
A Physical Method to Incorporate Parasitic Elements in a Circuit Simulator Based 
on the Partial Inductance Concept 

B.H. Evenblij J.A. Ferreira 
TNO Prins Maurits Laboratory Delft University of Technology, Electrical Power Processing group 

P.O. Box 4,2280 AA Rijswijk, The Netherlands 
Email: evenbly@pml.tno.nl 

Abstract - In switching Power Electronics circuits 
inductive parasitics of wiring and components contribute 
substantially to the current and voltage waveforms. This 
article addresses the theoretical basis as well as the 
implementation and validation of the incorporation of 
these inductances in a computerised circuit simulation. 
The program presented in this paper is using the same 
formulas as INCAm. It differs from INCAm especially in 
that it generates code that can immediately be given to a 
circuit-simulator, to perform a time-simulation. 

1. INTRODUCTION 

The quest for the ideal switch has been going on for quite a 
while now‘ and has led to remarkable results. The more this 
ultimate goal is approached however, the more the non-ideal 
properties of the environment of the switch manifest 
themselves. As there is no possibility of improving 
conductors as is the case with semiconductors, the features of 
the conductors have to be accepted. The only thing the 
engineer can do about parasitic features of surrounding 
circuit of the switches is modeling them properly and 
designing the geometry of the circuit in such a way that the 
semiconductors (and other components) won’t be stressed 
beyond their specs. 

This modeling can be done using either FE-techniques 
(Finite Element) or the LE-approach (Lumped Element). In 
general one can say that FE-analysis produces vast amounts 
of detailed information, but only at one point of time. The 
abundance of information supplied by FE-analysis can be 
unfavourable. Moreover trends are only to be noticed after 
numerous simulations that allow for plotting characteristic 
features as a function of input parameters. LE-analysis 
delivers information as a function of time, but this 
information is not always accurate enough. Because the LE- 
modeling implies the analytical solution of a part of the 
(simplified) initial problem, one ends up with much less 
system parameters, that make for instance the investigation of 
parameter-sensitivity much more easy. The object of this 
paper is to develop a LE-model that approaches FE-detail and 
accuracy. 

The paper is organised as follows. In order to be able to 
incorporate parasitic elements in a circuit simulation, some 
understanding of the models and how the circuit simulator 
uses them is necessary. This topic is briefly discussed in the 
paragraph 2. This discussion allows for looking at how to 
model parasitic elements in the next paragraph. After that 
inductive and resistive parasitics are looked at fiom a 
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physical perspective. A method is established to define and 
measure node-voltages in an environment where the voltage 
between two points is undefined because of a time-varying 
magnetic field. In order to get at calculation results however, 
a fine theoretical definiton is not enough: one has to have a 
practical way to calculate modelparameters. The concept of 
partial inductances is introduced at this point as well as a 
certain stylising of the circuits. The process ofthe modeling a 
realistic circuit is described in order to make clear how the 
different concepts introduced thus far fit together. After that a 
more sizeable circuit is presented that has been used to 
validate the modeling. The validation discussion concludes 
the paper. 

2. PRINCIPLE OF OPERATION OF CIRCUIT SIMULATORS. 

The considerations hereafter apply in principle to any circuit 
simulator based on the solving of Kirchhoffs Current Law. 
As SaberT-” is used for the simulation, the syntax in the 
examples is taken from this simulator. 

Consider the simple case of a circuit consisting of a current 
source and a resistor in Fig. 1. The crucial line in the code of 
the model of the resistor is: 
i : v(a) -  v(b) = iR (1) 

Its meaning can be stated as: “Find i under the condition 
that the difference between terminal voltages equals R times 
the value of i”. What the simulator does is writing down the 
KCL for each node (except 0-node), which is in this case: 

Fig. 1 .  Simulation of circuit with current soum and resistor 

iR - i, = 0 

Next it will substitute for all the unknown currents 
expressions that contain the dependence of the currents from 
the node-voltages. In this case the result is: 

1 
R 

- ( v ( A )  - v(0))- + I ,  = 0 

Mark the distinction between internal nodes, currents and 
voltages and external nodes, currents and voltages. In the 
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next stage the simulator will for each node change the 
voltages until for all nodes the total sum of currents is 
sufficiently equal to zero. This search for node voltages is 
done by a numerical iteration method as for instance Newton- 
Rapson. 

