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Image-based aircraft pose estimation using moment invariants
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ABSTRACT
The problem of estimating aircraft pose information from mono-ocula¡ image data is considered using two different pose

estimation algorithms. Both algorithms are based on the rotation invariant moment approach that was introduced by Dudani.

The dependence of pose estimation accuracy on image resolution and aspect angle was investigated through simulations

using sets of synthetic ahcraft images. It is shown that increased pose-estimation accuracy can be obtained by breaking the

nearest neighbour search procedure in two parts.
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1. Introduction
In order to use air defence artillery effectively against incoming aircraft, it is necessary to make accurate predictions of
aircraft trajectories. Traditionally, systems capable of pointing and tracking use only position measurements based on radar

data to update trajectory estimates. The performance of these systems becomes poor when confronted with fast manoeuvring

targets. It is known from literaturel'2 that fusion of target position data gathered by radar and target po,se estimates extracted

from camera images results in improved tracking and prediction performance. The fusion process is shown in Figure l.
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Figure I: Pose estimation as a part of an enhanced target lracking system

In this paper we discuss the design, implementation, and testing of an algorithm capable of extracting aircraft pose

information from camera images. First, an introduction is given to pose estimation techniques and results from a literature

sea¡ch are presented. Next, the details of the implemented pose estimation algorithm are explained. Finally, the results from

numerical experiments are discussed.

2. ANALYSIS
The general problem of automatic image based object recognition and pose estimation has been frequently studied in the

field of computer vision and pattern recognition. Some of the techniques developed in this field are particulady suited for
automatic aircraft pose estimation. This section will present a short outline of general pose estimation techniques, øking into

account the advantages and disadvantages of mono-ocula¡ and stereo images, the choice between local and global image

features, and the way in which these features can be converted to a pose estimate.

2.1 Imâge based pose estirnation
At the start of the information processing chain, a choice has to.be made between the use of 3D information from stereo

image pairs and the use of 2D information from mono-ocular images. Accurate 3D shape information can help to reduce

object pose ambiguity. However, exfracting accurate 3D information from stereo images is only possible if the distance
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applied. In the first part of the algorithm, a watershed algorithm is used to separate object and background. Multiple
separation hypotheses a¡e generated, converted to Fourier descriptors, and compared to a library by means of nearest

neighbour sea¡ch. If no match is found during the search, it is assumed that the object separation was not successful. In this
case, local image features and syntactic pattern matching are applied. Details of this approach are not provided in thei¡
paper. To fu¡ther enhance the robustness of object recognition, evidence is accumulated over time. An estimate of the pose

recognition reliability is computed on line. It is assumed that the pose ambiguity problem can be solved by using trajectory
information. The performance of the system was investigated using simulations. During these simulations, parameters such

as background complexity, contrast, resolution, number of target types, and object pose were taken into consideration. In
addition, they examined the sensitivity of the system performance to target shape modifications caused by presence or
absence of ordinance systems. The overall conclusion is that good pose estimation and recognition performance can be

achieved. No quantitative figures are provided.

3. Ihe Pose estimation algoritlm
The results from the literature study that were discussed in the inroduction make it clea¡ that most methods of image based

aircraft pose estimation are based on the same stategy. In the fust step of this stategy, rotation, Eanslation, and scale

invariant image features are used to compute the aircraft rotation about two axes that are perpendicula¡ to the optical axis of
the camera. In the second step, hanslation and scale invariant image features are used to compute the aircraft rotation about
the optical axis of the camera. This two step sEategy is the basis of our pose estimation algorithm.

The algorithm's performance is substantially influenced by the image feature type that is used. Most methods known from
literature rely on moments or Fourier descriptors. A comparison of the aircraft classification accr¡racy that can be obøined
by various feature types was made by Reeves6. His experiments indicate that Fourier descriptors result in a classification
accuracy of approxìmafely 907o, *hil" morn"nt invariants give approximatsly 65Vo cl¿siifrcation accuracy. Hoiever,
Dudania and WintzT claim for these two feature types a pose estimation accwacy that is very simila¡. In our algorithm,
moment invariants Íue used as they can be easily implemented and are likely to give good performance.

In most aircraft pose estimation algorithms the input image features are mapped to a pose estimated by means of a nearest

neighbour search procedure. The features can be compared either directly in the original feature space, or they can be

transformed first to a new feature space. Two arguments are used in favour of the second option: bener classification
accuracy and reduction of the feature space dimensionality. The latter results in reduced computational complexity. Reeves6

argues that classical feature vector conditioning procedures, such as the eigenvalue transformation, do not necessarily result
in performance improvement since the within-class feature vector variation is, in general, greater than the between-class
feature vector variation. Reeves thcrefore uses a "variance balancing" technique to condition the features vectors before they
are compared. The purpose of this technique is to make the effect of the various feature vector elements more equal. His
experiments show that this technique works well provided that higher order momens, which are very noise sensitive, are

excluded from the feature vectors.

