 
and standard deviations oi, 02. Assuming independent features 
gives the sum of the Bhattacharrya distance for the features 
between the two areas 1 and 2. Defining b as -log(b,,& gives 

b = lN.c 
,uor 

Here x is the feature for a point in the image and the feature 
for rest of the image is characterized by the mean value p and 
the covariance matrix C. Sometimes a small target area is 
compared with a larger background. In this case the target area 
statistics is approximated by its mean value and used for x in 
the expression above. 

4.1.4. Yaki 
This measure was designed by Yakimovski [19] in order to 
find out whether two regions are of the same kind or not. He 
found a measure, here called yaki for simplicity, that is for one 
feature given by 

2 

yaki= o** ,‘(T, ‘02 ( > 
where 0,z = standard deviation of the feature in the union of 

region 1 and region 2 
oi= standard deviation of the feature in region 1 
02= standard deviation of the feature in region 2 
Assuming Gaussian models for the two regions with mean 
values of p, and ,~r, and standard deviations of IS, and o2 then 
the above expression may be evaluated to give 

Yaki,,, 
=I+ (4 -d ] h-4 

(4.(T, .a,) (2.C3 .cQ) 

Sometimes the constant 1 in the above expression is neglected 
in order to make the yaki measure look like a signal-to-noise 
ratio. If several independent features are used this measure will 
be given by 

yaki = c yakif,,,, 
where yak&, is computed for each feature according to 
equation above. 

4.1.5. T-Student snr 
In one application there was a need for simple measures that 
were fast to compute and has similarities to simple known 
measures, in this case the signal-to-noise ratio. The T-Student 
test [52] is used to see if two distributions are similar. We 
define it as 

Using mean values and standard deviations means that the 
underlying distributions are assumed to be normal. 

4. I 6. Disabs 

Disabs = 1 N * 

where the summation is done over all the features used. 
4. I. 7 Dissqr 

4.1.3 Mahalanobis distance 
This distance often occurs in connection with normal 
distributions. It is a measure from one point in a distribution to 
the center of the distribution. It is defined as [IS]. 
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4. I. 9. dT-rss4 

r----- 
dT_rss4= 1 ;F* // + ) 

2 
T-PB +4.02T 

1 F‘vrw‘ I 

4.1.13. doymod 

doyle-mod = 1 jx l :‘Zjlui-rr)‘+~*dT-~8)‘) 

where k=0.4 12. 

4.1.14. doylog 
I I 

where k=0.00477. 

4.1.15. doyhyb 

doyle-hybrid = i ;G* \j C [(hI(,,Ul)-ln(,UR)) i+k+I.-~B)2) 
F.u,,wcr 

where k=0.000023. 

4.4. Examples 

An example of distance computation is shown in Figure 4.1 
The distances are chosen in an earlier experiment. 

Since many measures are used in the comparisons in a later 
part they will be defined here. The order here is in no way 
indicating their relevance. 

Other examples of distance computations are given in section 
5and6. 

5. EXPERIMENTS WITH THE SEARCH-2 IMAGE 
DATA SET 

44 images from the Search2 data set [20] have been used in 
some experiments trying to correlate the distances from several 
distance measures with perceptual measures on detection time 
and hits performance. The images were limited in field-of- 
view to have a size of 256*256 pixels. They were selected with 
a magnification such that the target width occupied around 25 
to 50 pixels. 5 images are from the Bl set, 26 from the B4 set 
and 13 from the B 16 set. The tables in this section summarize 
experiments using several features and several distance 
measures. In several cases an exhaustive search has been 
performed to find the highest correlation with the perception 
data. Ideally, a model would be derived beforehand, to limit 
the search to relevant cases. 

Mahalanobis 2.5 

Bhattacharrya 0.6 
Yakimowski 0.8 

Table 5.1. Correlation between distance and detection time. 

~ 

2 features 
1 Dirautoc. isotronv dTsum 0.737 
2 Dirautoc, isotropy dT rss 0.709 
3 Ftenergy, isotropy dT-rss4 0.705 

Dirautoc, isotropy dTsuma 
3 features 
1 Edgecoh. dirautoc, dTsum 0.756 

isotrony 
2 Edgecoh, &energy dT-rss4 0.728 

isotropy 
Dirautoc, isotropy, dT-rss 
medfreq 

3 Dirautoc, isotropy, dTsuma 0.708 
lowfreq 

The three best are shown, just to indicate that there is no big 
difference between the good ones in each experiment. Using 
several features gives a better result but the risk is to adjust to 
the current image data set too much. In table 5.1 and 5.2 the 
distances are correlated with the detection times. 
Some experimentation showed that correlation with the inverse 
of the distances gave a somewhat better result. The 
corresponding results are shown in table 5.3 and 5.4. A 
nonlinear function may be used, but again an adjustment to the 
current data set has to be avoided. The correlation is given 
with three decimals in the tables just to indicate small 
differences. In practise only the first decimal may be relevant. 