The central issue is that in the model description of each 
component an implicit or explicit relation is given from 
which the simulator can derive the dependency of all the 
currents from the node voltages. 

3. T W O  WAYS OF IMPLEMENTING PARASITIC SERIES RESISTANCE 

Consider the circuit of Fig. 2. In this figure a simple circuit 
containing a voltage source and a resistor are depicted. Both 
the voltage source and the resistor are represented as ideal 
components. Their respective models are as follows: 
Voltage source: i : v(a) - v(b) = U, (4) 

Resistor: i :  v(a) -  v(b)=iR 
(5) 

Fig. 2. Simulation of circuit with voltage source and resistor 

The values of Us and R are parameters of the models. They 
are to be seen as constants with a known value. 

Suppose we want to add to the model the effects of the 
wiring resistance. We can do this in two ways. The first way 
is to edit the model of both the voltage source and of the 
resistor. This results in adapted model descriptions: 
Voltage source: i : v(a)  - v(b) = U ,  - iRp,, - iRpsb (6) 

Resistor: i : v(a)  - v(b) = iR 4 iRp, i iRp, (7) 

Fig. 3. Pamitics integrated in component models 

Where Rpso and Rpsh are the values of the parasitic resistors 
of the source cables of terminal a and b; and Rpro and Rp,h are 
the values of the parasitic resistors of the resistor cables of 
terminal a and b. The resulting models are depicted in Fig. 3. 

The other way of incorporating the series resistors of the 
wiring however is by adding a model that contains only the 

resistive effects of the wiring. See Fig. 4. The description of 
the wiring model in Fig. 4 is: 

i, : v(a)  - v(c)  = ilRpsn i i, Rp, 
i2 : v ( d )  - v(b) = i2Rpsb + i2Rprh 

(8)  

Fig. 4. Parasitics modeled in a separate wriring model 

Observe it is possible to model other parasitic effects as 
well in both ways. Suppose the resistor has a small value of 
series inductance. It is possible to add this impedance to the 
model of the resistor itself or to attribute this series 
inductance to the model containing the wiring parasitics. In 
the case of an inductance however there are two major 
differences. There exists, strictly spoken, no such thing as an 
inductance of a resistor: inductances only apply to closed 
loops. But if one had a concept to attribute an inductance to a 
non-closed piece of wire, this element could be modeled in 
both ways just described. The problem of attaching 
inductances to branches instead of loops will be addressed 
further on in the paper. 

The other difference is, that the voltage of a resistor 
depends solely on the current flowing through the resistor, 
whereas the voltage of an inductor in principle depends on all 
the currents in the circuit. This dependency can be modeled 
by adding current-controlled voltage-sources in series with 
the parasitic impedances. This addition however does not 
affect the argument anywhere in this paragraph. 

Fig. 5.  Extra internal nodes “e” and “f‘ in wiring model 

Observe also that one has to be careful to interpret the 
calculated values of the node voltages. In the case of Fig. 3, 
the node voltages correspond to the voltages that can be 
measured at the physical terminals of the source and the 
resistor. In Fig. 4 the calculated node voltages might not be 
available for measurement, because they represent the node 
voltages of the ideal parts of the source and resistor. In order 
to generate in the simulation measurable data as well one 
might add two internal nodes e and f to the model of Fig. 4, 
as is done in the model of Fig. 5 .  The model description 
becomes then: 
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ill  : v(a)  - v(e) = il ,Rpsa 
i,,  : v(e)  - v(c)  = i,,Rpra 

i,, : v ( f )  - v(b) = i21Rpsb 
i22 : v (d )  - v( f )  = i2,Rprb 

(9) 

Fig. 6. Parasitics modeled us one element for each component 

A last point to be made in this paragraph concerns the 
division of the parasitic elements of one component into two 
separate ones in the model of the wiring. Although this is 
suggested by the fact that components have in general two 
more or less equally shaped leads, there is no real argument 
against modeling the total parasitic resistance of a component 
in the wiring model as one resistor. This is depicted in Fig. 6 .  