The structure of the implemented pose estimation algorithm is visualised in Figure 2. The processing steps that take place in
the conversion from input image to pose estimate a¡e described below:

l) The grayscale image from an infra¡ed c¿rmera is convertcd to a binary image by means of thresholding. Most of the gray
level information within an object changes considerably depending on environmental conditions and can therefore be

ignored. A noticeable exception to this general rule is thç exhaust outlet, since it contains relevant pose information and

can be easily discerned in a grayscale image. It is assumed that the aircraft silhouette contains sufficient information for
object pose estimation. In addition, we assume that only one target is visible in thc image and that sufficient conrast
between target and background is available to allow for simple and robust image segmentation.

2) From the binary silhouette image, a vector, Ç,, of central scale invariant moments is compuæd. In later proccssing

steps the cenhal moments a¡e used to derive Hu-moments and to compute the ai¡craft rotation about the optical axis of
the camera.



4) Scaling and offset are applied to each element of the Hu-moment vector .FI,n . This is necessary since the absolute value

of the higher order Hu-moments is in general several orders of magnitude smaller than the absolute value of lower order

Hu-moments. The scaling and offset values a¡e based on the variance and mean of the Hu-moments in the reference

database. As a result of this procedure, zero mean and unit variance are obtained for each feature vector component

when averaged over the complete training set.

5) The normalised Hu-moment vector, .Éf n, is compared to the reference database of Hu-moment vectors, using the

Euclidean distance as met¡ic. The result from this search procedure is the best matching Hu-moment vector in the

database, denoted I/.. The corresponding central moment vector in the database is denoted C^,the corresponding

aircraft azimuth and elevation angles in the database are denoted a, and p.

ó) The central moment vector Cin is compared to Ç, to find the aircraft rotation y about the optical axis of camera. The

rotation angle y is computed using the equation,

r = 1*.or( (Mro - M.)'(ftro - fiIor¡+4M1,'l4r),'2\'

wherc Mru,Mo2,Mrrand, f,Iro,ÑI*,f4rrare respectively cennal scale normalised moments moments from the input

silhouet image and the corresponding reference set image. This procedure cannot distinguish between two object

rotations that differ a multiple of 180'. This problem is dealt with in step 7.

7) From the basic pose estimate Ia, Þ, yl that was derived thus far, a number of alternative pose hypotheses are derived to

account for the ambiguity that is induced by the object symmetry, the mapping from a 3D object to a 2D image and the

limitations in the "y-estimation procedure. The causes of pose ambiguity and the related pose equivalence relations a¡e

summarised in Table l. The aircraft pose hypotheses that are generated in processing step 7 are listed in Table 2.

Table 1: Three causes ofobiect pose ambiguity

Eouivalence relation Cause

la,Þ,yl c+[-a,-p,y-l 80'] Rotation syrunetry (180o) relative to aircraft
main body axis

ta,p,yl e+ [80'-ct,-p,1] Mirror symmetry relative to the plane through
main bodv axis and tail wine

la,p,yì e [cr,p,pl80"] Limitations in procedure that estimates aircraft
rotations relative to the camera axis

Table 2: Eight aircraft pose hypotheses, based on the initial pose estimate ta, þ,yI

azimuth elevation roll
C[

180o-a
l80o-a

CT

û,

1 80o-a
l80o-a

c[

Þ
-p

p-180'
-p-180'

p

-p
p-180"

-ß-180'

T

T

v
v

y+180'
y+180'
y +1 80o

Y+180"

8) The eight hypotheses that were generated in step 7 are compared to the previous pose estimate, using the pose similarity

measure described in paragraph 4.1. The current pose estimate will be set equal to the best matching hypothesis.
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4.2 Pose estimation accuracy and aspect angle
Many aircraft pose estimation methods known from literature3'a are based on the assumption that the symmetry properties of

an aiicraft allow for omitting a considerable number of aspect angles from the reference database without much degradation

of estimation accuracy. In this section, we investigaûe the validity of this assumption by analysing data from numerical

experiments based on reference feature vector sets covering two different ranges of aspect angles. In addition we examine

the dependence of the estimation accuracy on the aspect angle of the input images.

In the first experiment the pose estimation algorithm had access to a limiæd set of reference features vectors covering

azimuth angles in the range 0o through 90'and elevation angles in the range -90o through 90" (Figure 5). A test sot of

images showing an NF5 aircraft from aspect angles with azimuth in the range 0o through 360" and elevation in the range -

90o through 90o was processed by the algorithm. The roll angle of the ai¡craft in the input image data set was 80o. The

resolution of both thJ images in the test set and the reference set was 100x100 pixels. The pose estimation errors that

occurred for different values of azimuth and elevation are shown in Figure 6.