Figure 4.1 Distance computation using the isotropy and 
autocorrelation length. The inner area outlines the target area. 
The background area is defined as the area between the inner 
and outer square. 
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5.1. Comments Table 5.2. Correlation between inverse distance and detection 
time. 
Rank 1 Features 1 Distance 1 Correlation 1 The tests indicate that the best result will be obtained using 

mean and variance based distances. Also it is evident that the 
inverse distance gives a better correlation reaching up to 0.85 
in some case. The different tests also indicate that the features 
isotropy and dirautoc are among the best to use. If a third 
feature will be used, then ftenergy is a natural choice. One 
reason that isotropy is good is that it reacts to small straight 
edge segments that are common on targets but unusual in the 
background. 

Better results may perhaps be obtained if the whole scene is 
processed. Now there is no estimation of possible false alarms 
outside the small background area used. 

1 feature 1 
1 I Isotroov l dTsuma =A 0.751 

0.740 
I I - ------- 

2 I Isotroov 1 dTsum . < 
3 Isotropy dT_rss 0.730 
2 features 
1 Dirautoc, isotropy dTsuma 0.877 - - 
2 Dirautoc. isotroov dTsum 0.856 

I  12 ,  I  

3 1 Dirautoc. isotronv 1 dovle IO.852 1 
3 features I I 
1 

2 

Dirautoc, isotropy, dTsuma 
shape 
Dirautoc, edgecoh, dTsum 
isotropy 

3 1 Dirautoc, edgecoh, 1 doyle ( 0.857 6. APPLICATION TO CAMOUFLAGE ASSESSMENT 
isotropy 
Dirautoc, isotropy, dissqr 
mean 

Figure 6.1 shows a sequence of images where the targets are 
more and more camouflaged (simulated here by lowering the 
target contrast). The features used are directional 
autocorrelation distance (dirautoc) and isotropy. In the scatter 
image to the right of the image the covariance ellipses for the 
target area are plotted 

Table 5.3. Correlation between distance and hits. 
Rank Features Distance Correlation 
1 feature 
1. Ftenerav dT rss4 0.612 

Ftenerev dT_rss 0.571 
Autocorr dTsum 0.563 

2 
3 
2 features 
1. 
2 
3 
3 features 

Ftenergy, isotropy dT rss4 0.688 
Ftenergy, isotropy dT-rss 0.649 
Dirautoc. isotroov dT sum 0.639 

Dirautoc, ftenergy 
isotropy 
Ftenergy, isotropy, 
shape 
Edgecoh, ftenergy, 
isotropy 
Autocorr, Dirautoc, 
isotropy 

dT rss 

dT_rss4 

dTsum 

0.695 

0.692 

0.688 

Table 5.4. Correlation between inverse distance and hits 
Rank Correlation I 
1 feature 
I. 

Features Distance 

Autocorr disabs, 
dissqr 

Ftenergy dT-rss 
Shape mahala 

Dirautoc, isotropy dTsuma 
Dirautoc, ftenergy dT-rss 
Autocorr, dirautoc dT-sum 

=--I 
2 
3 
2 feature 
I. 
2 

Fracterr, highfreq, mahala 
isotropy 
Fractdim. ftenergy, 1 dTsuma 

EF=l 

3 
3 features 

Figure 6!1 A sequence of images where the targets are more 
and more camouflaged (simulated here by lowering the target 
contrast). To the right of the images scatter plots are shown 
with covariance ellipses for the target area and background 
area. 
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It can be seen from the ellipses in the middle column that the 
overlap between the two ellipses increases as more and more 
camouflage is applied. 

Several distance measures are computed for each camouflage 
level. Table 6.1 shows the distances. An earlier similarity 
measure was computed as the overlapping area from the two 
covariance matrices. This common area could be interpreted as 
the Bhattacharrya distance if the distributions for target and 
background are uniform and restricted to the covariance 
ellipse. However, the usual Bhattacharrya measure performed 
better. 

Table 6.1 Distancesfor different degrees of camouflage. 
Image I is the upper image in figure 6. I and image 4 is the 
lower one. 

7. DISCUSSION 

Using image analysis techniques it is possible to obtain a 
measure of similarity between camouflaged targets and the 
surrounding areas, It is also possible to compare targets having 
different degrees of camouflage with background areas. The 
difficult task is to select a suitable set of features to use. 

Future work might also include integration of spatial properties 
with spectral and temporal features. This is necessary if 
assessment of a given signature suppression method is to be 
done. Furthermore the distance measures have to be 
“calibrated”, for example related to recognition distances. 
A step in this direction is the experiments with the Search-2 
image data set. The price to be paid by using many features is 
a heavy computation load, a disadvantage that will be less 
relevant in the future. 

Experiments with the Search-2 image data set indicates the 
need for some model in order to find relevant features. 
However, it seems possible to use quite a few features to get 
reasonable result. In these experiments the features isotropy 
and directional autocorrelation distance seem to give some 
useful results. The tests indicate that the best result will be 
obtained using mean and variance based distances. Also it is 
evident that the inverse distance gives a better correlation 
reaching up to 0.85 in some case. 

Better results may perhaps be obtained if the whole scene was 
processed. Now there is no estimation of possible false alarms 
outside the small background area used. This indicates that a 
multivariate normal distribution may be a possible model for 
the Wiener spectrum. 
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