In looking at Fig. 6,  one sees that the node b and d have 
become identical to nodefin Fig. 5 .  This allows for leaving 
out one of them. As a result one gets the circuit of Fig. 7. In 
this case there are no currents flowing to node b from nodes 
within wiring model. As a consequence node b could be 
wholly left out of the wiring model. In practice however it 
turns out to be more simple for the user of the model, if these 
nodes are retained within the wiring model, although they 
only serve as a collecting node for purely external currents. 

Fig. 7. Combination of short-cimited nodes into one 

Fig. 8. Internal node disappears after rearrangement of parasitic elements 

Observe that for each branch there are two external 
connection points, in order to connect the models of the 
components to the wiring model. In addition to these often an 

internal node is present like e in Fig. 7. If one had chosen for 
a different combination of the two parasitic resistances the 
situation of Fig. 8 would have resulted. Here no internal 
nodes are present. Both situations can occur in the program. 

4. PHYSICAL MEANING OF TERMINAL VOLTAGES 

The current distribution in wires and components constitutes 
a magnetic field. The time-derivative of this field gives rise to 
an electric field that causes inductive voltages. As a 
consequence the voltage of a given point within the circuit 
and its immediate neighbourhood is no longer defined. The 
circuit simulator calculates however for each time-step the 
nodevoltages. under the condition that the total current for 
each node is zero. If one wants to make use of a circuit 
simulator two things require attention: 
0 to find an adapted and physically sound definition of 

0 to identify the way to implement this definition in the 

In the quasistatic approximation the choice of two points a 
and b uniquely determines the voltage between these points, 
independently of the path chosen: 

terminal voltages 

circuit simulator 

The voltage of a given point can moreover be established 
by chosing an arbritary value for the voltage in one point, that 
is in practice often the “zero” of the circuit. 

In order to retain the distinctness of the voltage the path 
along which the integral is taken has to be specified. This is 
illustrated in Fig. 9. 

Pig. 9. Measurement of voltage between nodes 1 and 2 

If resistor and wiring can be supposed ideal : 
V21 = i ,R, ( 1  1) 

And if resistance of wires is to be taken into account: 
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V2, = i,R, i i,R,, i iiRw2 

If the inductive field plays an important role as ~7ell: 

V,, =i ,R ,  7 i,R,, iiRw2 - a,@ 
But this expression is not determined, unless (1) the position 
of the voltagemeter and (2) the connecting wires to node 1 
and 2 are defined. In Fig. 9, the measuring wires come 
together at the black dot, indicated with vmp. This is the 
virtual measuring point. An imaginary very small measuring 
device would at that point register the same voltage as a real 
measuring device at some distance, if its measuring wires 
catch up no flux between the vntp and the voltagemeter. So in 
prescribing a vmp and a connection path between all of the 
nodes of the circuit and the vmp one establishes a unique 
definition for all the branchvoltages. Because of the fact that 
a closely twisted pair of measurement wires from the vmp to 
the measuring device allows for any distance between circuit 
and voltagemeter, a feasible way to measure these voltages is 
provided as well. 

Observe that the flux is often linearly dependent on all the 
branchcurrents in the circuit. If we take this linearity as a 
valid assumption, the last expression can be written as: 

V,, = i,R, 2 i,R,, 4 iiRw2 - a,a,i, - a2ati2 - ... 
(14) +a,%, a tiA, 

Where one or more q may be zero. 
Consider the case that one has for each branch an 

expression like (14) available. It is a well-known fact from 
circuit theory that this set of expressions is the complete 
statement of the circuit problem. If the user supplies for each 
branch a statement like (14), the simulator will solve the 
nodevoltages, and these nodevoltages do physically make 
sense. 

The calculation of the values of a; is the subject of the next 
paragraph. 

5. CALCULATION OF PARASITIC INDUCTANCES 

The object of this paragraph is to establish a practical 
method to calculate the flux in (13). 