Fígure 5: Oveni¿w of aspect angles in algoritlm danbase (o)'

and aspect angles in test data set (+)

In f,rgure 6 two symmetric patterns can be recognised: the füst pattern occurs in the left half plane and is symmetric relative

to the point were the azimuth is 90o and the elevation is 0". The second pattern oocurs in the right half plane and is

symmetric relative to the point were the azirruth is 270" and the elevation is 0o. The symmetry of the pattern that occurs in

each half plane is caused by the fact that the aircraft is mirror symmetric relative to a

o¡.,Turtfl-"rämnrÐm
Figure 6: Pose estimalion error dcpending on hput inage asPcct angle.

Reference database with azimuth in the ratge 0'90"' Test bmøges are

, rotated 80o clocl<wise in the inøge plane relative to reference ìnage*
Featurevectors are basedon 7 Hu-momcnts.
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Figure 8: NF5 at 100 %
resolution
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Figure 1l:NF5 at 35 Vo

resolution

Figure 9: NF5 at 75
resolution

Figure l2:NF5 at 25 7o

resolution
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Figure 10:NF5 at 50 7o

resolution

Figure l3:NF5 at 15 Vo

resolution
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4.3 Pose estimation accuracy and target resolution
In order to find the relation between image resolution and pose estimation accuracy a number of simulations were c¿uried out

at various resolutions. Since in all these experiments aircraft images were evaluated independently, the pose ambiguity

resolving pa.rt of the algorithm could not rely on previous pose estimates to select the best pose hypothesis. To circumvent

this problem the eight pose hypotheses generated in step 7 of the algorithm were compared to the true aircraft pose, instead

of to the previous pose estimate. In all experiments the algorithm had access to a complete database of reference moment

vectors covering azimuth in the range 0o tough 360' and elevation in the range -90o trough 90o. Both the test and the

reference images were taken at 100x100 pixels resolution. The test set images were rotated 80o counter clockwise relative to

the images in the source data set. Figuris 8 through 13 show typical NF5 images from the test data set at six different

resolutions.
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The average pose estimation errors at 5 different resolutions are summarised in Table 5. These data show that the estimation

performance does not change much for input images with resolution in the range lOÙVo to 35 Vo. Only at l57o image

resolution, the pose estimation errors becomc much larger.

Table 5: Average pose estimalion error at various image resolutions

Relative image
resolution

IOO Vo 75 Vo 5O Vo 35 Vo 15 7o

Average pose

estimation error
14.07" 14.55" 14-21" 15.35' 23.53"

Median pose

estimation error
8.77" 9.950' l0.Mo rl.&" 21.260

5. Improvements in the pose estimation algorithm

The experiments that were done to study the relation between target aspect angle and pose estimation accuracy indicate that

it is advantageous to use in the first part of the pose estimation process features that are less sensitive to noise and object

rotations in the image plane. The seventh Hu-moment is particularly sensitive to noise and should therefore, if possible, be

omitted from the nearest neighbour search procedure. However, from the set of seven Hu-moments, only the seventh one can

be used to discern between mirrored silhouettes. A number of modifications can be made to the algorithm described in
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6. SummarY and conclusions

An algorithm has been designed and implemented to study

aircraft pose estimation. Experiments show that the pose

images of 35x35
error was nearly
estimation algori roved pose estimation performance'

ACKNOWLEDGEMENTS
for the fruitful discussions with N. de Reus, P. Ockeloen, K. Schutte, B. van den Broek, and

The author is grateful
J. Schavemaker.

L

2.

3.

4.

REFERENCES
D. Sworder and R. Hutchens, "Maneuver estimation using measurements of orientation", IEEE Transactions on

Aerospace and Electronic Systems,vol.26, no' 4, July 1990'

J.D. Kendrick, Estimation of aircrafr turget motion using pattern recognition orientation measurements' Ph'D'

dissertation, Air force Inst. Technology, Wright-Patterson Air Force, OH' 1978.

Z. Chenand S. Ho, .,Computer visioi'for robust 3D aircraft recognition with fast library sea¡ch", Pattern recognition,

vol24, no. 5, pp 375-390,1991.
S.A. Dudani, K.J. Breedíng and R.B. McGhee, "Aircraft identification by moment invatiants", IEEE Trans' Comput'

C-26, pp.39-46, 1977 .

f . Cíaìs, A. Ayoun, "Image-based air target identification", Proc' of SPIE' vol 2298, pp' 540-55 I ' 1994'

A.p. Reeves, n.¡. notoplS.E. Andrews-and Kuhl F.P., "Three dimensional shape analysis using moments and Fourier

descriptors", Proc. /h Int' Conf. Pattern Recognition, pp' 447 450, 1984'

T.p. Wallace and p. Wintz, lân effrcient tkee-dimensional aircraft recognition algorithm using normalised Fourier

descriptors", Comput. Graphícs Image Process, vol' 13, pp' 99-126' 1980'

5.
ó.

7.

304