It is possible to take the following procedure. Chose all 
branchcurrents in the circuit except one equal to zero. 
Calculate the magnetic field due to this current on the surface 
of interest, i.e. the shaded area in Fig. 9. This is done by 
making use of Biot-Savart’s law. Integrate the flux-density 
over this area and divide by the magnitude of the current in 
the flux-generating branch. Repeat this process for each of 
the branches finding in each case the value of a pertaining to 
that branch. As the flux-receiving area is in general a 3D 
surface, this is a rather difficult task, because it involves 
numerical integrations to three variables that will in general 
be mutually dependent. 

There is however a much more practical way in calculating 
these values, which is based upon the concept of partial 
inductances of rectangular shapes [l]. This method in the first 
place deiines partial inductances between branches instead of 
loops. And, secondly, it supplies a closed form solution of the 
partial inductance between two rectangular shaped 
conductors carrying both homogeneous current. So if one is 
able to describe (or approximate) the circuit in terms of 
rectangular shaped components and wires, this concept 
provides closed form formulas to calculate the 
abovementioned d s .  This method is adopted here and 
consists basically of three steps: 
1. Attach the flux of each loop to the surrounding contour, i.e. 

attach partial fluxes to the branch and to the two 
measurement wires. 

2. Stylise every branch and its components as well as all the 
measurement wires in one or more rectangular bars. 

3. Make use of the closed form solution for the mutual partial 
inductance between two rectangular shaped conductors. 

In order to make clear what is to be done, the concept of 
inductances is briefly reviewed here and then it is shown how 
the concept of partial inductances is developed from this. 

Consider at first the situation of two current loops, p and q, 
that have currents Zp and Zq, and current densities Jp and 4,. 
See Fig. 10. Along with JF and Jq are defined the current 
density distributions, indicated with the superscript ( I ) :  

The general expression for the flux eq connected with a loop 
p due to a current loop q is by definition: 

- 
where kf9 is the vector potential due to the current in loop q, 
and is defined by 

v x (p-’V x j 4  ) = .I4 
-.. 

If relative permeability is 1 everywhere kf9 can be expressed 

as: 

This leads to the general expression for mutual inductance: 
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Fig. I O .  Mutual inductance between to loops p and q 

Fig. 1 I .  Partial inductance between to parts ofthe loop5 p and q 

In looking at this last equation one concludes that for the 
calculation of the inductances only the volume of the areas 
where the current is flowing (i.e. in practical circuits in the 
connecting wiring and in the components). have to be taken 
into account. 

Now the concept of partial inductances is introduced. This 
is taken from the literature [ 13. A conventional inductance is 
the proportionality factor between a flux linked with an area 
or its bordering loop, due to a currentloop. Basically between 
a flux-generating current loop and a flux-receiving loop. The 
concept of partial inductances defines a way to associate a 
flux linked with a brunch with a brunch-current. In Fig. 11 
the definition of the partial inductance between to branches is 
illustrated: 

So the same expression as for the conventional inductances is 
taken, but the integration is performed only on the parts Vp, 
and V, of the respective loops p and q. 

In terms of the last paragraph we have now a theoretical 
basis for the flux linked with a branch or a measurement wire 
on the one hand (that is on the flux-receiving part) and a 
branchcurrent elsewhere in the circuit on the other hand (that 
is on the flux-generating part). So the first step is taken: a 
method is defined break down the flux of the loop, into 
(partial) fluxes related to the branch and to each of the two 
measurement wires respectively 

If Vpi and Vq, satisfy certain geometrical features this 
integral can partially or wholly be integrated. In the cases of 
parallel and rectangular bars as depicted in Fig. 12, an 
analytical solution has been published by Love and Hoer 221 

that has been used by Ruehli in his article on partial 
inductances [l]. 

I +y 

Fig. 12. general geonietry for which a closed form solution of partial 
coupling is known 

The second thing to be done in order to acquire the values 
of the parasitic inductances, is to stylise every branch and its 
components as well as all the measurement wires in one or 
more rectangular bars. Then for each branch and its 
components and for each measurement wire the partial 
inductance with all the (other) branches can be calculated, 
using the aforementioned analytical solution. The proces of 
modeling a physical branch is the subject of the next 
paragraph. 

In order to show which steps have been taken (13) is 
rewritten, splitting up the flux into three partial fluxes: 

Where the index nt stands for measurement wire and b for 
branch. Then these partial fluxes are expressed in partial 
inductances and branchcurrents: 

V,, = i ,  R, + i, R,,, + i, R,, + 
LPml ,b la t i l  + LPml ,b2a t i2  + 

'Pm2,b la t i1  + LPm?,b2ai i2  + *.* + LPmZ,bAratiN + 

' P b l , b I a t i l  + Lpbl ,h2a t i2  + "' + Lpbl,bAratiN 

+ LPml,bNatiW + 
(22) 

All these partial inductances Lp can be calculated purely on 
the basis of the stylised geometrical information of the wiring 
and of the components, with the aid of the formulas by Love 
and Hoer. 

Equation (22) readily fits in with the concept of putting 
parasitic features into a comprehensive \xiiring model, to 
which the ideal component models are to be attached. The 
first item in the righthand side: i, R, will be put in the ideal 

model. The remainder is to be put up in the model of the 
wing: 
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6. EXAMPLE OF MODELING A PHYSICAL CIRCUIT 

3 

3 

Fig. 13. Physical circuit to be simulated 

Consider Fig. 13. In this figure a simple but realistic piece 
of power electronics is depicted. The symbols on the 
components suggest the circuit of Fig. 14. 

7 50 1 0 60 50 0 110 50 

8 70 70 0 110 50 0 110 -30 C 
~ 

3 9 5 0  1 0 110 -30 0 0 -30 

i l  n l  i3 

nO 

Fig. 14. Circuit diagram of physical circuit 

The initial condition of the voltage on the capacitor is 
accounted for by the external voltage source. Mark the 
definition of the branch currents as well as of the nodes. 

NodenU 

Fig. 15. Identification of physical areas corresponding to nodes 

The first thing to be done is to chose in Fig. 13 physical 
spots that correspond to the nodes in Fig. 14. These spots are 

the (small) areas where one can put a probe on, in order to 
measure the node voltage. In this example only two nodes are 
chosen, see Fig. 15. 

Other and especially more nodes can be chosen. This 
requires a lengthy discussion, which is beyond the scope of 
this paper, and will be left out of consideration here. 

the physical (3D-)regions 
where the branch-currents in Fig. 14 flow, are to be 
identified. 

Thirdly one has to stylise in these current-regions the 
wiring and the components in rectangular blocks of 
homogeneous current that do approximate the real current- 
density distribution. Not only the blocks are to be chosen, but 
the current-direction as well. This is indicated in Fig. 16. 

Secondly, again in Fig. 13, 

Fig. 16. Approximation of current distribution by rectangular regions of 
homogeneous current 

Now a system of coordinates is chosen, with reference to 
which the stylised current blocks can be characterized. For 
each block the startingpoint (xoyo,z~)  and endpoint (xI.yI,zI) 
of the centre-line of the current are denoted as well as the 
width and the thickness of the block, see Table I. Also in 
Table I, the occurrence of the components is indicated. 
Table I. Geometrical data of current blocks 

The data from Table I are the input data of the program, 
that generates the simulation model of the wiring. In order to 
enable the user to check whether he has entered the correct 
data, the program also generates a picture of the wire-model 
i.e. the centre lines of currents in wiring and components, see 

2120 



Fig. 17. The program generates automatically internal and 
external nodes. The picture of the wire-model enables the 
user to identify their position. Comparing Fig. 17 and Fig. 14 
shows that node nl  corresponds to in1 and node nO tot a2. 

Fig. 17. Wire model, i.e. centre line of currents in wiring and components 

The simulationmodel generated by the program is a 
SaberTM template and reads as in Fig. 18. The template has 
four external connection points: PI, p2, p3 and ex2. 
Remember that (in paragraph 3) it was decided that for each 
branch a pair of connection-points is to be made available. 
Each of these pairs defines an external voltage. In this case of 
three branches, they are vexl, vex2 and vex3. By definition 
the side where positive current is flowing out of the template 
into the connected component is called pi, p2 and p3 
respectively. The other external connection-point (i.e. ex2) 
can either be gathered from Fig. 17 or from the template: 

vexl = v(p1) - v(ex2) 
vex2 = v(p2) - v(ex2) 
vex3 = v(p3) - v(ex2) 
For each branch there is in this template a crucial line of 

i 2 :  vin2 = d-by-dt( -fpml + fpm2 + fp2) + vex2 + 
i2* 0.31871e-6 

It states that the total branch-voltage vin2 consists of three 
parts: 
0 the time derivative of the partial flux fpml (connected with 

measurement wire l), fpmz (connected with measurement 
wire 2) and fp2 (connected with the branch itself) 
The voltage vex2 due to some possible external component 
which can be connected to the template so that it carries the 
branch-current. Remember the concept we adopted to 
model the parasitics of the wiring as a seperate model, to 
which the ideal components are to be connected. 
The resistive voltage drop along the branch 
i2*0.31871e-6. 

The correspondence between this line of code and (21) is 
easily apprehended. 

Because the program choses automatically the point 
(x,y,z)=(O,O,O) as the virtual measurement point, the 
measurement wire from internal node in1 (coinciding with 
(O,O,O)) is degenerate. This is reflected in the line of code that 
expresses the way the partial flux connected with this 
measurement-wire, depends on the branch-currents: 

code, take for instance branch 2: 

fpml = ( 0 . 0 0 0 0 * i 1 + 0 . 0 0 0 0 * i 2 + 0 . 0 0 0 0 * i 3  )* l e -9  
The other measurment-flux has of course a non-zero coupling 
with each of the three branch-currents: 

fpm2 = ( - 1 . 4 7 0 9 * i 1 + 3 . 9 2 0 6 * i 2 + - 0 . 0 1 7 1 * i 3  )* l e -9  
The condition of homogeneous current will not always be 

sufficiently satisfied, due to skinning. Non-homogeneous 
current in the first place affects selfinductance and in a 
considerably smaller degree mutual inductances. The factor 
Fsk reduces the selfinductances. If skinning is complete, no 
internal field will exist in the conductors, resulting in a 
reduction to some 90%..8O% of selfinductance for most 
practical situations. Although theoretically this is not a very 
strong feature of the model it turns out to be very handy in 
practice. 

template Example pi p2 p3 ex2 = Fsk 
electrical pl, p2, p3, ex2 
number Fsk=i # Skinningfactor, reduces selfindaction; varies from 

# 1 (homogeneous current. no skinning) to 0.9..0.8 
# (no internal field due to complete skinning) 

{ 
electrical in1 
var i il, i2, i3 
val bsi fpl, fp2, fp3, fpml. fpn2 
val v vexi, vexZ, vex3 
Val v vinl, vinl, vin3 
group [il, iz, i3j i 

Values { 
fpl = I i7.0353*Fsk*il+ 1.5186*i2+ -2.016o*i3 )*le-9 
fp2 = I 1.5i86*il+ 4.6277+Bsk*i2+ O.O821*i3 )*le-9 
fp3 = 1 -2.Gi60*il+ O.O821*i2+ 56.4131*Fsk*i3 )*le-9 
fpml = 1 O.COOO*ii+ 0.0COO'i2- O.OOOO*i3 )*le-9 
fpmZ = 1 -1.4709*il+ 3.9206*i2+ -O.O171*i3 i+le-9 
vexl = v(p1) - vlexl) 
vex2 = v(p2) - vIex.2) 
vex3 = v(p3) - v(ex2) 
vinl = vlinl) - v(ex2) 
vin2 = vlinl) - vlexl) 
vin3 = v(in1) - vlex2) 
I 
Equations { 
i(p1) += -il 
i(p2) += -i2 
i(p3) += -i3 
i(in1) += il + i2 + i3 
il: vinl = d-by-dt( -fpml+ fpm2i fpl) + vexl + il+ 41.11871e-6 
i2: vin2 = d-by-dtc -fpml+ fpm2- fp2) + vex2 t iZ* 0.31871e-6 
i3: vin3 = d-by-dtl -fpml+ fpm2i fp3) + vex3 + i3* 92.07761e-6 
I )  

Fig. 18. Saber template of wiring model 

7. VALIDATION OF THE MODEL 

A 2.5kV12kA inverterleg according to Fig. 19 was used to 
check the validity of the modeling. The physical 
representation of the circuit is depicted in Fig. 20. The wire- 
model is given in Fig. 21. 

presenting three 
waveforms. The first one is the simulation with the model 
developed in this paper. The second one is the measurement. 
The third one is a simulated waveform without parasitics; 
these waveforms can be obtained by simulating the circuit of 
Fig. 19 without any parasitic addition. 

In comparing the waveform with and the one without 
parasitics, one gets an idea of how this model adds to the 
conventional approach. In comparing the simulation with the 
measurement one sees in how far this addition is correct. 

Fig.23 gives the results, each figure 
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Fig. 19. Circuit uscd for validation niodeling 

,- 
Fig. 20. Physical 3D drawing of circuit used for validation modeling 

k' 
Fig. 21. wire-model of cinxit: centre lines of currents in wiring and 
components 

The time-axes is for all the waveforms the same en runs 
from t=Ops untill t=200ps; some waveforms only depict a 
part of this axes. With reference to Fig. 23 three intervals are 
defined. 

Interval 1 runs from t=20ps untill t - 1 2 0 ~  
0 Interval 2 runs from n t=125p untill t=155p. 
0 Interval 3 runs from t=155ps untill t=200ps. 
Outside these regions the parasitic inductances hardly play 
any role. This is due to the fact that outside these regions 
currents and voltage vary only slowly. 

Initially (at t=O) the circuit is in rest: capacitor C30 is 
charged up to 2kV and the current in the load Lb is zero. 
GTO's V1 and V2 are both blocking. GTO V1 remains 
blocking during the whole experiment, whereas GTO V1 is 
brought into conduction at e 5 p s  and switched OR at 
t=127ps. During conduction-time of V2 (from t=5ps 
untillt=127ps), a current builds up in Lb reaching a maximum 
value of 520A, shortly after the moment of switching off V2. 

Qmn h nubs*-0. &mil i - 
U=w- od*ncalmv&m 

A- e!!-* U,.) """ 

-1r I 

Fig. 22. Simulation with parasitics calcuted with Fsk=l 

Consider Fig. 23.  It turns out that the agreement between 
measurement and simulation is on interval 2 considerably 
better than on the intervals 1 and 3. Especially the damping 
disagrees on these two intervals. A closer enquiry into this 
matter reveals that on interval 2 none of the semiconductors 
carries a high-frequent current. This implies that the 
calculation of currents on this interval is substantially less 
affected by the modeling of the semiconductors than 
elsewhere. Especially interval 1 exhibits a repeated reverse 
and forward recovery of diode V12. The losses connected 
with this phenomenon may have significant impact on the 
damping. It can be concluded that a good to reasonable 
agreement occurs when the modeling of the wiring is to a 
large extent responsible for the simulation results. 

The waveshapes of Fig. 23 have been obtained by setting 
Fsk to 0.85, To get an idea of the influence of this factor, one 
of the graphs of Fig. 23 is given for Fsk=l in Fig. 22. The 
differences are only small. 

Non-homogeneous current can of course be incorporated in 
the circuit-simulation by subdividing each current-block into 
several sub-blocks. In the simulation it will appear that the 
outer blocks have more current than the inner ones. This 
method however increases the size of the 
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template greatly. It is the authors object to develop a more 
smart way of dealing with skinning in the nearby future. 

Apart from the ultimate template the program generates 
intermediate results as matrices of inductive coupling 
between all blocks and branches. These can be very useful as 
well in establishing the connection between geometrical 
dimension and the electrical behaviour of the circuit. 

8. CONCLUSION 
A Method of modeling parasitic inductances has been 
developed fiom the theoretical basis to the implementation 
and validation. Measurement results show that the modeling 
is accurate and facilitate a prior assessment of geometrical 
features of a circuit. The rather crude approach of 

approximating the circuit by homogeneous current blocks 
already gives very good results. The influence of the factor 
Fsk suggests that a refinement of this model especially on the 
point of modeling the sefinductance, may even further 
improve accuracy. 
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Fig. 23. Measurement and simulation results 
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